JP4463608B2 - SiRNA that specifically suppresses expression of mutant MJD gene - Google Patents

SiRNA that specifically suppresses expression of mutant MJD gene Download PDF

Info

Publication number
JP4463608B2
JP4463608B2 JP2004122475A JP2004122475A JP4463608B2 JP 4463608 B2 JP4463608 B2 JP 4463608B2 JP 2004122475 A JP2004122475 A JP 2004122475A JP 2004122475 A JP2004122475 A JP 2004122475A JP 4463608 B2 JP4463608 B2 JP 4463608B2
Authority
JP
Japan
Prior art keywords
sirna
cag
gene
expression
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004122475A
Other languages
Japanese (ja)
Other versions
JP2005304321A (en
Inventor
隆徳 横田
隆介 松村
英洋 水澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004122475A priority Critical patent/JP4463608B2/en
Publication of JP2005304321A publication Critical patent/JP2005304321A/en
Application granted granted Critical
Publication of JP4463608B2 publication Critical patent/JP4463608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

本発明は、マカド−ジョセフ病遺伝子の変異体アリルの発現を特異的に抑制することができるsiRNA(short interfering RNA)及びその利用等に関する。   The present invention relates to siRNA (short interfering RNA) capable of specifically suppressing the expression of a mutant allele of the Macado-Joseph disease gene, its use, and the like.

マカド−ジョセフ病(MJD)は、小脳性運動失調、錐体及び錐体外路徴候、末梢神経障害および眼筋麻痺によって臨床的に特徴づけられる常染色体優性遺伝の神経変性疾患であり、10〜15年程度で寝たきりとなり、治療は現在のところ対症療法のみでる。この原因遺伝子であるMJD1遺伝子中の3塩基配列(CAG)の繰り返し配列(CAGリピート)の数は、正常人では13〜36であるのに対して、MJD患者では62〜82にまで伸長している[1]。MJDの病因は、変異体MJD蛋白質の異常伸長したッポリグルタミンによる「毒性機能の獲得」であると考えられる[2,3]。   Macado-Joseph disease (MJD) is an autosomal dominant inherited neurodegenerative disease characterized clinically by cerebellar ataxia, cone and extrapyramidal signs, peripheral neuropathy and ocular muscle paralysis, 10-15 Bedridden in about a year, treatment is currently only symptomatic treatment. The number of 3 base sequence (CAG) repeat sequences (CAG repeats) in the MJD1 gene, which is the causative gene, is 13 to 36 in normal individuals, while it extends to 62 to 82 in MJD patients. [1]. The etiology of MJD is thought to be “acquisition of toxic functions” by abnormally elongated polypolyglutamine of mutant MJD protein [2,3].

従って、MJDに対する最も有効且つ簡単な治療手段はこの異常な変異体蛋白質を減少させることである。更に、野生型のMJD1遺伝子産物(アタキシン−3:ataxin-3)は、小胞体の特性調節[4]及びDNA修復[5]のような細胞の生存にとって重要な役割を果たしていると考えられるから、この野生型蛋白質に影響を与えずに、変異体アタキシン−3のみを選択的に減少させる必要がある。   Therefore, the most effective and simple treatment for MJD is to reduce this abnormal mutant protein. Furthermore, the wild-type MJD1 gene product (ataxin-3) is thought to play an important role in cell survival such as endoplasmic reticulum regulation [4] and DNA repair [5]. Only the mutant ataxin-3 needs to be selectively reduced without affecting this wild-type protein.

RNA干渉(RNAi)は、二重鎖RNA(dsRNA)によって開始される、配列特異的な転写後遺伝子サイレンシングプロセスである。これは、21−23個のヌクレオチドのsiRNAが生成され、それによって相同なRNAの分解が引き起こされる、という多段階ステップのプロセスを有している。このsiRNAは遺伝子特異的な抑制を媒介する為に十分な長さが必要であると同時に、哺乳動物細胞中でのdsRNAによる悪影響を回避するために十分に短いものである。   RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing process initiated by double-stranded RNA (dsRNA). This has a multi-step process where a siRNA of 21-23 nucleotides is generated, thereby causing degradation of the homologous RNA. This siRNA needs to be long enough to mediate gene-specific repression, while being short enough to avoid the negative effects of dsRNA in mammalian cells.

近年、このRNA干渉によるターゲット遺伝子に対する非常に高い発現抑制能を利用して、疾病の遺伝子治療用の強力なツールとして医療の分野への応用が期待されている。   In recent years, using the very high ability to suppress the expression of a target gene due to RNA interference, application to the medical field is expected as a powerful tool for gene therapy of diseases.

MJD1遺伝子に対するRNA干渉法も報告されているが、これはCAGリピート直下に位置するグアニン/シトシンの一塩基多型(Single Nucleotide Polymorphism)に着目して、異常遺伝子及び正常遺伝子をそれらの一次配列の相違から識別するものである(非特許文献1)。この報告に記載されたsiRNAは、Q166C(166回のCAGリピートの直下に「C」が結合した塩基配列)を有する配列の発現を抑制する一方で、Q28G(28回のCAGリピートの直下に「G」が結合した塩基配列)を有する配列の発現には僅かな影響しか及ぼさなかった。但し、Q28Cについては調べられていない。 An RNA interference method for the MJD1 gene has also been reported. This method focuses on the single nucleotide polymorphism of guanine / cytosine located directly under the CAG repeat, and converts the abnormal gene and normal gene into their primary sequence. It is identified from the difference (Non-Patent Document 1). The siRNA described in this report suppresses the expression of a sequence having Q 166 C (base sequence in which “C” is bound immediately below 166 CAG repeats), while Q 28 G (28 CAG repeats). The expression of a sequence having a base sequence (with a “G” bound immediately below) had a slight effect. However, Q 28 C has not been investigated.

特表2002−516062号公報Japanese translation of PCT publication No. 2002-516062 特表2003−529374号公報Special table 2003-529374 gazette 特表2003−535583号公報Special table 2003-535583 gazette Miller VM, Xia H, MarrGL, et al. Allele-specific silencing of dominant disease genes. Proc. Natl.Acad. Sci., USA 2003; 100: 7195-7200Miller VM, Xia H, MarrGL, et al. Allele-specific silencing of dominant disease genes.Proc. Natl. Acad. Sci., USA 2003; 100: 7195-7200

MJD1遺伝子におけるCAGリピート直下に位置するグアニン/シトシンの一塩基多型に関して、変異体と正常なMJD1の対立遺伝子(アリル)の間に極端な偏りが存在することが判明している。即ち、変異体対立遺伝子は排他的に(CAG)nCのみを有しているのに対して、正常な対立遺伝子は(CAG)nCと(CAG)nGの両方を同頻度で有している [7,8](図1A)
With regard to the guanine / cytosine single nucleotide polymorphism located directly under the CAG repeat in the MJD1 gene, it has been found that there is an extreme bias between the mutant and the normal MJD1 allele. That is, mutant alleles have exclusively (CAG) nC, whereas normal alleles have both (CAG) nC and (CAG) nG at the same frequency [ 7,8] (Fig. 1A)
.

従って、単なる一塩基多型(一次配列の相違)に基づく上記の非特許文献1に記載のRNA干渉法では、MJD患者の約半数においては正常と異常の遺伝子を識別できず、又、正常人においても、約50%の確率で(CAG)nC型の正常な対立遺伝子の発現が抑制されてしまう可能性がある為、臨床応用の面では大きな障害となることが予想される。   Therefore, in the RNA interference method described in Non-Patent Document 1 based on simple single nucleotide polymorphism (difference in primary sequence), normal and abnormal genes cannot be distinguished in about half of MJD patients. However, since there is a possibility that the expression of a normal allele of (CAG) nC type may be suppressed with a probability of about 50%, it is expected to be a major obstacle in terms of clinical application.

本発明は、上記課題を解決すべく、MJD1遺伝子における正常なアリルと異常な(変異体)アリルに由来するRNAを特異的に識別することが可能なsiRNAを提供するものである。   In order to solve the above problems, the present invention provides siRNA capable of specifically distinguishing RNAs derived from normal alleles and abnormal (mutant) alleles in the MJD1 gene.

即ち、本発明は、マカド−ジョセフ病遺伝子の野生型アリルと変異体アリルを識別することができるsiRNA、に係る。
更に本発明は、RNAの一次配列に非依存的に、マカド−ジョセフ病の変異体アリル由来のmRNAと特異的に結合することができるsiRNA、に係る。
That is, the present invention relates to siRNA that can distinguish between wild-type alleles and mutant alleles of the Macado-Joseph disease gene.
Furthermore, the present invention relates to an siRNA capable of specifically binding to mRNA derived from Macada-Joseph disease mutant allele, independent of the primary sequence of RNA.

また、本発明は、上記siRNAを活性成分として含有するキャリア、及び、siRNAを発現するDNAベクターに係る。   The present invention also relates to a carrier containing the siRNA as an active ingredient and a DNA vector that expresses the siRNA.

又、本発明は、上記のsiRNA、キャリア、又はDNA発現ベクターのいずれかを含む組成物にも係る。この組成物は、例えば、医薬用途としてマカド−ジョセフ病の治療に使用することができる。   The present invention also relates to a composition comprising any of the above siRNA, carrier, or DNA expression vector. This composition can be used, for example, for the treatment of Macad-Joseph disease for pharmaceutical use.

更に、本発明は、上記siRNAで細胞をトランスフェクションし、該細胞内に取り込まれたsiRNAの作用によってマカド−ジョセフ病遺伝子の変異体アリルの発現を特異的に抑制する方法、及び、上記siRNAで細胞をトランスフェクションし、該細胞内に取り込まれたsiRNAの作用によってマカド−ジョセフ病遺伝子の変異体アリル産物による細胞毒性を減少させる方法、に係る。該細胞の種類に特に制限はないが、例えば、本明細書の実施例中で使用されているようなヒト等の哺乳動物細胞を挙げることが出来る。   Furthermore, the present invention provides a method for specifically inhibiting the expression of a mutant allele of a Macado-Joseph disease gene by transfection of a cell with the siRNA, and the action of the siRNA incorporated into the cell, and the siRNA The present invention relates to a method of transfecting a cell and reducing the cytotoxicity caused by the mutant allele product of the Macado-Joseph disease gene by the action of siRNA incorporated into the cell. Although there is no restriction | limiting in particular in the kind of this cell, For example, mammalian cells, such as a human as used in the Example of this specification, can be mentioned.

本発明のsiRNAにより、全てのマカド−ジョセフ病患者の遺伝子型において、患者の有する正常な遺伝子の発現を損なわずに、異常な変異体遺伝子の発現のみを特異的に抑制することが可能となった。   The siRNA of the present invention makes it possible to specifically suppress only the expression of an abnormal mutant gene without impairing the expression of the normal gene of the patient in the genotypes of all patients with Macad-Joseph disease. It was.

本発明のsiRNAは当業者に公知の任意の方法で作成することが出来る。例えば、以下の実施例に示すように、当業者に周知の方法によって容易に化学合成することができる。本発明のsiRNAの好適具体例の一つとして、センス鎖に塩基配列:5’- g cag cag cag cgg gac cua - 3’(配列番号1)を含むsiRNAを挙げることが出来る。尚、この塩基配列は、上記非特許文献1に記載された配列(5’- CAG CAG CAG
CGG GAC CTA TC -
3’と比較して3つの塩基が異なるものである(上記各配列中の下線部分)。
The siRNA of the present invention can be prepared by any method known to those skilled in the art. For example, as shown in the following examples, it can be easily chemically synthesized by methods well known to those skilled in the art. As a preferred specific example of the siRNA of the present invention, siRNA containing the base sequence: 5′- g cag cag cag cgg gac cua-3 ′ (SEQ ID NO: 1) can be mentioned. This base sequence is the sequence described in Non-Patent Document 1 (5′-CAG CAG CAG
CGG GAC CTA TC-
Compared with 3 ', three bases are different (underlined portion in each sequence above).

尚、動物細胞内でRNA干渉が生起するには、siRNAは21〜23塩基程度で、且つそれぞれの3’側に2塩基突出している必要がある。従って、上記のセンス鎖を有する本発明のsiRNAは、より具体的には、例えば、本明細書の図1にsiRNA MJD3 として示されるものである。   In addition, in order for RNA interference to occur in an animal cell, siRNA needs to have about 21 to 23 bases and 2 bases protrude from each 3 'side. Therefore, more specifically, the siRNA of the present invention having the above-mentioned sense strand is, for example, shown as siRNA MJD3 in FIG. 1 of the present specification.

本発明のsiRNAを、例えば、マカド−ジョセフ病の治療に利用する場合には、当該技術分野で公知の任意のドラッグ・デリバリー・システムを使用することが出来る。RNA自体は不安定な物質であり、例えば、血液中に注入したような場合にはRNA分解酵素などによって分解されてしまう。そこで、各種機能性リポソーム又は高分子ミセルなどのキャリア内にsiRNAを封入したり、又は、siRNAの両端に、例えば、接着因子又は抗体分子などの標的誘導分子やPEGを結合させることによってsiRNAを修飾し、血液又は細胞内での安定性を高めることが可能である。   For example, when the siRNA of the present invention is used for the treatment of Macad-Joseph disease, any drug delivery system known in the art can be used. RNA itself is an unstable substance. For example, when it is injected into blood, it is degraded by an RNA degrading enzyme. Therefore, siRNA is modified by encapsulating siRNA in a carrier such as various functional liposomes or polymer micelles, or by binding a target induction molecule such as an adhesion factor or antibody molecule or PEG to both ends of the siRNA. However, it is possible to increase the stability in blood or cells.

体内で効果的にsiRNAを発現させて作用させる別の方法として、本発明siRNAの発現ベクター、即ち、該siRNAに対応するDNAを外来DNA断片として組み込んで得られる発現DNAベクターがある。このような発現ベクターとしては、当業者に公知の適当なベクター系を適宜選択し、当該技術分野で公知の適当な方法で作成することが出来る。このような本発明のsiRNAに対応するDNA断片も当業者に公知の任意の方法で容易に調製することが出来る。   As another method for effectively expressing and acting on siRNA in the body, there is an expression vector for the siRNA of the present invention, that is, an expression DNA vector obtained by incorporating a DNA corresponding to the siRNA as a foreign DNA fragment. As such an expression vector, an appropriate vector system known to those skilled in the art can be appropriately selected and prepared by an appropriate method known in the art. Such a DNA fragment corresponding to the siRNA of the present invention can also be easily prepared by any method known to those skilled in the art.

尚、このような発現ベクターにおいては、プロモーターの下流に、siRNAのセンス鎖に対応するDNA配列とアンチセンス鎖に対応するDNA配列が1本のDNAにコードされている「ヘアピン型」又は「ステムループ型」と呼ばれる型のものがある。これは、体内で転写されてヘアピン(ステムループ)状のRNAとなり、その後、酵素反応を受けてsiRNAが生成される。   In such an expression vector, a “hairpin type” or “stem” in which a DNA sequence corresponding to the sense strand of siRNA and a DNA sequence corresponding to the antisense strand are encoded in one DNA downstream of the promoter. There is a type called "loop type". This is transcribed in the body into hairpin (stem loop) RNA, and then undergoes an enzymatic reaction to produce siRNA.

このような発現ベクターの具体例として、例えば、アデノウイルスベクター及びアデノ随伴ウイルスベクター等の各種ウイルスベクターを挙げることが出来る。アデノウイルスベクターは神経細胞等の分裂速度が遅い細胞を含む幅広い細胞への遺伝子導入が可能であり、且つ、インビボでの導効率がほぼ100%である。導入遺伝子は通常、宿主細胞の染色体外に存在し、染色体への組み込みは稀である。従って、導入遺伝子の発現は一過性で通常1〜4週間である。又、アデノ随伴ウイルスベクターは、安全性が高く、神経細胞のような非分裂細胞にも導入可能であり、更に、宿主染色体に導入遺伝子が組み込まれるために、1年以上にも及ぶ導入遺伝子の長期的発現が可能な系である。   Specific examples of such expression vectors include various virus vectors such as adenovirus vectors and adeno-associated virus vectors. Adenovirus vectors can introduce genes into a wide range of cells including cells with low division rate such as nerve cells, and the in vivo conductivity is almost 100%. Transgenes usually reside outside the host cell chromosome and are rarely integrated into the chromosome. Therefore, the expression of the transgene is transient and usually 1 to 4 weeks. In addition, adeno-associated virus vectors are highly safe and can be introduced into non-dividing cells such as nerve cells. Furthermore, since the transgene is integrated into the host chromosome, the transgene can be introduced for more than one year. It is a system capable of long-term expression.

以上のsiRNAを活性成分として含有するキャリア、及び、siRNAの発現ベクターは当業者に公知の方法で作成することが出来る。又、これらを含む組成物は、その目的、成分等に応じて、緩衝液及び補助剤等の当業者に公知の任意の成分が含まれており、更に、その使用・投与方法等に応じて、溶液、懸濁液又は乳濁液等の任意の形態とすることが出来る。   A carrier containing the above siRNA as an active ingredient and an siRNA expression vector can be prepared by methods known to those skilled in the art. Moreover, the composition containing these contains arbitrary components known to those skilled in the art, such as buffers and adjuvants, depending on the purpose, components and the like, and further, depending on the use and administration method thereof. It can be in any form such as a solution, suspension or emulsion.

本発明方法において、細胞のトランスフェクションは当業者に公知の任意の方法で実施することが出来る。例えば、上記の本発明組成物を、例えば、注射等の適当な手段を用いてヒトを含む動物体内に適当な経路で投与することによって、インビボでトランスフェクションを行わせることも可能である。このような場合には、本発明方法はマカドージョセフ患者への遺伝子治療方法として機能することになる。或いは、以下の実施例に示されるように、各種培養細胞系に対してインビトロでトランスフェクションを行うことも可能である。   In the method of the present invention, transfection of cells can be performed by any method known to those skilled in the art. For example, transfection can be performed in vivo by administering the above-described composition of the present invention into an animal body including a human by an appropriate route using an appropriate means such as injection. In such a case, the method of the present invention will function as a gene therapy method for McDough Joseph patients. Alternatively, as shown in the examples below, transfection can be performed in vitro on various cultured cell lines.

以下、実施例に則して本発明を具体的に説明するが、本発明の技術的範囲はこれらの記載によって何等制限されるものではない。   EXAMPLES Hereinafter, although this invention is concretely demonstrated according to an Example, the technical scope of this invention is not restrict | limited at all by these description.

プラスミドの構築、及びsiRNAの設計
ataxin-3発現プラスミドはAkira Kakizuka博士から提供された[4]。該プラスミド中のMJDI
cDNAは、22(正常、pCMX HA-Q22C)又は79(伸長したpCMX
HA-Q79C)個のCAGリピート、及びそのN末端にヘマグルチニン(haemagglutinin(HA))が融合された結合断片であった。pCMX
HA-Q22Cの中のCAGリピート直後のシトシンは、QuikChange部位特異的突然変異誘発システム(Stratagene、La
Jolla (CA))を使用して、グアニン(pCMX HA-Q22G)に変更された。更に、これらのMJD cDNAをpIRES-hrGFP-la(Stratagene)へサブローニングし、夫々、pGFP-Q22G、pGFPQ22C及びpGFP-Q79Cを得た。
Plasmid construction and siRNA design
The ataxin-3 expression plasmid was provided by Dr. Akira Kakizuka [4]. MJDI in the plasmid
cDNA is 22 (normal, pCMX HA-Q22C) or 79 (extended pCMX
HA-Q79C) CAG repeats and a binding fragment in which hemagglutinin (HA) was fused to the N-terminus thereof. pCMX
The cytosine immediately after CAG repeat in HA-Q22C is a QuikChange site-directed mutagenesis system (Stratagene, La
Jolla (CA)) and changed to guanine (pCMX HA-Q22G). Furthermore, these MJD cDNAs were sub-rotated into pIRES-hrGFP-la (Stratagene) to obtain pGFP-Q22G, pGFPQ22C and pGFP-Q79C, respectively.

CAGリピート及びその3'末端の結合部位をターゲットとすべく、異なる4種類のsiRNAsを設計し(図1B)、当業者に公知の方法でこれらRNAを化学合成した。即ち、CPGのT−カラムに核酸合成機(ABI
社製、Expedite)でdTを付加後、C/G多型における一塩基変化をsiRNAにおけるセンス鎖の5‘末端から夫々、5、8、11及び11番目の位置に設けた、siRNA
MJD1、siRNA MJD2、siRNA MJD3、siRNA MJD4を夫々合成し、HPLCを用いて精製した。
Four different siRNAs were designed to target the CAG repeat and the binding site at its 3 ′ end (FIG. 1B), and these RNAs were chemically synthesized by methods known to those skilled in the art. In other words, the nucleic acid synthesizer (ABI)
After adding dT with Expedite, Inc., the siRNA was provided with single-base changes in the C / G polymorphism at positions 5, 8, 11 and 11 from the 5 ′ end of the sense strand in siRNA, respectively.
MJD1, siRNA MJD2, siRNA MJD3, and siRNA MJD4 were synthesized and purified using HPLC.

トランスフェクション及びウェスタンブロット
ataxin-3の発現におけるMJD RNAに対する、上記で作成したsiRNAの効果を検討する目的で、各siRNA(10又は25nM)とataxin-3発現プラスミド(4μg)を6ウェル培養プレートで培養されているヒト胎児腎臓細胞系293T(ATCCから購入)にLipofectamine Plus 試薬(Life Technologies, Rockville, MD)を用いてコトランスフェクションした。siRNAはアニールさせた後、文献[9]に記載の方法に従い、トランスフェクションした
Transfection and Western blot
Humans in which each siRNA (10 or 25 nM) and ataxin-3 expression plasmid (4 μg) are cultured in a 6-well culture plate for the purpose of examining the effect of the siRNA prepared above on MJD RNA in the expression of ataxin-3 Fetal kidney cell line 293T (purchased from ATCC) was cotransfected using Lipofectamine Plus reagent (Life Technologies, Rockville, MD). siRNA was annealed and then transfected according to the method described in Ref. [9]

トランスフェクションの24時間後に、プロチアーゼインヒビターカクテル(Roche)を含むTNG緩衝液(50m
Tris-HCl, 150mM NaCl, 1% Triton X-100)によって細胞を回収し、15%のSDSポリアクリルアミドゲル上で分離し、ポリビニリデンジフルオリド薄膜(Bio-Rad)上に移した。マウスモノクローナル抗HA抗体(Roche)反応させ、増感化学ルミネセンス検出キット(ECL;
Amerham Pharmacia Biotech)を使用して検出した。
24 hours after transfection, TNG buffer (50m) containing a protease inhibitor cocktail (Roche)
Cells were harvested with Tris-HCl, 150 mM NaCl, 1% Triton X-100), separated on a 15% SDS polyacrylamide gel, and transferred onto polyvinylidene difluoride thin film (Bio-Rad). Mouse monoclonal anti-HA antibody (Roche) reaction, enhanced chemiluminescence detection kit (ECL;
Amerham Pharmacia Biotech).

その結果、変異体ataxin-3(Q79C)は25nMのsiRNA MJD3によって最も有効に抑制された。又、ウェスタンブロットのシグナル強度上でコントロールに対して96.0%減少した(図2A)。対照的に、野生型ataxin-3(Q22G)の発現は、siRNA
MJD4によって適度に抑制されたが、siRNA MJDl、siRNA MJD2、及びsiRNA MJD3によっては明らかに影響を受けなかった。以上の結果から、本発明のsiRNAの一例であるsiRNA
MJD3は、CとGの間の1つのヌクレオチド変更を最も良く認識し、Q22Gの発現に対する影響は殆どなくて、Q79Cの発現を特異的に抑制した。Q79C発現に対するsiRNA
MJD3の影響は用量依存的であるのに対して、Q22Gの抑制は10nM及び25nM siRNAで類似していた。即ち、25nMのsiRNA MJD3によって、Q22Gは殆ど抑制されず(5.9%)、Q22Cも僅かしか抑制されない(22.5%)のに対して、Q79Cは96.0%
も抑制された。予想外にも、(CAG)79C及び(CAG)22Cにおけるターゲット配列は同一であるにも拘らず、siRNA MJD3は、別の野生型対立遺伝子(Q22C)の発現をあまり減少させることはなかった(図2B)。
As a result, mutant ataxin-3 (Q79C) was most effectively suppressed by 25 nM siRNA MJD3. In addition, the signal intensity on the Western blot decreased by 96.0% compared to the control (FIG. 2A). In contrast, the expression of wild type ataxin-3 (Q22G) is
Although moderately suppressed by MJD4, it was clearly not affected by siRNA MJDl, siRNA MJD2, and siRNA MJD3. From the above results, siRNA which is an example of the siRNA of the present invention
MJD3 best recognized one nucleotide change between C and G, had little effect on Q22G expression, and specifically suppressed Q79C expression. SiRNA for Q79C expression
The effect of MJD3 was dose-dependent, whereas the suppression of Q22G was similar with 10 nM and 25 nM siRNA. That is, 25nM siRNA MJD3 hardly suppresses Q22G (5.9%), and only slightly suppresses Q22C (22.5%), whereas Q79C is 96.0%
Was also suppressed. Unexpectedly, despite the identical target sequences in (CAG) 79C and (CAG) 22C, siRNA MJD3 did not significantly reduce the expression of another wild type allele (Q22C) ( FIG. 2B).

更に、抑制結果における上記の傾向は、DsRed蛍光をトランスフェクション効率のコントロールとして使用し、ataxin-3(pGFP-Q22CあるいはpGFP-Q79C)と共に内部リボソームエントリー部位によって発現されるGFPの蛍光が減少することによっても確認された(図2C)。   Furthermore, the above trend in suppression results shows that DsRed fluorescence is used as a control for transfection efficiency, and the fluorescence of GFP expressed by the internal ribosome entry site with ataxin-3 (pGFP-Q22C or pGFP-Q79C) decreases. (FIG. 2C).

以上の結果から、本発明のsiRNAは、マカド−ジョセフ病遺伝子の野生型アリルと変異体アリルを識別することができることが確認された。更に、本発明のsiRNAは、RNAの一次配列に非依存的に、マカド−ジョセフ病の変異体アリル由来のmRNAと特異的に結合することが確認された。   From the above results, it was confirmed that the siRNA of the present invention can distinguish between the wild-type allele and the mutant allele of the Macado-Joseph disease gene. Furthermore, it was confirmed that the siRNA of the present invention specifically binds to mRNA derived from Macad-Joseph disease mutant allele independently of the primary sequence of RNA.

細胞死の評価
変異体-3の発現によって引き起こされる細胞死に対するsiRNAの影響を評価するために、24ウェル培養プレート内のNeuro2a細胞(ATCCから購入)をpCMXQ79C(1μg/ウェル)及びsiRNA
MJD3(100nM/ウェル)でコトランスフェクションした。トランスフェクションの48時間後、Neuro2aの細胞死は、トリパンブルー排除法、及びCytotox
96非放射性細胞毒性検定(Promega)による細胞質の乳酸脱水素酵素(LDH)活性測定の両方で分析することにより決定された。
Evaluation of cell death To assess the effect of siRNA on cell death caused by the expression of variant-3, Neuro2a cells (purchased from ATCC) in 24-well culture plates were transformed into pCMXQ79C (1 μg / well) and siRNA.
Co-transfected with MJD3 (100 nM / well). Forty-eight hours after transfection, Neuro2a cell death was determined by trypan blue exclusion and Cytotox.
It was determined by analyzing both cytoplasmic lactate dehydrogenase (LDH) activity measurements by 96 non-radioactive cytotoxicity assay (Promega).

その結果、トランスフェクションの48時間後に、変異体MJD(Q79C)の発現はNeuro2aに有毒だった。しかしながら、野生型ataxin-3(Q22GとQ22C)の発現は細胞生存に影響を及ぼさなかった。即ち、siRNA
MJD3は突然変異体ataxin-3の毒性を著しく抑制し、それによる細胞死を、夫々62.8%(LDH検定)及び75.9%(トリパンブルー排除法)で減少させることができた。
尚、統計分析は、スチューデントt-検定及び単一因子ANOVA、並びにそれに続くFisher’s
protected 1east-significant differenc post hoc testを使用して行った。
As a result, 48 hours after transfection, the expression of mutant MJD (Q79C) was toxic to Neuro2a. However, the expression of wild type ataxin-3 (Q22G and Q22C) did not affect cell survival. SiRNA
MJD3 significantly suppressed the toxicity of the mutant ataxin-3, thereby reducing cell death by 62.8% (LDH test) and 75.9% (trypan blue exclusion method), respectively.
Statistical analysis consists of Student t-test and single factor ANOVA, followed by Fisher's
This was done using the protected 1east-significant differenc post hoc test.

本発明は、以下の理論的考察に何等制約を受けるものではないが、本発明のsiRNAがMJD1遺伝子における正常なアリルと異常な(変異体)アリルに由来するRNAを特異的に識別することができる理由として、すべてのRNA配列がsiRNAに等しくアクセス可能だとは限らないということである。即ち、特にターゲットRNAが高度に折り重ねられたものである場合、或る種の標的配列はその二次構造内に埋め込まれているかもしれない[10]。更に、高度に折り重ねられたRNAに対するsiRNAの最適なの標的部位は、リボザイムに対するものと殆ど同じであり、その開裂効率はターゲットRNAの二次構造による影響を非常に受けるものである[9]。   The present invention is not limited by the following theoretical considerations, but the siRNA of the present invention can specifically distinguish RNAs derived from normal alleles and abnormal (mutant) alleles in the MJD1 gene. A possible reason is that not all RNA sequences are equally accessible to siRNA. That is, certain target sequences may be embedded within their secondary structure, especially if the target RNA is highly folded [10]. Furthermore, the optimal target site of siRNA for highly folded RNA is almost the same as for ribozyme, and its cleavage efficiency is highly influenced by the secondary structure of the target RNA [9].

MJD遺伝子のC/G多型の標的部位は、コンピューター予測上では二次構造においてタイトなステム形態を示すCAGリピートのすぐ下流である。従って、GAGリピート長の大きな差異によるMJD
RNAの二次構造の変化がsiRNA MJD3による効果に影響を及ぼしている可能性が考えられる。
The target site of the C / G polymorphism of the MJD gene is just downstream of the CAG repeat that shows a tight stem morphology in secondary structure on computer prediction. Therefore, MJD due to large difference in GAG repeat length
It is possible that changes in the secondary structure of RNA may affect the effects of siRNA MJD3.

或いは、別の可能性として、(CAG) 79Cよりも(CAG)22Cに対して優先的に結合するRNA結合蛋白質が存在し、そのために、siRNA
MJD3が(CAG)22Cへ接近するのを妨げられている、ということである。MJDmRNAに対するRNA結合蛋白質は未だ発見されていないが、筋緊張性ジストロフィー蛋白質キナーゼ遺伝子におけるCUGリピートは、リピート長依存的にCUG結合蛋白質と結合することが判っている[11]。更に、ハンチントン舞踏病においてCAGリピートに付着するRNA結合蛋白質の存在が示唆されている[12]。
Alternatively, another possibility exists that there is an RNA binding protein that binds preferentially to (CAG) 22C over (CAG) 79C, and thus siRNA
This means that MJD3 is prevented from approaching (CAG) 22C. Although an RNA binding protein for MJD mRNA has not yet been discovered, CUG repeats in the myotonic dystrophy protein kinase gene have been found to bind to CUG binding proteins in a repeat length-dependent manner [11]. Furthermore, the existence of an RNA binding protein that adheres to CAG repeats in Huntington's disease has been suggested [12].

[引用文献]
1. Kawaguchi Y, Okamoto T, Taniwaki M,
et al. CAG expansions in a novel gene for
Machado-Joseph disease at chromosome
14q32.1. Nat Genet 1994;8:221-228.
2. Ross CA. When more is less:
pathogenesis of glutamine repeat neurodegenerative
diseases. Neuron 1995;15:493-496:
3. Ikeda H, Yamaguchi M, Satoshi 5, Aze
Y, Narumiya 5, Kakizuka A. Expanded
polyglutamine in the Machado-Joseph
disease protein induced cell death in vitro and
in vivo. Nat Genet 1996;13:196-201.
4. Kobayashi T, Tanaka K, Jnoue K,
Kakizuka A. Functional ATPase activity of
p97/valosin-containing protein (VCP) is
required for the quality control of
endoplasmic reticulum in neuronally
differentiated mammalian PC12 cells. J Biol
Chem 2002;277:47358-47365.
5. Wang G, Sawai N, Kotliarova 5, Kanazawa I, Nukina N..Ataxin-3, the MJD1 gene
product, interacts with the two human
homologs of yeast DNA repair protein RAD23,
HHR23A and HHR23B. Hum Mol Genet
2000;9:1795-1803.
6. Elbashir 5, Harborth J, Lendeckel W,
Yalcin A, Weber K, Tuschl T. Duplexes of 21
nucleotide RNAs mediate RNA interference
in cultured mammalian cells. Nature
2001 ;411 :494-498.
7. Matsumura R, Takayanagi T, Murata K,
Futamura N, Hirano M, Ueno S.
Relationship of (CAG)nC configuration to
repeat instability of the Machado-Joseph
disease gene. Hum Genet 1996;98:643-645.
8. Gaspar C, Lopes-Cendes I, Hayes 5, et
al. Ancestral origins of the Machado-Joseph
disease mutation: a worldwide haplotype
study. Am J Hum Genet. 2001;68:523-528.
9. Yokota T, Sakamoto N, Enomoto Y, et
al. Inhibition of intracellular hepatitis C
virus replication by synthetic and
vector-derived small interfering RNAs. EMBO Rep
2003;4:602-608.
10. Yoshinari K, Miyagishi M, Taira K,
et al. Effect on RNAi of the tight structure,
sequence and position of the targeted
region. Nucleic Acids Res 2OO4;32:691-699.~
11. Philips AV, Timchenko L, Cooper TA.
Disruption of splicing regulated by a CUG-
binding protein in myotonic dystrophy.
Science 1998;280:737-741.
12. McLaughlin BA, Spencer C, Eberwine
J. CAG trinucleotide RNA repeats interact
with RNA-binding proteins. Am J Hum
Genet 1996;59:561-569.
[Cited document]
1. Kawaguchi Y, Okamoto T, Taniwaki M,
et al. CAG expansions in a novel gene for
Machado-Joseph disease at chromosome
14q32.1. Nat Genet 1994; 8: 221-228.
2. Ross CA. When more is less:
pathogenesis of glutamine repeat neurodegenerative
diseases. Neuron 1995; 15: 493-496:
3. Ikeda H, Yamaguchi M, Satoshi 5, Aze
Y, Narumiya 5, Kakizuka A. Expanded
polyglutamine in the Machado-Joseph
disease protein induced cell death in vitro and
in vivo. Nat Genet 1996; 13: 196-201.
4. Kobayashi T, Tanaka K, Jnoue K,
Kakizuka A. Functional ATPase activity of
p97 / valosin-containing protein (VCP) is
required for the quality control of
endoplasmic reticulum in neuronally
differentiated mammalian PC12 cells. J Biol
Chem 2002; 277: 47358-47365.
5. Wang G, Sawai N, Kotliarova 5, Kanazawa I, Nukina N .. Ataxin-3, the MJD1 gene
product, interacts with the two human
homologs of yeast DNA repair protein RAD23,
HHR23A and HHR23B. Hum Mol Genet
2000; 9: 1795-1803.
6. Elbashir 5, Harborth J, Lendeckel W,
Yalcin A, Weber K, Tuschl T. Duplexes of 21
nucleotide RNAs mediate RNA interference
in cultured mammalian cells. Nature
2001; 411: 494-498.
7. Matsumura R, Takayanagi T, Murata K,
Futamura N, Hirano M, Ueno S.
Relationship of (CAG) nC configuration to
repeat instability of the Machado-Joseph
disease gene. Hum Genet 1996; 98: 643-645.
8. Gaspar C, Lopes-Cendes I, Hayes 5, et
al. Ancestral origins of the Machado-Joseph
disease mutation: a worldwide haplotype
study. Am J Hum Genet. 2001; 68: 523-528.
9. Yokota T, Sakamoto N, Enomoto Y, et
al. Inhibition of intracellular hepatitis C
virus replication by synthetic and
vector-derived small interfering RNAs. EMBO Rep
2003; 4: 602-608.
10. Yoshinari K, Miyagishi M, Taira K,
et al. Effect on RNAi of the tight structure,
sequence and position of the targeted
region. Nucleic Acids Res 2OO4; 32: 691-699. ~
11. Philips AV, Timchenko L, Cooper TA.
Disruption of splicing regulated by a CUG-
binding protein in myotonic dystrophy.
Science 1998; 280: 737-741.
12. McLaughlin BA, Spencer C, Eberwine
J. CAG trinucleotide RNA repeats interact
with RNA-binding proteins. Am J Hum
Genet 1996; 59: 561-569.

本発明のsiRNAに基づく核酸医薬は、マカドージョセフ患者への遺伝子治療の可能性を提供するものである。   The siRNA-based nucleic acid drug of the present invention provides the possibility of gene therapy for McDough Joseph patients.

図中、A(上)はヒトMJD1遺伝子における CAGリピートの直ぐ下流にあるG/G多型を示す。A(下)は56人のMJD患者におけるG/G多型及びCAGリピートの分布を示す。伸長したアリルは全て(CAG)nCを有しており、一方、正常アリルは(CAG)nGと(CAG)nGを同頻度で有する(0.46及び0.54)。矢印は本明細書に実施例で使用したataxin3-発現ベクター構築物におけるCAGリピートを示す。 Bは、MJD1 mRNA中の(CAG)nGをターゲットにしたsiRNAの配列を示す。尚、大文字はDNAを意味する。In the figure, A (upper) shows the G / G polymorphism immediately downstream of the CAG repeat in the human MJD1 gene. A (bottom) shows the distribution of G / G polymorphism and CAG repeat in 56 MJD patients. All extended alleles have (CAG) nC, while normal alleles have (CAG) nG and (CAG) nG at the same frequency (0.46 and 0.54). Arrows indicate CAG repeats in the ataxin3-expression vector construct used in the Examples herein. B shows the sequence of siRNA targeting (CAG) nG in MJD1 mRNA. Capital letters mean DNA. 変異体MJD1の発現に対する本発明siRNAの特異的な抑制効果を示す電気泳動の写真である。A及びBの棒グラフの各値は平均及びSEMを示す。Cは、293T細胞のGFPイメージ(x200)を示す写真である。2 is an electrophoresis photograph showing the specific inhibitory effect of the siRNA of the present invention on the expression of mutant MJD1. Each value in the A and B bar graphs represents the mean and SEM. C is a photograph showing a GFP image (x200) of 293T cells. 哺乳類細胞における変異体Ataxin 3による毒性に対するsiRNAMJD3の影響を示すLDHアッセイ(*** p<0.0001)及びトリパンブルーエクスクル−ジョン法(** p<0. 001)のよる検出結果示す。Q22C 又はQ22Gの過剰発現によっても細胞毒性は示されなかった。尚、pcDNA3.1 プラスミド(Invitrogen)を偽トランスフェクションとして使用した。棒グラフの各値は平均及びSEMを示す。The detection result by the LDH assay (*** p <0.0001) and trypan blue exclusion method (** p <0.001) which show the influence of siRNAMJD3 with respect to the toxicity by the variant Ataxin 3 in a mammalian cell is shown. Cytotoxicity was not shown by overexpression of Q22C or Q22G. The pcDNA3.1 plasmid (Invitrogen) was used as a mock transfection. Each value in the bar graph represents the average and SEM.

Claims (3)

センス鎖に塩基配列:5’- g cag cag cag cgg gac cua - 3’(配列番号1)を含むsiRNA、又は、センス鎖が塩基配列:5’- g cag cag cag cgg gac cua tt- 3’ から成るsiRNAで細胞をトランスフェクションし、該細胞内に取り込まれたsiRNAの作用によってマカド−ジョセフ病遺伝子の変異体アリルの発現を特異的に抑制する、但し、ヒトにおけるインビボを除く、方法。 SiRNA containing the base sequence: 5′-g cag cag cag cgg gac cua-3 ′ (SEQ ID NO: 1) in the sense strand, or the sense strand has the base sequence: 5′-g cag cag cag cgg gac cua tt-3 ′ A method in which a cell is transfected with an siRNA comprising , and the expression of a mutant allele of the Macado-Joseph disease gene is specifically suppressed by the action of the siRNA incorporated into the cell, except for in vivo in humans. センス鎖に塩基配列:5’- g cag cag cag cgg gac cua - 3’(配列番号1)を含むsiRNA、又は、センス鎖が塩基配列:5’- g cag cag cag cgg gac cua tt- 3’ から成るsiRNAで細胞をトランスフェクションし、該細胞内に取り込まれたsiRNAの作用によってマカド−ジョセフ病遺伝子の変異体アリル産物による細胞毒性を減少させる、但し、ヒトにおけるインビボを除く、方法。 SiRNA containing the base sequence: 5′-g cag cag cag cgg gac cua-3 ′ (SEQ ID NO: 1) in the sense strand, or the sense strand has the base sequence: 5′-g cag cag cag cgg gac cua tt-3 ′ A method of transfecting a cell with an siRNA consisting of and reducing cytotoxicity due to a mutant allele product of the Macado-Joseph disease gene by the action of the siRNA incorporated into the cell, except in vivo in humans. センス鎖に塩基配列:5’- g cag cag cag cgg gac cua - 3’(配列番号1)を含むsiRNA、又は、センス鎖が塩基配列:5’- g cag cag cag cgg gac cua tt- 3’ から成るsiRNA、該siRNAを活性成分として含有するキャリア、又は、該siRNAを発現するDNAベクターのいずれかを含む組成物を投与することによって、インビボでトランスフェクションを行わせる、請求項1又は2に記載の方法。
SiRNA containing the base sequence: 5′-g cag cag cag cgg gac cua-3 ′ (SEQ ID NO: 1) in the sense strand, or the sense strand has the base sequence: 5′-g cag cag cag cgg gac cua tt-3 ′ 3. Transfection is performed in vivo by administering a composition comprising either a siRNA comprising: a carrier containing the siRNA as an active ingredient; or a DNA vector expressing the siRNA. The method described.
JP2004122475A 2004-04-19 2004-04-19 SiRNA that specifically suppresses expression of mutant MJD gene Expired - Fee Related JP4463608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122475A JP4463608B2 (en) 2004-04-19 2004-04-19 SiRNA that specifically suppresses expression of mutant MJD gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122475A JP4463608B2 (en) 2004-04-19 2004-04-19 SiRNA that specifically suppresses expression of mutant MJD gene

Publications (2)

Publication Number Publication Date
JP2005304321A JP2005304321A (en) 2005-11-04
JP4463608B2 true JP4463608B2 (en) 2010-05-19

Family

ID=35433806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122475A Expired - Fee Related JP4463608B2 (en) 2004-04-19 2004-04-19 SiRNA that specifically suppresses expression of mutant MJD gene

Country Status (1)

Country Link
JP (1) JP4463608B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014021612A2 (en) * 2012-03-12 2017-07-18 Santaris Pharma As compositions and methods for modulating atxn3 expression
PE20211890A1 (en) * 2019-01-09 2021-09-22 Univ De Coimbra BICATENARY RNA AND USES OF THE SAME

Also Published As

Publication number Publication date
JP2005304321A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
Hu et al. Knockdown of lncRNA MALAT1 attenuates acute myocardial infarction through miR-320-Pten axis
EP1670518B1 (en) Rna interference for the treatment of gain-of-function disorders
US7498316B2 (en) Methods and compositions for treating gain-of-function disorders using RNA interference
US9074207B2 (en) Modified human U1snRNA molecule, a gene encoding for the modified human U1snRNA molecule, an expression vector including the gene, and the use thereof in gene therapy
Liao et al. Development of allele-specific therapeutic siRNA in Meesmann epithelial corneal dystrophy
Tam et al. Prevention of autosomal dominant retinitis pigmentosa by systemic drug therapy targeting heat shock protein 90 (Hsp90)
JP2020500518A (en) Allele-specific silencing therapy for dynamin 2 related diseases
JP5941842B2 (en) Dominant allele expression inhibitor
WO2020194320A1 (en) Compositions and methods for treating cystic fibrosis
Wang et al. Adenosine deaminase ADAR1 increases gene expression at the translational level by decreasing protein kinase PKR-dependent eIF-2α phosphorylation
US20050208658A1 (en) RNA interference mediated inhibition of 11beta hydroxysteriod dehydrogenase-1 (11beta HSD-1) gene expression
US9669109B1 (en) Modified human U1snRNA molecule, a gene encoding for the modified human U1snRNA molecule, an expression vector including the gene, and the use thereof in gene therapy of familial dysautonomia and spinal muscular atrophy
JP4463608B2 (en) SiRNA that specifically suppresses expression of mutant MJD gene
US11591602B2 (en) Method of allele specific silencing for the treatment of autosomal dominant Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT)
EP3966320A1 (en) Treatment and detection of inherited neuropathies and associated disorders
JP2015515485A (en) Archease as a member of the RNA ligase complex
CN116368223A (en) SiRNA and use thereof
Dobson et al. Identifying intrinsic and extrinsic determinants that regulate internal initiation of translation mediated by the FMR1 5'leader
EP1899468B1 (en) siRNA FOR INHIBITING IL-6 EXPRESSION AND COMPOSITION CONTAINING THEM
EP2951197A1 (en) Methods for treating mitochondrial disorders and neurodegenerative disorders
JP2013039036A (en) NUCLEIC ACID INHIBITING EXPRESSION OF HIF-2α
JP2018074954A (en) Method for improving expression of artificial synthetic mRNA
Smicun et al. Enhanced intracellular availability and survival of hammerhead ribozymes increases target ablation in a cellular model of osteogenesis imperfecta
WO2024036343A2 (en) Synergistic nucleic acid based therapeutics and methods of use for treating genetic disorders
JP2023505737A (en) Allele-specific silencing of the transforming growth factor beta-inducible gene with the R124H mutation using short interfering RNA

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090514

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350