JP4461797B2 - Mobile robot - Google Patents

Mobile robot Download PDF

Info

Publication number
JP4461797B2
JP4461797B2 JP2003422556A JP2003422556A JP4461797B2 JP 4461797 B2 JP4461797 B2 JP 4461797B2 JP 2003422556 A JP2003422556 A JP 2003422556A JP 2003422556 A JP2003422556 A JP 2003422556A JP 4461797 B2 JP4461797 B2 JP 4461797B2
Authority
JP
Japan
Prior art keywords
vector
mobile robot
acceleration
arm
walking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003422556A
Other languages
Japanese (ja)
Other versions
JP2005177927A5 (en
JP2005177927A (en
Inventor
博幸 半田
賢一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003422556A priority Critical patent/JP4461797B2/en
Publication of JP2005177927A publication Critical patent/JP2005177927A/en
Publication of JP2005177927A5 publication Critical patent/JP2005177927A5/ja
Application granted granted Critical
Publication of JP4461797B2 publication Critical patent/JP4461797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、複数のリンクから構成された移動機構と腕を有し、物体を搬送する移動ロボットに関する。   The present invention relates to a mobile robot that has a moving mechanism and arms composed of a plurality of links and conveys an object.

リンク機構を有した脚式歩行ロボットは、階段や凹凸のある路面でも自由に移動可能な機構であるとともに、全方向に移動可能なため前進・後退・旋回のみならず左右への並進移動も可能であるといった特徴を有している。このような人間や哺乳類の歩行形態とほぼ同等の移動性能を期待できるため、従来より歩行に関する研究開発が盛んに行われ、歩行時に脚が地面に着地する際に発生する衝撃力を緩和することで安定した歩行制御を得られるようにしたものがある。(例えば、特許文献1)
図6は従来例の制御ブロック図であり、着地時に足底部に作用する外力を検出し、それを減少する様に構成したことから、路面反力を効果的に吸収することができ、路面に凹凸があっても柔軟に着地させることができて衝撃の少ない安定した着地を構成することができる。
このように、従来の歩行ロボットは、脚の着地時にコンプライアンス制御を応用することによって衝撃を少なくし、安定した歩行制御を実現している。
特許第2819323号(第7頁、図1)
The legged walking robot with a link mechanism is a mechanism that can move freely even on stairs and uneven road surfaces, and it can move in all directions, so it can move in both directions as well as forward, backward, and turn. It has the characteristic that it is. Since it can be expected to have almost the same movement performance as the walking form of humans and mammals, research and development related to walking has been actively conducted so far, and the impact force generated when the legs land on the ground during walking can be reduced. There is something that can obtain stable walking control. (For example, Patent Document 1)
FIG. 6 is a control block diagram of a conventional example, and is configured to detect and reduce the external force acting on the sole when landing, so that the road surface reaction force can be effectively absorbed, Even if there are irregularities, it can be landed flexibly and a stable landing with less impact can be constructed.
Thus, the conventional walking robot reduces the impact by applying the compliance control when landing on the leg, and realizes stable walking control.
Japanese Patent No. 2819323 (7th page, FIG. 1)

従来の歩行ロボットは、脚の着地時に発生する衝撃力すなわち高周波数の振動を緩和し、歩行安定性能を向上しているが、歩行ロボットが歩行する際に発生する前後左右の低周波数の揺動振幅を減少することができないので、腕で把持した物体を安定に運ぶことはできない。
本発明はこのような問題点に鑑みてなされたものであり、複数のリンクで構成された脚で移動する移動ロボットが把持した物体の揺動を著しく減少することができる移動ロボットを提供することを目的とする。
Conventional walking robots reduce the impact force generated when landing on the legs, that is, high-frequency vibrations, and improve walking stability performance. Since the amplitude cannot be reduced, the object held by the arm cannot be stably carried.
The present invention has been made in view of such a problem, and provides a mobile robot capable of significantly reducing the swing of an object gripped by a mobile robot moving with a leg composed of a plurality of links. With the goal.

上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、複数のリンクで構成された移動機構部と、複数のリンクで構成された腕部と、前記移動機構部および前記腕部が取り付けられた体幹部と、前記移動機構部、前記腕部、前記体幹部の各関節に取り付けられたアクチュエータを駆動制御する制御部を有する移動ロボットにおいて、前記体幹部に取り付けられた加速度センサによって前記移動ロボットが移動する際に発生する加速度ベクトルを検出する加速度検出部と前記加速度ベクトルを速度ベクトルに変換する状態変換部とからなる振動演算部と、前記振動演算部にて求めた速度ベクトルに係数行列を乗じて前記速度ベクトルと逆位相の速度ベクトルを演算する逆位相演算部とを備え、前記移動ロボットが移動する際に、前記腕部の速度指令ベクトルに前記逆位相演算部にて求めた逆位相の速度ベクトルを重畳させるものである。
請求項2に記載の発明は、前記状態変換部は、前記加速度ベクトルを時間積分した後、定常成分を削除して前記速度ベクトルに変換するものである
In order to solve the above problem, the present invention is configured as follows.
The invention according to claim 1 is a movement mechanism portion configured by a plurality of links, an arm portion configured by a plurality of links, a trunk portion to which the movement mechanism portion and the arm portions are attached, and the movement Occurs when the mobile robot has a control unit that drives and controls an actuator attached to each joint of the mechanism part, the arm part, and the trunk part, and the mobile robot moves by an acceleration sensor attached to the trunk part. A vibration calculation unit including an acceleration detection unit that detects an acceleration vector, a state conversion unit that converts the acceleration vector into a velocity vector, and the velocity vector obtained by the vibration calculation unit is multiplied by a coefficient matrix to be opposite to the velocity vector. and a reverse phase calculator for calculating a velocity vector of the phase, when the mobile robot moves, the antiphase Starring the speed command vector of the arms It is intended to superimpose the velocity vector of the inverse phase obtained in part.
According to a second aspect of the present invention, the state conversion unit time-integrates the acceleration vector and then deletes a steady component and converts the acceleration vector into the velocity vector .

請求項1に記載の発明によると、歩行によって発生する低周波数の振動とは逆位相の振動を腕の手先指令に重畳するので、腕の先端部では逆位相指令と歩行による振動が相殺されるため、ロボットが歩行していても把持した物体は地面に対して揺が少なくなる。
また、請求項5に記載の発明によると、逆位相の速度ベクトルに任意の係数ベクトルを乗じることができるため、歩行によって生じる揺動の振幅を調節することができる。
また、請求項1乃至2記載の発明によると、振動を加速度として検出し、積分した後に定常成分を削除するので、歩行によって移動する際の定常速度が腕には与えられないので、腕の可動範囲内で振動を抑制することができる。
According to the first aspect of the present invention, since the vibration having the opposite phase to the low frequency vibration generated by walking is superimposed on the arm hand command, the vibration caused by walking is canceled at the tip of the arm. Therefore, even if the robot is walking, the grasped object is less likely to shake with respect to the ground.
According to the fifth aspect of the present invention, since an anti-phase velocity vector can be multiplied by an arbitrary coefficient vector, the amplitude of oscillation caused by walking can be adjusted.
According to the first and second aspects of the present invention, since the steady component is deleted after the vibration is detected as an acceleration and integrated, the steady speed when moving by walking is not given to the arm. Vibration can be suppressed within the range.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施例を示す歩行ロボットの構成図である。図において、11、12は複数のリンクで構成された脚部および腕部、13は腕部先端に取り付けられたハンド部であり、ロボットが搬送する物体を把持できる構造となっている。14は脚部および腕部が取り付く体幹部、15は体幹部の上部に取り付けられた頭部、16は体幹部内部に取り付けられた加速度検出部であり本実施例では加速度センサを用いる。17は、ロボットの各関節に取り付けられた図示していないアクチュエータを駆動制御したり、加速度センサ情報を取り込む制御部、18はロボットの基準座標系であり、加速度センサの座標系と一致している。   FIG. 1 is a configuration diagram of a walking robot showing an embodiment of the present invention. In the figure, reference numerals 11 and 12 denote leg portions and arm portions formed of a plurality of links, and reference numeral 13 denotes a hand portion attached to the distal end of the arm portion, which has a structure capable of gripping an object conveyed by the robot. Reference numeral 14 denotes a trunk part to which the leg part and the arm part are attached, reference numeral 15 denotes a head part attached to the upper part of the trunk part, and reference numeral 16 denotes an acceleration detection part attached to the inside of the trunk part. In this embodiment, an acceleration sensor is used. Reference numeral 17 denotes a control unit that drives and controls an actuator (not shown) attached to each joint of the robot and takes in acceleration sensor information. Reference numeral 18 denotes a reference coordinate system of the robot, which matches the coordinate system of the acceleration sensor. .

図2は、本発明の実施例を示す歩行ロボットの制御ブロック図である。図において、歩行動作によって発生する加速度は、加速度検出部(加速度センサ)にて検出され、検出した加速度情報(加速度ベクトル)は積分器にて速度ベクトルに変換される。変換された速度ベクトルは、ハイパスフィルタを通すことによって定常成分が削除される。ここで、ハイパスフィルタを通す目的は、歩行によって移動する際に定常速度成分が含まれ、この定常速度成分を含んだままの速度ベクトルを手先指令に用いると腕部の可動範囲を逸脱するため、振動による速度成分のみを得るためである。また、ハイパスフィルタのカットオフ周波数は0.1Hz〜1Hz程度とするため、本発明で対象としている周波数帯は、特許文献1が対象としている着地時の衝撃によって生じる周波数よりも遥かに小さい。定常成分が削除された速度ベクトルに逆位相演算部にて負の係数行列Kを乗じて歩行による振動方向とは逆位相の振動速度ベクトルを生成する。ここで生成した逆位相速度ベクトルと、指令生成部にて生成した腕の手先の速度指令ベクトルを重畳させ、最終的な手先速度指令ベクトルとする。最終の手先速度ベクトルは、積分器にて積分され手先位置指定ベクトルに変換され、腕部の逆運動学計算によって各関節の角度指令ベクトルを求めることができる。
ここで、図中のIは単位行列、sはラプラス演算子、Kは係数行列を示している。
FIG. 2 is a control block diagram of the walking robot showing the embodiment of the present invention. In the figure, the acceleration generated by the walking motion is detected by an acceleration detector (acceleration sensor), and the detected acceleration information (acceleration vector) is converted into a velocity vector by an integrator. The converted velocity vector is passed through a high pass filter to remove the steady component. Here, the purpose of passing through the high-pass filter is to include a steady speed component when moving by walking, and if a speed vector that includes this steady speed component is used for the hand command, it deviates from the movable range of the arm, This is to obtain only the velocity component due to vibration. Further, since the cutoff frequency of the high-pass filter is about 0.1 Hz to 1 Hz, the frequency band targeted by the present invention is much smaller than the frequency generated by the impact at the time of landing, which is the subject of Patent Document 1. The velocity vector from which the stationary component has been deleted is multiplied by a negative coefficient matrix K in the antiphase computing unit to generate a vibration velocity vector having a phase opposite to the direction of vibration caused by walking. The antiphase velocity vector generated here and the arm arm speed command vector generated by the command generation unit are superimposed to obtain the final hand speed command vector. The final hand velocity vector is integrated by an integrator and converted into a hand position designation vector, and an angle command vector for each joint can be obtained by inverse kinematic calculation of the arm.
Here, in the figure, I is a unit matrix, s is a Laplace operator, and K is a coefficient matrix.

次に、上記の方法によって求めた角度指令によるロボットの動作を図3および図4を用いて説明する。本発明の効果を示すために、本発明の振動抑制制御を適用していない場合(図3)と振動抑制制御を適用した場合(図4)とのロボットの動作を比較する。   Next, the operation of the robot based on the angle command obtained by the above method will be described with reference to FIGS. In order to show the effect of the present invention, the operation of the robot is compared between the case where the vibration suppression control of the present invention is not applied (FIG. 3) and the case where the vibration suppression control is applied (FIG. 4).

図3は、振動抑制制御を適用しない場合、すなわち係数行列Kの各要素が0の場合の歩行1周期を示している。図は3Aから3Iへと時間経過によるロボットの姿勢変化を順次示しており、3Aは歩行開始前の直立した姿勢、3Bは右足に重心を移動している姿勢、3Cは右足に重心を移した後に左足を遊脚にした姿勢、3Dは遊脚であった左足を着地した姿勢、3Eは重心を右足から左足に移す途中の中立姿勢、3Fは左足に重心を移動している姿勢、3Gは左足に重心を移した後に右足を遊脚にした姿勢、3Hは遊脚であった右足を着地した姿勢、3Iは歩行完了後の直立した姿勢である。
また、図は双腕を使って物体を把持した場合であり、図に示す把持物体の中心位置が歩行動作によって歩行中心から変位を生じる(ずれる)ことを示している。
特許文献1の制御方法を適用した場合には、図3のような把持物体の歩行による振動が生じる。
FIG. 3 shows one walk cycle when the vibration suppression control is not applied, that is, when each element of the coefficient matrix K is zero. The figure sequentially shows the posture change of the robot over time from 3A to 3I, 3A is an upright posture before starting walking, 3B is a posture moving the center of gravity to the right foot, 3C is a center of gravity moved to the right foot Posture with the left foot as a free leg, 3D is a posture with the left foot that was a free leg, 3E is a neutral posture in the middle of moving the center of gravity from the right foot to the left foot, 3F is a posture in which the center of gravity is moved to the left foot, 3G is The posture with the right foot as a free leg after shifting the center of gravity to the left foot, 3H is the posture with the right foot that was a free leg landing, and 3I is the upright posture after walking is completed.
The figure shows a case where an object is gripped using two arms, and shows that the center position of the gripped object shown in the figure is displaced (shifted) from the walking center by a walking motion.
When the control method of Patent Document 1 is applied, vibration due to walking of the grasped object as shown in FIG. 3 occurs.

これに対して、図4は、本発明の振動抑制制御を適用した場合、すなわち係数行列Kの各要素が1の場合の歩行1周期を示している。ここで、係数行列は0から1の間の数値を設定できるが、ここでは説明を容易にするため各要素を1とする。
図は4Aから4Iへと時間経過によるロボットの姿勢変化を順次示しており、4Aは歩行開始前の直立した姿勢、4Bは右足に重心を移動している姿勢、4Cは右足に重心を移した後に左足を遊脚にした姿勢、4Dは遊脚であった左足を着地した姿勢、4Eは重心を右足から左足に移す途中の中立姿勢、4Fは左足に重心を移動している姿勢、4Gは左足に重心を移した後に右足を遊脚にした姿勢、4Hは遊脚であった右足を着地した姿勢、4Iは歩行完了後の直立した姿勢である。
図4も図3と同様に双腕を使って物体を把持した場合であるが、本発明を適用すると歩行動作中においても図に示す把持物体の中心位置が歩行中心からの変位を生じず、一定の位置にあることを示している。
On the other hand, FIG. 4 shows one walking cycle when the vibration suppression control of the present invention is applied, that is, when each element of the coefficient matrix K is 1. Here, the coefficient matrix can be set to a numerical value between 0 and 1, but here each element is set to 1 for easy explanation.
The figure shows the robot posture changes over time from 4A to 4I. 4A is an upright posture before starting walking, 4B is a posture moving the center of gravity to the right foot, and 4C is a center of gravity moving to the right foot. 4D is a posture in which the left foot was landed, 4E is a neutral posture in the middle of moving the center of gravity from the right foot to the left foot, 4F is a posture in which the center of gravity is moved to the left foot, and 4G is The posture with the right foot as the free leg after shifting the center of gravity to the left foot, 4H is the posture with the right foot landing on the free leg, and 4I is the upright posture after the completion of walking.
FIG. 4 also shows a case where an object is gripped using two arms as in FIG. 3, but when the present invention is applied, the center position of the gripped object shown in the figure does not cause a displacement from the walking center even during walking motion. It shows that it is in a certain position.

図5は、本発明の効果を実験検証するために収集した実験データである。図は、把持物体中心位置のY方向(図1参照)の変位を本発明の振動抑制制御を適用しない場合(図5上図)と振動抑制制御を適用した場合(図5下図、係数行列Kの各要素:0.5)を示している。
このように、歩行動作に由来する振動に基づき、腕がその逆位相に動作すれば、地面に対する物体の振動を著しく減少することができる。
なお、ここでは脚による歩行動作を例に説明したが、移動機構に車輪を用い、バネやダンパなどをリンク機構で構成した移動形態にも本発明は効果がある。
FIG. 5 shows experimental data collected for experimental verification of the effects of the present invention. The figure shows the displacement of the center position of the gripping object in the Y direction (see FIG. 1) when the vibration suppression control of the present invention is not applied (upper diagram in FIG. 5) and when the vibration suppression control is applied (lower diagram in FIG. 5, coefficient matrix K). Each element: 0.5).
As described above, if the arm moves in the opposite phase based on the vibration derived from the walking motion, the vibration of the object with respect to the ground can be significantly reduced.
In addition, although the walk operation | movement by a leg was demonstrated here as an example, this invention is effective also in the movement form which used the wheel for the moving mechanism and comprised the spring, the damper, etc. by the link mechanism.

また、移動機構のリンクが変位することによって上肢が振動するような他の移動機構、例えば、移動機構に車輪を用い、バネやダンパなどをリンク機構で構成した移動形態にも本発明は適用できる。   The present invention can also be applied to other moving mechanisms in which the upper limb vibrates when the link of the moving mechanism is displaced, for example, a moving form in which a wheel is used for the moving mechanism and a spring, a damper or the like is configured by the link mechanism. .

本発明は、複数のリンクから構成された移動機構と腕を有し、物体を搬送する移動ロボットとして有用である。   INDUSTRIAL APPLICABILITY The present invention is useful as a mobile robot that has a moving mechanism and arms composed of a plurality of links and conveys an object.

本発明の実施例を示す歩行ロボットの構成図である。It is a block diagram of the walking robot which shows the Example of this invention. 本発明の実施例を示す歩行ロボットの制御ブロック図である。It is a control block diagram of the walking robot showing an embodiment of the present invention. 本発明を適用しない場合のロボット動作説明図である。It is robot operation | movement explanatory drawing when not applying this invention. 本発明を適用した場合のロボット動作説明図である。It is robot operation | movement explanatory drawing at the time of applying this invention. 本発明の効果を示す実験データである。It is an experimental data which shows the effect of this invention. 従来技術の例を示す制御ブロック図である。It is a control block diagram which shows the example of a prior art.

符号の説明Explanation of symbols

11 脚部、12 腕部、13 ハンド部、14 体幹部、15 頭部、16 加速度検出部、17 制御部、18 基準座標系 11 Legs, 12 Arms, 13 Hands, 14 Trunks, 15 Heads, 16 Acceleration Detectors, 17 Controls, 18 Reference Coordinate System

Claims (2)

複数のリンクで構成された移動機構部と、複数のリンクで構成された腕部と、前記移動機構部および前記腕部が取り付けられた体幹部と、前記移動機構部、前記腕部、前記体幹部の各関節に取り付けられたアクチュエータを駆動制御する制御部を有する移動ロボットにおいて、
前記体幹部に取り付けられた加速度センサによって前記移動ロボットが移動する際に発生する加速度ベクトルを検出する加速度検出部と前記加速度ベクトルを速度ベクトルに変換する状態変換部とからなる振動演算部と、
前記振動演算部にて求めた速度ベクトルに係数行列を乗じて前記速度ベクトルと逆位相の速度ベクトルを演算する逆位相演算部とを備え、
前記移動ロボットが移動する際に、前記腕部の速度指令ベクトルに前記逆位相演算部にて求めた逆位相の速度ベクトルを重畳させることを特徴とする移動ロボット。
A movement mechanism section composed of a plurality of links, an arm section composed of a plurality of links, a trunk section to which the movement mechanism section and the arm sections are attached, the movement mechanism section, the arm section, and the body In a mobile robot having a control unit that drives and controls an actuator attached to each joint of the trunk,
A vibration calculation unit including an acceleration detection unit that detects an acceleration vector generated when the mobile robot moves by an acceleration sensor attached to the trunk, and a state conversion unit that converts the acceleration vector into a velocity vector ;
An anti-phase calculator that multiplies the velocity vector determined by the vibration calculator by a coefficient matrix to calculate a velocity vector having an opposite phase to the velocity vector ;
A mobile robot characterized in that, when the mobile robot moves, a speed vector having an antiphase obtained by the antiphase calculator is superimposed on a speed command vector of the arm.
前記状態変換部は、前記加速度ベクトルを時間積分した後、定常成分を削除して前記速度ベクトルに変換することを特徴とする請求項1記載の移動ロボット。
The mobile robot according to claim 1 , wherein the state conversion unit performs time integration on the acceleration vector and then converts the acceleration vector into the velocity vector by deleting a stationary component .
JP2003422556A 2003-12-19 2003-12-19 Mobile robot Expired - Fee Related JP4461797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422556A JP4461797B2 (en) 2003-12-19 2003-12-19 Mobile robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422556A JP4461797B2 (en) 2003-12-19 2003-12-19 Mobile robot

Publications (3)

Publication Number Publication Date
JP2005177927A JP2005177927A (en) 2005-07-07
JP2005177927A5 JP2005177927A5 (en) 2007-01-25
JP4461797B2 true JP4461797B2 (en) 2010-05-12

Family

ID=34783390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422556A Expired - Fee Related JP4461797B2 (en) 2003-12-19 2003-12-19 Mobile robot

Country Status (1)

Country Link
JP (1) JP4461797B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302665A (en) * 2012-03-09 2013-09-18 索尼公司 Robot apparatus, method of controlling robot apparatus, and computer program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774964B2 (en) * 2005-12-06 2011-09-21 ソニー株式会社 Robot equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297101A (en) * 1989-02-08 1990-12-07 Fuji Electric Co Ltd Method for controlling robot arm
JPH07328965A (en) * 1994-06-03 1995-12-19 Toyota Motor Corp Vibration damping control method, natural vibration period measuring method, vibration damping control device
JPH081560A (en) * 1994-06-17 1996-01-09 Yaskawa Electric Corp Robot vibration restricting method and its device
JPH09230922A (en) * 1996-02-23 1997-09-05 Hitachi Constr Mach Co Ltd Contact detecting device for force control robot
JP3435666B2 (en) * 1999-09-07 2003-08-11 ソニー株式会社 robot
JP2002134583A (en) * 2000-10-24 2002-05-10 Tokyo Electron Ltd Substrate conveying apparatus
JP4476468B2 (en) * 2000-11-13 2010-06-09 本田技研工業株式会社 Legged mobile robot
JP2003019677A (en) * 2001-07-06 2003-01-21 Sanyo Electric Co Ltd Carrying robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302665A (en) * 2012-03-09 2013-09-18 索尼公司 Robot apparatus, method of controlling robot apparatus, and computer program
CN103302665B (en) * 2012-03-09 2016-12-07 索尼公司 Robot device, the method controlling robot device

Also Published As

Publication number Publication date
JP2005177927A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
Kajita et al. Legged robot
Nagasaka et al. Dynamic walking pattern generation for a humanoid robot based on optimal gradient method
KR101131775B1 (en) Controller of leg type moving robot
US9073209B2 (en) Walking robot and control method thereof
JP4513320B2 (en) Robot apparatus and motion control method of robot apparatus
JP6483014B2 (en) Mobile robot controller
TW583059B (en) Two-feet walking type moving apparatus, the control device therefor, and method for controlling the walking
JP6228097B2 (en) Mobile robot
WO2002040224A1 (en) Gait pattern generating device for legged mobile robot
WO2005000533A1 (en) Gait generation device for legged mobile robot
JP4707372B2 (en) Biped robot and its walking control method
Deng et al. Object carrying of hexapod robots with integrated mechanism of leg and arm
Wang et al. Compliance control for standing maintenance of humanoid robots under unknown external disturbances
KR20230120651A (en) How the exoskeleton moves
JP3646169B2 (en) Walking controller for legged robot
KR101493385B1 (en) robot and walking control apparatus and method thereof
CN113830197B (en) Balance control method applied to dynamic walking of biped robot
JP4461797B2 (en) Mobile robot
KR20230066011A (en) Methods for moving the exoskeleton
JP5639342B2 (en) Robot and its walking control method
JP4501601B2 (en) Legged robot, its control method, gait data creation device and creation method
JP3024028B2 (en) Walking control device for legged mobile robot
JP4840649B2 (en) Walking control method for legged robot
Ozcan et al. Design and feedback control of a biologically-inspired miniature quadruped
JP2007061954A (en) Bipedal walking robot moved by lumbar vertical motion, and method of controlling walking thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150226

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees