JP4461474B2 - Fire glass plate - Google Patents

Fire glass plate Download PDF

Info

Publication number
JP4461474B2
JP4461474B2 JP2002100752A JP2002100752A JP4461474B2 JP 4461474 B2 JP4461474 B2 JP 4461474B2 JP 2002100752 A JP2002100752 A JP 2002100752A JP 2002100752 A JP2002100752 A JP 2002100752A JP 4461474 B2 JP4461474 B2 JP 4461474B2
Authority
JP
Japan
Prior art keywords
glass
glass plate
fire
zro
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002100752A
Other languages
Japanese (ja)
Other versions
JP2003300752A (en
Inventor
吉夫 橋部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2002100752A priority Critical patent/JP4461474B2/en
Publication of JP2003300752A publication Critical patent/JP2003300752A/en
Application granted granted Critical
Publication of JP4461474B2 publication Critical patent/JP4461474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に、防火戸用の窓ガラスとして用いられる乳白した防火ガラスに関するものである。
【0002】
【従来の技術】
防火ガラスと呼ばれる製品としては、網入りガラス、強化ガラス、結晶化ガラス等があり、既に実用化されている。これらの防火ガラスは、耐熱性があり、火災時に火炎及びガスを遮る機能を有しており、また、通常常温の状態で高い透視性を有するものである。
【0003】
【発明が解決しようとする課題】
ところが近年、太陽光や照明光を柔らかな淡い光にして透過させると共に、プライバシー性を確保できる機能を有する防火ガラスが求められるようになってきた。
【0004】
それに対し、すり板ガラスのように、防火ガラスの表面を硅砂や金属ブラシなどで不透明にすり加工を施す方法があるが、このような加工を施した防火ガラスは、汚れやすく、また、機械的強度が低くなる。
【0005】
本発明の目的は、太陽光や照明光を柔らかな淡い光にして透過させると共に、プライバシー性を確保でき、また、汚れにくく、機械的強度が低下しない防火ガラスを提供することである。
【0006】
【課題を解決するための手段】
本発明の防火ガラス板は、波長400〜700nmにおける拡散平均透過率が肉厚5mmで3〜70%である乳白ガラスからなる防火ガラス板であって、前記乳白ガラスが、質量%で、SiO 50〜75%、Al 10〜30%、Li O 1.0〜8%、ZnO 0〜10%、BaO 0〜10%、TiO 0〜8%、ZrO 0〜8%、SnO 0〜8%、TiO +ZrO +SnO 1〜10%、P 0〜5%、MgO 0〜5%、Na O 0〜4%、K O 0〜4%の組成を含有し、主結晶としてβ−スポジュメン固溶体を析出してなり、150〜950nmの結晶サイズを有し、30〜750℃において、−10〜20×10 −7 /℃である平均熱膨張係数を有し、外観が乳白半透明な低膨張結晶化ガラスからなることを特徴とする。
【0007】
【作用】
本発明の防火ガラスは、乳白半透明な低膨張結晶化ガラスからなるため、すり加工しなくても、太陽光や照明光を柔らかな淡い光にして透過させることができ、淡い白色の色調を呈し、汚れにくく、機械的強度が低下しない。また、これに直接、太陽光が当たる場合にも、ギラツキ感がなく、和風障子調の独特の風合いを醸し出す。
【0008】
また、本発明の防火ガラス板は、乳白ガラスが、波長400〜700nmにおける拡散平均透過率が肉厚5mmで3〜70%、好ましくは5〜60%、さらに好ましくは10〜50%である外観が乳白半透明な低膨張結晶化ガラスからなるため、プライバシー性が確保できる。すなわち、波長400〜700nmにおける拡散平均透過率が3%より低いと、採光性が悪くなり、70%よりも高いと、透視性が高くなり、プライバシー性が確保できなくなるからである。
【0009】
また、本発明の防火ガラスは、350nm以下の波長における透過率が肉厚5mmで5%以下であると、紫外線が室内に侵入しにくく、室内の物品の色褪せや変色、人体への悪影響等を抑制できるため好ましい。
【0010】
また、本発明の防火ガラスは、赤外域での透過率が低いと、太陽光からの熱線や火事の際の熱線を抑制でき、室内温度の上昇を抑制できるため好ましい。
【0011】
防火ガラス板に用いる外観が乳白半透明な低膨張結晶化ガラスからなる乳白ガラスとしては、熱膨張係数が、30〜750℃において、−10〜20×10−7/℃であり、主結晶としてβ−スポジュメン固溶体を析出してなる乳白した半透明な低膨張結晶化ガラスを用いると、より長時間の火災に耐え、しかもスプリンクラーなどの放水によってもガラス板の破損が無いため好ましい。
【0012】
また、低膨張結晶化ガラスは、ガラス組成や熱処理条件を調節することによって、析出する結晶の種類、サイズ及び量を制御でき、所望の透過率にすることができるため好ましい。
【0013】
主結晶としてβ−スポジュメン固溶体を析出してなる低膨張結晶化ガラスは、例えば、質量%で、SiO2 50〜75%、Al23 10〜30%、Li2O1.0〜8%、ZnO 0〜10%、BaO 0〜10%、TiO2 0〜8%、ZrO2 0〜8%、SnO2 0〜8%、TiO2+ZrO2+SnO2 1〜10%、P25 0〜5%、MgO 0〜5%、Na2O 0〜4%、K2O 0〜4%の組成を有するものであり、さらに好ましくは、質量%で、SiO2 55〜70%、Al23 15〜30%、Li2O 2.5〜6%、ZnO 0〜0.9%、BaO 0〜0.9%、TiO2 1.3〜2.9%、ZrO2 0.5〜4.0%、P25 0〜5.0%、MgO 0〜0.9%、Na2O 0〜4%、K2O 0〜4%の組成を有しているものである。
【0014】
低膨張結晶化ガラス中に析出するβ−スポジュメン固溶体は、Li2O−Al23−SiO2系の結晶であり、マトリックスガラスとの屈折率差が小さいため、主結晶としてβ−スポジュメン固溶体を析出してなる低膨張結晶化ガラスは、光を散乱する効果が小さく、結晶量が多くても、不透明になりにくく、乳白となりやすいため好ましい。
【0015】
防火ガラスが、β−スポジュメン固溶体を主結晶として析出する低膨張結晶化ガラスであると、機械的強度が高いため好ましい。また、イオン交換法を用いた強化手段によって機械的強度が向上しやすいため好ましい。すなわち、β−スポジュメン固溶体中のLiイオンの移動度が高く、他のアルカリイオンやアルカリ土類イオンと交換しやすいからである。
【0016】
防火ガラスの機械的強度、具体的には、曲げ強度が高いと、火災時の放水や爆発による爆風によってガラスに衝撃が加わったとしても、割れにくいため好ましい。
【0017】
また、防火ガラスが、β−スポジュメン固溶体を主結晶として析出する低膨張結晶化ガラスであると、火災時に部分的にガラスの温度が上がったとしても、相転移することがなく、破損しにくいため好ましい。すなわち、例えば、β−石英固溶体を析出してなる透明な低膨張結晶化ガラスは、火災時に部分的にガラスの温度が上がって、その部分だけがβ−スポジュメン固溶体への相転移を起こすと、異種結晶の界面で割れやすくなるが、析出結晶としてβ−スポジュメン固溶体を析出してなる結晶化ガラスは、β−スポジュメン固溶体が安定な結晶で、相転移することが無いからである。
【0018】
また、低膨張結晶化ガラスの結晶サイズが、150〜950nm、好ましくは、200〜950nmであると、低膨張結晶化ガラスが、半透明で、しかも乳白しやすいため好ましい。
【0019】
【実施例】
本発明の防火ガラスを実施例に基づいて説明する。表1に本発明の実施例1〜5を、表2に比較例6〜10を示す。また、図1に実施例2〜5と比較例6の拡散透過率曲線を、図2に実施例2〜5と比較例6の透過率曲線を示す。
【0020】
【表1】

Figure 0004461474
【0021】
【表2】
Figure 0004461474
【0022】
まず、質量%で、SiO2 65.5%、Al23 22.0%、MgO 0.5%、Li2O 4.0%、Na2O 0.5%、K2O 0.5%、P25 1.5%、ZrO2 2.5%、TiO2 2.0%、As23 1.0%の組成となるように、ガラス原料を調合し、白金坩堝を用いて1580℃で16時間溶解した。その後、溶融したガラスをローラー成形し、700℃でアニ−ルした後、徐冷することによって、肉厚5mmの板状の結晶性ガラス(原ガラス)を得た。
【0023】
次に、原ガラスを焼成炉に入れ、300℃/時間の速度で昇温し、780℃(一次処理温度)で2時間保持して核形成を行い、次いで80℃/時間の速度で昇温し、表1又は2に示す二次処理温度で2時間保持して結晶成長させ、結晶化ガラスからなる防火ガラス物品を作製した。
【0024】
また、実施例3及び比較例6のガラスについては、550℃にしたKNO3の溶融塩中に、20時間浸漬してイオン交換した。
【0025】
析出結晶相は、X線回折法により決定し、熱膨張係数は、差動検出式相対膨張計(マックサイエンス製、TD−5000)によって測定した。
【0026】
また、波長400〜700nmにおける拡散平均透過率(TVIS)、波長350nmにおける紫外光透過率(T350)及び波長1050nmにおける赤外光透過率(T1050)は、分光光度計(島津製、UV2500PC)を用いて測定した。尚、TVISについては、測定時に積分球を設置して測定した。
【0027】
曲げ強度は、50×250×5mmのサンプルを用い、ASTM C880−78に従い、4点曲げ強度で評価した。尚、下部スパンは200mm、上部スパンは100mmとした。また、結晶サイズは、SEM像写真から求めた。
【0028】
表1及び図1に示すように、実施例1〜5は、乳白半透明で、可視光の拡散平均透過率が5〜60%であったため、すり加工しなくても、太陽光や照明光が柔らかな淡い光として透過させることができ、淡い白色の色調を呈した。また、特にイオン交換を施した実施例3は、イオン交換することによって、機械的強度が3〜4倍高くなった。
【0029】
一方、表2及び図1に示すように、比較例6〜8は、透明であり、可視光の拡散平均透過率が高かったため、透視性が高かった。また、比較例9及び10は、不透明であり、採光性が悪かった。また、比較例6は、イオン交換を施したにもかかわらず、機械的強度の向上はわずかであった。
【0030】
【効果】
以上説明したように、本発明の防火ガラスは、太陽光や照明光を柔らかな淡い光にして透過させると共に、プライバシー性を確保でき、また、汚れにくく、機械的強度が低下しないため、防火戸用の窓ガラスとして好適である。
【図面の簡単な説明】
【図1】 実施例及び比較例の防火ガラスの拡散透過率曲線である。
【図2】 実施例及び比較例の防火ガラスの透過率曲線である。[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a milky white fireproof glass plate used as a window glass for a fire door.
[0002]
[Prior art]
Examples of products called fireproof glass include netted glass, tempered glass, and crystallized glass, which have already been put into practical use. These fire-proof glasses have heat resistance, have a function of blocking flames and gases in the event of a fire, and have high transparency at normal temperature.
[0003]
[Problems to be solved by the invention]
However, in recent years, there has been a demand for fire-resistant glass having a function of allowing sunlight and illumination light to be transmitted as soft and light light and ensuring privacy.
[0004]
On the other hand, there is a method to make the surface of the fireproof glass opaque with dredged sand or a metal brush, like frosted glass, but the fireproof glass treated in this way is easily soiled and has mechanical strength. Becomes lower.
[0005]
An object of the present invention is to provide a fire-resistant glass plate that allows sunlight and illumination light to pass through as soft light, can ensure privacy, and is resistant to contamination and does not reduce mechanical strength.
[0006]
[Means for Solving the Problems]
The fire-resistant glass plate of the present invention is a fire-resistant glass plate made of milky glass having a diffusion average transmittance at a wavelength of 400 to 700 nm of 3 mm to 70% with a thickness of 5 mm , wherein the milky glass is in mass% and SiO 2. 50~75%, Al 2 O 3 10~30 %, Li 2 O 1.0~8%, 0~10% ZnO, BaO 0~10%, TiO 2 0~8%, ZrO 2 0~8%, Composition of SnO 2 0-8%, TiO 2 + ZrO 2 + SnO 2 1-10%, P 2 O 5 0-5%, MgO 0-5%, Na 2 O 0-4%, K 2 O 0-4% The β-spodumene solid solution is precipitated as a main crystal, has a crystal size of 150 to 950 nm, and has an average thermal expansion coefficient of −10 to 20 × 10 −7 / ° C. at 30 to 750 ° C. Low expansion crystallization gas with a milky white translucent appearance It consists of laths.
[0007]
[Action]
Since the fire-proof glass plate of the present invention is made of milky white translucent low expansion crystallized glass, it can transmit sunlight and illumination light as soft light light without frosting, and light white color tone. It is difficult to get dirty and the mechanical strength does not decrease. In addition, even when directly exposed to sunlight, there is no glare and creates a unique texture of Japanese style shoji.
[0008]
The fire protection glass plate of the present invention, milk white glass, 3-70% diffuse average transmittance at a wavelength 400~700nm is wall thickness 5 mm, preferably from 5 to 60%, more preferably 10-50% Appearance Since it is made of milky white translucent low expansion crystallized glass, privacy can be ensured. That is, when the diffusion average transmittance at a wavelength of 400 to 700 nm is lower than 3%, the daylighting property is deteriorated, and when it is higher than 70%, the transparency is increased and the privacy cannot be secured.
[0009]
In addition, the fire-proof glass plate of the present invention has a transmittance at a wavelength of 350 nm or less and a thickness of 5 mm or less of 5% or less, ultraviolet rays hardly enter the room, fading or discoloration of indoor articles, adverse effects on the human body, etc. Can be suppressed.
[0010]
Moreover, the fireproof glass plate of the present invention is preferably low in transmittance in the infrared region because it can suppress heat rays from sunlight and heat rays during a fire, and can suppress an increase in indoor temperature.
[0011]
The milky white glass made of low expansion crystallized glass that is milky white translucent in appearance for the fireproof glass plate has a thermal expansion coefficient of −10 to 20 × 10 −7 / ° C. at 30 to 750 ° C. It is preferable to use a milky translucent low expansion crystallized glass obtained by depositing a β-spodumene solid solution because it can withstand a fire for a longer time and the glass plate is not damaged even by sprinkler water discharge.
[0012]
Low expansion crystallized glass is preferable because the kind, size and amount of crystals to be precipitated can be controlled by adjusting the glass composition and heat treatment conditions, and the desired transmittance can be obtained.
[0013]
Low-expansion crystallized glass obtained by precipitating β-spodumene solid solution as the main crystal is, for example, 50% by mass, SiO 2 50 to 75%, Al 2 O 3 10 to 30%, Li 2 O 1.0 to 8%, 0~10% ZnO, BaO 0~10%, TiO 2 0~8%, ZrO 2 0~8%, SnO 2 0~8%, TiO 2 + ZrO 2 + SnO 2 1~10%, P 2 O 5 0~ 5%, MgO 0 to 5%, Na 2 O 0 to 4%, K 2 O 0 to 4%, and more preferably, by mass, SiO 2 55 to 70%, Al 2 O 3 15~30%, Li 2 O 2.5~6 %, ZnO 0~0.9%, BaO 0~0.9%, TiO 2 1.3~2.9%, ZrO 2 0.5~4 0.02%, P 2 O 5 0-5.0%, MgO 0-0.9%, Na 2 O 0-4%, K 2 O 0-4% It is.
[0014]
The β-spodumene solid solution precipitated in the low-expansion crystallized glass is a Li 2 O—Al 2 O 3 —SiO 2 type crystal and has a small difference in refractive index from the matrix glass, so that the β-spodumene solid solution is the main crystal. The low-expansion crystallized glass obtained by precipitating is preferable because the effect of scattering light is small, and even if the amount of crystals is large, it is difficult to become opaque and milky white.
[0015]
It is preferable that the fireproof glass plate is a low expansion crystallized glass in which a β-spodumene solid solution is precipitated as a main crystal because the mechanical strength is high. Further, it is preferable because the mechanical strength is easily improved by the reinforcing means using the ion exchange method. That is, the mobility of Li ions in the β-spodumene solid solution is high and can be easily exchanged with other alkali ions or alkaline earth ions.
[0016]
It is preferable that the fireproof glass plate has a high mechanical strength, specifically, a high bending strength, since it is difficult to break even if an impact is applied to the glass due to water discharge or an explosion caused by an explosion.
[0017]
In addition, when the fireproof glass plate is a low expansion crystallized glass that precipitates β-spodumene solid solution as a main crystal, even if the temperature of the glass partially rises in the event of a fire, it does not undergo phase transition and is not easily damaged. Therefore, it is preferable. That is, for example, transparent low-expansion crystallized glass formed by precipitating β-quartz solid solution partially raises the temperature of the glass during a fire, and only that portion causes a phase transition to β-spodumene solid solution. This is because crystallized glass obtained by precipitating a β-spodumene solid solution as a precipitated crystal is a stable crystal and does not undergo phase transition, although it is easily broken at the interface between different crystals.
[0018]
Further, it is preferable that the low expansion crystallized glass has a crystal size of 150 to 950 nm, preferably 200 to 950 nm because the low expansion crystallized glass is translucent and easily milky.
[0019]
【Example】
The fireproof glass plate of the present invention will be described based on examples. Table 1 shows Examples 1 to 5 of the present invention, and Table 2 shows Comparative Examples 6 to 10. FIG. 1 shows diffusion transmittance curves of Examples 2 to 5 and Comparative Example 6, and FIG. 2 shows transmittance curves of Examples 2 to 5 and Comparative Example 6.
[0020]
[Table 1]
Figure 0004461474
[0021]
[Table 2]
Figure 0004461474
[0022]
First, by mass, SiO 2 65.5%, Al 2 O 3 22.0%, MgO 0.5%, Li 2 O 4.0%, Na 2 O 0.5%, K 2 O 0.5 %, P 2 O 5 1.5%, ZrO 2 2.5%, TiO 2 2.0%, As 2 O 3 1.0% And dissolved at 1580 ° C. for 16 hours. Thereafter, the molten glass was formed into a roller, annealed at 700 ° C., and then slowly cooled to obtain a plate-like crystalline glass (raw glass) having a thickness of 5 mm.
[0023]
Next, the raw glass is put into a firing furnace, heated at a rate of 300 ° C./hour, held at 780 ° C. (primary treatment temperature) for 2 hours for nucleation, and then heated at a rate of 80 ° C./hour. Then, the glass was grown at the secondary treatment temperature shown in Table 1 or 2 for 2 hours to produce a fireproof glass article made of crystallized glass.
[0024]
Further, the glass of Example 3 and Comparative Example 6 was ion-exchanged by dipping in a molten salt of KNO 3 at 550 ° C. for 20 hours.
[0025]
The precipitated crystal phase was determined by an X-ray diffraction method, and the thermal expansion coefficient was measured by a differential detection relative dilatometer (manufactured by Mac Science, TD-5000).
[0026]
Moreover, the diffusion average transmittance (T VIS ) at a wavelength of 400 to 700 nm, the ultraviolet light transmittance (T 350 ) at a wavelength of 350 nm, and the infrared light transmittance (T 1050 ) at a wavelength of 1050 nm were measured with a spectrophotometer (manufactured by Shimadzu, UV2500PC). ). Note that T VIS was measured by installing an integrating sphere at the time of measurement.
[0027]
The bending strength was evaluated by 4-point bending strength according to ASTM C880-78 using a sample of 50 × 250 × 5 mm. The lower span was 200 mm and the upper span was 100 mm. The crystal size was determined from the SEM image photograph.
[0028]
As shown in Table 1 and FIG. 1, Examples 1 to 5 were milky white translucent and had a diffusion average transmittance of visible light of 5 to 60%. Can be transmitted as soft light, and has a pale white color tone. Moreover, especially Example 3 which performed ion exchange became high mechanical strength 3-4 times by ion-exchange.
[0029]
On the other hand, as shown in Table 2 and FIG. 1, Comparative Examples 6 to 8 were transparent and had high diffusion average transmittance of visible light, and thus had high transparency. Further, Comparative Examples 9 and 10 were opaque and had poor daylighting properties. Moreover, although the comparative example 6 performed ion exchange, the improvement of mechanical strength was slight.
[0030]
【effect】
As described above, the fire-resistant glass plate of the present invention allows sunlight and illumination light to be transmitted in a soft and light light, and can ensure privacy, and is resistant to dirt and mechanical strength does not decrease. It is suitable as a window glass for doors.
[Brief description of the drawings]
FIG. 1 is a diffusion transmittance curve of fireproof glass plates of Examples and Comparative Examples.
FIG. 2 is a transmittance curve of fireproof glass plates of Examples and Comparative Examples.

Claims (2)

波長400〜700nmにおける拡散平均透過率が肉厚5mmで3〜70%である乳白ガラスからなる防火ガラス板であって、
前記乳白ガラスが、質量%で、SiO 50〜75%、Al 10〜30%、Li O 1.0〜8%、ZnO 0〜10%、BaO 0〜10%、TiO 0〜8%、ZrO 0〜8%、SnO 0〜8%、TiO +ZrO +SnO 1〜10%、P 0〜5%、MgO 0〜5%、Na O 0〜4%、K O 0〜4%の組成を含有し、主結晶としてβ−スポジュメン固溶体を析出してなり、150〜950nmの結晶サイズを有し、30〜750℃において、−10〜20×10 −7 /℃である平均熱膨張係数を有し、外観が乳白半透明な低膨張結晶化ガラスからなることを特徴とする防火ガラス板。
A fire-resistant glass plate made of milky white glass having a diffusion average transmittance of 3 to 70% at a thickness of 5 mm at a wavelength of 400 to 700 nm ,
The opacifying glass, in mass%, SiO 2 50~75%, Al 2 O 3 10~30%, Li 2 O 1.0~8%, 0~10% ZnO, BaO 0~10%, TiO 2 0 -8%, ZrO 2 0-8%, SnO 2 0-8%, TiO 2 + ZrO 2 + SnO 2 1-10%, P 2 O 5 0-5%, MgO 0-5%, Na 2 O 0-4 %, K 2 O 0 to 4%, β-spodumene solid solution is precipitated as the main crystal, has a crystal size of 150 to 950 nm, and is −10 to 20 × 10 at 30 to 750 ° C. A fire-resistant glass plate having an average thermal expansion coefficient of −7 / ° C. and made of a low-expansion crystallized glass having a translucent appearance .
白ガラスが、質量%で、SiO 55〜70%、Al 15〜30%、Li O 2.5〜6%、ZnO 0〜0.9%、BaO 0〜0.9%、TiO 1.3〜2.9%、ZrO 0.5〜4.0%、P 0〜5.0%、MgO 0〜0.9%、Na O 0〜4%、K O 0〜4%の組成を含有するものであり、350nm以下の波長での透過率が肉厚5mmで5%以下であることを特徴とする請求項1に記載の防火ガラス板。Milk white pixel lath, in mass%, SiO 2 55~70%, Al 2 O 3 15~30%, Li 2 O 2.5~6%, ZnO 0~0.9%, BaO 0~0.9 %, TiO 2 1.3~2.9%, ZrO 2 0.5~4.0%, P 2 O 5 0~5.0%, MgO 0~0.9%, Na 2 O 0~4% The fireproof glass plate according to claim 1, comprising a composition of 0 to 4% of K 2 O, and having a transmittance at a wavelength of 350 nm or less of 5 mm or less at a thickness of 5 mm.
JP2002100752A 2002-04-03 2002-04-03 Fire glass plate Expired - Fee Related JP4461474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002100752A JP4461474B2 (en) 2002-04-03 2002-04-03 Fire glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002100752A JP4461474B2 (en) 2002-04-03 2002-04-03 Fire glass plate

Publications (2)

Publication Number Publication Date
JP2003300752A JP2003300752A (en) 2003-10-21
JP4461474B2 true JP4461474B2 (en) 2010-05-12

Family

ID=29388489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002100752A Expired - Fee Related JP4461474B2 (en) 2002-04-03 2002-04-03 Fire glass plate

Country Status (1)

Country Link
JP (1) JP4461474B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256185A (en) * 2008-03-17 2009-11-05 Nippon Electric Glass Co Ltd Architectural crystallized glass article and method for producing the same
EP2364957A1 (en) * 2010-02-26 2011-09-14 Corning Incorporated Glass ceramics with bulk scattering properties and methods of making them
JP5599474B2 (en) * 2011-07-15 2014-10-01 旭硝子株式会社 Crystallized glass enclosure
FR3069240B1 (en) * 2017-07-21 2021-04-23 Eurokera SPODUMENE-BETA VITROCERAMICS, WHITE, OPALESCENT OR OPAQUE, LOW TITANIUM CONTENT, TIN REFINED

Also Published As

Publication number Publication date
JP2003300752A (en) 2003-10-21

Similar Documents

Publication Publication Date Title
CN106573825B (en) Partially crystallized glass sheet
JP6703526B2 (en) Glass ceramic plate
KR101433213B1 (en) Method for refining a lithium alumino-silicate glass and glass ceramic thus obtained
US5173453A (en) Variably translucent glass-ceramic article and method for making
EP2046690B1 (en) Low solar absorbing blue glass, solar reflecting coated blue glass, and insulating unit having a low solar heat gain
US7153795B2 (en) Glass and glass-ceramic materials, articles and method of preparing the same
JP5889297B2 (en) Transparent or transparent colored lithium aluminum silicate glass-ceramic material having a suitable coefficient of thermal expansion and use thereof
US20160214887A1 (en) Method for manufacturing a material including a substrate having a tin and indium oxide-based functional layer
US3951525A (en) Heat and light reflecting spandrel
JP2005320234A (en) Lithium aluminosilicate flat float glass with high thermal stability capable of being chemically or thermally tempered
US4172921A (en) Fireproof glass
JP2019043842A (en) Colored transparent lithium aluminum silicate glass-ceramics and use thereof
DE102007036407B4 (en) Process for producing a coated three-dimensionally shaped glass ceramic pane
KR101296177B1 (en) Sheet of glass material for a chimney or furnace insert-type device
KR20130025379A (en) Lithium aluminosilicate glass having a high e-module and method for the production thereof
JPH11100229A (en) Infrared ray transmitting glass ceramics
EP1114803B2 (en) Li2o-al2o3-sio2 type transparent crystalized glass and crystalline glass
EP0303411B1 (en) Glazing units
US20070036987A1 (en) Coated article including soda-lime-silica glass substrate with lithium and/or potassium to reduce sodium migration and/or improve surface stability and method of making same
JP2000044282A (en) Li2O-Al2O3-SiO2 TYPE TRANSPARENT CRYSTALLIZED GLASS AND CRYSTALLIZABLE GLASS
NO158930B (en) FIRE PROTECTIVE GLASS PANEL.
CN113321421A (en) Lithium aluminosilicate glass, glass ceramic made therefrom, method for producing same and use thereof
WO2007139068A1 (en) Li2O-Al2O3-SiO2-BASED CRYSTALLIZED GLASS
JP4461474B2 (en) Fire glass plate
WO2018012883A1 (en) Low-emissivity glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees