JP4461275B2 - Earth and sand discharge method and earth and sand discharge work ship - Google Patents

Earth and sand discharge method and earth and sand discharge work ship Download PDF

Info

Publication number
JP4461275B2
JP4461275B2 JP2003390907A JP2003390907A JP4461275B2 JP 4461275 B2 JP4461275 B2 JP 4461275B2 JP 2003390907 A JP2003390907 A JP 2003390907A JP 2003390907 A JP2003390907 A JP 2003390907A JP 4461275 B2 JP4461275 B2 JP 4461275B2
Authority
JP
Japan
Prior art keywords
water
sediment
pipe
flow
discharge pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003390907A
Other languages
Japanese (ja)
Other versions
JP2005155024A (en
Inventor
朗夫 小島
徳明 小島
武俊 前田
昭 佐々木
敏次 佐瀬
耕 藤野
雅樹 宮本
秀基 神野
隆司 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojimagumi Co Ltd
Original Assignee
Kojimagumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojimagumi Co Ltd filed Critical Kojimagumi Co Ltd
Priority to JP2003390907A priority Critical patent/JP4461275B2/en
Publication of JP2005155024A publication Critical patent/JP2005155024A/en
Application granted granted Critical
Publication of JP4461275B2 publication Critical patent/JP4461275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Barrages (AREA)

Description

本発明は、土砂排出管の上流端に開口した吸込口を水底又はその近傍に臨ませて、その吸込口より水底の堆積土砂を水と共に土砂排出管内に吸込み、その吸い込んだ土砂及び水を土砂排出管内を通して、該水底から離れた所定の排出場所まで流動させるようにした土砂排出方法、特にダムの水底に堆積する土砂をサイフォン作用を利用して土砂排出管で吸い上げ、ダムよりも低水位の河川水域まで土砂排出管内を流動させるようにしたダム堆積土砂の排出作業において有効な土砂排出方法、並びにその実施に用いる土砂排出作業船に関する。   In the present invention, the suction port opened at the upstream end of the earth and sand discharge pipe faces the water bottom or the vicinity thereof, and the sediment on the bottom of the water is sucked into the earth and sand discharge pipe together with water from the suction port, and the sucked earth and water are sucked into the earth and sand. Sediment discharge method that allows fluid to flow through the discharge pipe to a predetermined discharge location away from the bottom of the water, in particular, the sediment deposited on the bottom of the dam is sucked up by the sediment discharge pipe using siphon action, and has a lower water level than the dam. The present invention relates to a sediment discharge method that is effective in the discharge operation of dam sedimentary sediment that is allowed to flow in a sediment discharge pipe to a river body, and a sediment discharge work ship used for the implementation.

尚、本発明において、「堆積土砂」とは、ダムや海、川等の水底に堆積する比重が比較的小さいヘドロ、汚泥等の軽量土砂と、比重が比較的大きく砂、小石等の混じった重量土砂のうちの何れであってもよく、またこれら軽量土砂及び重量土砂の混ざったものでもよい。   In the present invention, “sedimentary sediment” refers to light sediments such as sludge and sludge with a relatively small specific gravity deposited on the bottom of a dam, sea, river, etc., and a relatively large specific gravity mixed with sand, pebbles, etc. Any of the heavy earth and sand may be used, or a mixture of these lightweight earth and heavy earth and sand may be used.

水力発電や灌漑等に利用される既存のダムが抱える今日的な重要課題として、その上流側から流れてきた土砂が長年に亘りダムの水底に多量に堆積し、その有効深度を浅くしてしまうことによりダムの発電能力が低下したり或いは貯水量が減少する、ということが挙げられている。   As an important current issue for existing dams used for hydropower generation and irrigation, a large amount of sediment flowing from the upstream side accumulates on the bottom of the dam for many years, reducing its effective depth. As a result, the power generation capacity of the dam is reduced or the amount of stored water is reduced.

そこで、このような問題に対処するために、ダムの水底の堆積土砂を、サイフォン作用を利用した土砂排出管を通して吸い上げ、所定の回収場所まで該土砂排出管内を流動させるようにした土砂排出技術が既に提案されている(下記の特許文献1を参照)
特開平11−46515号公報
Therefore, in order to cope with such a problem, there is a sediment discharge technique in which sediment sediment on the bottom of a dam is sucked up through a sediment discharge pipe using a siphon action and flows in the sediment discharge pipe to a predetermined collection place. Already proposed (see Patent Document 1 below)
JP 11-46515 A

上記特許文献1の技術は、サイフォン作用で土砂排出管内に土砂を流動させるものであるが、その流動中の土砂と土砂排出管の内壁面との間に比較的大きな摩擦抵抗(流動抵抗)が働くため、ダムと下流河川との水位差(即ち土砂排出管の管内水頭)が十分に確保できない場合には、土砂排出管内で土砂をスムーズに流動させることができなくなり、サイフォン作用に支障を来たす虞れがあり、しかも土砂排出管は、その内壁が早期に摩耗・劣化を生じて破損し易くなり、その交換頻度も高くなって維持コストが嵩む等の問題もあった。   The technique of the above-mentioned Patent Document 1 is to allow the sediment to flow into the sediment discharge pipe by siphon action, but there is a relatively large frictional resistance (flow resistance) between the flowing sediment and the inner wall surface of the sediment discharge pipe. Therefore, if the water level difference between the dam and the downstream river (that is, the head of the sediment discharge pipe) cannot be secured sufficiently, the sediment cannot smoothly flow in the sediment discharge pipe, which impedes the siphon action. In addition, the earth and sand discharge pipe has a problem in that its inner wall is easily worn and deteriorated and easily breaks, and its replacement frequency increases and maintenance costs increase.

また水底付近の水は一般に溶存酸素量が少なく、その水底の堆積土砂や水は、臭気や濁度に問題があるヘドロ状となっている場合が多いため、土砂排出管で吸い込んだ水底の堆積土砂及び水を下流側の河川水域にそのまま放流した場合には、その河川水域の環境悪化(臭気・濁度の悪化、溶存酸素量の増大等)を招く虞れがある。   In addition, water near the bottom of the water generally has a low amount of dissolved oxygen, and the sediment and water deposited on the bottom of the water are often sludge that has problems with odor and turbidity. If earth and sand and water are discharged into a downstream river area as they are, the environment of the river area may deteriorate (deterioration of odor / turbidity, increase in dissolved oxygen amount, etc.).

そして、以上の諸問題は、ダム水底の堆積土砂をサイフォン式の土砂排出管で吸込み、排出する場合だけに限らず、海、川等の水底に堆積する土砂を動力吸上げ式の土砂排出管で吸込み、排出する場合にも発生する。   The above problems are not limited to sucking and discharging sediment sediment at the bottom of a dam with a siphon-type sediment discharge pipe, but also sediment deposited on the bottom of the sea, rivers, etc. Also occurs when sucking in and discharging.

本発明は、上記に鑑み提案されたもので、従来技術の上記問題を比較的低コストで簡単に解決できるようにした土砂排出方法、及びこれに用いる土砂排出作業船を提供することを目的とする。   The present invention has been proposed in view of the above, and it is an object of the present invention to provide a sediment discharge method capable of easily solving the above-described problems of the prior art at a relatively low cost, and a sediment discharge work ship used therefor. To do.

前記目的を達成するために、請求項1の発明は、土砂排出管の上流端に開口した吸込口をダムの水底又はその近傍に臨ませて、その吸込口より水底の堆積土砂を水と共に土砂排出管内にサイフォン作用で吸込み、その吸い込んだ土砂及び水を土砂排出管内を通して、前記ダムの下流側で且つ該ダムよりも低水位の河川水域まで流動させるようにした土砂排出方法において、水とその水中に分散、混在させた直径100μ以下の無数の空気の微細気泡、または少なくとも酸素ガスを含むガスの微細気泡とよりなる混相流を、吸込口近くの土砂排出管に設けた第1の混相流噴出手段から水底の堆積土砂に向けて噴出させて、その混相流中の無数の微細気泡の一部が、該土砂及び水と一緒に吸込口より土砂排出管内に吸い込まれ且つ土砂排出管内を流動するようにし、また前記混相流を、吸込口に近い土砂排出管に設けた第2の混相流噴出手段から土砂排出管内に直接噴出させて、その混相流中の無数の微細気泡が、吸込口より土砂排出管内に吸い込まれた土砂及び水と一緒に土砂排出管内を流動するようにし前記第1,第2の混相流噴出手段に対しては共通の混相流発生装置から前記混相流が加圧状態で供給されることを特徴とし、また請求項の発明は、土砂排出管の上流端に開口した吸込口をダムの水底又はその近傍に臨ませて、その吸込口より水底の堆積土砂を水と共に土砂排出管内にサイフォン作用で吸込み、その吸い込んだ土砂及び水を土砂排出管内を通して、前記ダムの下流側で且つ該ダムよりも低水位の河川水域まで流動させるようにした土砂排出方法において、水とその水中に分散、混在させた直径100μ以下の無数の空気の微細気泡、または少なくとも酸素ガスを含むガスの微細気泡とよりなる混相流を、吸込口に近い土砂排出管に設けた混相流噴出手段から土砂排出管内に直接噴出させて、その混相流中の無数の微細気泡が、吸込口より土砂排出管内に吸い込まれた土砂及び水と一緒に土砂排出管内を流動するようにしたことを特徴とする。 In order to achieve the above object, the invention of claim 1 is characterized in that the suction port opened at the upstream end of the sediment discharge pipe is made to face the water bottom of the dam or the vicinity thereof, and the sediment sediment on the bottom of the water is put together with water from the suction port. In the sediment discharge method in which the sucked sediment and water are sucked into the discharge pipe through the siphon action, and flow through the sediment discharge pipe to the river water area downstream of the dam and at a lower water level than the dam . dispersed in the water, the first multiphase mixture is allowed diameter 100μ or less fine-bubble countless air, or the gas containing at least oxygen gas fine bubbles and become more multi-phase flow, provided in the sediment discharge pipe near the suction port A part of countless fine bubbles in the multiphase flow is sucked into the earth and sand discharge pipe together with the earth and water from the suction port by the jetting means from the flow jetting means toward the sediment sediment on the bottom of the water. So as to flow and the multiphase flow, and is ejected directly to the sediment discharge pipe from the second multiphase flow jetting means provided near sand discharge pipe to the suction port, innumerable fine bubbles of the mixed phase stream is, suction The mixed phase flow is added from a common mixed phase flow generator to the first and second mixed phase flow jetting means so as to flow in the sediment discharge pipe together with the sediment and water sucked into the sediment discharge pipe from the mouth. characterized in that it is supplied in a pressurized state, also the invention of claim 2, a suction port which opens to the upstream end of the sand discharge pipe to face the bottom of the water or near the dam, water bottom of sediment from the inlet the suction at siphoning sediment discharge tube with water, through which inhaled sediment and water sediment discharge tube, the sediment discharge method so as to flow to the low water river waters than and the dam at the downstream side of the dam , With water , Multiphase flow jetting means in which a multiphase flow consisting of innumerable air microbubbles with a diameter of 100 μm or less dispersed or mixed in the water , or gas microbubbles containing at least oxygen gas is provided in the earth and sand discharge pipe close to the suction port and is ejected directly to the sand discharge pipe from innumerable fine bubbles of the mixed phase stream is a feature that it has to flow the sand discharge pipe with sand and water sucked in soil discharge pipe from the suction port To do.

また請求項の発明は、請求項の上記特徴に加えて、前記混相流噴出手段は、前記土砂排出管の内周壁底部に開口し、その開口方向が下流側に向かって上方に傾斜した噴射ノズルより構成されることを特徴する。 In addition to the above feature of claim 2 , the invention of claim 3 is characterized in that the multiphase jetting means opens at the bottom of the inner peripheral wall of the sediment discharge pipe, and the opening direction is inclined upward toward the downstream side. characterized in that it is composed of the injection nozzle.

また請求項の発明は、前記請求項2又は3に記載の方法の実施に使用すべく、前記ダムの水面上を移動可能な土砂排出作業船であって、その船体には、前記吸込口を上流端に有する可動管が、該吸込口を水中で昇降可能として設けられていて、この可動管と、その可動管の下流端に一端が接続され且つその他端が前記河川水域に連通可能な搬送管とで前記土砂排出管が構成され、更に前記混相流を前記混相流噴出手段に供給し得る混相流供給装置を備えたことを特徴とする。 The invention of claim 4 is an earth and sand discharging work ship movable on the water surface of the dam to be used for carrying out the method of claim 2 or 3 , wherein the hull has the suction port. A movable pipe having an upstream end is provided so that the suction port can be moved up and down in water. One end of the movable pipe is connected to the downstream end of the movable pipe, and the other end can communicate with the river water area. The earth and sand discharge pipe is constituted by a transport pipe, and further includes a multiphase flow supply device capable of supplying the multiphase flow to the multiphase flow ejection means.

以上のように本発明によれば、ダムの水底に堆積する土砂を土砂排出管内にサイフォン作用で吸込み、その土砂排出管を通して下流側の河川水域まで流動させ、該水域に放出するようにしたので、少ないエネルギとコストでダム水底の堆積土砂を能率よく浚渫可能となる上、下流側の河川水域には堆積土砂を少量ずつ連続的に放出可能であり、その放出土砂を河川の水流(自然力)を利用して下流側へ無理なく排出できる。しかも水と、その水中に分散、混在させた直径100μ以下の無数の微細気泡とよりなる混相流を、吸込口に近い土砂排出管に設けた混相流噴出手段から土砂排出管内に直接噴出させるので、土砂排出管内に水と共に吸い込まれた水底の堆積土砂が、その水中に直径が100μ以下の無数の微細気泡を混入、分散させた状態で土砂排出管内を流動可能となり、その無数の微細気泡の混入分散効果、特に微細気泡のサイズ効果により、無数の微細気泡を水中で略均一且つ安定な分散状態に置くことができて、流動土砂と土砂排出管内面との間の摩擦抵抗を効果的に低減できる上、土砂流動体の密度を軽減できるようになって、砂排出管内で土砂をスムーズに流動させることが可能となる。従って、サイフォン管である土砂排出管の排出土砂の輸送効率がアップして輸送距離の延長管内損失水頭の低減が図られるから、ダムから離れた河川水域やダムとの水位差が小さい河川水域へも土砂をサイフォン管(土砂排出管)でスムーズに排出できると共に、土砂排出管自体の早期摩耗が抑えられて同管の耐久性向上が図られ、摩耗に因る管交換の頻度を少なくしてコスト節減に寄与することができる。しかもこの微細気泡は、空気の気泡、または少なくとも酸素ガスを含むガスの気泡であるので、土砂排出管内を流動する土砂及び水の中の好気性微生物と微細気泡の酸素とを十分に接触させることができて該微生物を活性化させることができ、この曝気効果により、排出場所に排出された土砂を含んだ水の臭気・濁度が向上し、溶存酸素量も増えて、環境対策上、有利であり、その上、この曝気効果がダム水底から下流側河川水域に至る比較的長い経路に亘り有効に発揮されて、その排出土砂に混じる水の臭気・濁度を向上させ溶存酸素量もアップできることから、これを下流側の河川水域にそのまま放流しても、その河川水域の環境に及ぼす影響を最小限に抑えることができる。 As described above, according to the present invention, the sediment accumulated on the bottom of the dam is sucked into the sediment discharge pipe by siphon action, flows through the sediment discharge pipe to the downstream river water area, and is discharged into the water area. In addition to being able to efficiently deposit sediment sediment at the bottom of the dam with less energy and cost, it is possible to discharge sediment sediment in small quantities continuously into the downstream river water area, and the discharged sediment is discharged into the river water (natural power). Can be discharged to the downstream side without difficulty. Moreover, since a multiphase flow consisting of water and countless fine bubbles with a diameter of 100 μm or less dispersed and mixed in the water is directly ejected from the multiphase flow ejection means provided in the sediment discharge pipe close to the suction port into the sediment discharge pipe. The sediment sediment on the bottom of the water sucked together with water into the sediment discharge pipe can flow through the sediment discharge pipe in a state where countless fine bubbles with a diameter of 100 μm or less are mixed and dispersed in the water, and the countless fine bubbles By mixing and dispersing effect , especially the size effect of fine bubbles, countless fine bubbles can be placed in a substantially uniform and stable dispersion state in water, effectively reducing the frictional resistance between the flowing sediment and the inner surface of the sediment discharge pipe. on can be reduced, so can reduce the density of the sediment fluid, that Do is possible to flow the sediment smoothly sediment discharge tube. Therefore, since the reduction of the extension and the tube head losses transportation distance it can be achieved transport efficiency of the discharge sand sediment discharge pipe is siphon tube is up, the water level difference between the river waters and dams away from the dam is small rivers siphon tube sediment even to water Rutotomoni be smoothly discharged (sand discharge pipe), premature wear of the sand discharge pipe itself is suppressed improve durability of the tube is achieved, the frequency of pipe replacement due to wear Less can contribute to cost savings. Moreover, since the fine bubbles are air bubbles or gas bubbles containing at least oxygen gas, the aerobic microorganisms in the earth and sand flowing in the earth and sand discharge pipe and the oxygen in the fine bubbles are sufficiently brought into contact with each other. The microorganisms can be activated and this aeration effect improves the odor and turbidity of water containing earth and sand discharged to the discharge site, and the amount of dissolved oxygen increases, which is advantageous for environmental measures. In addition, this aeration effect is effectively demonstrated over a relatively long path from the dam bottom to the downstream river water area, improving the odor and turbidity of the water mixed in the discharged soil and increasing the dissolved oxygen content. Therefore, even if it is discharged as it is to the downstream river area, the influence on the environment of the river area can be minimized.

また特に請求項1の発明によれば、水と上記無数の微細気泡とよりなる混相流を、吸込口近くの土砂排出管に設けた混相流噴出手段から水底の堆積土砂に向けて噴出させので、土砂排出管の土砂吸込力が比較的小さい場合や堆積土砂が比較的固い場合でも、混相流の流動圧で堆積土砂を適度に崩壊、拡散させた上で、土砂排出管内に効率よく吸い込むことが可能となって、その吸込効率のアップが図られ、しかも上記混相流が、微細気泡の供給手段と、堆積土砂の崩壊拡散手段とに兼用できて構造の簡素化に寄与し得る。 According aspect of the present invention in particular 1, more becomes mixed flow of water and the innumerable fine bubbles, Ru is ejected toward the bottom of the water sediment from multiphase flow jetting means provided on the sediment discharge pipe near the suction port Therefore, even when the sediment suction capacity of the sediment discharge pipe is relatively small or when the sediment is relatively hard, the sediment sediment is appropriately collapsed and diffused by the fluid pressure of the multiphase flow, and then efficiently sucked into the sediment discharge pipe. it becomes possible, the suction efficiency of up is achieved, yet the multiphase flow is that obtained contribute to simplification of possible combined structure supply means fine-bubble, and the collapse diffusion means sediment.

また特に請求項の発明によれば、混相流噴出手段が土砂排出管の内周壁底部に開口し、その開口方向が下流側に向かって上方に傾斜した噴射ノズルより構成されるので、流動土砂と、その重量が主として作用する土砂排出管の内周壁底部との間に微細気泡を効率よく供給できて、その間の摩擦抵抗の軽減に効果的であり、また上記噴射ノズル開口の下流側への傾斜により、土砂の下流側への流動が混相流により助勢されて、その流動を一層スムーズにすることができる。 In particular, according to the invention of claim 3 , since the multi-phase flow jetting means is constituted by an injection nozzle that opens at the bottom of the inner peripheral wall of the sediment discharge pipe and whose opening direction is inclined upward toward the downstream side. And fine bubbles can be efficiently supplied between the bottom of the inner peripheral wall of the earth and sand discharge pipe where the weight mainly acts, and it is effective in reducing the frictional resistance between them, and the downstream side of the injection nozzle opening. the slope, the flow to the downstream side of the sediment is assisted by multiphase flow, Ru can be the flow more smoothly.

また特に請求項の発明によれば、ダムの水面上を移動可能な土砂排出作業船の船体には、吸込口を上流端に有する可動管が、該吸込口を水中で昇降可能として設けられており、この可動管と、その可動管の下流端に一端が接続され且つその他端が下流側の河川水域に連通可能な搬送管とで土砂排出管が構成され、更に前記混相流を混相流噴出手段に供給し得る混相流供給装置を備えるので、この土砂排出作業船をダムの水面上で適宜移動させて、ダム水底の堆積土砂を下流側の河川水域に機動的に排出することができる。 In particular, according to the invention of claim 4 , the hull of the earth and sand discharging work ship movable on the surface of the dam is provided with a movable pipe having a suction port at the upstream end so that the suction port can be moved up and down in water. The movable pipe and a transport pipe having one end connected to the downstream end of the movable pipe and the other end communicating with the downstream river water area constitute a sediment discharge pipe. Since it is equipped with a multiphase flow supply device that can be supplied to the jetting means, the sediment discharge work ship can be appropriately moved on the surface of the dam, so that the sediment deposited on the bottom of the dam can be discharged to the river water area downstream. .

以下、本発明の実施の形態を、添付図面に例示した本発明の実施例に基づいて以下に具体的に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below based on examples of the present invention illustrated in the accompanying drawings.

添付図面において、図1〜図8は、本発明の第1実施例を示すものであって、図1は、浚渫作業の概要を示す全体概略縦断面図、図2は、図1の2矢視図、図3は、浚渫作業船の拡大縦断面図(図2の3−3矢視拡大断面図)、図4は、図3の4矢視平面図、図5は、可動吸込管の先端部を示す側面図、図6は、図5の6矢視図、図7は、図5の7−7線断面図、図8は、混相流・加圧水流供給系統を示す概略配管図である。また図9は、第2実施例を示す図5対応図、図10は、第3実施例を示す図5対応図、図11は、図10の11矢視図、図12は、第4実施例を示す図5対応図、図13は第4実施例を示す図6対応図、図14は、第4実施例の混相流・加圧水流供給系統を示す概略配管図(図8対応図)である。   In the accompanying drawings, FIGS. 1 to 8 show a first embodiment of the present invention. FIG. 1 is an overall schematic longitudinal sectional view showing an outline of dredging work, and FIG. 2 is an arrow 2 in FIG. FIG. 3 is an enlarged longitudinal sectional view of the dredger working vessel (enlarged sectional view taken along arrow 3-3 in FIG. 2), FIG. 4 is a plan view taken in the direction of arrow 4 in FIG. 3, and FIG. 6 is a cross-sectional view taken along line 7-7 of FIG. 5, and FIG. 8 is a schematic piping diagram showing a multiphase flow / pressurized water flow supply system. is there. 9 is a diagram corresponding to FIG. 5 showing the second embodiment, FIG. 10 is a diagram corresponding to FIG. 5 showing the third embodiment, FIG. 11 is a view taken along the arrow 11 in FIG. 10, and FIG. 5 is a diagram corresponding to FIG. 5, FIG. 13 is a diagram corresponding to FIG. 6 showing the fourth embodiment, and FIG. 14 is a schematic piping diagram (corresponding to FIG. 8) showing the multiphase flow / pressurized water flow supply system of the fourth embodiment. is there.

先ず、図1,2において、本実施例の浚渫作業システムは、ダムDの貯留水面に浮かび、その水上を随時に移動可能な土砂排出作業船としての浚渫作業船Bと、この作業船Bに設けられ吸込口となる上流側開口端Ueが水中で昇降可能な可動吸込管Uと、この可動吸込管Uの下流端に一端が連なり且つその他端がダムDよりも低水位の下流側の河川水域Rまで長く延びる搬送管Aとを備えており、前記可動吸込管U及び搬送管Aは、互いに協働してサイフォン管Sを構成しており、このサイフォン管Sが本発明の土砂排出管を構成する。   First, in FIGS. 1 and 2, the dredging work system of the present embodiment floats on the stored water surface of the dam D, and the dredging work ship B as a sediment discharge work ship that can move on the water at any time, A movable suction pipe U having an upstream opening end Ue which is provided and can be moved up and down in the water, and a downstream river whose one end is connected to the downstream end of the movable suction pipe U and whose other end is lower than the dam D. The movable suction pipe U and the transport pipe A constitute a siphon pipe S in cooperation with each other, and the siphon pipe S is the earth and sand discharge pipe of the present invention. Configure.

而して可動吸込管Uの吸込口UeをダムDの水底の堆積土砂1又はその近傍に臨ませると共に、サイフォン管Sに接続した吸水ポンプPvによる呼び水作用に基づいて該サイフォン管Sのサイフォン作用を開始させると、そのサイフォン作用により、ダム水底の堆積土砂1を水と共に吸い上げ、該サイフォン管S内を通して下流側の河川水域Rまで徐々に且つ連続的に流動させることができる。   Thus, the suction port Ue of the movable suction pipe U faces the sediment 1 or the vicinity of the bottom of the dam D, and the siphon action of the siphon pipe S based on the priming action by the water suction pump Pv connected to the siphon pipe S. Is started, the siphon action allows the sediment 1 on the bottom of the dam to be sucked up together with the water, and gradually and continuously flow through the siphon pipe S to the downstream river water area R.

図5に明示したように可動吸込管Uの吸込口Ueは、その開口面積を十分に確保すべく斜めにカットされており、その開口面には、大きな異物を可動吸込管U内に吸い込まないよう半球の籠状に形成された保護網fが被着される。   As clearly shown in FIG. 5, the suction port Ue of the movable suction pipe U is cut obliquely so as to sufficiently secure the opening area, and large foreign matters are not sucked into the movable suction pipe U in the opening surface. A protective mesh f formed in the shape of a hemispherical bowl is applied.

また前記搬送管Aの下流端又はその近傍には、該搬送管Aを随時に遮断して前記サイフォン作用を一時的に中断し得る開閉弁からなる放出規制弁Vcが設けられる。そして、この放出規制弁Vcを閉弁することによって搬送管A内をその下流端又はその近傍で随時に遮断できるから、前記サイフォン作用を一時的に簡単に中断させることができる。これにより、浚渫作業を中断するたび毎に後述する吸水ポンプPvを一々作動させてサイフォン管Sに呼び水を導入する必要はなくなり、作業の利便性が図られる。   Also, at the downstream end of the transport pipe A or in the vicinity thereof, a discharge regulating valve Vc composed of an on-off valve capable of interrupting the transport pipe A at any time and temporarily interrupting the siphon action is provided. Then, by closing the release regulating valve Vc, the inside of the transport pipe A can be interrupted at any time at or near its downstream end, so that the siphon action can be temporarily interrupted easily. Accordingly, it is not necessary to operate the water suction pump Pv described later each time the dredging operation is interrupted to introduce priming water into the siphon pipe S, and the convenience of the operation is achieved.

また搬送管Aの下流側開口端Aeには必要に応じて篩が付設され、図示例では、上流側から下流側にいくにつれて順に網目が細かくなる網籠状の複数の篩f1〜f3が直列に且つ相互に着脱可能に配設される。これにより、ダムD内の比較的大きい砂利や塵埃等を該篩f1〜f3で収集し、下流側の河川水域Rには流さないようにすることができる。   In addition, a sieve is attached to the downstream opening end Ae of the transport pipe A as necessary, and in the illustrated example, a plurality of mesh-like sieves f1 to f3 that become smaller in order from the upstream side to the downstream side are arranged in series. And detachably attached to each other. Thereby, comparatively large gravel, dust, etc. in the dam D can be collected by the sieves f1 to f3 so as not to flow into the river water area R on the downstream side.

前記複数の篩f1〜f3は、その少なくとも1つを省略可能であり、その省略により、河川水域Rに流す土砂の粗さを適宜選定可能である。尚、各篩f1〜f3に大きめの土砂が貯まると、また各篩f1〜f3を適宜分離して、中の土砂を取り出すようにする。   At least one of the plurality of sieves f1 to f3 can be omitted, and the roughness of the earth and sand flowing into the river water area R can be appropriately selected by the omission. In addition, when large earth and sand are stored in each sieve f1-f3, each sieve f1-f3 is isolate | separated suitably and it is made to take out the earth and sand in it.

またその搬送管Aの下流側開口端Aを臨ませる、下流側の河川水域Rの近く(図示例では河岸)には、該搬送管Aからの排出土砂の一部を一時的に貯め置くことができる土砂貯留地Oが設置される。この土砂貯留地Oに前記搬送管Aの下流側開口端Aeを随時に臨ませるようにすれば、サイフォン管Sで吸い上げたダムDの堆積土砂1の少なくとも一部を河川水域Rにそのまま放出せずに、上記土砂貯留地Oに貯め置くことができるから、その貯め置いた堆積土砂を難なく採取することができて、それを建設資材その他の用途に利用できる。   In addition, in the vicinity of the downstream river water area R (the river bank in the illustrated example) facing the downstream opening end A of the transport pipe A, a part of the discharged sediment from the transport pipe A is temporarily stored. Sediment storage area O is installed. By allowing the downstream opening end Ae of the transport pipe A to face the sediment storage area O as needed, at least a part of the sediment 1 of the dam D sucked up by the siphon pipe S is discharged into the river water area R as it is. Therefore, the accumulated sediments can be collected without difficulty, and can be used for construction materials and other purposes.

次に図3〜図8も併せて参照して浚渫作業システムの具体的構成を説明する。浚渫作業船Bの船体2は、図示はしないが個別に陸送可能な幾つかのブロックより分割構成されており、これらブロックはダム近くの現場で一体的に組立可能となっている。その船体2の前部には、左右一対ある可動吸込管U,Uに対応しそれらの昇降を許容すべく前方及び上下方が開放された切欠状の凹部2aが形成され、またその船体2の前端部には、前記凹部2aを跨ぐ門型のガントリー3が立設される。   Next, a specific configuration of the dredging work system will be described with reference to FIGS. The hull 2 of the dredger B is divided into a number of blocks that are not shown, but can be individually assembled on the site near the dam. The front portion of the hull 2 is formed with a notch-like recess 2a corresponding to the pair of left and right movable suction pipes U, U and open to the front and upper and lower sides to allow them to move up and down. A gate-type gantry 3 is erected at the front end so as to straddle the recess 2a.

また船体2の後部上面には、作業員が出入りする制御室Cが設けられる。さらに船体2上には、作業船Bを前後左右に自在に自力航行させるための4つの航行用ウインチW1〜W4と、左右一対ある可動吸込管U,Uの先端側をそれぞれ昇降駆動するための左右の昇降用ウインチWa、Wbとが設けられる。   In addition, a control room C through which workers enter and exit is provided on the rear upper surface of the hull 2. Further, on the hull 2, four navigation winches W1 to W4 for allowing the work boat B to freely navigate in the front-rear and left-right directions, and the distal ends of the pair of left and right movable suction pipes U and U are driven up and down. Left and right lifting winches Wa and Wb are provided.

互いに間隔をおいて並列する左右一対の可動吸込管U,Uは、それらの基端即ち下流端相互が、船体2に固定されたY字状のジョイント管Jを介して搬送管Aの基端即ち上流端に船体2内で接続される。この搬送管Aの下流側は、フロートFにより支持されてダムDの水面に沿って岸又はダム本体まで延び、それを超えて更にダムDより低水位の、下流側の河川水域Rまで長く延び出している。なお、搬送管Aの大部分は可撓性を付与されており、従って該搬送管Aを、それが取り回されるダム周辺の複雑な地形に合わせて無理なく敷設できるようになっている。   A pair of left and right movable suction pipes U, U that are arranged in parallel with each other are arranged at the base end of the transport pipe A through a Y-shaped joint pipe J that is fixed to the hull 2 at their base ends, that is, downstream ends. That is, it is connected to the upstream end within the hull 2. The downstream side of the transport pipe A is supported by the float F and extends along the water surface of the dam D to the shore or the dam body, and further extends to the downstream river water region R at a lower water level than the dam D. Out. Note that most of the transfer pipe A is provided with flexibility, so that the transfer pipe A can be easily laid in accordance with the complicated terrain around the dam around which the transfer pipe A is routed.

各可動吸込管Uは、可撓性を有するゴムホース等から構成される基端部Udを除いてストレートな剛体管より構成され、その剛体管部分は、その長手方向に延び船体2に上下揺動可能に軸支Gaされた剛体枠よりなる案内枠Gに一体的に保持される。そしてこの案内枠G又は可動吸込管Uの先部Uuには、前記左右の昇降用ウインチWa、Wbから繰り出し且つガントリー3のガイドシーブを経由して下方に延びる昇降用ワイヤL、Lの端末がそれぞれ結着される。従って、前記昇降用ウインチWa、Wbの作動により、ワイヤL、Lを介して左右の可動吸込管U、U及び案内枠Gを上下揺動させて、各可動吸込管U、Uの先部側をそれぞれ独立に昇降駆動することが可能であり、その昇降の際には可撓性を有する前記基端部Udが無理なく撓曲可能となっている。   Each movable suction pipe U is composed of a straight rigid pipe except for a base end portion Ud composed of a flexible rubber hose, and the rigid pipe portion extends in the longitudinal direction and swings up and down on the hull 2. It is integrally held by a guide frame G made of a rigid frame that is pivotally supported. Further, at the leading end Uu of the guide frame G or the movable suction pipe U, there are terminals of lifting wires L and L that are extended from the left and right lifting winches Wa and Wb and extend downward through the guide sheave of the gantry 3. Each is bound. Therefore, by operating the lifting winches Wa and Wb, the left and right movable suction pipes U and U and the guide frame G are vertically swung through the wires L and L, so that the front side of each movable suction pipe U and U Can be independently driven up and down, and the flexible base end portion Ud can be bent without difficulty when moving up and down.

前記Y字状ジョイント管Jは、左、右の可動吸込管U、Uの下流端にそれぞれ連なる一対の枝管部Ja,Jaと、その両枝管部Ja,Jaを搬送管aの上流端に連通させる合流管部Jbとより構成される。そして、その各枝管部Ja,Jaには、対応する各可動吸込管Uを他の可動吸込管U及び搬送管Aより随時に遮断し得る開閉弁Vxと、その上流側に在って各可動吸込管Uの管内の水抜きを個別に行なうための大気開放弁Vaとが互いに直列に設けられる。これにより、一方の可動吸込管U内が塵埃等で詰まったときには、この詰まった可動吸込管Uの開閉弁Vxを閉じると共に該可動吸込管Uの先部側を水上まで引上げて大気開放弁Vaを開くことで、その管内に大気を導入して管内の水抜きを的確に行なうことができる。またこの水抜き作業中も、他の可動吸込管Uを通してサイフォン作用を支障なく継続的に行なうことができるから、作業能率が高められる。   The Y-shaped joint pipe J includes a pair of branch pipe portions Ja and Ja which are respectively connected to the downstream ends of the left and right movable suction pipes U and U, and both the branch pipe portions Ja and Ja are connected to the upstream end of the transport pipe a. And a junction pipe portion Jb that communicates with each other. Each branch pipe portion Ja, Ja has an open / close valve Vx that can shut off the corresponding movable suction pipe U from the other movable suction pipe U and the transport pipe A at any time, and the upstream side thereof. An atmosphere release valve Va for individually draining water from the movable suction pipe U is provided in series with each other. Thus, when one of the movable suction pipes U is clogged with dust or the like, the open / close valve Vx of the clogged movable suction pipe U is closed and the front side of the movable suction pipe U is pulled up to the surface of the water to open the air release valve Va. By opening, the atmosphere can be introduced into the pipe and the water in the pipe can be drained accurately. Also during the draining operation, the siphon action can be continuously performed through the other movable suction pipes U without any trouble, so that the work efficiency is improved.

また船体2には、前記サイフォン管Sにサイフォン作用を開始させるための呼び水をダムDよりくみ上げて該サイフォン管(図示例では可動吸込管Uと搬送管Aとの接続部近傍)に圧送、供給するための吸水ポンプPvが搭載される。このポンプPvの吐出部とサイフォン管Sとの間には、該吐出部からサイフォン管S側への一方向の流れだけを許容する逆止弁4が介装される。またその吸水ポンプPvの吸込側には、ダムDの水中に連通する吸水ホース5が接続され、その途中には、ダムDの水中からポンプPv側への一方向の流れだけを許容する逆止弁6が介装される。   The hull 2 is pumped and supplied with priming water for starting siphon action on the siphon pipe S from the dam D to the siphon pipe (near the connecting portion between the movable suction pipe U and the transport pipe A in the illustrated example). A water absorption pump Pv is installed. Between the discharge part of the pump Pv and the siphon pipe S, a check valve 4 that allows only one-way flow from the discharge part to the siphon pipe S side is interposed. Further, a water absorption hose 5 communicating with the water of the dam D is connected to the suction side of the water absorption pump Pv, and a check that allows only a one-way flow from the water of the dam D to the pump Pv side in the middle. A valve 6 is interposed.

サイフォン管S(図示例では搬送管A)の途中には、その管内に空気を混入させて該サイフォン管Sのサイフォン作用による吸込力の調整を行なうための混気手段Mが設けられる。この混気手段Mとしては、輸送管内に空気を吸引混入させてその管内の流動体の流量調整を行うための従来周知の混気手段(例えば管壁に開設した大気開放孔を、管壁に付設した開閉弁により随時に且つ開度調節可能に開閉する構造のもの)が用いられ、図示例では、搬送管Aの上流端近傍(作業船Bの上)に配設されている。   In the middle of the siphon pipe S (conveying pipe A in the illustrated example), air mixing means M is provided for adjusting the suction force by the siphon action of the siphon pipe S by mixing air into the pipe. As this air-mixing means M, a conventionally known air-mixing means (for example, an air opening hole formed in the pipe wall is provided in the pipe wall for sucking and mixing air into the transport pipe and adjusting the flow rate of the fluid in the pipe. An opening / closing valve provided with a structure that opens and closes at any time so that the opening degree can be adjusted) is used, and in the illustrated example, it is disposed in the vicinity of the upstream end of the transport pipe A (on the work boat B).

而してこの混気手段Mによりサイフォン管S内への空気混入割合を調整することで、サイフォン作用による吸込力調整を任意に行なうことができるから、堆積土砂の状態(例えば粘度、比重、小石の交じり具合等)に応じてサイフォン作用の吸込力を的確に調整できる。しかも上記吸込力調整によりサイフォン管内の流量調整(従って土砂吸込量の調整)を任意に行なうことができるから、ダムD内への上流側からの土砂の流入量や、浚渫土砂が放出される河川水域Rの水流の程度(即ち該河川水域Rの放出土砂の受入能力)に応じて、該河川水域への土砂放出量を的確に調整することができる。   Thus, by adjusting the mixing ratio of air into the siphon tube S by the air-mixing means M, the suction force adjustment by the siphon action can be arbitrarily performed, so the state of the sediment (such as viscosity, specific gravity, pebbles, etc.) The suction force of the siphon action can be accurately adjusted according to the degree of mixing. Moreover, since the flow rate in the siphon pipe can be adjusted arbitrarily by adjusting the suction force (and therefore the amount of sediment suction), the amount of sediment flowing from the upstream side into the dam D and the river from which dredged soil is released. Depending on the level of the water flow in the water area R (that is, the ability to receive the discharged sediment in the river water area R), the amount of sediment released into the river water area can be adjusted accurately.

即ち、その土砂放出量は、サイフォン管Sの内径や吸込力(水流の強さ)、ダム内の堆積土砂中の汚泥混入率等によって異なるが、ダムAにその上流側から一年間に流入し堆積する土砂の総量に所定倍率(例えば1.1倍〜1.2倍)を掛けた量の堆積土砂がサイフォン管Sより一年間かけて緩やかに下流側の河川水域Rに流動排出できるような数値に設定すれば、ダムDの直下流、中流部、河口部に土砂流入による被害は発生しないと考えられる。   That is, the amount of sediment discharge varies depending on the inner diameter of the siphon tube S, the suction force (strength of water flow), the sludge mixing rate in the sediment in the dam, etc., but flows into the dam A from the upstream side in one year. The total amount of sediment that has accumulated is multiplied by a predetermined magnification (for example, 1.1 to 1.2 times), so that the sediment can be gently discharged from the siphon pipe S to the river water area R on the downstream side over one year. If it is set to a numerical value, it is considered that damage due to inflow of sediment does not occur immediately downstream, midstream, and estuary of dam D.

また浚渫作業船Bは、水とその水中に混在させた無数の微細気泡とよりなる混相流を、可動吸込管Uに設けられる後述する混相流噴出手段としての第1,第2噴射ノズルN,N′に供給する混相流供給装置Xを備える。この混相流供給装置Xは、船体2に搭載されて水とその水中に混在させた無数の微細気泡とよりなり所定圧力に加圧された一次混相流を発生させる混相流発生装置100と、同じく船体2に搭載されて一次混相流よりも若干低圧の加圧水流を発生させる加圧水流発生装置101とを備えており、その加圧水流発生装置101から延びる第1導管10の途中に混相流発生装置100から延びる第2導管20が合流して、その各々の導管10,20から供給されてきた加圧水流と一次混相流とが混合されて二次混相流となり、これが第1,第2ノズルN,N′に供給される。   In addition, the dredger B is provided with first and second injection nozzles N as a multiphase flow jetting means, which will be described later, provided in the movable suction pipe U for a multiphase flow consisting of water and countless fine bubbles mixed in the water. A multiphase flow supply device X for supplying to N ′ is provided. This multiphase flow supply device X is mounted on the hull 2 and is similar to the multiphase flow generation device 100 that generates a primary multiphase flow that is composed of water and countless fine bubbles mixed in the water and is pressurized to a predetermined pressure. And a pressurized water flow generator 101 that is mounted on the hull 2 and generates a pressurized water flow that is slightly lower in pressure than the primary multiphase flow. The multiphase flow generator 100 is provided in the middle of the first conduit 10 that extends from the pressurized water flow generator 101. The second pipe 20 extending from the pipes merges, and the pressurized water flow and the primary multiphase flow supplied from the respective pipes 10 and 20 are mixed to form a secondary multiphase flow, which is the first and second nozzles N and N. ′ Is supplied.

前記混相流発生装置100は、直径が100μm以下の非常に小さな無数の空気の微細気泡を水中に十分に分散、混合させた混相流を発生させ、それを加圧して第2導管20を介して前記第1,第2ノズルN,N′に供給するものであり、前記水は、ダムDの水を汲み上げて使用する。   The multi-phase flow generator 100 generates a multi-phase flow in which a very small number of fine air bubbles having a diameter of 100 μm or less are sufficiently dispersed and mixed in water, and pressurizes the mixed phase flow through the second conduit 20. The water is supplied to the first and second nozzles N and N ′, and the water is pumped up from the dam D and used.

上記微細気泡は、いわゆる「マイクロバブル」と呼ばれるものであって、単にマクロサイズの気泡が小さくなったというだけではなく、そのサイズ効果により様々な物理化学特性を発揮する。例えば、通常のミリサイズの気泡では水中で速やかに上昇し、互いに合体や吸収を繰り返して大きく成長していくが、上記微細気泡では、水中で恰も静止している如く非常に緩やかに上昇し、また水中に大量に発生しても気泡同士の合体や吸収が殆ど起こらず、気泡相互が優れた均一性、分散性を発揮し、更に水中への気体吸収効率が高く、酸素溶存量を迅速に上昇させることができる等の特徴を有している。   The fine bubbles are so-called “micro bubbles”, and not only the macro-sized bubbles are reduced, but also exhibit various physicochemical properties due to the size effect. For example, normal millimeter-sized bubbles rise quickly in water and grow together by repeating coalescence and absorption, but in the fine bubbles, they rise very slowly as if the moths are still in water, Also, even when a large amount of water is generated in the water, there is almost no coalescence or absorption between the bubbles, the bubbles exhibit excellent uniformity and dispersibility, high gas absorption efficiency into the water, and rapid oxygen dissolution It has the feature that it can be raised.

そして、このような微細気泡を水中に大量に混合させた混相流を発生させる混相流発生装置は、従来公知であって既に工業的にも量産されている(例えば特開2000-447号公報、特開平7-265057号公報等を参照)ので、本実施例で用いる混相流発生装置100についても、その構造の説明は省略する。   A multi-phase flow generator for generating a multi-phase flow in which such fine bubbles are mixed in water in a large amount is conventionally known and has already been industrially mass-produced (for example, JP-A-2000-447, Therefore, the description of the structure of the multiphase flow generator 100 used in this embodiment is also omitted.

而して混相流発生装置100により作られる混相流中の微細気泡の直径が100μm以下となるように調整されると、そのサイズ効果により、後述する本発明の所期の作用効果が達成可能となり、また特に混相流中の微細気泡の直径が50μm以下となるように調整されると、そのサイズ効果により、本発明の所期の作用効果がより確実、十分に達成できるようになる。尚、前記混相流発生装置100で作られる一次混相流中の微細気泡の混入量や、該一次混相流の加圧水流への混入割合は、サイフォン管Sのサイフォン機能に支障を及ぼさない程度に調整されることは勿論である。   Thus, when the diameter of the fine bubbles in the multiphase flow created by the multiphase flow generator 100 is adjusted to be 100 μm or less, the desired effect of the present invention described later can be achieved by the size effect. In particular, when the diameter of the fine bubbles in the mixed phase flow is adjusted to 50 μm or less, the desired effect of the present invention can be achieved more reliably and sufficiently due to the size effect. It should be noted that the mixing amount of fine bubbles in the primary multiphase flow produced by the multiphase flow generating device 100 and the mixing ratio of the primary multiphase flow to the pressurized water flow are adjusted so as not to interfere with the siphon function of the siphon tube S. Of course.

前記加圧水流発生装置101から延出する第1導管10は、各可動吸込管Uの外周部にその軸線に沿うように支持されていて、その吸込管Uの先端側まで延びている。各可動吸込管Uの吸込口Ue近くの外周には、前記二次混相流(即ち加圧水流発生装置101からの加圧水流と混相流発生装置100からの一次混相流との混合流)を水底の堆積土砂1に向けて前方に噴射し得る複数(図示例では上下・左右各一対)の第1噴射ノズルN…が固定され、これら噴射ノズルN…と第1導管10との間は、共通の第1主開閉弁15と、その下流側で分岐し且つ可動吸込管Uに固定した複数(図示例では4本)の枝管11とを介して接続される。尚、図示例では、上下の第1噴射ノズルNの開口位置が吸込口Ueの傾斜に合わせて前後にオフセットしており、また左右の第1噴射ノズルNの開口位置は、互いに前後のオフセットすることなく、上下の第1噴射ノズルNの開口位置よりも前側(吸込口Ueの直近)の設定される。   The first conduit 10 extending from the pressurized water flow generator 101 is supported along the axis of the outer peripheral portion of each movable suction pipe U and extends to the distal end side of the suction pipe U. On the outer periphery of each movable suction pipe U near the suction port Ue, the secondary mixed phase flow (that is, the mixed flow of the pressurized water flow from the pressurized water flow generator 101 and the primary mixed phase flow from the multiphase flow generator 100) is placed on the bottom of the water. A plurality of (in the illustrated example, a pair of upper, lower, left and right) first injection nozzles N that can be sprayed forward toward the sediment 1 are fixed, and the injection nozzles N and the first conduit 10 are common. The first main on-off valve 15 is connected to a plurality of (four in the illustrated example) branch pipes 11 that are branched on the downstream side and fixed to the movable suction pipe U. In the illustrated example, the opening positions of the upper and lower first injection nozzles N are offset forward and backward in accordance with the inclination of the suction port Ue, and the opening positions of the left and right first injection nozzles N are offset forward and backward. Without being set, the front side of the upper and lower first injection nozzles N (closest to the suction port Ue) is set.

また前記混相流発生装置100から延出する第2導管20は、各可動吸込管Uの外周部にその軸線に沿うように支持されていて、その吸込管Uに先端近くまで延び、その下流側は複数(図示例では4本)のの枝管21に分岐して第1導管10の前記4本の枝管11にそれぞれ合流する。それら枝管21の分岐部上流側には共通の第2主開閉弁25が設けられる。   Further, the second conduit 20 extending from the multiphase flow generating device 100 is supported on the outer peripheral portion of each movable suction pipe U along the axis thereof, extends to the suction pipe U to the vicinity of the tip, and downstream thereof. Is branched into a plurality (four in the illustrated example) of branch pipes 21 and merges with the four branch pipes 11 of the first conduit 10. A common second main on-off valve 25 is provided on the upstream side of the branch portions of the branch pipes 21.

而して各可動吸込管Uの吸込口Ueをダム水底の堆積土砂1に近づけた状態で、前記サイフォン管Sのサイフォン作用を開始させると共に混相流発生装置100及び加圧水流発生装置101を作動させ、更に第1,第2主開閉弁15,25を開弁すると、各第1噴射ノズルN…から加圧状態の前記二次混相流を噴射させることができ、これにより堆積土砂1を効果的に崩壊、拡散させることができて、これを該混相流中の微細気泡と共にサイフォン管S(可動吸込管U)内に効率よく吸い込むことが可能となり、また各可動吸込管Uの吸込口Ueでの異物の詰まりも極力回避可能となる。   Thus, the siphon action of the siphon tube S is started and the mixed-phase flow generator 100 and the pressurized water flow generator 101 are operated in a state where the suction port Ue of each movable suction pipe U is brought close to the sediment 1 on the bottom of the dam. Further, when the first and second main on-off valves 15 and 25 are opened, the secondary mixed-phase flow in a pressurized state can be injected from each of the first injection nozzles N, thereby effectively depositing the sediment 1. And can be efficiently sucked into the siphon tube S (movable suction tube U) together with the fine bubbles in the mixed phase flow, and at the suction port Ue of each movable suction tube U. Clogging of foreign matter can be avoided as much as possible.

また各可動吸込管Uの吸込口Ue近くの外周には、前記混相流供給装置Xから圧送されてきた混相流を各可動吸込管U内に直接噴射し得る単一の第2噴射ノズルN′が固定される。この噴射ノズルN′と前記第1導管10との間は、第1主開閉弁15よりも上流側で該導管10より分岐した枝管12を介して接続され、その枝管12に第1副開閉弁16が介装される。さらにその枝管12の途中と前記第2導管20との間は、第2主開閉弁25よりも上流側で該導管20より分岐した枝管22を介して接続され、その枝管22に第2副開閉弁26が介装される。従って、混相流発生装置100及び加圧水流発生装置101を作動させ、更に第1,第2副開閉弁16,26を開弁すると、第2噴射ノズルN′から加圧状態の前記二次混相流を可動吸込管U内に直接噴射することができる。   A single second injection nozzle N ′ capable of directly injecting the mixed phase flow fed from the mixed phase flow supply device X into each movable suction tube U is provided on the outer periphery of each movable suction tube U near the suction port Ue. Is fixed. The injection nozzle N ′ and the first conduit 10 are connected to each other via a branch pipe 12 branched from the conduit 10 on the upstream side of the first main on-off valve 15. An on-off valve 16 is interposed. Further, the middle of the branch pipe 12 and the second conduit 20 are connected to each other via a branch pipe 22 branched from the conduit 20 on the upstream side of the second main on-off valve 25. A two sub open / close valve 26 is interposed. Accordingly, when the multiphase flow generator 100 and the pressurized water flow generator 101 are operated and the first and second sub-open / close valves 16 and 26 are opened, the secondary multiphase flow in a pressurized state is supplied from the second injection nozzle N ′. Can be directly injected into the movable suction pipe U.

前記第2噴射ノズルN′は、各可動吸込管Uの内周壁底部に開口oしており、その開口方向は可動吸込管Uの下流側に向かって上方に傾斜している。そして、このノズル開口oの下流側への傾斜により、可動吸込管U内での土砂の下流側への流動が、第2噴射ノズルN′から噴射された二次混相流により助勢されて、その流動をスムーズにすることができる。尚、第2噴射ノズルN′の開口oは、図7の(a)に示すように単一であってもよいし、(b)に示すように周方向に間隔をおいて複数並列させてもよい。また図示はしないが、その開口を周方向に長く形成してもよい。尚、図示はしないが、各枝管11,12には、それと枝管25,26との混合部より上流側において混相流の逆流を阻止するチェック弁を介装してもよい。   The second injection nozzle N ′ opens at the bottom of the inner peripheral wall of each movable suction pipe U, and the opening direction is inclined upward toward the downstream side of the movable suction pipe U. And by the inclination to the downstream side of the nozzle opening o, the flow of the earth and sand in the movable suction pipe U to the downstream side is assisted by the secondary mixed phase flow injected from the second injection nozzle N ′, The flow can be made smooth. Incidentally, the opening o of the second injection nozzle N ′ may be single as shown in FIG. 7A, or a plurality of openings o arranged in parallel at intervals in the circumferential direction as shown in FIG. Also good. Although not shown, the opening may be formed long in the circumferential direction. Although not shown, each branch pipe 11, 12 may be provided with a check valve for preventing the backflow of the multiphase flow upstream from the mixing portion between the branch pipes 25 and 26.

次に本実施例の作用を説明する。ダムDの水底の浚渫に当たっては、浚渫作業船BをダムDの周辺で組立て、ダムDの水面に浮かせる。この作業船Bの位置は、船体2上の4つの航行用ウインチW1〜W4からそれぞれ繰り出されたワイヤL′の端末に固定のアンカを水底の適所(船の四方)に降ろし、それらウインチW1〜W4により任意のワイヤL′を適宜巻き取り・繰り出すことで作業船Bを所望の位置に移動させることができる。   Next, the operation of this embodiment will be described. When hitting the bottom of the dam D, the dredger B is assembled around the dam D and floated on the surface of the dam D. The position of this work ship B is that the anchors fixed to the ends of the wires L ′ fed out from the four navigation winches W1 to W4 on the hull 2 are lowered to appropriate positions (four sides of the ship) at the bottom of the water. The work ship B can be moved to a desired position by appropriately winding and unwinding an arbitrary wire L ′ by W4.

次いで作業船Bより一対の可動吸込管Uの先部側を下降させ、その先端の吸込口Ueを水底の土砂堆積層に臨ませる。この状態でサイフォン管Sに接続した吸水ポンプPを作動させ、これが吸引した水を呼び水としてサイフォン管S内に圧送することでサイフォン管Sのサイフォン作用を開始させる。そのサイフォン作用が一旦開始されると、吸水ポンプPを停止させてもサイフォン作用は引き続き継続され、そのサイフォン作用により、ダムDの水底の堆積土砂1を水と共に吸い上げて河川水域Rに徐々に且つ連続的に排出することができ、その土砂排出に伴い、作業船Bの位置を少しずつ移動させていく。これにより、少ないエネルギとコストでダムDの水底の堆積土砂1を能率よく浚渫可能となり、しかも前記河川水域Rにはサイフォン管Sより堆積土砂1及び水が少量ずつ連続的に放出可能であるので、その河川本来の水流(自然力)を利用して放出土砂1を更に下流側へ無理なく排出することができ、自然環境への影響を極力排除することができる。   Next, the front side of the pair of movable suction pipes U is lowered from the work boat B, and the suction port Ue at the tip of the pair is made to face the sediment layer on the bottom of the water. In this state, the water suction pump P connected to the siphon pipe S is operated, and the water sucked by this is pumped into the siphon pipe S as priming water to start the siphon action of the siphon pipe S. Once the siphon action is started, the siphon action continues even if the water absorption pump P is stopped. By the siphon action, the sediment 1 on the bottom of the dam D is sucked up together with water and gradually enters the river water area R. It can discharge continuously, and the position of the work boat B is moved little by little with the earth and sand discharge. As a result, the sediment 1 on the bottom of the dam D can be efficiently drowned with low energy and cost, and the sediment 1 and water can be continuously discharged from the siphon pipe S into the river water area R little by little. By using the original water flow (natural force) of the river, the discharged sediment 1 can be discharged to the downstream side without difficulty, and the influence on the natural environment can be eliminated as much as possible.

ところで上記サイフォン管Sの稼働中に混相流発生装置100及び加圧水流発生装置101を作動させ且つ第1,第2主開閉弁15,25を開弁させると、各第1噴射ノズルN…から加圧状態の二次混相流を水底の堆積土砂1に向かって噴射させることができ、その混相流により、堆積土砂1を効果的に崩壊、拡散させることができて、これを混相流中の大部分の微細気泡と共にサイフォン管S(可動吸込管U)内に効率よく吸い込むことができる。この場合、更に第1,第2副開閉弁16,26を開弁させると、第2噴射ノズルN′から加圧状態の二次混相流を可動吸込管Uの内部にその内周壁底部より下流側に向かって噴射させることができ、これにより、混相流中の微細気泡を可動吸込管U内に全量噴出させることができるばかりか、可動吸込管U内での土砂の下流側への流動が混相流により助勢されて、その流動をスムーズにすることができる。   By the way, when the multiphase flow generator 100 and the pressurized water flow generator 101 are operated and the first and second main on-off valves 15 and 25 are opened while the siphon pipe S is in operation, the first injection nozzles N ... The secondary mixed phase flow in the pressure state can be jetted toward the sediment sediment 1 at the bottom of the water, and the sedimentary sediment 1 can be effectively collapsed and diffused by the mixed phase flow. It can be efficiently sucked into the siphon tube S (movable suction tube U) together with the fine bubbles in the portion. In this case, when the first and second sub-open / close valves 16 and 26 are further opened, a secondary mixed phase flow in a pressurized state is supplied from the second injection nozzle N ′ to the inside of the movable suction pipe U downstream from the bottom of the inner peripheral wall thereof. In this way, not only can all the fine bubbles in the multiphase flow be ejected into the movable suction pipe U, but also the flow of earth and sand in the movable suction pipe U to the downstream side. Assisted by the multiphase flow, the flow can be made smooth.

かくして、可動吸込管U内に吸い込まれた水底の堆積土砂1及び水が、その水中に無数の微細気泡を混入分散させた状態で可動吸込管U(従ってサイフォン管S)内を流動し得るようになるため、その無数の微細気泡の混入分散効果により、流動土砂とサイフォン管S内面との間の摩擦抵抗を効果的に低減することができ、その上、土砂流動体の密度を軽減できるようになって、サイフォン管S内で土砂をスムーズに流動させることが可能となる。従って、サイフォン管Sの管内損失水頭の低減が図られて排出土砂の輸送効率がアップし、輸送距離を十分長く確保することができると共に、サイフォン管S自体の早期摩耗が抑えられて同管S(可動吸込管U,ジョイント管J,搬送管A)の耐久性向上が図られ、摩耗に因る管交換の頻度を少なくしてコスト節減に寄与することができる。   Thus, the sediment sediment 1 and water in the bottom of the water sucked into the movable suction pipe U can flow in the movable suction pipe U (and hence the siphon pipe S) in a state where countless fine bubbles are mixed and dispersed in the water. Therefore, the frictional resistance between the fluid sediment and the inner surface of the siphon tube S can be effectively reduced by the effect of mixing innumerable fine bubbles, and the density of the sediment fluid can be reduced. Thus, the earth and sand can flow smoothly in the siphon tube S. Therefore, the head loss in the siphon pipe S is reduced, the transport efficiency of the discharged sediment is increased, the transport distance can be secured sufficiently long, and the early wear of the siphon pipe S itself is suppressed and the pipe S The durability of (movable suction pipe U, joint pipe J, transport pipe A) can be improved, and the frequency of pipe replacement due to wear can be reduced to contribute to cost saving.

また本実施例では、前記微細気泡を空気の微細気泡としているから、サイフォン管S内を流動する土砂及び水の中の好気性微生物と微細気泡の酸素とを十分に接触させることができ、その微生物を活性化させて曝気効果を高めることができ、これにより、排出土砂を含む水の臭気・濁度を向上させることができ、溶存酸素量も効率よく増やすことができる。しかもダム水底と下流側河川水域Rとの間に亘って延びるサイフォン管Sは、その管内の流動経路が非常に長い上、その管内をサイフォン作用で堆積土砂1が大量の水と共にゆっくりと流動し得ることから、その長い流動過程の全域に亘り前記微細気泡による曝気効果が有効且つ十分に発揮される。従って、ダム水底の堆積土砂1を大量の水と共にサイフォン管Sから下流側の河川水域Rに直接放流するようにしても、その放出された土砂を含む水の臭気・濁度を効果的に向上させることができ、且つ溶存酸素量も十分に高くできることから、下流側の河川水域Rに対する環境対策上、頗る有利である。   Further, in this embodiment, since the fine bubbles are air fine bubbles, the aerobic microorganisms in the earth and sand flowing in the siphon tube S and the oxygen in the fine bubbles can be sufficiently brought into contact with each other. The aeration effect can be enhanced by activating microorganisms, whereby the odor and turbidity of water containing discharged sediment can be improved, and the amount of dissolved oxygen can also be increased efficiently. Moreover, the siphon pipe S extending between the bottom of the dam and the downstream river basin R has a very long flow path in the pipe, and the sediment 1 slowly flows along with a large amount of water in the pipe by the siphon action. Therefore, the aeration effect by the fine bubbles is effectively and sufficiently exhibited throughout the long flow process. Therefore, even if the sediment sediment 1 at the bottom of the dam is discharged directly from the siphon pipe S to the downstream river basin R together with a large amount of water, the odor and turbidity of the water containing the released sediment is effectively improved. Since the amount of dissolved oxygen can be made sufficiently high, it is advantageous in terms of environmental measures for the downstream river water area R.

また図9には、本発明の第2実施例が示される。この実施例は、サイフォン管S(可動吸込管U)の先端部、即ち吸込口Ue及びその周辺部の構成だけが前実施例と相違するので、その相違部分だけを説明する。即ち、その吸込口Ueは、可動吸込管Uの軸線と直交する平面でカットされた形状となっており、その吸込口Ueは、球形の籠状に形成された保護網fで覆われる。また上部の第1噴射ノズルNは、前方に向かって下側に傾斜していて先端部が保護網f内に突入しており、吸込口Ue前方下側の堆積土砂1に接近して混相流を噴射できるようになっている。その他の噴射ノズルN,N′については、第2噴射ノズルN′の開口位置が前実施例のものよりやや後寄りである点を除いて、前実施例と基本的に同じである。   FIG. 9 shows a second embodiment of the present invention. In this embodiment, only the configuration of the tip portion of the siphon tube S (movable suction tube U), that is, the suction port Ue and its peripheral portion is different from the previous embodiment, so only the difference will be described. That is, the suction port Ue has a shape cut by a plane orthogonal to the axis of the movable suction pipe U, and the suction port Ue is covered with a protective net f formed in a spherical bowl shape. Further, the upper first injection nozzle N is inclined downward toward the front, and the tip end part enters the protective net f, and approaches the sediment 1 on the lower front side of the suction port Ue to approach the multiphase flow. Can be injected. The other injection nozzles N and N ′ are basically the same as in the previous example except that the opening position of the second injection nozzle N ′ is slightly rearward than that in the previous example.

また図10,11には、本発明の第3実施例が示される。この実施例も、サイフォン管S(可動吸込管U)の先端部、即ち吸込口Ue及びその周辺部の構成だけが前実施例と相違するので、その相違部分だけを説明する。即ち、そのサイフォン管S(可動吸込管U)の先端部は、吸込口Ueの手前でやや前方下向きに傾斜していて、その傾斜方向を吸込口Ueが指向している。そしてこの傾斜に合わせて、下側と左右両側の第1噴射ノズルNの開口方向が同様に傾斜しており、上側の第1噴射ノズルは省略される。また第2噴射ノズルN′は、第2実施例と基本的に同じである。また吸込口Ueは、扁平な網状に形成された保護網fで覆われる。   10 and 11 show a third embodiment of the present invention. Also in this embodiment, only the configuration of the tip portion of the siphon tube S (movable suction tube U), that is, the suction port Ue and its peripheral portion is different from the previous embodiment, so only the difference will be described. That is, the tip portion of the siphon tube S (movable suction tube U) is inclined slightly forward and downward in front of the suction port Ue, and the suction port Ue is oriented in the inclined direction. In accordance with this inclination, the opening directions of the lower and left and right first injection nozzles N are similarly inclined, and the upper first injection nozzle is omitted. The second injection nozzle N ′ is basically the same as in the second embodiment. The suction port Ue is covered with a protective net f formed in a flat net shape.

而して、第2及び第3実施例のものでも、第1実施例と基本的に同様の作用効果を達成することができる。   Thus, the second and third embodiments can achieve basically the same effects as the first embodiment.

更に図12〜図14には、本発明の第4実施例が示される。先の実施例では、混相流発生装置100からの一次混相流と、加圧水流発生装置101からの加圧水流とを予め混合させた混合流(二次混相流)を、混相流噴出手段としての第1噴射ノズルNから噴射させるようにしたものを示したが、本実施例では、混相流発生装置100からの一次混相流と加圧水流発生装置101からの加圧水流とを、予め混合させることなく、混相流噴出手段としての第1噴射ノズルNと加圧水流噴出手段としての水噴射ノズルNwとから別々に噴射させるようにした点を特徴とする。   12 to 14 show a fourth embodiment of the present invention. In the previous embodiment, the mixed flow (secondary mixed phase flow) obtained by previously mixing the primary mixed phase flow from the mixed phase flow generating device 100 and the pressurized water flow from the pressurized water flow generating device 101 is used as the mixed phase flow ejecting means. In the present embodiment, the primary mixed phase flow from the multiphase flow generation device 100 and the pressurized water flow from the pressurized water flow generation device 101 are not mixed in advance. The present invention is characterized in that the first injection nozzle N as the multiphase flow jetting means and the water jet nozzle Nw as the pressurized water jetting means are jetted separately.

即ち、この実施例では、可動吸込管Uの吸込口Ue近くには、第1実施例の複数の第1噴射ノズルNに近接・並列して、それと同数の水噴射ノズルNwが配設される。図14で明らかなように、混相流発生装置100から第2導管20、第2主開閉弁25及び枝管21を経て混相流噴射ノズルN…に至る混相流の供給系統と、加圧水流発生装置101から第1導管10、第1主開閉弁15及び枝管11を経て水噴射ノズルNwに至る加圧水流の供給系統とは互いに独立している。一方、第2噴射ノズルN′へ二次混相流を供給する配管系統と、その他の装置構成は、前記実施例と基本的に同じであり、各構成部分には、前記実施例と対応するものの参照符号を付している。   That is, in this embodiment, near the suction port Ue of the movable suction pipe U, the same number of water injection nozzles Nw are arranged in proximity to and in parallel with the plurality of first injection nozzles N of the first embodiment. . As is apparent from FIG. 14, a multiphase flow supply system from the multiphase flow generating device 100 to the multiphase flow injection nozzle N through the second conduit 20, the second main opening / closing valve 25, and the branch pipe 21, and the pressurized water flow generating device. The supply system of the pressurized water flow from 101 to the water injection nozzle Nw through the first conduit 10, the first main opening / closing valve 15, and the branch pipe 11 is independent of each other. On the other hand, the piping system for supplying the secondary multiphase flow to the second injection nozzle N ′ and other device configurations are basically the same as those in the above embodiment, and each component corresponds to the above embodiment. Reference numerals are attached.

而してこの実施例では、混相流発生装置100からの一次混相流と、加圧水流発生装置101からの加圧水流とを、混相流噴出手段としての第1噴射ノズルNと、加圧水流噴出手段としての水噴射ノズルNwとから別々に噴射させることができ、必要に応じて加圧水流又は混相流の一方の噴射を停止(即ち他方のみを噴射)させることも可能であり、また加圧水流又は混相流の水圧、流量、噴射方向等の設定、調整等も別個独立に行うことができるから、それらの設定、調整作業が比較的容易である。   Thus, in this embodiment, the primary mixed phase flow from the mixed phase flow generating device 100 and the pressurized water flow from the pressurized water flow generating device 101 are used as the first injection nozzle N as the mixed phase flow ejecting means and the pressurized water flow ejecting means. The water injection nozzles Nw can be separately injected, and one of the pressurized water flow or the mixed phase flow can be stopped (that is, only the other) can be stopped if necessary, and the pressurized water flow or the mixed phase flow can also be stopped. Since the setting, adjustment, etc. of the water pressure, flow rate, injection direction, etc. can be performed separately and independently, setting and adjusting operations thereof are relatively easy.

以上、本発明の実施例を詳述したが、本発明は前記実施例に限定されるものでなく、種々の設計変更を行うことができる。例えば、前記実施例では、土砂排出作業船としての浚渫作業船Bは自力走行可能な船を用いたが、本発明では、自力走行不能で他の船や陸上から駆動されるタイプの作業船であってもよい。 As mentioned above, although the Example of this invention was explained in full detail, this invention is not limited to the said Example, A various design change can be performed. For example, in the above-described embodiment, the dredger work ship B as the earth and sand discharging work ship is a ship that can travel by itself, but in the present invention, it is a work ship of a type that cannot be driven by itself and is driven from another ship or land. even if there have good.

また前記実施例では、混相流供給装置Xが空気の微細気泡を水と混合させて混相流を作流ようにしたものを示したが、空気以外のガス(例えば酸素を含むガス)の微細気泡を水と混合させるようにしてもよい。た混相流に、水と土砂(泥)との分離を促進する添加剤(例えばヤシ油)を添加するようにしてもよい。 Moreover, in the said Example, although the multiphase flow supply apparatus X showed what mixed the fine bubble of air with water and produced the mixed phase flow, the fine bubble of gas other than air (for example, gas containing oxygen) was shown. May be mixed with water. To Also multiphase flow, additives that facilitate the separation of water and sediment (mud) (e.g. palm oil) may be added.

また前記実施例では、サイフォン管S内への混相流の噴射部位を吸込口Ueの近くの可動吸込管Uの内周壁底部としたものを示したが、本発明では、その噴射部位を底部以外の内周壁(例えば上部、側部)に設定してもよMoreover, in the said Example, although what showed the injection | spray part of the multiphase flow in the siphon pipe | tube S as the inner peripheral wall bottom part of the movable suction pipe | tube U near the suction inlet Ue was shown, in this invention, that injection | spray part | part is other than a bottom part. the inner peripheral wall (e.g. top, side) of but it may also be set to.

また前記実施例では、可動吸込管Sを左右一対設けて下流端相互を合流させるようにしたものを示したが、本発明では可動吸込管Sを単一管より構成してもよい。   Moreover, in the said Example, although the thing which provided the movable suction pipe S by left-right pair and made the downstream ends merge was shown, in this invention, you may comprise the movable suction pipe S from a single pipe | tube.

また前記実施例では、第1,第2副開閉弁16,26を共に開弁することで、混相流発生装置100からの一次混相流と、加圧水流発生装置101からの加圧水流とを予め混合させた混合流(二次混相流)を、混相流噴出手段としての第2噴射ノズルN′から可動吸込管U内に直接噴射させるようにしたものを示したが、本発明では、第1副開閉弁16を閉じ、第2副開閉弁26だけを開くことで、混相流発生装置100からの一次混相流を、加圧水流と予め混合させずにそのまま第2噴射ノズルN′から可動吸込管U内に直接噴射させるようにしてもよい。   In the above embodiment, the primary mixed phase flow from the mixed phase flow generation device 100 and the pressurized water flow from the pressurized water flow generation device 101 are mixed in advance by opening both the first and second auxiliary on-off valves 16 and 26. In the present invention, the mixed flow (secondary multiphase flow) is directly injected into the movable suction pipe U from the second injection nozzle N ′ serving as the multiphase flow injection means. By closing the on-off valve 16 and opening only the second sub-opening / closing valve 26, the primary mixed phase flow from the mixed phase flow generating device 100 is directly mixed with the pressurized water flow from the second injection nozzle N ′ without being mixed in advance with the movable suction pipe U. You may make it inject directly.

本発明の第1実施例を示す浚渫作業の概要を示す全体概略縦断面図Whole schematic longitudinal cross-sectional view which shows the outline | summary of the dredging work which shows 1st Example of this invention 前記実施例の平面図(図1の2矢視図)The top view of the said Example (2 arrow directional view of FIG. 1) 浚渫作業船の拡大縦断面図(図2の3−3矢視拡大断面図)Enlarged longitudinal sectional view of the dredger work vessel (enlarged sectional view taken along arrow 3-3 in FIG. 2) 図3の4矢視平面図4 is a plan view in the direction of arrow 4 in FIG. 可動吸込管の先端部を示す側面図Side view showing the tip of the movable suction pipe 図5の6矢視図6 arrow view of FIG. 図5の7−7線断面図Sectional view along line 7-7 in FIG. 第1実施例の混相流・加圧水流供給系統を示す概略配管図Schematic piping diagram showing the multiphase flow / pressurized water flow supply system of the first embodiment 第2実施例を示す図5対応図FIG. 5 correspondence diagram showing the second embodiment 第3実施例を示す図5対応図FIG. 5 corresponding diagram showing the third embodiment. 図10の11矢視図11 arrow view of FIG. 第4実施例を示す図5対応図FIG. 5 correspondence diagram showing the fourth embodiment. 第4実施例を示す図6対応図FIG. 6 corresponding diagram showing the fourth embodiment. 第4実施例の混相流・加圧水流供給系統を示す概略配管図(図8対応図)Schematic piping diagram showing the multiphase flow / pressurized water flow supply system of the fourth embodiment (corresponding to FIG. 8)

A 搬送管
B 浚渫作業船(土砂排出作業船)
D ダム
N 第1噴射ノズル(混相流噴出手段)
N′ 第2噴射ノズル(混相流噴出手段)
Nw 水噴射ノズル(加圧水流噴出手段)
o 開口
R 河川水域(排出場所)
S サイフォン管(土砂排出管)
U 可動吸込管
Ue 吸込口
X 混相流供給装置
1 堆積土砂
2 船体
100 混相流発生装置
101 加圧水流発生装置
A Transport pipe B Dredging ship (Sediment discharge work ship)
D Dam N 1st injection nozzle (multi-phase flow ejection means)
N 'second injection nozzle (multiphase flow injection means)
Nw water jet nozzle (pressurized water jet)
o Opening R River water area (discharge location)
S Siphon pipe (sediment discharge pipe)
U Movable suction pipe Ue Suction port X Multiphase flow supply device 1 Sediment sediment 2 Hull 100 Multiphase flow generator 101 Pressurized water flow generator

Claims (4)

土砂排出管(S)の上流端に開口した吸込口(Ue)をダム(D)の水底又はその近傍に臨ませて、その吸込口(Ue)より水底の堆積土砂(1)を水と共に土砂排出管(S)内にサイフォン作用で吸込み、その吸い込んだ土砂(1)及び水を土砂排出管(S)内を通して、前記ダム(D)の下流側で且つ該ダム(D)よりも低水位の河川水域(R)まで流動させるようにした土砂排出方法において、
水とその水中に分散、混在させた直径100μ以下の無数の空気の微細気泡、または少なくとも酸素ガスを含むガスの微細気泡とよりなる混相流を、吸込口(Ue)近くの土砂排出管(S)に設けた第1の混相流噴出手段(N)から水底の堆積土砂(1)に向けて噴出させて、その混相流中の無数の微細気泡の一部が、該土砂(1)及び水と一緒に吸込口(Ue)より土砂排出管(S)内に吸い込まれ且つ土砂排出管(S)内を流動するようにし
また前記混相流を、吸込口(Ue)に近い土砂排出管(S)に設けた第2の混相流噴出手段(N′)から土砂排出管(S)内に直接噴出させて、その混相流中の無数の微細気泡が、吸込口(Ue)より土砂排出管(S)内に吸い込まれた土砂(1)及び水と一緒に土砂排出管(S)内を流動するようにし、
前記第1,第2の混相流噴出手段(N′)に対しては共通の混相流発生装置(100)から前記混相流が加圧状態で供給されることを特徴とする、土砂排出方法。
The suction port (Ue) opened at the upstream end of the sediment discharge pipe (S) faces the bottom of the dam (D) or in the vicinity thereof, and the sediment (1) on the bottom of the water is put together with water from the suction port (Ue). The suction pipe (S) is sucked by siphon action, and the sucked sediment (1) and water are passed through the sediment discharge pipe (S), downstream of the dam (D) and at a lower water level than the dam (D). In the earth and sand discharge method to flow to the river water area (R) of
And water, dispersed in the water, mixed and allowed diameter 100μ or less fine-bubble countless air, or a gas containing at least oxygen gas fine bubbles and become more multi-phase flow, inlet (Ue) near soil discharge pipe ( The first multiphase flow ejection means (N) provided in S) is ejected toward the sediment sediment (1) at the bottom of the water, and a part of the countless fine bubbles in the multiphase flow is The water is sucked into the sediment discharge pipe (S) from the suction port (Ue) and flows through the sediment discharge pipe (S) .
Further, the mixed phase flow is directly jetted into the sediment discharge pipe (S) from the second mixed phase flow ejection means (N ′) provided in the sediment discharge pipe (S) close to the suction port (Ue), and the mixed phase flow. Innumerable fine bubbles inside flow along the earth and sand discharge pipe (S) together with the earth and sand (1) sucked into the earth and sand discharge pipe (S) from the suction port (Ue),
The first, wherein said that the multiphase flow is supplied under pressure from a common multi-phase flow generating device (100) for the second multiphase jetting unit (N '), sediment discharge how .
土砂排出管(S)の上流端に開口した吸込口(Ue)をダム(D)の水底又はその近傍に臨ませて、その吸込口(Ue)より水底の堆積土砂(1)を水と共に土砂排出管(S)内にサイフォン作用で吸込み、その吸い込んだ土砂(1)及び水を土砂排出管(S)内を通して、前記ダム(D)の下流側で且つ該ダム(D)よりも低水位の河川水域(R)まで流動させるようにした土砂排出方法において、
水とその水中に分散、混在させた直径100μ以下の無数の空気の微細気泡、または少なくとも酸素ガスを含むガスの微細気泡とよりなる混相流を、吸込口(Ue)に近い土砂排出管(S)に設けた混相流噴出手段(N′)から土砂排出管(S)内に直接噴出させて、その混相流中の無数の微細気泡が、吸込口(Ue)より土砂排出管(S)内に吸い込まれた土砂(1)及び水と一緒に土砂排出管(S)内を流動するようにしたことを特徴とする、土砂排出方法。
The suction port (Ue) opened at the upstream end of the sediment discharge pipe (S) faces the bottom of the dam (D) or in the vicinity thereof, and the sediment (1) on the bottom of the water is put together with water from the suction port (Ue). The suction pipe (S) is sucked by siphon action, and the sucked sediment (1) and water are passed through the sediment discharge pipe (S), downstream of the dam (D) and at a lower water level than the dam (D). In the earth and sand discharge method to flow to the river water area (R) of
And water, dispersed in the water, mixed and allowed diameter 100μ or less fine-bubble countless air, or a gas containing at least oxygen gas fine bubbles and become more multi-phase flow, sediment discharge tube close to the suction port (Ue) ( The infinite number of fine bubbles in the mixed-phase flow are directly ejected from the mixed-phase flow ejection means (N ′) provided in S) into the sediment discharge pipe (S), and the sediment discharge pipe (S) from the suction port (Ue). A method for discharging soil and sand, characterized in that the soil and sand (1) and water sucked into the fluid flow in the sediment and sand discharge pipe (S).
前記混相流噴出手段(N′)は、前記土砂排出管(S)の内周壁底部に開口(o)し、その開口方向が下流側に向かって上方に傾斜した噴射ノズルより構成されることを特徴とする、請求項に記載の土砂排出方法。 The multi-phase flow ejection means (N ′) is composed of an injection nozzle that opens (o) at the bottom of the inner peripheral wall of the earth and sand discharge pipe (S) and whose opening direction is inclined upward toward the downstream side. The sediment discharge method according to claim 2 , characterized in that it is characterized in that 前記請求項2又は3に記載の方法の実施に使用すべく、前記ダム(D)の水面上を移動可能な土砂排出作業船であって、
その船体(2)には、前記吸込口(Ue)を上流端に有する可動吸込管(U)が、該吸込口(Ue)を水中で昇降可能として設けられていて、この可動吸込管(U)と、その可動吸込管(U)の下流端に一端が接続され且つその他端が前記河川水域(R)に連通可能な搬送管(A)とで前記土砂排出管(S)が構成され、
更に前記混相流を前記混相流噴出手段(N′)に供給し得る混相流供給装置(X)を備えたことを特徴とする、土砂排出作業船。
A soil discharge work ship movable on the water surface of the dam (D) to be used for carrying out the method according to claim 2 or 3 ,
The hull (2) is provided with a movable suction pipe (U) having the suction port (Ue) at the upstream end so that the suction port (Ue) can be moved up and down in water. ) And a transport pipe (A) having one end connected to the downstream end of the movable suction pipe (U) and the other end communicating with the river water area (R), the earth and sand discharge pipe (S) is configured,
A sediment discharge work ship further comprising a multiphase flow supply device (X) capable of supplying the multiphase flow to the multiphase flow ejection means (N ').
JP2003390907A 2003-11-20 2003-11-20 Earth and sand discharge method and earth and sand discharge work ship Expired - Lifetime JP4461275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390907A JP4461275B2 (en) 2003-11-20 2003-11-20 Earth and sand discharge method and earth and sand discharge work ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390907A JP4461275B2 (en) 2003-11-20 2003-11-20 Earth and sand discharge method and earth and sand discharge work ship

Publications (2)

Publication Number Publication Date
JP2005155024A JP2005155024A (en) 2005-06-16
JP4461275B2 true JP4461275B2 (en) 2010-05-12

Family

ID=34718141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390907A Expired - Lifetime JP4461275B2 (en) 2003-11-20 2003-11-20 Earth and sand discharge method and earth and sand discharge work ship

Country Status (1)

Country Link
JP (1) JP4461275B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101301527B1 (en) * 2011-04-27 2013-09-04 김원태 Water purification system which can remove to suspended solids and sediment at the same time.
CN103290873A (en) * 2013-05-28 2013-09-11 芜湖中新实业有限公司 Desilting boat

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650260B2 (en) * 2005-12-27 2011-03-16 シブヤマシナリー株式会社 Solid matter take-out device
CN101245589B (en) * 2007-02-12 2011-05-25 湖南人文科技学院 Method for harnessing river and reservoir with sand stirring boat and liftable low water head dam
CN101864782A (en) * 2010-06-10 2010-10-20 江苏省水利机械制造有限公司 Underwater dredging machine
CN102220772B (en) * 2011-03-21 2013-06-19 广东精铟机械有限公司 Bridge pivot structure used for suction type dredging ship
CN102409711B (en) * 2011-09-23 2013-06-05 浙江省疏浚工程股份有限公司 Urban small river dredging ship
JP5893643B2 (en) * 2011-12-06 2016-03-23 橋本 徹 Underwater sediment suction and flow equipment and foreign matter trapping method
JP6033195B2 (en) * 2013-09-27 2016-11-30 丸尾興商株式会社 Dam dredging system
CN112502225A (en) * 2020-11-23 2021-03-16 李登峰 Dredging device for hydraulic engineering
CN113058310B (en) * 2021-04-27 2024-04-05 山西水务集团建设投资有限公司 Ecological water area sludge treatment method and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101301527B1 (en) * 2011-04-27 2013-09-04 김원태 Water purification system which can remove to suspended solids and sediment at the same time.
CN103290873A (en) * 2013-05-28 2013-09-11 芜湖中新实业有限公司 Desilting boat
CN103290873B (en) * 2013-05-28 2015-05-13 芜湖中新实业有限公司 Desilting boat

Also Published As

Publication number Publication date
JP2005155024A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP4461275B2 (en) Earth and sand discharge method and earth and sand discharge work ship
CN103781968B (en) Drag head and rake suction dredger
JP2557376B2 (en) Device and method for moving sediment on the bottom of the water
US7395618B2 (en) Subsea excavation and suction device
US8083437B2 (en) Underwater trenching apparatus
JP4030389B2 (en) Dredging system and dredging method for large capacity reservoir
US5478483A (en) Oil spill skimmer with adjustable floating weir
EP1236832A1 (en) System and method for discharging deposit
WO2009133373A2 (en) Improvements in and relating to underwater excavation apparatus
US3576111A (en) Underwater pipeline-burying apparatus
US20060151631A1 (en) Dredging, scouring, excavation and cleaning
US4819347A (en) System for removing submerged sandwaves
US3505826A (en) Apparatus for embedding a pipeline into a water bed
JP5305439B2 (en) Suction pipe for transporting underwater sediment logistics, underwater sediment inflow device, and underwater sediment inflow method using the same
CN101148894A (en) Boat-carrying flushing-stirring integrated mire river dredging device
MXPA03005839A (en) Method for hydraulic subsea dredging.
JP4195214B2 (en) A dredge apparatus using a pipe having an opening at a bent portion
JP2002294677A (en) Method of running down submerged sediment by using hydrostatic pressure, pipe with opening, and submerged sediment running-down equipment
JP4026739B2 (en) Ground improvement method by gas dissolved water injection
JP3723852B2 (en) Bottom sediment removal apparatus and bottom sediment removal method
JP4173932B2 (en) Bottom sediment discharge method
JP5007468B2 (en) Bubble jet air lift pump
JPH11324008A (en) Removing method for sediment in dam
JP3999788B2 (en) Long-distance transportation system for dredged soil and its transportation method
JP3869594B2 (en) Siphon-type water intake device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4461275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term