JP4459646B2 - Method for producing polycyclic aromatic vinyl compound - Google Patents

Method for producing polycyclic aromatic vinyl compound Download PDF

Info

Publication number
JP4459646B2
JP4459646B2 JP2004032357A JP2004032357A JP4459646B2 JP 4459646 B2 JP4459646 B2 JP 4459646B2 JP 2004032357 A JP2004032357 A JP 2004032357A JP 2004032357 A JP2004032357 A JP 2004032357A JP 4459646 B2 JP4459646 B2 JP 4459646B2
Authority
JP
Japan
Prior art keywords
polycyclic aromatic
aromatic vinyl
vinyl compound
divinylbiphenyl
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004032357A
Other languages
Japanese (ja)
Other versions
JP2005220114A (en
Inventor
道貴 太田
玄樹 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2004032357A priority Critical patent/JP4459646B2/en
Priority to KR1020050009084A priority patent/KR101114662B1/en
Priority to CNB2005100081067A priority patent/CN1321957C/en
Publication of JP2005220114A publication Critical patent/JP2005220114A/en
Application granted granted Critical
Publication of JP4459646B2 publication Critical patent/JP4459646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0095Relay lenses or rod lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、電子材料、光学材料などに有用な多環芳香族ビニル化合物を、純度良く製造するための方法に関するものである。   The present invention relates to a method for producing a polycyclic aromatic vinyl compound useful for electronic materials, optical materials and the like with high purity.

多環芳香族ビニル化合物は、各種高分子重合体に対して高耐熱、低誘電率、低誘電損失、高屈性率、難燃、及び低吸湿などの性質付与が可能であり、広範囲な分野での利用が期待されている。例えば、特開平08-048725号公報には、ビニルビフェニルが高屈折で耐熱性の高い樹脂の原料として応用されている。また、特開2002−018293号公報には、ジビニルビフェニルが耐熱性の高い陽イオン交換樹脂の原料として有用であることが示されている。そして、特開2001−294623号公報には、アセナフチレンが難燃性を付与する材料として用いられている。   Polycyclic aromatic vinyl compounds can impart properties such as high heat resistance, low dielectric constant, low dielectric loss, high refractive index, flame retardancy, and low moisture absorption to various polymer polymers. The use in is expected. For example, in Japanese Patent Application Laid-Open No. 08-048725, vinyl biphenyl is applied as a raw material for a resin having high refraction and high heat resistance. Japanese Patent Laid-Open No. 2002-018293 shows that divinylbiphenyl is useful as a raw material for a cation exchange resin having high heat resistance. In Japanese Patent Application Laid-Open No. 2001-294623, acenaphthylene is used as a material imparting flame retardancy.

多環芳香族ビニル化合物は、単環芳香族ビニル化合物のカップリング、環化又はエチル多環芳香族の脱水素などにより製造可能であるが、いずれの方法も目的とする多環芳香族ビニル化合物以外の不純物を含むため、その高純度化が望まれていた。特に、多環芳香族ビニル化合物をポリマー原料として用いた場合、生成するポリマーの強度、耐熱性、誘電特性などの性能を低下させるため、ビニル基を持たない不純物を可及的に含まないようにする高純度化が必須であった。   The polycyclic aromatic vinyl compound can be produced by coupling, cyclization, or dehydrogenation of ethyl polycyclic aromatic compound, etc. of the monocyclic aromatic vinyl compound. Since it contains impurities other than the above, it has been desired to increase its purity. In particular, when a polycyclic aromatic vinyl compound is used as a polymer raw material, it should not contain impurities that do not have a vinyl group as much as possible in order to reduce the strength, heat resistance, and dielectric properties of the polymer produced. It was essential to improve the purity.

しかしながら、多環芳香族ビニル化合物は沸点が高い上、重合しやすいために、単環のビニル化合物で高純度品の製造に用いられる蒸留の適用は事実上不可能である。例えば、特許文献1では、ビニル化合物を65〜150℃で蒸留する際にN−ニトロソ−N,N′−ジ−ペンチル−p−フェニレンジアミンなどのニトロソ化合物を重合防止剤として加えることよってビニル化合物の重合を防いでいる。しかし、多環芳香族ビニル化合物は一般に高沸点であるため超高真空化での蒸留が要求され、特許文献1で使用されている重合防止剤は揮発して蒸留中に重合が生じる。   However, since polycyclic aromatic vinyl compounds have high boiling points and are easily polymerized, it is practically impossible to apply distillation used to produce high purity products with monocyclic vinyl compounds. For example, in Patent Document 1, when a vinyl compound is distilled at 65 to 150 ° C., a vinyl compound is added by adding a nitroso compound such as N-nitroso-N, N′-di-pentyl-p-phenylenediamine as a polymerization inhibitor. Prevents polymerization. However, since polycyclic aromatic vinyl compounds generally have a high boiling point, distillation under ultrahigh vacuum is required, and the polymerization inhibitor used in Patent Document 1 volatilizes and polymerization occurs during distillation.

特開平11−140001号公報Japanese Patent Laid-Open No. 11-140001 特開平10−139696号公報JP-A-10-139696 「有機化学の基礎」、モンソン・シェルトン著、東京化学同人、71頁"Basics of Organic Chemistry", Monson Shelton, Tokyo Kagaku Doujin, p. 71

特許文献2には吸着によるジビニルビフェニルの高純度化が記載されているが、100%に近いジビニルビフェニルを高収率で得るためには多くの段数を必要とし、工業的ではない。また、ジビニルビフェニルについては、−30℃まで冷却しても結晶は析出せず、冷却晶析による純度アップは実質上不可能であった。   Patent Document 2 describes high purification of divinylbiphenyl by adsorption. However, in order to obtain divinylbiphenyl close to 100% in a high yield, a large number of stages are required, which is not industrial. Moreover, about divinylbiphenyl, even if it cooled to -30 degreeC, the crystal | crystallization did not precipitate and the purity improvement by cooling crystallization was impossible substantially.

非特許文献1には、ヘキセンの精製方法が開示されている。この方法は沸点の近接した不純物を含むヘキセンの不飽和結合部分が容易にブロムで付加されてジブロムヘキサンとなること、ジブロムヘキサンと不純物との間の沸点差が大きくなり蒸留精製が容易になること、そしてジブロムヘキサンから付加物のブロムは容易に脱ブロムされてヘキセンとなることを利用している。しかし、この方法は蒸留が困難な多環芳香族化合物の分離に適用することは困難である。   Non-Patent Document 1 discloses a method for purifying hexene. In this method, the unsaturated bond part of hexene containing impurities with close boiling points can be easily added with bromine to dibromohexane, and the boiling point difference between dibromohexane and impurities becomes large, making distillation purification easy. And the adduct bromine from dibromohexane is easily debrominated into hexene. However, this method is difficult to apply to the separation of polycyclic aromatic compounds that are difficult to distill.

本発明は、蒸留、再結晶、吸着など通常の方法では精製できない多環芳香族ビニル化合物を精製し、高純度な多環芳香族ビニル化合物を製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a high-purity polycyclic aromatic vinyl compound by purifying a polycyclic aromatic vinyl compound that cannot be purified by ordinary methods such as distillation, recrystallization, and adsorption.

本発明者は上記問題点を解決するために鋭意検討した結果、多環芳香族ビニル化合物のビニル基にハロゲンなどを付加して一旦保護し、その性質を大きく変えることによって非ビニル基含有化合物との分離を行い、精製後に付加物を脱離させることにより、高純度な多環芳香族ビニル化合物を製造できることを見出し、本発明を完成するに至った。   As a result of diligent investigations to solve the above problems, the present inventor has added a halogen to the vinyl group of the polycyclic aromatic vinyl compound to protect it once, and by changing its properties greatly, It was found that a high-purity polycyclic aromatic vinyl compound can be produced by removing the adduct after purification, and completing the present invention.

すなわち本発明は、多環芳香族ビニル化合物含有油から多環芳香族ビニル化合物を分離製造するにあたり、(1)多環芳香族ビニル化合物のビニル基に、ハロゲン化水素、ハロゲン又は水を付加剤として用いて付加させる付加工程、(2)付加工程で生成した多環芳香族ビニル化合物誘導体を再結晶により精製する精製工程、及び(3)精製された多環芳香族ビニル化合物誘導体より付加剤を脱離する脱付加剤工程からなることを特徴とする多環芳香族ビニル化合物の製造方法である。 That is, in the present invention, in separating and producing a polycyclic aromatic vinyl compound from a polycyclic aromatic vinyl compound-containing oil, (1) hydrogen halide, halogen or water is added to the vinyl group of the polycyclic aromatic vinyl compound. addition step for adding is used as the additional agent from the purification step, and (3) purified polycyclic aromatic vinyl compound derivative is purified by recrystallization (2) polycyclic aromatic vinyl compound derivatives produced by the additional step A process for producing a polycyclic aromatic vinyl compound, comprising a deaddition agent step for desorption.

ここで、上記多環芳香族ビニル化合物としては、モノビニルビフェニル、ジビニルビフェニル、モノビニルナフタレン、ジビニルナフタレン及びアセナフチレンから選ばれる1種以上が挙げられる。また、ジビニルビフェニルの場合、3,3’−ジビニルビフェニルが挙げられ、精製工程での精製法が再結晶であることが好ましい。   Here, examples of the polycyclic aromatic vinyl compound include one or more selected from monovinylbiphenyl, divinylbiphenyl, monovinylnaphthalene, divinylnaphthalene, and acenaphthylene. In the case of divinylbiphenyl, 3,3′-divinylbiphenyl can be mentioned, and the purification method in the purification step is preferably recrystallization.

以下、本発明を詳細に説明する。
本発明での原料となる多環芳香族ビニル化合物含有油としては、例えば、粗製多環芳香族ビニル化合物がある。粗製多環芳香族ビニル化合物は、単環芳香族ビニル化合物のカップリング、環化又はエチル多環芳香族の脱水素などにより製造することができる。この粗製多環芳香族ビニル化合物は、低沸点物や水分や固体等の分離容易な成分は予め除去しておくことが有利である。
Hereinafter, the present invention will be described in detail.
Examples of the polycyclic aromatic vinyl compound-containing oil used as a raw material in the present invention include crude polycyclic aromatic vinyl compounds. The crude polycyclic aromatic vinyl compound can be produced by coupling a monocyclic aromatic vinyl compound, cyclization, or dehydrogenation of an ethyl polycyclic aromatic compound. In this crude polycyclic aromatic vinyl compound, it is advantageous to remove in advance components that are easily separated such as low-boiling substances and moisture and solids.

例えば、ジビニルビフェニルやジビニルナフタレンは、ジエチルビフェニルやジエチルナフタレンを脱水素することにより得られるが、モノエチルビニルビフェニルやモノエチルビニルナフタレンが副生する他、各種異性体が生成したり、未反応原料が残存することも多い。本発明の方法は、ジビニル化合物とモノビニル化合物の分離や、ビニル基の置換位置の異なる異性体の分離に有効である。また、アセナフテンを脱水素するとアセナフチレンが得られるが、この場合も未反応アセナフテン等の不純物が存在する。したがって、本発明での原料となる多環芳香族ビニル化合物含有油としては、上記のような不純物を含み、高純度化を目的とするビニル化合物の含有量が5%以上、好ましくは10%以上、より好ましくは20〜90%程度である。   For example, divinylbiphenyl and divinylnaphthalene can be obtained by dehydrogenating diethylbiphenyl and diethylnaphthalene, but monoethylvinylbiphenyl and monoethylvinylnaphthalene are produced as by-products, and various isomers are produced and unreacted raw materials Often remain. The method of the present invention is effective for the separation of divinyl compounds and monovinyl compounds, and the separation of isomers having different vinyl group substitution positions. In addition, acenaphthylene is obtained by dehydrogenating acenaphthene. In this case, impurities such as unreacted acenaphthene are also present. Therefore, the polycyclic aromatic vinyl compound-containing oil used as a raw material in the present invention contains 5% or more, preferably 10% or more of a vinyl compound containing impurities as described above and intended for high purity. More preferably, it is about 20 to 90%.

多環芳香族ビニル化合物のビニル基に付加する物質(以下、付加剤という)としては、付加した状態で安定であり、後で脱離可能なものであれば何であってもよいが、反応の容易さ及び取り扱いの容易さから、ハロゲン化水素、ハロゲン及び水から選ばれた1種を付加剤として用いる。なお、本発明でいうハロゲンは通常X2で表現され、ハロゲン化水素通常HXで表現される。ここで、XはF、Cl、Br又はIであるハロゲンを示すが、好
ましくはCl、Br又はIである。
The substance to be added to the vinyl group of the polycyclic aromatic vinyl compound (hereinafter referred to as an additive) may be anything as long as it is stable in the added state and can be removed later. One selected from hydrogen halide, halogen, and water is used as an additive for ease and ease of handling. Incidentally, the halogen in the present invention are usually expressed in X 2, it is represented by hydrogen halide usually HX. Here, X represents a halogen which is F, Cl, Br or I, and is preferably Cl, Br or I.

付加剤として用いるハロゲン化水素としては、臭化水素、塩化水素及びヨウ化水素が好ましい。付加温度としては0℃〜200℃が好ましい。ハロゲン化水素の付加によってビニル基のそれぞれの炭素にH及びX原子が付加し、オレフィン性の二重結合は消滅する。   As a hydrogen halide used as an additive, hydrogen bromide, hydrogen chloride, and hydrogen iodide are preferable. The addition temperature is preferably 0 ° C to 200 ° C. Addition of hydrogen halide adds H and X atoms to each carbon of the vinyl group, and the olefinic double bond disappears.

付加剤として用いるハロゲンとしては、液体臭素及び塩素ガスが好ましい。フッ素は反応性が強すぎるし、ヨウ素は反応性が弱すぎるため、好ましくない。液体臭素及び塩素ガスの付加反応は無触媒で進行する。付加温度としては−20℃〜100℃が好ましい。ハロゲンの付加によってビニル基のそれぞれの炭素に一つずつのX原子が合計2個付加し、オレフィン性の二重結合は消滅する。   As the halogen used as the additive, liquid bromine and chlorine gas are preferable. Fluorine is not preferred because it is too reactive and iodine is too weak. The addition reaction of liquid bromine and chlorine gas proceeds without catalyst. The addition temperature is preferably −20 ° C. to 100 ° C. The addition of halogen adds two X atoms, one for each carbon of the vinyl group, and the olefinic double bond disappears.

付加物剤として用いる水を用いる場合、その付加は酸触媒の存在下に行うことがよい。酸触媒としては、硫酸、塩酸、リン酸などの鉱酸やゼオライトなどの固体酸触媒が好ましい。付加温度としては、鉱酸の場合0℃〜200℃、固体酸触媒の場合50℃〜300℃が好ましい。水の付加によってビニル基のそれぞれの炭素にH原子及びOH基が付加し、オレフィン性の二重結合は消滅する。   When water used as an adduct agent is used, the addition is preferably performed in the presence of an acid catalyst. As the acid catalyst, mineral acids such as sulfuric acid, hydrochloric acid and phosphoric acid and solid acid catalysts such as zeolite are preferable. The addition temperature is preferably 0 ° C to 200 ° C for mineral acids and 50 ° C to 300 ° C for solid acid catalysts. Addition of water adds H and OH groups to each carbon of the vinyl group, and the olefinic double bond disappears.

全ての付加反応において溶媒を使用することができる。使用する溶媒としては、メタノール、エタノール、プロパノールなどのアルコール類、ベンゼン、トルエン、キシレン、クロロベンゼンなどの芳香族炭化水素類、ヘキサン、ヘプタン、シクロへキサン、メチルシクロヘキサンなどのパラフィン類、酢酸メチル、酢酸エチル、酢酸プロピルなどの酢酸エステル類、ジオキサン、テトラヒドロフラン、ジメチルカーボネートなどの含酸素溶剤などを挙げることができるが、これらに限定するものではない。   Solvents can be used in all addition reactions. Solvents used include alcohols such as methanol, ethanol and propanol, aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene, paraffins such as hexane, heptane, cyclohexane and methylcyclohexane, methyl acetate and acetic acid. Examples thereof include, but are not limited to, acetates such as ethyl and propyl acetate, and oxygen-containing solvents such as dioxane, tetrahydrofuran and dimethyl carbonate.

付加工程で得られた多環芳香族ビニル化合物誘導体は、オレフィン性の二重結合を持たないため、一般的な精製方法を適用し、高純度化を行う。本発明で用いる一般的な精製方法とは、再結晶、吸着及びアダクツ分離のいずれか1つを必須とするものであるが、これら以外の他の分離法を併用してもよい。他の分離法としては、洗浄、乾燥、抽出等の操作が考えられる。なお、ここでいう再結晶とは、液状の物質又は固体が析出したスラリー状の物質を冷却して充分な量の結晶を析出させ、その結晶を固液分離、リンス、再結晶し、高純度な結晶を得る一連の操作をいう。ビニル基に付加物が付加することによって、重合性がなくなるともに、ビニル化合物と非ビニル化合物の性質が大きく解離するので分離が容易になる。また、モノビニル化合物とジビニル化合物を分離する場合も、上記と同様な効果が程度の差はあるとしても生じる。基本的に、この工程での多環芳香族ビニル化合物誘導体純度が最終製品の多環芳香族ビニル化合物純度となるため、最終製品で必要とする純度にまで、多環芳香族ビニル化合物誘導体の純度を高める必要がある。   Since the polycyclic aromatic vinyl compound derivative obtained in the addition step does not have an olefinic double bond, it is highly purified by applying a general purification method. The general purification method used in the present invention requires any one of recrystallization, adsorption and adduct separation, but other separation methods other than these may be used in combination. As other separation methods, operations such as washing, drying, and extraction can be considered. In addition, the recrystallization here refers to a liquid substance or a slurry-like substance on which a solid is precipitated to precipitate a sufficient amount of crystals, and the crystals are solid-liquid separated, rinsed, recrystallized, and purified to a high purity. A series of operations for obtaining a simple crystal. By adding an adduct to the vinyl group, the polymerizability is lost, and the properties of the vinyl compound and the non-vinyl compound are greatly dissociated, so that the separation becomes easy. Further, when the monovinyl compound and the divinyl compound are separated, the same effect as described above occurs even if there is a difference in degree. Basically, since the purity of the polycyclic aromatic vinyl compound derivative in this process becomes the purity of the polycyclic aromatic vinyl compound of the final product, the purity of the polycyclic aromatic vinyl compound derivative reaches the purity required for the final product. Need to be increased.

次に、精製工程で得られた高純度多環芳香族ビニル化合物誘導体から付加剤を脱離させる脱付加剤工程に付し、目的物である高純度多環芳香族ビニル化合物を得る。この工程では、一旦付加した付加剤の脱離反応を生じさせる。   Next, the high-purity polycyclic aromatic vinyl compound, which is the target product, is obtained by subjecting it to a deaddition agent step for removing the adduct from the high-purity polycyclic aromatic vinyl compound derivative obtained in the purification step. In this step, an elimination reaction of the once added adduct is caused.

ハロゲン化水素を付加した高純度多環芳香族ビニル化合物誘導体の脱離反応は、塩基性試薬を用いて脱ハロゲン化水素を行い、ビニル基を再生させる。塩基性試薬としては水酸化アルカリを水又はアルコールに溶解したものを用いることができるが、中でも、エタノールに溶解した水酸化カリウムを用いることが好ましい。また、付加されたハロゲン原子を水酸基に変えた後、脱水することでも、ビニル基は再生される。
ハロゲンを付加した高純度多環芳香族ビニル化合物誘導体の脱離反応は、金属試薬などを用いて脱ハロゲンを行い、ビニル基を再生させる。脱ハロゲン剤としては、例えば、金属亜鉛を挙げることができるが、これに限定するものではない。金属亜鉛を用いる場合、脱離温度としては、30℃〜150℃が好ましい。
水を付加した高純度多環芳香族ビニル化合物誘導体の脱離反応は、酸触媒を用いて脱水を行い、ビニル基を再生させる。酸触媒としては、硫酸、リン酸などの鉱酸、アルミナ、ゼオライトなどの固体酸を用いることができる。
In the elimination reaction of the high-purity polycyclic aromatic vinyl compound derivative to which hydrogen halide is added, dehydrogenation is performed using a basic reagent to regenerate the vinyl group. As the basic reagent, one obtained by dissolving an alkali hydroxide in water or alcohol can be used, and among them, potassium hydroxide dissolved in ethanol is preferably used. Also, the vinyl group can be regenerated by changing the added halogen atom to a hydroxyl group and then dehydrating it.
In the elimination reaction of the high-purity polycyclic aromatic vinyl compound derivative to which halogen is added, the vinyl group is regenerated by dehalogenation using a metal reagent or the like. Examples of the dehalogenating agent include, but are not limited to, metallic zinc. When metallic zinc is used, the desorption temperature is preferably 30 ° C to 150 ° C.
In the elimination reaction of the high-purity polycyclic aromatic vinyl compound derivative to which water has been added, dehydration is performed using an acid catalyst to regenerate the vinyl group. As the acid catalyst, mineral acids such as sulfuric acid and phosphoric acid, and solid acids such as alumina and zeolite can be used.

全ての付加剤の脱離反応において溶媒を使用することができる。使用する溶媒としては、メタノール、エタノール、プロパノールなどのアルコール類、ベンゼン、トルエン、キシレン、クロロベンゼンなどの芳香族炭化水素類、ヘキサン、ヘプタン、シクロへキサン、メチルシクロヘキサンなどのパラフィン類、酢酸メチル、酢酸エチル、酢酸プロピルなどの酢酸エステル類、ジオキサン、テトラヒドロフラン、ジメチルカーボネートなどの含酸素溶剤などを挙げることができるが、これらに限定するものではない。   A solvent can be used in the elimination reaction of all the additives. Solvents used include alcohols such as methanol, ethanol and propanol, aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene, paraffins such as hexane, heptane, cyclohexane and methylcyclohexane, methyl acetate and acetic acid. Examples thereof include, but are not limited to, acetates such as ethyl and propyl acetate, and oxygen-containing solvents such as dioxane, tetrahydrofuran and dimethyl carbonate.

また、脱離反応の操作温度が10℃以上の場合は、ターシャリーブチルカテコールなどの重合禁止剤を加えることが好ましい。
脱離反応の終了後、必要により適当な後処理を行うことにより、より好適な高純度多環芳香族ビニル化合物を得ることができる。
Further, when the operating temperature of the elimination reaction is 10 ° C. or higher, it is preferable to add a polymerization inhibitor such as tertiary butyl catechol.
After completion of the elimination reaction, a more suitable high-purity polycyclic aromatic vinyl compound can be obtained by performing an appropriate post-treatment as necessary.

本発明の多環芳香族ビニル化合物の製造方法によれば、再結晶や蒸留などの通常の方法では困難であった高純度な多環芳香族ビニル化合物を得ることが可能となる。従来の低純度な多環芳香族ビニル化合物は樹脂化そのものが困難であったが、本発明で得られた高純度な多環芳香族ビニル化合物には樹脂化を阻害する不純物が無く、各種高分子重合体に対して高耐熱、低誘電率、低誘電損失、高屈性率、難燃、及び低吸湿などの性質付与が可能となり、これらの特性を活かした電子材料、光学材料分野に広く使用することができる。   According to the method for producing a polycyclic aromatic vinyl compound of the present invention, it is possible to obtain a high-purity polycyclic aromatic vinyl compound that has been difficult to obtain by ordinary methods such as recrystallization and distillation. Conventional low-purity polycyclic aromatic vinyl compounds were difficult to resinize themselves, but the high-purity polycyclic aromatic vinyl compounds obtained in the present invention have no impurities that hinder resination, and various high It is possible to impart properties such as high heat resistance, low dielectric constant, low dielectric loss, high refractive index, flame retardancy, and low moisture absorption to molecular polymers. Widely used in the fields of electronic materials and optical materials that take advantage of these properties. Can be used.

以下、本発明の実施例について説明するが、本発明は実施例に限定されるのもではない。   Examples of the present invention will be described below, but the present invention is not limited to the examples.

原料となる粗ジビニルビフェニルの組成を表1に示す。粗ジビニルビフェニル625gをトルエン625gに溶解させ、攪拌しながら5℃に冷却した。冷却後、臭素500gを反応温度5〜20℃に保ちながらゆっくりと滴下した。臭素のおよそ半分を滴下したところで結晶が析出し始めた。臭素を滴下後、ろ過し、白色の結晶を回収した。更に、トルエンを溶媒として再結晶を2回行い、3,3'−ジ(1,2−ジブロムエチル)ビフェニル114.5gを得た。
再結晶精製された3,3'−ジ(1,2−ジブロムエチル)ビフェニル114.5gとターシャリーブチルカテコール0.3gをトルエン458g及び純水19.8gの混合溶媒に加え、攪拌しながら80℃に加熱した。反応温度を80〜90℃に保持しながら、亜鉛粉末を溶解しなくなるまで少しづつ加えた。亜鉛添加終了後、1000の水で3回洗浄したのち、ロータリーエバポレーターでトルエンを留去し、純度99.0%の3,3'−ジビニルビフェニル50.1gを得た。
Table 1 shows the composition of crude divinylbiphenyl as a raw material. 625 g of crude divinylbiphenyl was dissolved in 625 g of toluene and cooled to 5 ° C. with stirring. After cooling, 500 g of bromine was slowly added dropwise while maintaining the reaction temperature at 5 to 20 ° C. When about half of bromine was dropped, crystals began to precipitate. Bromine was added dropwise and filtered to recover white crystals. Furthermore, recrystallization was performed twice using toluene as a solvent to obtain 114.5 g of 3,3′-di (1,2-dibromoethyl) biphenyl.
114.5 g of recrystallized and purified 3,3′-di (1,2-dibromoethyl) biphenyl and 0.3 g of tertiary butylcatechol were added to a mixed solvent of 458 g of toluene and 19.8 g of pure water, and the mixture was stirred at 80 ° C. Heated. While maintaining the reaction temperature at 80 to 90 ° C., the zinc powder was added little by little until it did not dissolve. After completion of the zinc addition, after washing three times with 1000 water, toluene was distilled off with a rotary evaporator to obtain 50.1 g of 3,3′-divinylbiphenyl having a purity of 99.0%.

Figure 0004459646
Figure 0004459646

実施例1と同様の粗ジビニルビフェニル625gをトルエン156gとn−ヘプタン156gに溶解させ、攪拌しながら5℃に冷却した。冷却後、臭素500gを反応温度5〜20℃に保ちながらゆっくりと滴下した。臭素のおよそ半分を滴下したところで結晶が析出し始めた。臭素を滴下後、ろ過し、白色の結晶を回収した。更に、トルエンを溶媒として再結晶を2回行い、3,3'−ジ(1,2−ジブロムエチル)ビフェニル126.0gを得た。
精製された3,3’−ジ(1, 2−ジブロムエチル)ビフェニル126.0gとターシャリーブチルカテコール0.3gをジオキサン458g及び純水45.8gの混合溶媒に加え、攪拌しながら80℃に加熱した。反応温度を80〜90℃に保持しながら、亜鉛粉末を溶解しなくなるまで少しづつ加えた。亜鉛添加終了後、1000mlの水で3回洗浄したのち、ロータリーエバポレーターでジオキサンを留去し、純度99.0%の3,3'−ジビニルビフェニル55.0gを得た。
625 g of the same crude divinylbiphenyl as in Example 1 was dissolved in 156 g of toluene and 156 g of n-heptane, and cooled to 5 ° C. with stirring. After cooling, 500 g of bromine was slowly added dropwise while maintaining the reaction temperature at 5 to 20 ° C. When about half of bromine was dropped, crystals began to precipitate. Bromine was added dropwise and filtered to recover white crystals. Furthermore, recrystallization was performed twice using toluene as a solvent to obtain 126.0 g of 3,3′-di (1,2-dibromoethyl) biphenyl.
Purified 3,3′-di (1,2-dibromoethyl) biphenyl (126.0 g) and tertiary butylcatechol (0.3 g) are added to a mixed solvent of 458 g of dioxane and 45.8 g of pure water and heated to 80 ° C. with stirring. did. While maintaining the reaction temperature at 80 to 90 ° C., the zinc powder was added little by little until it did not dissolve. After completion of the addition of zinc, after washing with 1000 ml of water three times, dioxane was distilled off with a rotary evaporator to obtain 55.0 g of 3,3′-divinylbiphenyl having a purity of 99.0%.

比較例1
実施例1と同様の粗ジビニルビフェニル500gにターシャリーブチルカテコール0.5gを加えたのち、5torrで減圧蒸留をおこなった。しかしながら、蒸留塔カラム内で重合物が生成し、カラムが閉塞したため、蒸留をおこなうことができなかった。
Comparative Example 1
After adding 0.5 g of tertiary butylcatechol to 500 g of the same crude divinylbiphenyl as in Example 1, distillation under reduced pressure was performed at 5 torr. However, since a polymer was generated in the distillation column and the column was clogged, distillation could not be performed.

比較例2
実施例1と同様の粗ジビニルビフェニル100gに表2に示した溶媒を0.5倍量加え、−30℃まで冷却した。その結果、いずれの場合も結晶の析出は無かった。なお、粗ビニルビフェニルは常温で液体である。
Comparative Example 2
0.5 g of the solvent shown in Table 2 was added to 100 g of the same crude divinylbiphenyl as in Example 1 and cooled to -30 ° C. As a result, no crystal was precipitated in either case. Crude vinyl biphenyl is liquid at room temperature.

Figure 0004459646
Figure 0004459646

原料となる粗アセナフチレンの組成を表3に示す。粗アセナフチレン500gをトルエン500gに溶解させ、攪拌しながら5℃に冷却した。冷却後、臭素474gを反応温度5〜10℃に保ちながらゆっくりと滴下した。臭素のおよそ半分を滴下したところで結晶が析出し始めた。臭素を滴下後、ろ過し、結晶を回収した。更に、トルエンを溶媒として再結晶を2回行い、1,2−ジブロムアセナフチレン321gを得た。
精製された1,2−ジブロムアセナフチレン321gとターシャリーブチルカテコール0.2gをテトラヒドロフラン321g及び純水15.8gの混合溶媒に加え、攪拌しながら80℃に加熱した。反応温度を80〜90℃に保持しながら、亜鉛粉末を溶解しなくなるまで少しづつ加えた。亜鉛添加終了後、1000mlの水で3回洗浄したのち、ロータリーエバポレーターでテトラヒドロフランを留去し、純度99.9%のアセナフチレン185gを得た。
Table 3 shows the composition of crude acenaphthylene as a raw material. 500 g of crude acenaphthylene was dissolved in 500 g of toluene and cooled to 5 ° C. with stirring. After cooling, 474 g of bromine was slowly added dropwise while maintaining the reaction temperature at 5 to 10 ° C. When about half of bromine was dropped, crystals began to precipitate. After dropwise addition of bromine, filtration was performed to recover crystals. Furthermore, recrystallization was performed twice using toluene as a solvent to obtain 321 g of 1,2-dibromoacenaphthylene.
Purified 1,2-dibromoacenaphthylene (321 g) and tertiary butylcatechol (0.2 g) were added to a mixed solvent of tetrahydrofuran (321 g) and pure water (15.8 g), and the mixture was heated to 80 ° C. with stirring. While maintaining the reaction temperature at 80 to 90 ° C., the zinc powder was added little by little until it did not dissolve. After completion of the zinc addition, it was washed with 1000 ml of water three times, and then the tetrahydrofuran was distilled off by a rotary evaporator to obtain 185 g of acenaphthylene having a purity of 99.9%.

Figure 0004459646
Figure 0004459646

Claims (6)

多環芳香族ビニル化合物含有油から多環芳香族ビニル化合物を分離製造するにあたり、(1)多環芳香族ビニル化合物のビニル基に、ハロゲン化水素、ハロゲン又は水を付加剤として付加させる付加工程、(2)付加工程で生成した多環芳香族ビニル化合物誘導体を再結晶により精製する精製工程、及び(3)精製された多環芳香族ビニル化合物誘導体より付加剤を脱離する脱付加剤工程からなることを特徴とする多環芳香族ビニル化合物の製造方法。
In separating and producing a polycyclic aromatic vinyl compound from an oil containing a polycyclic aromatic vinyl compound, (1) an addition step of adding hydrogen halide, halogen or water as an additive to the vinyl group of the polycyclic aromatic vinyl compound , (2) purification step of purifying by recrystallization the polycyclic aromatic vinyl compound derivatives produced by addition step, and (3) removing the additional agent process the additional agent from the purified polycyclic aromatic vinyl compound derivatives eliminated A process for producing a polycyclic aromatic vinyl compound, comprising:
多環芳香族ビニル化合物が、モノビニルビフェニル及び/又はジビニルビフェニルである請求項1記載の製造方法。   The production method according to claim 1, wherein the polycyclic aromatic vinyl compound is monovinylbiphenyl and / or divinylbiphenyl. 多環芳香族ビニル化合物が、モノビニルナフタレン及び/又はジビニルナフタレンである請求項1記載の製造方法。   The process according to claim 1, wherein the polycyclic aromatic vinyl compound is monovinylnaphthalene and / or divinylnaphthalene. 多環芳香族ビニル化合物が、アセナフチレンである請求項1記載の製造方法。   The process according to claim 1, wherein the polycyclic aromatic vinyl compound is acenaphthylene. 多環芳香族ビニル化合物が、3,3’−ジビニルビフェニルである請求項1記載の製造方法。   The process according to claim 1, wherein the polycyclic aromatic vinyl compound is 3,3'-divinylbiphenyl. 多環芳香族ビニル化合物が、3,3’−ジビニルビフェニルであり、かつ精製工程での精製法が再結晶である請求項1記載の製造方法。


The production method according to claim 1, wherein the polycyclic aromatic vinyl compound is 3,3'-divinylbiphenyl, and the purification method in the purification step is recrystallization.


JP2004032357A 2004-02-09 2004-02-09 Method for producing polycyclic aromatic vinyl compound Expired - Fee Related JP4459646B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004032357A JP4459646B2 (en) 2004-02-09 2004-02-09 Method for producing polycyclic aromatic vinyl compound
KR1020050009084A KR101114662B1 (en) 2004-02-09 2005-02-01 Method for producing polycyclic aromatic vinyl compound
CNB2005100081067A CN1321957C (en) 2004-02-09 2005-02-06 Production of polycyclic aromatic acetyl compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004032357A JP4459646B2 (en) 2004-02-09 2004-02-09 Method for producing polycyclic aromatic vinyl compound

Publications (2)

Publication Number Publication Date
JP2005220114A JP2005220114A (en) 2005-08-18
JP4459646B2 true JP4459646B2 (en) 2010-04-28

Family

ID=34996025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004032357A Expired - Fee Related JP4459646B2 (en) 2004-02-09 2004-02-09 Method for producing polycyclic aromatic vinyl compound

Country Status (3)

Country Link
JP (1) JP4459646B2 (en)
KR (1) KR101114662B1 (en)
CN (1) CN1321957C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194500B2 (en) * 2007-03-16 2013-05-08 ダイキン工業株式会社 Method for producing high purity fluorine-containing alkyl ether

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139696A (en) * 1996-11-08 1998-05-26 Nippon Steel Chem Co Ltd Separation of divinylbiphenyl
JP4651774B2 (en) 2000-04-11 2011-03-16 新日鐵化学株式会社 Aromatic oligomer, phenol resin composition containing the same, epoxy resin composition and cured product thereof
JP2002018293A (en) 2000-07-06 2002-01-22 Nippon Steel Chem Co Ltd Cation exchange resin

Also Published As

Publication number Publication date
CN1321957C (en) 2007-06-20
KR101114662B1 (en) 2012-03-05
CN1680221A (en) 2005-10-12
KR20050080443A (en) 2005-08-12
JP2005220114A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
TWI583666B (en) Methods for the production of unsaturated acids and / or unsaturated esters
JP4459646B2 (en) Method for producing polycyclic aromatic vinyl compound
WO2009139319A1 (en) Process for producing adamantane
TWI627162B (en) Method for producing unsaturated acid ester or unsaturated acid
JP4413919B2 (en) New method for producing styrene-based olefins
TW201706236A (en) Method for manufacturing fluorinated hydrocarbon
JP2006335715A (en) High-quality vinylbenzoic acid tertiary butyl ester and method for producing the same
JP6730303B2 (en) Use of stable lipophilic hydroxylamine compounds to inhibit polymerization of vinyl monomers
JP2007291041A (en) Method for producing adamantyl (meth)acrylate compound
WO2012063809A1 (en) Method for producing 1,3-dimethyladamantane
JP6439219B2 (en) Production method of fluorine-containing phenol
WO2008002028A1 (en) Method for purifying terephthalaldehyde
JP6805698B2 (en) Method for producing E-olefin compound
WO2005058779A1 (en) Process for producing adamantane
JP2015105239A (en) Method of producing n-vinylcarbazole
JP2004051621A (en) Method for manufacturing cycloaliphatic carboxylic acid compound
CN115806481A (en) Separation and purification method of L-menthyl formic acid
JP2012036138A (en) Method for producing adamantyl di(meth)acrylate, adamantyl di(meth)acrylate obtained by the method, and material including adamantyl di(meth)acrylate
JPH09241184A (en) Production of friedel-crafts alkylation reaction product
JPS5869827A (en) Preparation of bis(3,5-dimethyl-4-hydroxyphenyl)-alkane
KR20110129434A (en) Process for the preparation of crystalline mixtures of alpha-hydroxycarbonyl derivatives of alpha-methylstyrene dimers
JP2003342208A (en) Method for producing halogenostyrene derivative
JPS61158939A (en) Collection of t-butylstyrene
JPH08337546A (en) Separation and purification of m-ethylphenol
US20080255399A1 (en) Method for Production of Diphenylethylene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R150 Certificate of patent or registration of utility model

Ref document number: 4459646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160219

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160219

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees