JP4459328B2 - Rolling linear motion device - Google Patents

Rolling linear motion device Download PDF

Info

Publication number
JP4459328B2
JP4459328B2 JP21303299A JP21303299A JP4459328B2 JP 4459328 B2 JP4459328 B2 JP 4459328B2 JP 21303299 A JP21303299 A JP 21303299A JP 21303299 A JP21303299 A JP 21303299A JP 4459328 B2 JP4459328 B2 JP 4459328B2
Authority
JP
Japan
Prior art keywords
ball
spacer
linear motion
motion device
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21303299A
Other languages
Japanese (ja)
Other versions
JP2001041303A (en
Inventor
裕行 高木
英己 堀本
博司 三栖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsubaki Nakashima Co Ltd
Original Assignee
Tsubaki Nakashima Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsubaki Nakashima Co Ltd filed Critical Tsubaki Nakashima Co Ltd
Priority to JP21303299A priority Critical patent/JP4459328B2/en
Publication of JP2001041303A publication Critical patent/JP2001041303A/en
Application granted granted Critical
Publication of JP4459328B2 publication Critical patent/JP4459328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies
    • F16C33/3706Loose spacing bodies with concave surfaces conforming to the shape of the rolling elements, e.g. the spacing bodies are in sliding contact with the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls
    • F16H25/2233Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls with cages or means to hold the balls in position
    • F16H25/2238Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls with cages or means to hold the balls in position using ball spacers, i.e. spacers separating the balls, e.g. by forming a chain supporting the balls

Description

【0001】
【発明の属する技術分野】
本発明は、ボールねじ、リニアガイドウェイ、ボールスプライン等の転がり直動装置(以下、「直動装置」という。)に関する。
【0002】
【従来の技術】
外面にボール転動溝を有する一方の部材と、前記ボール転動溝に対向するボール転動溝を内面に有する他方の部材と、前記両ボール転動溝間に介挿されると共に前記他方の部材に設けたボール循環機構により循環可能とされた複数個のボールとを具えた直動装置が、様々な分野で使用されている。
なお、一方の部材、他方の部材、並びに、ボール循環機構とは、
(1)ボールねじの場合、それぞれ、ねじ軸、ボールナット、並びに、リターンチューブ、こま、エンドキャップ又はガイドプレートに相当し、
(2)いわゆる、エンドキャップ方式リニアガイドウェイの場合、それぞれ、案内レール、キャリッジ、並びに、エンドキャップのボール方向転換溝及びキャリッジ本体肉厚内のボール戻り通路に相当する。
【0003】
このような直動装置では、荷重を支承するボールが密に並んで負荷領域内、すなわち、両ボール転動溝間を転動しながら移動する。
しかし、ボール転動溝の有効径の不均一等に起因すると考えられているが、従来の直動装置では、負荷領域内を通過するボール同士が互いに押し合い、ボール同士の間に圧縮力が作用する部分が生じやすかった。
そして、この様な圧縮力がボールに作用すると、その部分でボールの転動を互いに阻止する方向にすべり接触するから、ボールの転動を妨げる大きな抵抗が生じて動摩擦トルクが大きく変動した。さらに、ボールの詰まり現象が発生することもあった。
なお、直動装置を使用する場合、動摩擦トルクの変動は物体の送り速度ムラを生じたり位置決め精度に影響するため、動摩擦トルクの変動を問題にする事例が増加している。
【0004】
そこで、本出願人は、軸方向両端面にボールの球面に倣った凹面が形成されたスペーサを、直動装置のすべての隣合うボール同士の間に配設することを提案した(特願平10−321411号、特願平11−108066号及び特願平11−149430号参照。)。
【0005】
【発明が解決しようとする課題】
しかしながら、提案した直動装置にも下記の課題があった。
(1)荷重を支承する負荷領域内のボールの球面は、常にスペーサの一方の凹面に面接触した状態で転動しながら移動する。このため、ボール転動溝の有効径の不均一等に起因してボールの球面とスペーサの凹面との間に圧縮力が作用する部分が生じると、ボールの転動を妨げる抵抗が発生して動摩擦トルクが変動することがあった。
(2)直動装置がボールねじの場合、両ボール転動溝は螺旋状に大きく捩れている。このため、スペーサの凹面をボールの球面に倣うように形成していても、スペーサの凹面がボールの球面から一部外れてふらつき、ボールとスペーサがスムーズに循環しないことがあった。また、ふらついたスペーサが、前方のボールと後方から移動して来るボールに挟まれて圧壊することもあった。
【0006】
【課題を解決するための手段】
本発明は、外面にボール転動溝を有する一方の部材と、前記ボール転動溝に対向するボール転動溝を内面に有する他方の部材と、前記両ボール転動溝間に介挿されるとともに前記他方の部材に設けたボール循環機構により循環可能とされた複数個のボールと、隣合う該ボール同士の間に配設されるとともにその軸方向両端面に前記ボールの球面の一部を摺動可能に嵌め入れる凹面が形成されたスペーサとを具えた転がり直動装置において、前記スペーサの凹面の同一円周上に凸部が等配形成されており、該凸部と前記ボールの球面を点接触させた装置によって上記の課題を解決した。
【0008】
さらに、スペーサの軸方向外周面が凹状に形成されていることが好ましい。
【0009】
本発明によれば、荷重を支承する負荷領域内のボールの球面が、常にスペーサの一方の凹面に位置が安定して嵌め入れられ、点接触した状態で転動しながら移動する。従って、
(1)ボール転動溝の有効径の不均一等に起因してボールの球面とスペーサの凹面との間に圧縮力が作用する部分が生じたとしても、その部分の面積は微小であるからボールの転動を妨げる抵抗も極めて小さく、動摩擦トルクの変動が殆どない直動装置を得ることができる。
(2)両ボール転動溝が大きく捩れていても、スペーサの凹面がボールの球面から外れてふらつくことがない。その結果、ボールとスペーサのスムーズな循環を得ることができる。
【0010】
【発明の実施の形態】
以下、図面を参照して、本発明の実施形態を説明する。
なお、本発明の直動装置について、後述するボールとスペーサ以外の構成は従来のものと同様であるので、その全体構成の図示及び説明は省略する。
図1は、本発明の直動装置において、両ボール転動溝間及びボール循環機構からなるボール無限循環路内に介挿された状態のボール10とスペーサ20を示している。
本出願人が先に提案したものと同様に、すべての隣合うボール10,10同士の間に、金属又はプラスチック等からなる円柱状(又は円盤状)のスペーサ20が配設されている。
【0011】
スペーサ20の軸方向両端面には、ボール10の球面の一部を摺動可能に嵌め入れる凹面22,22が形成されている。また、スペーサ20の直径Sは、ボール10によるスペーサ20の保持安定性等の観点及びボール10とスペーサ20とがスムーズに循環する観点から、ボール10の直径Dの60%〜80%に設定されている。さらに、スペーサ20の軸方向長さLは、できるだけ多くのボール10を介挿して高負荷容量を確保する観点及びボール10とスペーサ20とがスムーズに循環する観点から、隣合うボール10,10の頂点同士の間隔Tが0.1mm〜0.5mmになるように設定されている。なお、符号28は、スペーサ20の軸方向外周面を示す。
【0012】
図2及び図3に示すように、凸部30が、凹面22の同一円周上の3箇所に等配形成されている。なお、図2の(a)及び(b)は、それぞれ、凹面22が球状及び円錐状のものを示す。
この凸部30とボール10の球面が、ボール10及びスペーサ20の軸線34に対して所定の角度θ(30°前後が好ましい。)で点接触するようになっている。なお、符号Oは、軸線34上のボール10の中心点を示す。
また、上記の実施の形態は、凸部30を凹面22に射出成形等の手段を用いて一体成形したものを例示したが、図4に示すように、凸部30を別体として凹面22に嵌設してもよい。この場合、凸部30を異材質にできる利点がある。
なお、凸部30を凹面22に3等配形成したものを例示したが、この実施の形態に限定されないことは言うまでもない。
【0014】
上記第1実施形態では、スペーサ20の軸方向外周面28が直線状のものを例示したが、図7に示すように、外周面28を凹状にすることもできる。ボールねじのように、両ボール転動溝が大きく捩れている場合、外周面28を凹状にすることによって、外周面28と両ボール転動溝との干渉をより防ぐことができる。また、この実施の形態は、ボールねじのリターンチューブのように、ボール循環機構が大きく屈曲している場合にも有効である。
【0015】
なお、スペーサをプラスチックで形成する場合、ジュラコン(ポリプラスチック(株)登録商標)等のプラスチックが好適であるが、自己潤滑性材料として知られる焼結含油合金又はテフロン(デュポン(株)登録商標)等を使用してもよい。また、スペーサを、潤滑剤含有プラスチック(例えば、特公昭47−3455号公報参照。)、又は潤滑剤を含浸させることができる多孔質プラスチック(例えば、特開昭61−283634号公報参照。)から形成することもできる。
【0016】
ところで、超精密旋盤等に使用されるボールねじは、発熱抑制の観点から、ねじ軸を中空にして、この中空部に潤滑油等を流して冷却している。しかし、このような冷却機構であると、かなりのコスト上昇が避けられない。
本発明で使用するボールの材質をセラミックス(具体的には窒化ケイ素)にして、上記のような材質のスペーサと組合わせて使用すると、発熱の程度を、従来より、ほぼ半減させることができた。従って、ボールねじを含む上記のような装置全体の製造コストをかなり低減することができることになる。
また、セラッミックス製ボールとプラスチック製スペーサの組合わせは、ボールの表面に損傷を発生させたり、ボールを破砕させたりすることがないという特徴もあるようである。
【0017】
本発明によれば、荷重を支承する負荷領域内、すなわち、両ボール転動溝間のボールの球面が、常にスペーサの一方の凹面に位置が安定して嵌め入れられ、点接触した状態で転動しながら移動する。従って、
(1)ボール転動溝の有効径の不均一等に起因してボールの球面とスペーサの凹面との間に圧縮力が作用する部分が生じたとしても、その部分の面積は微小であるからボールの転動を妨げる抵抗も極めて小さく、動摩擦トルクの変動が殆ど皆無の直動装置を得ることができる。
(2)両ボール転動溝が大きく捩れていても、スペーサの凹面がボールの球面から外れてふらつくことがない。その結果、ボールとスペーサのスムーズな循環を得ることができる。という効果を奏する。
【0018】
さらに、スペーサの軸方向外周面を凹状に形成することによって、軸方向外周面と両ボール転動溝との干渉をより防ぐことができる。なお、この実施の形態は、ボールねじのリターンチューブのように、ボール循環機構が大きく屈曲している場合にも有効である。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態の直動装置において、ボール無限循環路内に介挿された状態のボールとスペーサを示す概略図。
【図2】 図1のスペーサの縦断面図(但し、図3の2−2線矢視断面図)。なお、同図の(a)及び(b)は、それぞれ、凹面が球状及び円錐状のものを示す。
【図3】 図2の左側面図(但し、右側面図でもある。)。
【図4】 図1のスペーサの変形態様を示す部分縦断面図。
【図5】 スペーサの軸方向外周面の変形態様を示す部分縦断面図。
【符号の説明】
10 ボール
20 スペーサ
22 凹面
28 スペーサの軸方向外周面
30 凸部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rolling linear motion device (hereinafter referred to as “linear motion device”) such as a ball screw, a linear guide way, and a ball spline.
[0002]
[Prior art]
One member having a ball rolling groove on the outer surface, the other member having a ball rolling groove facing the ball rolling groove on the inner surface, and the other member inserted between the both ball rolling grooves A linear motion device having a plurality of balls which can be circulated by a ball circulation mechanism provided in the field is used in various fields.
One member, the other member, and the ball circulation mechanism are:
(1) In the case of ball screws, each corresponds to a screw shaft, ball nut, return tube, top, end cap or guide plate,
(2) In the case of a so-called end cap type linear guide way, it corresponds to a guide rail, a carriage, a ball direction changing groove of the end cap, and a ball return passage in the thickness of the carriage body.
[0003]
In such a linear motion device, the balls that support the load are closely arranged and move while rolling in the load region, that is, between both ball rolling grooves.
However, it is thought that this is caused by the non-uniformity of the effective diameter of the ball rolling groove. However, in the conventional linear motion device, the balls passing through the load region are pressed against each other, and a compression force acts between the balls. It was easy to have a part to do.
When such a compressive force acts on the ball, it slides and contacts in a direction that prevents the balls from rolling at each portion, so that a large resistance that prevents the ball from rolling occurs and the dynamic friction torque fluctuates greatly. Furthermore, a ball clogging phenomenon may occur.
When using a linear motion device, fluctuations in the dynamic friction torque cause unevenness in the feed speed of the object or affect the positioning accuracy, so that there are an increasing number of cases where the fluctuation in the dynamic friction torque is a problem.
[0004]
Therefore, the applicant of the present application has proposed that spacers having concave surfaces that follow the spherical surfaces of the balls are formed on both end surfaces in the axial direction between all adjacent balls of the linear motion device (Japanese Patent Application No. Hei. No. 10-32411, Japanese Patent Application No. 11-108066, and Japanese Patent Application No. 11-149430.)
[0005]
[Problems to be solved by the invention]
However, the proposed linear motion device has the following problems.
(1) The spherical surface of the ball in the load region for supporting the load always moves while rolling while in surface contact with one concave surface of the spacer. For this reason, if a portion where a compressive force acts between the spherical surface of the ball and the concave surface of the spacer due to non-uniformity of the effective diameter of the ball rolling groove, a resistance that prevents the ball from rolling occurs. The dynamic friction torque sometimes fluctuated.
(2) When the linear motion device is a ball screw, both ball rolling grooves are largely twisted spirally. For this reason, even if the concave surface of the spacer is formed so as to follow the spherical surface of the ball, the concave surface of the spacer may partially deviate from the spherical surface of the ball and may not circulate smoothly. In addition, the staggered spacer may be crushed by being caught between the front ball and the ball moving from the rear.
[0006]
[Means for Solving the Problems]
The present invention is interposed between one of the members having a ball rolling groove on the outer surface, the other member having a ball rolling groove facing the ball rolling groove on the inner surface, and both the ball rolling grooves. A plurality of balls, which can be circulated by a ball circulation mechanism provided on the other member, are disposed between the adjacent balls and a part of the spherical surface of the ball is slid on both end surfaces in the axial direction. In the rolling linear motion device having a spacer formed with a concave surface to be movably fitted, convex portions are formed on the same circumference of the concave surface of the spacer, and the convex portion and the spherical surface of the ball are The above problem has been solved by a point contact device.
[0008]
Furthermore, it is preferable that the outer circumferential surface in the axial direction of the spacer is formed in a concave shape.
[0009]
According to the present invention, the spherical surface of the ball in the load region for supporting the load is always fitted in one concave surface of the spacer in a stable manner, and moves while rolling in a point contact state. Therefore,
(1) Even if a portion where a compressive force acts between the spherical surface of the ball and the concave surface of the spacer due to non-uniformity of the effective diameter of the ball rolling groove, the area of the portion is very small. A linear motion device can be obtained in which the resistance to prevent the ball from rolling is extremely small and the dynamic friction torque hardly fluctuates.
(2) Even if both ball rolling grooves are largely twisted, the concave surface of the spacer does not deviate from the spherical surface of the ball. As a result, a smooth circulation between the ball and the spacer can be obtained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Since the configuration of the linear motion device of the present invention is the same as the conventional configuration except for the ball and spacer described later, illustration and description of the overall configuration are omitted.
FIG. 1 shows a ball 10 and a spacer 20 in a state where the ball 10 is inserted between the ball rolling grooves and a ball infinite circulation path composed of a ball circulation mechanism in the linear motion device of the present invention.
Similar to what the applicant previously proposed, a cylindrical (or disk-shaped) spacer 20 made of metal or plastic is disposed between all adjacent balls 10 and 10.
[0011]
Concave surfaces 22 and 22 into which a part of the spherical surface of the ball 10 is slidably fitted are formed on both axial end surfaces of the spacer 20. Further, the diameter S of the spacer 20 is set to 60% to 80% of the diameter D of the ball 10 from the viewpoint of the holding stability of the spacer 20 by the ball 10 and the viewpoint of smooth circulation between the ball 10 and the spacer 20. ing. Furthermore, the length L of the spacer 20 in the axial direction is set so that the adjacent balls 10 and 10 are adjacent to each other from the viewpoint of securing a high load capacity by inserting as many balls 10 as possible and from the viewpoint of smoothly circulating the balls 10 and the spacers 20. The interval T between the vertices is set to be 0.1 mm to 0.5 mm. Reference numeral 28 denotes an axial outer peripheral surface of the spacer 20.
[0012]
As shown in FIGS. 2 and 3, the convex portions 30 are equally formed at three locations on the same circumference of the concave surface 22. 2A and 2B show the concave surface 22 having a spherical shape and a conical shape, respectively.
The convex portion 30 and the spherical surface of the ball 10 are in point contact with the ball 10 and the axis 34 of the spacer 20 at a predetermined angle θ (preferably around 30 °). The symbol O indicates the center point of the ball 10 on the axis 34.
Moreover, although said embodiment illustrated what integrally formed the convex part 30 in the concave surface 22 using means, such as injection molding, as shown in FIG. It may be installed. In this case, there exists an advantage which can make the convex part 30 into a different material.
In addition, although the thing which formed the convex part 30 equally on the concave surface 22 was illustrated, it cannot be overemphasized that it is not limited to this embodiment.
[0014]
In the first embodiment , the outer circumferential surface 28 in the axial direction of the spacer 20 is exemplified as a straight line, but the outer circumferential surface 28 may be concave as shown in FIG. When both the ball rolling grooves are twisted greatly like a ball screw, the interference between the outer circumferential surface 28 and both ball rolling grooves can be further prevented by making the outer circumferential surface 28 concave. This embodiment is also effective when the ball circulation mechanism is bent largely like a return tube of a ball screw.
[0015]
When the spacer is made of plastic, plastic such as Duracon (Polyplastic Co., Ltd.) is suitable, but sintered oil-impregnated alloy known as a self-lubricating material or Teflon (DuPont Co., Ltd.) Etc. may be used. In addition, the spacer is made of a lubricant-containing plastic (for example, see Japanese Patent Publication No. 47-3455) or a porous plastic that can be impregnated with a lubricant (for example, see Japanese Patent Laid-Open No. 61-283634). It can also be formed.
[0016]
By the way, the ball screw used for an ultra-precision lathe or the like is cooled by making the screw shaft hollow and flowing lubricating oil or the like into the hollow portion from the viewpoint of suppressing heat generation. However, with such a cooling mechanism, a considerable increase in cost is inevitable.
When the ball material used in the present invention is made of ceramics (specifically, silicon nitride) and used in combination with a spacer of the above-mentioned material, the degree of heat generation can be reduced to almost half that of the prior art. . Therefore, the manufacturing cost of the entire apparatus including the ball screw can be considerably reduced.
In addition, the combination of ceramic balls and plastic spacers does not appear to cause damage to the ball surface or break the ball.
[0017]
According to the present invention, the spherical surface of the ball in the load region where the load is supported, that is, between the two ball rolling grooves, is always fitted into one concave surface of the spacer in a stable manner and is in a point contact state. Move while moving. Therefore,
(1) Even if a portion where a compressive force acts between the spherical surface of the ball and the concave surface of the spacer due to non-uniformity of the effective diameter of the ball rolling groove, the area of the portion is very small. The resistance that prevents the ball from rolling is extremely small, and a linear motion device with almost no fluctuation of the dynamic friction torque can be obtained.
(2) Even if both ball rolling grooves are largely twisted, the concave surface of the spacer does not deviate from the spherical surface of the ball. As a result, a smooth circulation between the ball and the spacer can be obtained. There is an effect.
[0018]
Furthermore, by forming the outer circumferential surface in the axial direction of the spacer in a concave shape, interference between the outer circumferential surface in the axial direction and both ball rolling grooves can be further prevented. This embodiment is also effective when the ball circulation mechanism is greatly bent, such as a ball screw return tube.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a ball and a spacer in a state where they are inserted in a ball infinite circulation path in a linear motion device according to a first embodiment of the present invention.
2 is a longitudinal sectional view of the spacer of FIG. 1 (however, a sectional view taken along line 2-2 in FIG. 3). In addition, (a) and (b) of the same figure show that a concave surface is spherical and conical, respectively.
3 is a left side view of FIG. 2 (however, it is also a right side view).
4 is a partial longitudinal sectional view showing a modified embodiment of the spacer in FIG. 1. FIG.
FIG. 5 is a partial longitudinal sectional view showing a deformation mode of the outer circumferential surface in the axial direction of the spacer.
[Explanation of symbols]
10 Ball 20 Spacer 22 Concave surface 28 Spacer axial outer peripheral surface 30 Convex portion

Claims (2)

外面にボール転動溝を有する一方の部材と、前記ボール転動溝に対向するボール転動溝を内面に有する他方の部材と、前記両ボール転動溝間に介挿されるとともに前記他方の部材に設けたボール循環機構により循環可能とされた複数個のボールと、隣合う該ボール同士の間に配設されるとともにその軸方向両端面に前記ボールの球面の一部を摺動可能に嵌め入れる凹面が形成されたスペーサとを具えた転がり直動装置において、
前記スペーサの凹面の同一円周上に凸部が等配形成されており、該凸部と前記ボールの球面を点接触させたことを特徴とする、
転がり直動装置。
One member having a ball rolling groove on the outer surface, the other member having a ball rolling groove facing the ball rolling groove on the inner surface, and the other member inserted between the both ball rolling grooves A plurality of balls that can be circulated by a ball circulation mechanism provided on the ball and adjacent balls are disposed, and a part of the spherical surface of the ball is slidably fitted to both axial end surfaces thereof. In a rolling linear motion device comprising a spacer formed with a concave surface to be inserted,
Convex portions are formed on the same circumference of the concave surface of the spacer, and the convex portions and the spherical surface of the ball are in point contact,
Rolling linear motion device.
前記スペーサの軸方向外周面が凹状に形成されている、請求項1の転がり直動装置。  The rolling linear motion device according to claim 1, wherein an axial outer peripheral surface of the spacer is formed in a concave shape.
JP21303299A 1999-07-28 1999-07-28 Rolling linear motion device Expired - Fee Related JP4459328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21303299A JP4459328B2 (en) 1999-07-28 1999-07-28 Rolling linear motion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21303299A JP4459328B2 (en) 1999-07-28 1999-07-28 Rolling linear motion device

Publications (2)

Publication Number Publication Date
JP2001041303A JP2001041303A (en) 2001-02-13
JP4459328B2 true JP4459328B2 (en) 2010-04-28

Family

ID=16632391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21303299A Expired - Fee Related JP4459328B2 (en) 1999-07-28 1999-07-28 Rolling linear motion device

Country Status (1)

Country Link
JP (1) JP4459328B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015287A1 (en) * 2002-08-09 2004-02-19 Nsk Ltd. Direct drive unit
JP2003172424A (en) 2001-12-04 2003-06-20 Nsk Ltd Ball screw device
JP2013185659A (en) * 2012-03-08 2013-09-19 Ntn Corp Spherical spacer, bearing, linear motion device and method for manufacturing spherical spacer
DE202017107296U1 (en) * 2017-09-08 2018-12-12 Liebherr-Components Biberach Gmbh roller bearing

Also Published As

Publication number Publication date
JP2001041303A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
US6643932B2 (en) Method for inserting balls and spacers into ball screw device
JP3695195B2 (en) Ball screw mechanism and linear motion device
US6409387B1 (en) Ball bushing
JP2003232427A (en) Screw device with lubricant applying function
CN109923333B (en) Ball screw device
JP2003314558A (en) Retainer of radial ball bearing
JP4459328B2 (en) Rolling linear motion device
EP1167787B1 (en) Bearing apparatus
US6599021B2 (en) Compound bearing apparatus
JP4292779B2 (en) Rolling screw device
JP2004257466A (en) Ball screw
JP2000199556A (en) Ball screw having spacer and inserting method for ball of ball screw and spacer
JP3952466B2 (en) Ball spacing device and its roll parts
JP2005226738A (en) Retainer for rolling bearing, rolling bearing with the retainer, and fan motor using the rolling bearing
JP2007155010A (en) Ball screw device
JP2009204141A (en) Ball screw
JP3656440B2 (en) Top ball screw
JPS5923120A (en) Direct-acting ball bearing
JP2004346963A (en) Ball type linear-motion device
JP2000213538A (en) Linear-moving guide bearing device
JP4829436B2 (en) Ball screw with alternately inserted steel balls and ceramic balls
JP2010096356A (en) Ball screw mechanism
JP2011174532A (en) Ball screw
KR20010095209A (en) Rolling Element Spacer in Rolling Guide Device
JP2004138214A (en) Ball screw equipment and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R150 Certificate of patent or registration of utility model

Ref document number: 4459328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees