JP4459220B2 - Manufacturing method of tubular member with flange - Google Patents

Manufacturing method of tubular member with flange Download PDF

Info

Publication number
JP4459220B2
JP4459220B2 JP2006337494A JP2006337494A JP4459220B2 JP 4459220 B2 JP4459220 B2 JP 4459220B2 JP 2006337494 A JP2006337494 A JP 2006337494A JP 2006337494 A JP2006337494 A JP 2006337494A JP 4459220 B2 JP4459220 B2 JP 4459220B2
Authority
JP
Japan
Prior art keywords
flange
hole
shaft member
shaft
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006337494A
Other languages
Japanese (ja)
Other versions
JP2007069267A (en
Inventor
成一 橋本
浩之 山下
敏 二村
正敏 吉田
徹 橋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006337494A priority Critical patent/JP4459220B2/en
Publication of JP2007069267A publication Critical patent/JP2007069267A/en
Application granted granted Critical
Publication of JP4459220B2 publication Critical patent/JP4459220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、アルミニウム合金材からなる軸部の軸端に取付用フランジを有するフランジ付き管状部材の製造方法に関する。 The present invention relates to a method for manufacturing a flanged tubular member having a mounting flange at the shaft end of a shaft portion made of an aluminum alloy material.

例えば乗用車やトラック等の自動車車体の前端(フロント)及び後端(リア)に設置されるバンパー内部には、補強部材としてバンパーリインフォースが設けられている。バンパーリインフォースは一般に荷重方向に略垂直に向く前壁と後壁、及びそれらを連結する横壁を有する断面中空の部材であり、後方側から一対のバンパーステイにより支持され、各バンパーステイは後端がサイドメンバ(フロント又はリア)の先端に固定されている。   For example, bumper reinforcement is provided as a reinforcing member inside a bumper installed at the front end (front) and rear end (rear) of an automobile body such as a passenger car or a truck. The bumper reinforcement is a hollow member having a front wall and a rear wall that are generally perpendicular to the load direction, and a lateral wall that connects them, and is supported by a pair of bumper stays from the rear side. It is fixed to the tip of the side member (front or rear).

アルミニウム製のバンパーステイは、大きく分けて縦圧壊型と横圧壊型がある。図11(a)に示すように、縦圧壊型のバンパーステイは、軸部1を構成する中空の押出形材の前後端に板状の取付用フランジ2,3(バンパーリインフォース4及びサイドメンバ5の取付用)を溶接したもので、押出軸方向が車体前後方向(バンパーリインフォース4の長手方向に対し略垂直)を向いている。横圧壊型バンパーステイは、図11(b)に示すように、前後端に一体的に取付用フランジ7,8が形成された押出形材6からなり、押出軸方向が車体上下方向(バンパーリインフォース4の長手方向に対し垂直)を向いている。横圧壊型バンパーステイの例として、下記特許文献1〜3が挙げられる。   Aluminum bumper stays can be broadly divided into vertical and lateral collapse types. As shown in FIG. 11A, the vertical crushing type bumper stay has plate-like mounting flanges 2 and 3 (bumper reinforcements 4 and side members 5 at the front and rear ends of the hollow extruded shape member constituting the shaft portion 1. The direction of the extrusion axis is directed to the longitudinal direction of the vehicle body (substantially perpendicular to the longitudinal direction of the bumper reinforcement 4). As shown in FIG. 11 (b), the lateral crush type bumper stay is composed of an extruded shape member 6 in which mounting flanges 7 and 8 are integrally formed at the front and rear ends, and the extrusion axis direction is the vehicle body vertical direction (bumper reinforcement). (Vertical to the longitudinal direction of 4). Examples of the lateral crush type bumper stay include the following Patent Documents 1 to 3.

特開平8−91154号公報JP-A-8-91154 特開2000−318552号公報JP 2000-318552 A 特開2001−294106号公報JP 2001-294106 A

縦圧壊型のバンパーステイは、3つの部品を溶接により一体化するため一般に製造コストが高く、さらに、図11(a)に示すように、バンパーリインフォースの端部取付箇所が車幅方向に対し後方側に傾斜している場合は、軸部押出形材の斜め切断による歩留まり低下、切断コスト及び溶接コストの増大等が問題となる。また、横圧縮型のバンパーステイは、製造コストが安く、バンパーリインフォースの端部取付箇所が車幅方向に対し傾斜又は湾曲していても、容易に対応できる利点があるが、縦圧壊型に比べて重量比エネルギー吸収量が小さく、優位な軽量化効果が得られない点に問題がある。   The vertical crush type bumper stay is generally high in manufacturing cost because three parts are integrated by welding. Further, as shown in FIG. 11 (a), the end attachment portion of the bumper reinforcement is rearward with respect to the vehicle width direction. In the case of tilting to the side, there are problems such as a decrease in yield due to oblique cutting of the shaft extruded section, an increase in cutting cost, and welding cost. In addition, the lateral compression type bumper stay is inexpensive to manufacture and has the advantage that it can be easily accommodated even if the bumper reinforcement end mounting location is inclined or curved with respect to the vehicle width direction. Thus, there is a problem in that the weight-specific energy absorption amount is small, and an advantageous lightening effect cannot be obtained.

一方、特願2002−200386、特願2002−357820、特願2002−357821の明細書及び図面には、図11(c)に示すように、アルミニウム合金押出材(管材)からなり、軸部11の両端に電磁成形により取付用フランジ12,13が成形されたバンパーステイが記載されている。   On the other hand, the specifications and drawings of Japanese Patent Application Nos. 2002-240366, 2002-357820, and 2002-357721 are made of an aluminum alloy extruded material (pipe material) as shown in FIG. Bumper stays in which mounting flanges 12 and 13 are formed by electromagnetic forming at both ends are described.

このバンパーステイは、図12に示すように、アルミニウム押出材を所定長さに切断して素材管14とし、この素材管14の周囲を電磁成形用の金型15(複数個の分割金型から構成される)で囲繞するとともに、素材管14の端部を前記金型15の端面(成形面)16,17から突出させ、素材管14の内部に挿入した電磁成形用コイル18に高電圧で蓄電されている電気エネルギー(電荷)を瞬時に投入(放電)することにより製造される。電磁成形とは、電気エネルギーの投入により、電磁成形用コイル18がきわめて短時間の強力な磁場を形成し、この磁場内におかれたワーク(被加工物)が磁場の反発力(フレミングの左手の法則に従ったLorentz力)によって強い拡張力や収縮力を受けて、高速で塑性変形することを利用し、ワークを所定形状に成形する技術であり、この例では、素材管14は強い拡張力により外径方向(放射方向)に拡径し、前記端面16,17の内側では素材管14は貫通穴19の内面に押し付けられ、端面16,17の外側では素材管14は拡開して該端面16,17に打ち付けられる。   In this bumper stay, as shown in FIG. 12, an extruded aluminum material is cut to a predetermined length to form a material tube 14, and the periphery of the material tube 14 is surrounded by an electromagnetic forming die 15 (from a plurality of divided dies). The end portion of the material tube 14 protrudes from the end surfaces (molding surfaces) 16 and 17 of the mold 15 and is inserted into the electromagnetic forming coil 18 inserted into the material tube 14 at a high voltage. Manufactured by instantaneously charging (discharging) stored electrical energy (electric charge). Electromagnetic forming means that, by applying electric energy, the electromagnetic forming coil 18 forms a strong magnetic field for a very short time, and the workpiece (workpiece) placed in this magnetic field repels the magnetic field (the left hand of Fleming). In this example, the material tube 14 is strongly expanded by utilizing a plastic deformation at a high speed by receiving a strong expansion force or contraction force by a Lorentz force according to the law of The outer diameter direction (radial direction) is increased by force, the material tube 14 is pressed against the inner surface of the through hole 19 inside the end surfaces 16 and 17, and the material tube 14 is expanded outside the end surfaces 16 and 17. It strikes against the end faces 16,17.

電磁成形は高速変形であるため、加工形状が複雑な場合にも対応可能であり、かつ金型の成形面に押圧して所定の形状を得るため形状精度がよいという利点がある。従って、前記金型15の端面(成形面)16,17を適宜の形状とすることで、軸方向に垂直な面を有するフランジ(フランジ13)だけでなく、軸方向に垂直な面に対して傾斜したフランジ(フランジ12)、あるいは湾曲面からなるフランジなど、バンパーリインフォースやサイドメンバーの取付面の形状に応じた形状のフランジを成形することができる。
なお、電磁成形自体は、下記特許文献4〜7及び非特許文献1に記載されているように、公知技術である。
Since electromagnetic forming is a high-speed deformation, it is possible to cope with a case where the machining shape is complicated, and there is an advantage that the shape accuracy is good because a predetermined shape is obtained by pressing against the molding surface of the mold. Therefore, by making the end surfaces (molding surfaces) 16 and 17 of the mold 15 into appropriate shapes, not only the flange (flange 13) having a surface perpendicular to the axial direction but also the surface perpendicular to the axial direction. A flange having a shape corresponding to the shape of the mounting surface of the bumper reinforcement or the side member, such as an inclined flange (flange 12) or a flange having a curved surface, can be formed.
In addition, electromagnetic shaping | molding itself is a well-known technique, as described in the following patent documents 4-7 and nonpatent literature 1.

特開昭58−4601号公報Japanese Patent Laid-Open No. 58-4601 特開平6−312226号公報JP-A-6-31226 特開平7−116751号公報JP-A-7-116751 特開2002−86228号公報JP 2002-86228 A 機械技術研究所報告第150号「電磁力を利用する塑性加工の研究」(1990年3月、機械技術研究所発行)Mechanical Technology Research Institute Report No. 150 “Research on Plastic Working Using Electromagnetic Force” (published by Mechanical Technology Research Institute in March 1990)

ところで、従来の3つの部品からなる縦圧壊型バンパーステイは、先に述べたような問題点があるほか、溶接箇所が衝突時に最も荷重が掛かる軸部とフランジの交点になることから、当該箇所において材料特性が低下し、これが予期し得ないエネルギー吸収特性の低下をもたらすおそれがある。   By the way, the conventional crush-type bumper stay consisting of three parts has the above-mentioned problems and the welded point is the intersection of the shaft part and the flange where the load is most applied at the time of collision. In this case, the material properties may deteriorate, and this may lead to an unexpected decrease in energy absorption properties.

一方、管状のアルミニウム合金押出材の両端部を電磁成形等により拡径してフランジを軸部と一体的に成形すれば、この問題点は解消される。しかし、この場合、フランジの外周に近いほど周方向への引張の変形量が大きく、肉厚減少を生じ、さらに薄くなると割れが生じることもある。これはアルミニウム合金押出材の軸部の径に比べてフランジの外径が大きくなるほど問題となる。
そして、この割れ発生の問題は、ファイバー組織を有するアルミニウム合金押出材の場合に特に深刻となる。ファイバー組織は押出方向に平行な粒界がほとんどであり、電磁成形等により投入される拡径の成形力は、その粒界を分断する(引き裂く)方向に作用するからである。また、ファイバー組織では一般に、押出方向に垂直な方向の伸びが小さいことも影響している。ファイバー組織を有するアルミニウム合金押出材は、周知の如く軸方向の圧壊性能に優れるため、バンパーステイとして利用価値が大きいのだが、拡径方向の成形性が等軸晶のものに比べて劣り、管端にフランジを成形するような場合、特に割れが発生しやすく、バンパーリインフォース及びサイドメンバーに連結するに十分な大きさのフランジを成形することがきわめて困難である。
On the other hand, if the both ends of the tubular aluminum alloy extruded material are expanded in diameter by electromagnetic forming or the like and the flange is integrally formed with the shaft portion, this problem is solved. However, in this case, the closer to the outer periphery of the flange, the greater the amount of tensile deformation in the circumferential direction, resulting in a decrease in wall thickness. This becomes more problematic as the outer diameter of the flange becomes larger than the diameter of the shaft portion of the aluminum alloy extruded material.
The problem of occurrence of cracks becomes particularly serious in the case of an aluminum alloy extruded material having a fiber structure. This is because the fiber structure has mostly grain boundaries parallel to the extrusion direction, and the diameter-enlarged forming force introduced by electromagnetic forming or the like acts in a direction to break (tear) the grain boundaries. In addition, the fiber structure generally has a small elongation in the direction perpendicular to the extrusion direction. As is well known, aluminum alloy extruded material with fiber structure is excellent in axial crushing performance, so it has great utility value as a bumper stay, but the moldability in the diameter expansion direction is inferior to that of equiaxed crystals, and the tube When a flange is formed at the end, cracks are particularly likely to occur, and it is extremely difficult to form a flange large enough to be connected to the bumper reinforcement and the side member.

また、図13は電磁成形によるフランジ成形後に、フランジ12の肉厚が外周側になるほど薄くなっている様子を示す(フランジ13も同様である)ものだが、このようにフランジ12の肉厚が径方向に変化しているため、金型15の端面(成形面)16が平面で構成されていたとしても、フランジ12の前面12aは平面にはならず、その結果、図14に示すように、このフランジ12を例えばバンパーリインフォース4の後壁4aに固定するとき、フランジ12とバンパーリインフォース4の後壁4aとの間に隙間19が生じる。この隙間19があると、ボルト・ナット又はリベットにより固定するときはフランジ12に歪みが生じ、溶接によって固定する場合はフランジ12がバンパーリインフォース7の後壁4aから浮いた状態で固定されてしまう(フランジ13をサイドメンバーの先端に固定する場合も同様である)。この点についても、アルミニウム合金押出材の軸部の径に比べてフランジの外径が大きくなるほど問題となる。   FIG. 13 shows a state in which the thickness of the flange 12 becomes thinner toward the outer peripheral side after the flange is formed by electromagnetic forming (the flange 13 is also the same). Because the direction has changed, even if the end surface (molding surface) 16 of the mold 15 is a flat surface, the front surface 12a of the flange 12 is not a flat surface. As a result, as shown in FIG. For example, when the flange 12 is fixed to the rear wall 4 a of the bumper reinforcement 4, a gap 19 is formed between the flange 12 and the rear wall 4 a of the bumper reinforcement 4. If there is this gap 19, the flange 12 is distorted when it is fixed by bolts, nuts or rivets, and when it is fixed by welding, the flange 12 is fixed in a state of being lifted from the rear wall 4a of the bumper reinforcement 7 ( The same applies to the case where the flange 13 is fixed to the tip of the side member). This problem also becomes more problematic as the outer diameter of the flange becomes larger than the diameter of the shaft portion of the aluminum alloy extruded material.

本発明は、このような従来技術の問題点に鑑みてなされたもので、溶接箇所が軸部に掛かることがなく、また無理な拡径を行うことなく、軸部の径に比べて外径の大きいフランジを有するバンパーステイ等のフランジ付き管状部材を得ることを目的とする。   The present invention has been made in view of the problems of the prior art, and the outer diameter of the shaft portion is not compared with the diameter of the shaft portion without causing the welding portion to be applied to the shaft portion and without excessively expanding the diameter. An object of the present invention is to obtain a flanged tubular member such as a bumper stay having a large flange.

本明細書に開示されるフランジ付き管状部材は、下記(1)〜(3)のとおりである。
(1)管状のアルミニウム合金材からなる軸部材と、前記軸部材の端部に接合されたフランジ部材からなり、前記軸部材にはその端部に前記フランジ部材より小面積の端部フランジが一体的に形成され、前記フランジ部材には前記軸部材が嵌挿される穴とその穴の縁に筒状の穴フランジが形成され、前記軸部材は前記フランジ部材の穴に嵌挿され、その端部フランジが前記フランジ部材と密着重合しているフランジ付き管状部材。軸部材の端部フランジの形成は電磁成形等により行うことができ、軸部材とフランジ部材の接合は、溶接や機械的接合手段(リベット等)を利用することもできる。管状のアルミニウム合金材としては、押出材のほか板材を巻いて管状に成形したものも利用することができる。
The flanged tubular member disclosed in the present specification is as follows (1) to (3).
(1) A shaft member made of a tubular aluminum alloy material and a flange member joined to an end of the shaft member, and an end flange having a smaller area than that of the flange member is integrated with the end of the shaft member. The flange member is formed with a hole in which the shaft member is inserted and a cylindrical hole flange is formed at an edge of the hole, and the shaft member is inserted into the hole of the flange member, and an end portion thereof A flanged tubular member in which a flange is closely polymerized with the flange member . The end flange of the shaft member can be formed by electromagnetic forming or the like, and the shaft member and the flange member can be joined using welding or mechanical joining means (rivets or the like). As the tubular aluminum alloy material, it is possible to use an extruded material formed by winding a plate material into a tubular shape.

上記フランジ付き管状部材において、フランジ部材の穴フランジの内面に軸部材の外周面が密着していることが望ましい。これにより、軸部材に接合されたフランジ部材がより安定し、製造時における両者の位置合わせも容易となる。さらに、軸部材に張り出し部が形成され、フランジ部材の穴フランジが前記軸部材の端部フランジと張り出し部の間に挟持されていることが望ましい。この場合、軸部材とフランジ部材は、溶接や機械的接合手段を用いることなく接合(一種のかしめ)されているが、溶接や機械的接合手段を合わせて用いることもできる。電磁成形を利用すれば、このフランジ付き管状部材を一回の成形で容易に製造することができる。すなわち、穴とその穴の縁に筒状の穴フランジが形成された板状のフランジ部材と、管状のアルミニウム合金材からなる軸部材を用意し、前記フランジ部材の穴に前記軸部材を嵌挿し、その先端を前記穴から軸方向外側に所定距離突出させ、電磁成形により前記軸部材を拡径し、これにより、前記軸部材を前記穴フランジの内周面に密着させると同時に、前記軸部材の前記穴から突出していた箇所を拡開して前記フランジ部材に密着重合させ、かつ前記穴フランジより軸方向内側では前記軸部材の少なくとも前記穴フランジの近傍を外径方向に張り出させる。これにより、前記軸部材の端部に前記フランジ部材が接合される。   In the flanged tubular member, it is desirable that the outer peripheral surface of the shaft member is in close contact with the inner surface of the hole flange of the flange member. Thereby, the flange member joined to the shaft member becomes more stable, and the alignment of both at the time of manufacture becomes easy. Further, it is desirable that an overhang portion is formed on the shaft member, and a hole flange of the flange member is sandwiched between the end flange of the shaft member and the overhang portion. In this case, the shaft member and the flange member are joined (a kind of caulking) without using welding or mechanical joining means, but welding or mechanical joining means can also be used together. If electromagnetic forming is used, this flanged tubular member can be easily manufactured by a single forming. Specifically, a plate-like flange member in which a cylindrical hole flange is formed at the hole and the edge of the hole, and a shaft member made of a tubular aluminum alloy material are prepared, and the shaft member is inserted into the hole of the flange member. The tip of the shaft member protrudes from the hole in the axial direction by a predetermined distance, and the shaft member is expanded in diameter by electromagnetic forming, whereby the shaft member is brought into close contact with the inner peripheral surface of the hole flange and at the same time The portion protruding from the hole is expanded and closely polymerized with the flange member, and at least the vicinity of the hole flange of the shaft member is projected in the outer diameter direction on the inner side in the axial direction from the hole flange. Thereby, the flange member is joined to the end of the shaft member.

(2)管状のアルミニウム合金材からなる軸部材と、前記軸部材の端部に接合されたフランジ部材からなり、前記軸部材にはその端部に前記フランジ部材より小面積の端部フランジが一体的に形成され、前記フランジ部材には前記軸部材が嵌挿される穴が形成され、前記軸部材は前記フランジ部材の穴に嵌挿され、その端部フランジが前記フランジ部材と密着重合しているフランジ付き管状部材。軸部材の端部フランジの形成は電磁成形等により行うことができ、軸部材とフランジ部材の接合は、溶接や機械的接合手段を利用することもできる。 (2) A shaft member made of a tubular aluminum alloy material and a flange member joined to an end portion of the shaft member, and an end flange having a smaller area than the flange member is integrated with the end portion of the shaft member. The flange member is formed with a hole into which the shaft member is inserted, the shaft member is inserted into the hole of the flange member, and an end flange thereof is closely overlapped with the flange member. Tubular member with flange . The end flange of the shaft member can be formed by electromagnetic forming or the like, and the shaft member and the flange member can be joined by welding or mechanical joining means.

上記フランジ付き管状部材において、フランジ部材の穴の内縁に軸部材の外周面が密着していることが望ましい。これにより、軸部材に接合されたフランジ部材がより安定し、製造時における両者の位置合わせも容易となる。さらに、軸部材に張り出し部が形成され、フランジ部材の穴の周縁が軸部材の端部フランジと張り出し部の間に挟持されていることが望ましい。この場合、軸部材とフランジ部材は、溶接や機械的接合手段を用いることなく接合(一種のかしめ)されているが、溶接や機械的接合手段を合わせて用いることもできる。電磁成形を利用すれば、このフランジ付き管状部材を一回の成形で容易に製造することができる。すなわち、穴が形成された板状のフランジ部材と、管状のアルミニウム合金材からなる軸部材を用意し、前記フランジ部材の穴に前記軸部材を嵌挿し、その先端を前記穴から軸方向外側に所定距離突出させ、電磁成形により前記軸部材を拡径し、これにより、前記軸部材を前記穴の内縁に密着させると同時に、前記軸部材の前記穴から突出していた箇所を拡開して前記フランジ部材に密着重合させ、かつ前記フランジ部材より軸方向内側では前記軸部材の少なくとも前記フランジ部材の近傍を外径方向に張り出させる。これにより、前記軸部材の端部に前記フランジ部材が接合される。   In the flanged tubular member, it is desirable that the outer peripheral surface of the shaft member is in close contact with the inner edge of the hole of the flange member. Thereby, the flange member joined to the shaft member becomes more stable, and the alignment of both at the time of manufacture becomes easy. Furthermore, it is desirable that an overhang portion is formed in the shaft member, and the peripheral edge of the hole of the flange member is sandwiched between the end flange of the shaft member and the overhang portion. In this case, the shaft member and the flange member are joined (a kind of caulking) without using welding or mechanical joining means, but welding or mechanical joining means can also be used together. If electromagnetic forming is used, this flanged tubular member can be easily manufactured by a single forming. That is, a plate-like flange member in which a hole is formed and a shaft member made of a tubular aluminum alloy material are prepared, the shaft member is fitted into the hole of the flange member, and the tip thereof is axially outward from the hole. The shaft member is protruded by a predetermined distance, and the diameter of the shaft member is increased by electromagnetic forming. Thereby, the shaft member is brought into close contact with the inner edge of the hole, and at the same time, the portion that protrudes from the hole of the shaft member is expanded. The flange member is closely polymerized, and at least the vicinity of the flange member of the shaft member is projected in the outer diameter direction on the inner side in the axial direction from the flange member. Thereby, the flange member is joined to the end of the shaft member.

(3)管状のアルミニウム合金材からなる軸部材と、前記軸部材の端部に接合されたアルミニウム合金材からなるフランジ部材からなり、前記軸部材の端部近傍に環状の張り出し部が形成され、前記フランジ部材には穴が形成されてその縁の全周が前記軸部材側にカールし、その先端が前記軸部材の張り出し部に内側から嵌入しているフランジ付き管状部材。これは本発明に関するフランジ付き管状部材である。この場合、軸部材とフランジ部材は、溶接や機械的接合手段を用いることなく接合(一種のかしめ)されている。
電磁成形を利用すれば、このフランジ付き管状部材を一回の成形で容易に製造することができる。すなわち、管状のアルミニウム合金材からなる軸部材と、穴が形成されたアルミニウム合金からなる板状のフランジ部材を用意し、前記穴が前記軸部材の断面のほぼ中央に位置するように前記軸部材の端部に前記フランジ部材を位置決めし、電磁成形により前記フランジ部材の前記穴の周縁部を拡径するとともに、前記軸部材の端部近傍を外径側に環状に張り出させ、前記フランジ部材の拡径した部分を前記軸部材の内周面に密着させると同時に、そのカールした先端を前記軸部材の環状に張り出した箇所に嵌入させる。これにより、前記軸部材の端部に前記フランジ部材が接合される。
(3) A shaft member made of a tubular aluminum alloy material and a flange member made of an aluminum alloy material joined to an end portion of the shaft member, and an annular projecting portion is formed in the vicinity of the end portion of the shaft member, A flanged tubular member in which a hole is formed in the flange member, the entire periphery of the edge is curled toward the shaft member side, and the tip is fitted into the protruding portion of the shaft member from the inside . This is a flanged tubular member according to the present invention. In this case, the shaft member and the flange member are joined (a kind of caulking) without using welding or mechanical joining means.
If electromagnetic forming is used, this flanged tubular member can be easily manufactured by a single forming. That is, a shaft member made of a tubular aluminum alloy material and a plate-like flange member made of an aluminum alloy in which a hole is formed are prepared, and the shaft member is positioned so that the hole is located at substantially the center of the cross section of the shaft member. The flange member is positioned at the end of the flange member, and the peripheral portion of the hole of the flange member is expanded by electromagnetic forming, and the vicinity of the end portion of the shaft member is annularly projected to the outer diameter side to form the flange member. The diameter-expanded portion is brought into close contact with the inner peripheral surface of the shaft member, and at the same time, the curled tip is fitted into the annularly projecting portion of the shaft member. Thereby, the flange member is joined to the end of the shaft member.

本発明によれば、溶接箇所が軸部に掛かることがなく、また無理な拡径を行うことなく、軸部の径に比べて外径の大きいフランジを有するバンパーステイ等のフランジ付き管状部材を得ることができる。さらに、必要に応じて溶接や機械的接合手段を用いることなく、一回の電磁成形により、軸部材とフランジ部材を一種のかしめにより接合して、フランジ付き管状部材を製造することができる。
また、無理な拡径を行わなくて済むため、軸部材としてファイバー組織のアルミニウム合金押出材を使用することができ、これを例えばバンパーステイとして用いれば、優れた圧壊特性を有するようになる。
According to the present invention, there is provided a tubular member with a flange such as a bumper stay having a flange whose outer diameter is larger than the diameter of the shaft portion without causing the welding portion to be applied to the shaft portion and without excessively expanding the diameter. Obtainable. Furthermore, the flanged tubular member can be manufactured by joining the shaft member and the flange member by a kind of caulking by one electromagnetic forming without using welding or mechanical joining means as required.
In addition, since it is not necessary to perform excessive diameter expansion, an aluminum alloy extruded material having a fiber structure can be used as the shaft member. If this is used as, for example, a bumper stay, excellent crushing characteristics can be obtained.

以下、本発明(参考例を含む)に関するフランジ付き管状部材及びその製造方法について、バンパーステイを例に、図1〜図10(図1〜8は参考例)を参照して説明する。
図1に示すバンパーステイは、管状のアルミニウム合金押出材からなる軸部材21と、軸部材21の両端部に接合されたフランジ部材22からなる。軸部材21にはその両端にフランジ部材22より外径の小さい端部フランジ23が一体的に形成され、軸方向端部近傍が小径部24となって径が最も小さく、それより軸方向内側が外径側に張り出して大径部25となっている。フランジ部材22には中央部に軸部材21が嵌挿される穴26とその穴26の縁に円筒状の穴フランジ27が形成されている。軸部材21はフランジ部材22の穴26に嵌挿され、端部フランジ23がフランジ部材22の外側の面に密着重合し、一方、張り出した大径部25の端25aが穴フランジ27の端部に当接し、結局、穴フランジ27は端部フランジ23と大径部25の間に挟持された形になっている。また、小径部26の外周面は穴フランジ27の内周面に密着している。
さらに、フランジ部材22にはほぼ端部フランジ23の厚みに相当する段差部28が形成され、内周側の低くなった箇所に端部フランジ23がちょうどはまり込むようになっている。従って、軸部材21の端部フランジ23の外側の面とフランジ部材22の外側の面のうち端部フランジ23と重合していない部分がほぼ面一(同じ高さ)となっている。
Hereinafter, a flanged tubular member and a manufacturing method thereof according to the present invention (including a reference example) will be described with reference to FIG. 1 to FIG. 10 (FIGS. 1 to 8 are reference examples), taking a bumper stay as an example.
The bumper stay shown in FIG. 1 includes a shaft member 21 made of a tubular aluminum alloy extruded material, and flange members 22 joined to both ends of the shaft member 21. An end flange 23 having a smaller outer diameter than the flange member 22 is integrally formed at both ends of the shaft member 21, and the vicinity of the end in the axial direction is the small diameter portion 24, and the diameter is the smallest. A large-diameter portion 25 is projected over the outer diameter side. The flange member 22 is formed with a hole 26 into which the shaft member 21 is fitted and inserted at the center, and a cylindrical hole flange 27 at the edge of the hole 26. The shaft member 21 is inserted into the hole 26 of the flange member 22, and the end flange 23 is tightly overlapped with the outer surface of the flange member 22, while the protruding end 25 a of the large-diameter portion 25 is the end of the hole flange 27. As a result, the hole flange 27 is sandwiched between the end flange 23 and the large diameter portion 25. The outer peripheral surface of the small diameter portion 26 is in close contact with the inner peripheral surface of the hole flange 27.
Further, a stepped portion 28 substantially corresponding to the thickness of the end flange 23 is formed in the flange member 22 so that the end flange 23 just fits into a lowered portion on the inner peripheral side. Accordingly, the portion of the outer surface of the end flange 23 of the shaft member 21 and the outer surface of the flange member 22 that is not overlapped with the end flange 23 is substantially flush (same height).

このバンパーステイの製造方法(電磁成形方法)を図2及び図3を参照して説明する。
フランジ部材22は、図1に示すものと同じ形状であり、円形のブランク(板材)の中央に下穴を開けると同時に段差部28を環状に成形し、続いて下穴にバーリング加工を施して、円筒状の穴フランジ27を成形することにより製造できる。電磁成形に使用する管素材31は穴フランジ27の内径とほぼ同じかやや小さい外径のアルミニウム合金押出材からなる。
電磁成形に使用する金型32は、縦に分割された複数個の分割金型からなり、図2,3に示すように閉じたとき中央に貫通穴33が形成される。この貫通穴33は、金型32の軸方向両端近傍においてほぼ前記穴フランジ27の長さの範囲だけ小径とされ(小径部33a)、この小径部33aの内径は穴フランジ27がちょうどはまり込むように当該穴フランジ27の外径とほぼ同じとされ、小径部33aより軸方向内側の箇所ではそれより大径とされている(大径部33b)。また、金型32の両端面34には段差部34aが形成され、この端面34にフランジ部材22がちょうどはまり込むようになっている。
The bumper stay manufacturing method (electromagnetic forming method) will be described with reference to FIGS.
The flange member 22 has the same shape as that shown in FIG. 1, and at the same time a pilot hole is formed in the center of a circular blank (plate material), a stepped portion 28 is formed in an annular shape, and then the pilot hole is subjected to burring. The cylindrical hole flange 27 can be manufactured by molding. The tube material 31 used for electromagnetic forming is made of an aluminum alloy extruded material having an outer diameter substantially the same as or slightly smaller than the inner diameter of the hole flange 27.
A mold 32 used for electromagnetic forming is composed of a plurality of vertically divided molds, and a through hole 33 is formed at the center when closed as shown in FIGS. The through hole 33 has a small diameter in the vicinity of both ends in the axial direction of the mold 32 within the range of the length of the hole flange 27 (small diameter portion 33a). The inner diameter of the small diameter portion 33a is such that the hole flange 27 fits in the inside. The outer diameter of the hole flange 27 is almost the same as that of the hole flange 27, and the diameter is larger than that of the small-diameter portion 33a (large-diameter portion 33b). Further, a stepped portion 34 a is formed on both end surfaces 34 of the mold 32, and the flange member 22 is just fitted into the end surface 34.

図2に示すように、金型32の両端面34に、穴フランジ27が軸方向内側を向くようにしてフランジ部材22をセットし、穴フランジ27の内側に管素材31を挿入する。このとき、管素材31の両端部をフランジ部材22から所定距離突出させる。この突出距離は、図1に示すように、電磁成形された端部フランジ23の外周がフランジ部材27の段差部28の内周側にくるように調整される(突出距離がそのような長さになるように管素材31を切断する)。
続いて、電磁成形用通電コイル体35を管素材31の内部に挿入し、図示しない衝撃電流発生装置に高電圧で蓄荷電されている電気エネルギーを投入すると、管素材31に磁気反発力が生じて管素材31は瞬間的に拡径し、フランジ部材22から突出した端部は大きく拡開してフランジ部材22に打ち当たり、貫通穴33の小径部33aに対応する箇所では穴フランジ27の内面に押し付けられ、さらに貫通穴33の大径部33bでは当該貫通穴33の内面に打ち当たる。なお、電磁成形用通電コイル体35は、電気絶縁体内に成形用コイルが埋め込まれたものである。
As shown in FIG. 2, the flange member 22 is set on both end surfaces 34 of the mold 32 so that the hole flange 27 faces the inner side in the axial direction, and the tube material 31 is inserted inside the hole flange 27. At this time, both end portions of the tube material 31 are projected from the flange member 22 by a predetermined distance. As shown in FIG. 1, the protrusion distance is adjusted so that the outer periphery of the end flange 23 that is electromagnetically formed is located on the inner periphery side of the step portion 28 of the flange member 27 (the protrusion distance is such a length). The tube material 31 is cut so that
Subsequently, when the electromagnetic forming current-carrying coil body 35 is inserted into the tube material 31 and electric energy stored and charged at a high voltage is applied to an impact current generator (not shown), a magnetic repulsive force is generated in the tube material 31. The pipe material 31 is instantaneously expanded in diameter, the end protruding from the flange member 22 is greatly expanded to hit the flange member 22, and the inner surface of the hole flange 27 is located at a position corresponding to the small diameter portion 33 a of the through hole 33. The large diameter portion 33b of the through hole 33 strikes the inner surface of the through hole 33. The electromagnetic forming energizing coil body 35 is formed by embedding a forming coil in an electrical insulator.

これにより、図1に示すバンパーステイが成形される。成形後は金型32を分割して、バンパーステイを取り出す。
このバンパーステイでは、管素材31の拡径に伴い、穴フランジ27に成形後の軸部材21(その小径部24)が押し付けられ、同時に軸部材21(その端部フランジ23と大径部25)によりフランジ部材22の穴フランジ27が軸方向に挟持された形となるため、フランジ部材22は軸部材21の両端にしっかりと接合される。穴フランジ27があることにより軸部材21との接触面積が広く、この点も接合強度の向上に寄与する。そして、フランジ部材22がバンパーステイとして十分な外径を有し、一方、軸部材21の端部フランジ23の外径を余り大きく拡径する必要がないので、電磁成形時の割れの発生を防止することができ、また、ファイバー組織を有するアルミニウム合金押出材の使用も十分可能である。
Thereby, the bumper stay shown in FIG. 1 is formed. After molding, the mold 32 is divided and the bumper stay is taken out.
In this bumper stay, as the diameter of the pipe material 31 is increased, the molded shaft member 21 (its small diameter portion 24) is pressed against the hole flange 27, and at the same time, the shaft member 21 (its end flange 23 and large diameter portion 25) is pressed. As a result, the hole flange 27 of the flange member 22 is sandwiched in the axial direction, so that the flange member 22 is firmly joined to both ends of the shaft member 21. Due to the presence of the hole flange 27, the contact area with the shaft member 21 is large, which also contributes to the improvement of the bonding strength. The flange member 22 has a sufficient outer diameter as a bumper stay, and on the other hand, it is not necessary to enlarge the outer diameter of the end flange 23 of the shaft member 21 so as to prevent the occurrence of cracks during electromagnetic forming. It is also possible to use an aluminum alloy extruded material having a fiber structure.

上記の例において、フランジ部材22の穴26は円形としたが、これを楕円形としたり、非点対称の形状(例えば穴の縁の大部分が円形だが一部が窪みになっているような穴、あるいは穴の縁の大部分が円形だが一部が直線状となっているような穴)とすることもできる。そのような断面形状は、軸部材21とフランジ部材22の回り止めの作用を有する。いずれの場合も、管素材としては円形断面のものを用いることができ、かつ円形断面のものを用いたとしても、電磁成形により穴フランジの内面に押し付けられた箇所の断面は、前記穴の形状に倣ったものとなる。
この電磁成形により成形される軸部材21(管素材31)は、導電率が高く強い磁気反発力が得られるアルミニウム合金押出材からなるが、フランジ部材22は実質的に変形させていないので、アルミニウム合金板でも鋼板からなるものでもよい。バーリング加工のしやすさからいえば鋼板の方が望ましい。フランジ部材22として鋼板を用いる場合、アルミニウム合金である軸部材21と接触することに伴う電食を防止するため、少なくとも軸部材21と接触する側にアルミめっきなど、電食防止用の表面処理を行うことが望ましい。
また、鋼板は強度が高く、導電性が低く電磁成形による拡張力もほとんど加わらないため、鋼板製のフランジ部材22が管素材31が拡径する際の拡張力を受け止めるだけの強度を有し、かつその成形時においてフランジ部材22が位置ずれ等を起こすことのないように位置決めを確実に行えるのであれば、金型32を用いることなく電磁成形を行うこともできる。
In the above example, the hole 26 of the flange member 22 has a circular shape, but it has an elliptical shape or an asymmetrical shape (for example, most of the edge of the hole is circular but partly recessed). A hole or a hole in which most of the edge of the hole is circular but partly straight). Such a cross-sectional shape has a function of preventing the shaft member 21 and the flange member 22 from rotating. In either case, the tube material can be of a circular cross section, and even if a circular cross section is used, the cross section of the portion pressed against the inner surface of the hole flange by electromagnetic forming is the shape of the hole. It is imitated.
The shaft member 21 (tube material 31) formed by this electromagnetic forming is made of an aluminum alloy extruded material having high electrical conductivity and a strong magnetic repulsive force. However, since the flange member 22 is not substantially deformed, aluminum is used. An alloy plate or a steel plate may be used. In terms of ease of burring, steel plates are preferred. When a steel plate is used as the flange member 22, in order to prevent galvanic corrosion due to contact with the shaft member 21, which is an aluminum alloy, at least the side in contact with the shaft member 21 is subjected to surface treatment for preventing erosion, such as aluminum plating. It is desirable to do.
Further, since the steel plate has high strength, low electrical conductivity, and little expansion force due to electromagnetic forming is applied, the steel plate flange member 22 has a strength sufficient to receive the expansion force when the pipe material 31 is expanded, and Electromagnetic molding can be performed without using the mold 32 as long as the positioning can be reliably performed so that the flange member 22 does not cause a positional shift or the like during the molding.

続いて、以下、他のバンパーステイ及びフランジ付き管状部材について説明する。
図4に示すバンパーステイは、実質的に図1に示すバンパーステイと同じであるが、軸部材21とフランジ部材22をより強固に接合するため、軸部材21とフランジ部材22を溶接したものである。溶接箇所36は、端部フランジ23の外周縁である。溶接箇所36が軸部材21の軸部37(図1の小径部24及び大径部25に相当)から外径方向に離れているので、熱影響による材料特性の低下が軸部37に及ばず、予期しないエネルギー吸収特性の低下も防止できる。
Subsequently, other bumper stays and flanged tubular members will be described below.
The bumper stay shown in FIG. 4 is substantially the same as the bumper stay shown in FIG. 1 except that the shaft member 21 and the flange member 22 are welded to join the shaft member 21 and the flange member 22 more firmly. is there. The weld location 36 is the outer peripheral edge of the end flange 23. Since the welded portion 36 is away from the shaft portion 37 (corresponding to the small diameter portion 24 and the large diameter portion 25 in FIG. 1) of the shaft member 21 in the outer diameter direction, the deterioration of the material properties due to the thermal effect does not reach the shaft portion 37. In addition, an unexpected decrease in energy absorption characteristics can be prevented.

図5に示すバンパーステイは、軸部材21の大径部(ビード状の張り出し部)38が穴フランジ27の近傍にのみ形成されている点で、図1に示すバンパーステイと異なり、他の点は事実上同一である。そして、図1に示すバンパーステイと同様に、穴フランジ27に軸部37の小径部24が押し付けられ、同時に穴フランジ27は端部フランジ23と大径部38により挟持された形となり、フランジ部材22は軸部材21の両端にしっかりと接合される。
図5に示すバンパーステイの製造に当たっては、仮想線で示すように、大径部38に対応する箇所に管状の凹部39aが形成された電磁成形用金型39を使用すればよい。管素材はこの凹部39aにおいて、電磁成形時に加わる拡張力に応じて自由に拡径(張り出し変形)する。
The bumper stay shown in FIG. 5 differs from the bumper stay shown in FIG. 1 in that the large-diameter portion (bead-like protruding portion) 38 of the shaft member 21 is formed only in the vicinity of the hole flange 27. Are virtually identical. As in the bumper stay shown in FIG. 1, the small diameter portion 24 of the shaft portion 37 is pressed against the hole flange 27, and at the same time, the hole flange 27 is sandwiched between the end flange 23 and the large diameter portion 38. 22 is firmly joined to both ends of the shaft member 21.
In manufacturing the bumper stay shown in FIG. 5, an electromagnetic forming die 39 in which a tubular concave portion 39 a is formed at a location corresponding to the large diameter portion 38 may be used as indicated by a virtual line. The tube material freely expands (extends and deforms) in the recess 39a according to the expansion force applied during electromagnetic forming.

図6に示すバンパーステイは、軸部材21の一方の端部にのみフランジ部材22を接合し、他方の端部の取付用フランジとして軸部材21と一体の端部フランジ41をそのまま利用するものである。バンパーステイの取付用フランジとしては、一般にサイドメンバー側の方が大径のものが必要であり、そちらは別途フランジ部材22を必要とするが、バンパーリインフォース側の取付用フランジはより小径で済むため、こちらは軸部材21の端部を拡径した端部フランジ41で対応できる場合がある。そのようなとき、このようなバンパーステイを用いることができる。
図6に、仮想線で電磁成形用金型42及び軸部材21を成型するための管素材31を示す。
The bumper stay shown in FIG. 6 joins the flange member 22 only to one end portion of the shaft member 21, and uses the end flange 41 integral with the shaft member 21 as the mounting flange of the other end portion. is there. The bumper stay mounting flange generally requires a larger diameter on the side member side, which requires a separate flange member 22, but the bumper reinforcement mounting flange requires a smaller diameter. In some cases, this can be handled by an end flange 41 having an enlarged diameter at the end of the shaft member 21. In such a case, such a bumper stay can be used.
FIG. 6 shows a tube material 31 for molding the electromagnetic forming die 42 and the shaft member 21 with virtual lines.

図7に示すフランジ付き管状部材は、軸部材51の一方の端部にフランジ部材22が接合されたものである。このフランジ部材22は図1等におけるフランジ部材22と同じ形状であるが、軸部材51には一方の端に端部フランジ52が一体的に形成されているだけで、他端にはフランジはなく、張り出し部等も形成されていない。
このフランジ付き管状部材において、軸部材51はフランジ部材22の穴26に嵌挿され、端部フランジ52がフランジ部材22の外側の面に密着重合し、軸部53の外周面が穴フランジ27の内周面に密着している。フランジ部材22にはほぼ端部フランジ52の厚みに相当する段差部28が形成され、内周側の低くなった箇所に端部フランジ52がちょうどはまり込み、端部フランジ52の外周縁が溶接箇所54となり、これにより軸部材51とフランジ部材22が接合されている。また、軸部材51の端部フランジ52の外側の面とフランジ部材22の外側の面のうち端部フランジ52と重合していない部分がほぼ面一となっている。
このフランジ付き管状部材においても、図4に示すバンパーステイと同様に、溶接箇所54が軸部材51の軸部53から外径方向に離れているので、熱影響による材料特性の低下が軸部53に及ばない利点がある。
The flanged tubular member shown in FIG. 7 is obtained by joining the flange member 22 to one end of the shaft member 51. This flange member 22 has the same shape as the flange member 22 in FIG. 1 and the like, but the shaft member 51 is formed integrally with an end flange 52 at one end, and there is no flange at the other end. Also, no overhanging portion or the like is formed.
In this flanged tubular member, the shaft member 51 is fitted into the hole 26 of the flange member 22, the end flange 52 closely overlaps with the outer surface of the flange member 22, and the outer peripheral surface of the shaft portion 53 is the hole flange 27. It is in close contact with the inner peripheral surface. The flange member 22 is formed with a stepped portion 28 substantially corresponding to the thickness of the end flange 52, the end flange 52 just fits into a lower portion on the inner peripheral side, and the outer peripheral edge of the end flange 52 is a welded portion. Thus, the shaft member 51 and the flange member 22 are joined. Further, a portion of the outer surface of the end flange 52 of the shaft member 51 and the outer surface of the flange member 22 that is not overlapped with the end flange 52 is substantially flush.
Also in this tubular member with flange, similarly to the bumper stay shown in FIG. 4, the welded portion 54 is away from the shaft portion 53 of the shaft member 51 in the outer diameter direction. There are advantages over

このフランジ付き管状部材を電磁成形で行う場合、電磁成形用金型56(図7の仮想線参照)の端面57に穴フランジ27が軸方向内側を向くようにしてフランジ部材22をセットし、穴フランジ27の内側に管状のアルミニウム合金押出材からなる管素材58(図7の仮想線参照)を挿入する。このとき、管素材58の端部をフランジ部材22から所定距離突出させる。この突出距離は、先に図2を用いて説明したと同様に調整される。なお、金型56の端面57は、図3に示す金型32と同様の形状であり、金型56の貫通穴は、端面57の近傍においてほぼ前記穴フランジ27の長さの範囲だけ大径とされ、ここは穴フランジ27がちょうどはまり込むように当該穴フランジ27の外径とほぼ同じとされ、その他の箇所では管素材58の外径とほぼ同じかやや大径とされている。
続いて先に説明したと同様の手順で電磁成形すると、管素材58は瞬間的に拡径し、フランジ部材22から突出した端部は大きく拡開してフランジ部材22に打ち当たり、金型56の貫通穴内部では、穴フランジ27の内周面及び前記貫通穴に押し付けられる。
なお、端部フランジ52の成形は、プレス成形(プレス拡管)を利用して行うこともできる。また、端部フランジ52の成形後に軸部材51をフランジ部材22に嵌挿してもよいし、管素材58をフランジ部材22に嵌挿後に端部フランジを成形してもよい。
When this flanged tubular member is formed by electromagnetic forming, the flange member 22 is set on the end surface 57 of the electromagnetic forming die 56 (see the phantom line in FIG. 7) so that the hole flange 27 faces inward in the axial direction. Inside the flange 27, a tube material 58 (see a virtual line in FIG. 7) made of a tubular aluminum alloy extruded material is inserted. At this time, the end of the tube material 58 is projected from the flange member 22 by a predetermined distance. This protrusion distance is adjusted in the same manner as described above with reference to FIG. The end face 57 of the mold 56 has the same shape as the mold 32 shown in FIG. 3, and the through hole of the mold 56 has a large diameter in the vicinity of the end face 57 within the range of the length of the hole flange 27. Here, the outer diameter of the hole flange 27 is substantially the same so that the hole flange 27 fits in, and the outer diameter of the pipe material 58 is substantially the same as or slightly larger at other locations.
Subsequently, when the electromagnetic forming is performed in the same procedure as described above, the pipe material 58 is instantaneously expanded in diameter, the end portion protruding from the flange member 22 is greatly expanded and hits the flange member 22, and the die 56 The inside of the through hole is pressed against the inner peripheral surface of the hole flange 27 and the through hole.
Note that the end flange 52 can be formed using press forming (press tube expansion). Further, the shaft member 51 may be fitted into the flange member 22 after the end flange 52 is molded, or the end flange may be molded after the pipe material 58 is fitted into the flange member 22.

図8に示すバンパーステイは、軸部材61とその両端に接合されたフランジ部材62からなる。軸部材61にはその両端にフランジ部材62より外径の小さい端部フランジ63が一体的に形成され、軸方向端部近傍が小径部64となって径が最も小さく、それより軸方向内側が外径側に張り出して大径部65となっている。フランジ部材62には中央部に軸部材61が嵌挿される穴66が形成されている。軸部材61はフランジ部材62の穴66に嵌挿され、端部フランジ63がフランジ部材62の外側の面に密着重合し、一方、張り出した大径部65の端65aがフランジ部材62の内側に当接し、結局、穴66の周縁が縁部フランジ63と大径部65の間に挟持された形になっている。また、小径部64の外周面は穴66の内縁に密着している。要するに、フランジ部材62は穴フランジ27が形成されていない点で、図1に示すフランジ部材22とは異なり、それに伴い軸部材61の形状も図1に示す軸部材21とは異なるが、図1に示すバンパーステイとの相違点はそれだけである。この場合も、図4に示すように、軸部材61とフランジ部材62を溶接することができる。
なお、図8には、電磁成形用金型67及び管素材68を仮想線で示している。
The bumper stay shown in FIG. 8 includes a shaft member 61 and flange members 62 joined to both ends thereof. An end flange 63 having an outer diameter smaller than that of the flange member 62 is integrally formed at both ends of the shaft member 61, and the vicinity of the axial end portion is a small diameter portion 64, and the diameter is the smallest. The large-diameter portion 65 projects to the outer diameter side. The flange member 62 is formed with a hole 66 into which the shaft member 61 is inserted in the center. The shaft member 61 is inserted into the hole 66 of the flange member 62, and the end flange 63 closely adheres to the outer surface of the flange member 62, while the end 65 a of the protruding large diameter portion 65 is located inside the flange member 62. As a result, the periphery of the hole 66 is sandwiched between the edge flange 63 and the large diameter portion 65. The outer peripheral surface of the small diameter portion 64 is in close contact with the inner edge of the hole 66. In short, the flange member 62 is different from the flange member 22 shown in FIG. 1 in that the hole flange 27 is not formed, and accordingly, the shape of the shaft member 61 is also different from that of the shaft member 21 shown in FIG. This is the only difference from the bumper stay shown in. Also in this case, the shaft member 61 and the flange member 62 can be welded as shown in FIG.
In FIG. 8, the electromagnetic forming die 67 and the tube material 68 are indicated by phantom lines.

図9に示すフランジ付き管状部材は、本発明に関するものであり、管状のアルミニウム合金押出材からなる軸部材71と、軸部材71の端部に接合されたフランジ部材72からなる。軸部材71にはその端部近傍に環状の張り出し部73が形成され、フランジ部材72には中央部に穴74が形成されてその縁の全周が軸部材71側にカールし、そのカール部75の先端が前記張り出し部73に内側から嵌入してその底部に当接し、かつカール部75の外周面が軸部材71の端部内周面に密着している。 The flanged tubular member shown in FIG. 9 relates to the present invention, and includes a shaft member 71 made of a tubular aluminum alloy extruded material and a flange member 72 joined to an end of the shaft member 71. An annular projecting portion 73 is formed near the end of the shaft member 71, a hole 74 is formed in the center portion of the flange member 72, and the entire periphery of the edge curls toward the shaft member 71. The tip of 75 is fitted into the projecting portion 73 from the inside and contacts the bottom thereof, and the outer peripheral surface of the curled portion 75 is in close contact with the inner peripheral surface of the end portion of the shaft member 71.

このフランジ付き管状部材の製造方法(電磁成形方法)を図10を参照して説明する。
管素材76は円筒形のアルミニウム合金押出材からなり、フランジ素材77は中央部に穴78(穴74より小さい径の穴)が開けられたアルミニウム合金板からなり、フランジ素材77の一方の面が管素材76の端面に当接し、穴78が管素材76の断面の中心に位置している。また、フランジ素材77の穴78の縁部近傍は管素材76側に傾斜している。
電磁成形に使用する金型は主金型81と押さえ金型82からなる。主金型81は縦に分割された複数個の分割金型からなり、図10に示すように閉じたとき中央に貫通穴83が形成され、この貫通穴83の端部近傍に環状の凹部83aが形成されている。貫通穴83の内径は凹部83aを除いて管素材76の外径とほぼ同じとされている。押さえ金型82にも中央に貫通穴84が形成されている。
A manufacturing method (electromagnetic forming method) of the flanged tubular member will be described with reference to FIG.
The tube material 76 is made of a cylindrical aluminum alloy extruded material, and the flange material 77 is made of an aluminum alloy plate having a hole 78 (a hole smaller in diameter than the hole 74) in the center, and one surface of the flange material 77 is The hole 78 is in contact with the end face of the tube material 76, and is located at the center of the cross section of the tube material 76. Further, the vicinity of the edge of the hole 78 of the flange material 77 is inclined toward the tube material 76 side.
A mold used for electromagnetic forming is composed of a main mold 81 and a presser mold 82. The main mold 81 is composed of a plurality of vertically divided molds. When closed, as shown in FIG. 10, a through hole 83 is formed in the center, and an annular recess 83a is formed near the end of the through hole 83. Is formed. The inner diameter of the through hole 83 is substantially the same as the outer diameter of the tube material 76 except for the recess 83a. A through hole 84 is also formed in the center of the presser mold 82.

図10に示すように、主金型81内に管素材76を挿入し、その端面(上端)が主金型81の端面85とほぼ一致するように位置決めし、主金型81の端面85にフランジ素材77を載置し、その上を押さえ金型82で押さえ、続いて、電磁成形用通電コイル体86をフランジ素材77及び管素材76の内部に挿入し、電気エネルギーを投入する。これによりフランジ素材77の穴78の周縁部(管素材76の断面内に入っている部分)及び管素材76が瞬間的に拡径し、前記穴78の縁部近傍は大きく拡開して管素材76の端部近傍の内周面に打ち当てられ、一方、管素材76の端部近傍は凹部83a内に張り出して前記張り出し部73を形成し、その結果、図9に示すように、穴74の縁にカール部75が形成され、該カール部75の外周が軸部材71の端部内周面に密着すると同時に、そのカールした先端が軸部材71の張り出し部73の内部に内側から嵌入する。これにより、軸部材71とフランジ部材72が接合する。
このフランジ付き管状部材では、軸部材71もフランジ部材72も、余り大きく拡径する必要がないので、電磁成形時の割れの発生を防止することができ、また、軸部材71としてファイバー組織を有するアルミニウム合金押出材の使用も十分可能である。
As shown in FIG. 10, the tube material 76 is inserted into the main mold 81 and positioned so that the end surface (upper end) thereof substantially coincides with the end surface 85 of the main mold 81. The flange material 77 is placed, the upper part is pressed by a pressing die 82, and then the electromagnetic forming energizing coil body 86 is inserted into the flange material 77 and the tube material 76, and electric energy is input. As a result, the peripheral edge of the hole 78 of the flange material 77 (the portion within the cross section of the tube material 76) and the tube material 76 are instantaneously expanded in diameter, and the vicinity of the edge of the hole 78 is greatly expanded. 9 is struck against the inner peripheral surface in the vicinity of the end of the material 76, while the vicinity of the end of the tube material 76 projects into the recess 83a to form the projecting portion 73. As a result, as shown in FIG. A curled portion 75 is formed at the edge of 74, and the outer periphery of the curled portion 75 is in close contact with the inner peripheral surface of the end portion of the shaft member 71, and at the same time, the curled tip is fitted into the protruding portion 73 of the shaft member 71 from the inside. . Thereby, the shaft member 71 and the flange member 72 are joined.
In this flanged tubular member, neither the shaft member 71 nor the flange member 72 needs to be enlarged so much that it can prevent cracking during electromagnetic forming, and the shaft member 71 has a fiber structure. The use of an aluminum alloy extruded material is also possible.

以上、主としてバンパーステイを例にして本発明を具体的に説明したが、本発明は全く同様の形態で他のフランジ付き管状部材、例えば車両用のインストルメントパネル用リインフォースなど、他部材へ取り付けるフランジ付き管状部材に広く適用することができる。また、軸部材の両端にフランジ部材を接合するか、一方の端部にフランジ部材を接合するかは、フランジ付き管状部材の使用形態に応じて任意に選択し得る。さらに、上記の例では、フランジ付き管状部材の軸部の軸中心線とフランジが垂直になるように、軸部材とフランジ部材が接合されていたが、図12に示すバンパーステイのように、軸部の軸中心線とフランジが傾斜しているようなもの、あるいはフランジが湾曲しているようなもの、さらにはそれらを組み合わせたものも本発明に含まれ、かつ前記と同様の方法で製造できる。   The present invention has been specifically described above mainly using a bumper stay as an example. However, the present invention is a flange member attached to another member, such as a tubular member with another flange, for example, a reinforcement for an instrument panel for a vehicle, in the same form. It can be widely applied to the attached tubular member. Further, whether the flange member is joined to both ends of the shaft member or the flange member is joined to one end portion can be arbitrarily selected according to the usage mode of the flanged tubular member. Further, in the above example, the shaft member and the flange member are joined such that the shaft center line of the shaft portion of the flanged tubular member and the flange are perpendicular to each other. However, as in the bumper stay shown in FIG. Those in which the axial center line of the portion and the flange are inclined, those in which the flange is curved, or combinations thereof are also included in the present invention and can be manufactured by the same method as described above. .

バンパーステイ(参考例)の断面図である。It is sectional drawing of a bumper stay (reference example) . 図1のバンパーステイを電磁成形により製造する方法を説明する断面図である。It is sectional drawing explaining the method to manufacture the bumper stay of FIG. 1 by electromagnetic forming. その方法に使用する電磁成形用金型の断面図である。It is sectional drawing of the metal mold | die for electromagnetic forming used for the method. 他のバンパーステイ(参考例)の断面図である。It is sectional drawing of another bumper stay (reference example) . さらに他のバンパーステイ(参考例)の断面図である。 Furthermore, it is sectional drawing of another bumper stay (reference example) . さらに他のバンパーステイ(参考例)の断面図である。 Furthermore, it is sectional drawing of another bumper stay (reference example) . フランジ付き管状部材(参考例)の断面図である。It is sectional drawing of a tubular member with a flange (reference example) . さらに他のバンパーステイ(参考例)の断面図である。 Furthermore, it is sectional drawing of another bumper stay (reference example) . 本発明に関するフランジ付き管状部材の断面図である。It is a cross-sectional view of the flanged tubular member about the present invention. 図9のフランジ付き管状部材を電磁成形により製造する方法を説明する断面図である。It is sectional drawing explaining the method to manufacture the tubular member with a flange of FIG. 9 by electromagnetic forming. 種々のタイプのバンパーステイとその取付状態を示す平面図である。It is a top view which shows a bumper stay of various types, and its attachment state. 図11(c)のバンパーステイを電磁成形で製造する方法を説明する断面図である。It is sectional drawing explaining the method to manufacture the bumper stay of FIG.11 (c) by electromagnetic forming. そのバンパーステイのフランジ部の拡大断面図である。It is an expanded sectional view of the flange part of the bumper stay. そのバンパーステイのバンパーリインフォースへの取付状態を説明する断面図である。It is sectional drawing explaining the attachment state to the bumper reinforcement of the bumper stay.

符号の説明Explanation of symbols

21,51,61、71 軸部材
22,62,72 フランジ部材
23,41,63 端部フランジ
25,38,65 大径部(張り出し部)
26,66、74 穴
27 穴フランジ
28 段差部
31,58、68、76 管素材
32,39,42,56,67,81,82 電磁成形用金型
35,86 電磁成形用コイル体
36,54 溶接箇所
73 張り出し部
75 カール部
77 フランジ素材
78 穴
21, 51, 61, 71 Shaft member 22, 62, 72 Flange member 23, 41, 63 End flange 25, 38, 65 Large diameter portion (overhang portion)
26, 66, 74 Hole 27 Hole flange 28 Step part 31, 58, 68, 76 Pipe material 32, 39, 42, 56, 67, 81, 82 Electromagnetic forming die 35, 86 Electromagnetic forming coil body 36, 54 Welding point 73 Overhang 75 Curl 77 Flange material 78 Hole

Claims (3)

管状のアルミニウム合金材からなる軸部材の端部に、穴が形成されたアルミニウム合金からなる板状のフランジ部材を前記穴が前記軸部材の断面のほぼ中央に位置するように位置決めし、電磁成形により前記フランジ部材の前記穴の周縁部を拡径するとともに、前記軸部材の端部近傍を外径側に環状に張り出させ、前記フランジ部材の拡径した部分を前記軸部材の内周面に密着させると同時に、そのカールした先端を前記軸部材の環状に張り出した箇所に嵌入させ、前記軸部材の端部に前記フランジ部材を接合することを特徴とするフランジ付き管状部材の製造方法。 A plate-like flange member made of an aluminum alloy in which a hole is formed at the end of a shaft member made of a tubular aluminum alloy material is positioned so that the hole is located at substantially the center of the cross section of the shaft member, and electromagnetic forming The diameter of the peripheral edge of the hole of the flange member is increased by the above, and the vicinity of the end of the shaft member is annularly projected to the outer diameter side, and the diameter-enlarged portion of the flange member is the inner peripheral surface of the shaft member A method of manufacturing a flanged tubular member, wherein the flange member is joined to an end portion of the shaft member by fitting the curled tip into an annular projecting portion of the shaft member. 前記フランジ部材の前記穴の周縁部を予め軸部材側に傾斜させておくことを特徴とする請求項1に記載されたフランジ付き管状部材の製造方法。 The manufacturing method of the flanged tubular member according to claim 1 , wherein a peripheral portion of the hole of the flange member is inclined in advance toward the shaft member. 縦に分割された複数個の分割金型からなり閉じたとき中央部に貫通穴が形成される主金型を閉じて前記軸部材を前記貫通穴内に挿入し端面が前記主金型の端面とほぼ一致するように位置決めし、前記主金型の端面に前記フランジ部材を載置し、その上を押さえ金型で押さえ、この状態で電磁成形による拡径を行うことを特徴とする請求項1又は2に記載されたフランジ付き管状部材の製造方法。 When closed, it consists of a plurality of vertically divided molds, a main mold in which a through hole is formed at the center is closed, the shaft member is inserted into the through hole, and the end surface is the end surface of the main mold positioned so as to substantially coincide, placing the flange member to the end face of the main die, according to claim 1 in which the top supported by the support die and and performs enlarged by electromagnetic forming in this state Or the manufacturing method of the tubular member with a flange described in 2 .
JP2006337494A 2006-12-14 2006-12-14 Manufacturing method of tubular member with flange Expired - Fee Related JP4459220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337494A JP4459220B2 (en) 2006-12-14 2006-12-14 Manufacturing method of tubular member with flange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006337494A JP4459220B2 (en) 2006-12-14 2006-12-14 Manufacturing method of tubular member with flange

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003393013A Division JP3939286B2 (en) 2003-11-21 2003-11-21 Manufacturing method of tubular member with flange

Publications (2)

Publication Number Publication Date
JP2007069267A JP2007069267A (en) 2007-03-22
JP4459220B2 true JP4459220B2 (en) 2010-04-28

Family

ID=37931174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337494A Expired - Fee Related JP4459220B2 (en) 2006-12-14 2006-12-14 Manufacturing method of tubular member with flange

Country Status (1)

Country Link
JP (1) JP4459220B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019130534A (en) * 2018-01-29 2019-08-08 トヨタ自動車株式会社 Electromagnetic molding method

Also Published As

Publication number Publication date
JP2007069267A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP3939286B2 (en) Manufacturing method of tubular member with flange
US7980615B2 (en) Axial member with flange, connection member and production methods thereof
WO2011049029A1 (en) Vehicle bumper beam and method for manufacturing same
EP1878623A1 (en) Impact absorbing member for vehicle
JP5826710B2 (en) Manufacturing method of automobile bumper structure
JP5177397B2 (en) Bumper structure
US8746763B2 (en) Multistage energy absorber device and method of forming same
JP4386237B2 (en) Bumper reinforcement and stay mounting structure and bumper structure
JP2012030721A (en) Vehicular bumper device
JP2008068849A (en) Bumper structure
JP4762286B2 (en) Bumper structure manufacturing method
JP5322882B2 (en) Bumper stay manufacturing method and bumper stay manufacturing method
JP5094544B2 (en) Bumper structure
JP4459220B2 (en) Manufacturing method of tubular member with flange
JP4439273B2 (en) Tubular member with flange
JP5049210B2 (en) Bumper stay
JP3939323B2 (en) Connection structure
JP5237252B2 (en) Automotive bumper structure
JP4429117B2 (en) Method of manufacturing aluminum alloy automobile wheel rim
US7441335B2 (en) Methods of electromagnetic forming aluminum alloy wheel for automotive use
JP4297213B2 (en) Manufacturing method of tubular member with flange
JP4111943B2 (en) Bumper stay
JP4413057B2 (en) Manufacturing method of shaft member with flange and shaft member with flange
JP4386238B2 (en) Manufacturing method of stay
JP5300936B2 (en) Bumper structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

R150 Certificate of patent or registration of utility model

Ref document number: 4459220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees