JP4458603B2 - Mold and mold manufacturing method - Google Patents

Mold and mold manufacturing method Download PDF

Info

Publication number
JP4458603B2
JP4458603B2 JP2000043714A JP2000043714A JP4458603B2 JP 4458603 B2 JP4458603 B2 JP 4458603B2 JP 2000043714 A JP2000043714 A JP 2000043714A JP 2000043714 A JP2000043714 A JP 2000043714A JP 4458603 B2 JP4458603 B2 JP 4458603B2
Authority
JP
Japan
Prior art keywords
mold
copper
nickel
welding
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000043714A
Other languages
Japanese (ja)
Other versions
JP2001232493A (en
Inventor
敏之 臼井
徹 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000043714A priority Critical patent/JP4458603B2/en
Priority to CA 2336558 priority patent/CA2336558C/en
Priority to GB0104431A priority patent/GB2359505B/en
Priority to CN01117237A priority patent/CN1127385C/en
Priority to BR0100788A priority patent/BR0100788A/en
Priority to US09/789,502 priority patent/US6397651B2/en
Publication of JP2001232493A publication Critical patent/JP2001232493A/en
Application granted granted Critical
Publication of JP4458603B2 publication Critical patent/JP4458603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はブランク材を所望の形状に曲げ成形するプレス成形金型或いはブランク材を絞り成形しその周縁を縁切りするトリミング金型などの金型および係る金型の製造方法に関する。
【0002】
【従来の技術】
自動車のボディは、ブランク材をプレス成形したり絞り成形或いはトリミング成形することで得られる。斯かる成形を行う金型は一般に鋳鉄製や鋳鋼製であり、剛性が高く数十万ショットにも耐えられるが、金型製作にかかる費用が高くなる。
【0003】
そこで、多品種少量生産に向く金型として、亜鉛合金を母材とした金型が、特開平5−84591号公報、特開平5−195121号公報および特開平5−208296号公報に開示されている。
【0004】
即ち、特開平5−84591号公報には、アルミニウムと銅を含む亜鉛合金に、マグネシウムとアルミニウムを含むビッカース硬度150以上の亜鉛合金を肉盛り溶接することが開示されている。
また特開平5−195121号公報には、プレス金型用の亜鉛合金として、アルミニウムが9.5〜30wt%、銅が6.0〜20wt%、マグネシウムが0.01〜0.2wt%、残部を亜鉛としたものが提案されている。
また特開平5−208296号公報には、プラスチックの成形金型の母材として亜鉛合金を用いることと、この金型の補修用の溶加材としてSi等を含むアルミ合金が提案されている。
【0005】
上記亜鉛合金は加工性等に優れるが柔らかいため、切り刃等を設けるには異種金属を特定部位に設けなければならない。この手段としてめっき、蒸着、スパッタリング等が考えられるが形成される異種金属膜の厚みが薄く耐久性に劣り、コスト的にも不利である。
【0006】
尚、特許第2838657号公報に開示されるように、金型のエッジ部に開先を形成し、この開先に高硬度の溶加材を用いて肉盛り溶接を行い、この後グラインダにて研削する手段も考えられる。しかしながら、亜鉛合金に直接溶接できる材料としてはCu系かZn系しかない。一方、Cu系かZn系の材料で切り刃等として使用するのに十分な硬度を有するものは存在しない。そこで、本出願人は本出願と並行して、肉盛り溶接を下盛りと上盛りとに分け、下盛り用の溶加材として亜鉛合金に溶接可能な銅系材料を用い、上盛り用の溶加材として十分な硬度を有するとともに銅系材料(下盛り)に溶接可能なニッケル系材料を用いる提案を行っている。
【0007】
【発明が解決しようとする課題】
図5(a)は特許第2838657号公報に示された開先の形状であり、同図(b)は同じく従来の開先の形状を示すものである。
これら従来の開先形状であると、図6(a)に示すように母材の開先100に下盛り101を形成し、この上に上盛り102を形成する際に、下盛り101の幅が十分でないため上盛り102が母材に接触しやすい。そして、接触するとその部位にスパッタが飛び溶接不良となる。
【0008】
また、上盛り102を形成する際に多量のガスが発生するが、下盛り101の幅が十分でないとガスの逃げ場がなく、このガスを巻き込んでブローホールが形成されてしまう。
【0009】
尚、開先100自体を大きく取るようにすれば、下盛りを介してガス排出は行えるのであるが、図6(b)に示すように 開先100の中心部において、上盛り102が母材に接触しスパッタが発生する。これを防止するには、開先100に多数回の下盛り溶接を行わなければならず、溶接のコストが増加し、また溶接後のグラインダによる後加工も大変になる。
【0010】
【課題を解決するための手段】
上記課題を解決すべく本発明に係る金型は、アルミニウム・銅系亜鉛合金を母材とした上型及び下型からなり、これら上型及び下型のエッジ部に形成された開先に肉盛り溶接にて切り刃等の硬化部が形成され、更に、前記開先の形状は面取り部と延長部とを備え、また前記肉盛り溶接は開先全体を覆う銅系材料からなる下盛り溶接と、型本体に非接触で且つ下盛り溶接の上に形成されるニッケル系材料からなる上盛り溶接とで構成した。
【0011】
銅系材料であれば亜鉛合金とニッケル系材料の双方に対して溶接可能であり、銅系材料を下盛りとし、この下盛りの上にニッケル系材料を上盛りすることで、高硬度の肉盛りを行うことが可能になる。そして、特に開先の形状として面取り部と延長部とを備えた形状にすることでブローホール等の溶接欠陥のないものが得られる。
【0012】
前記亜鉛合金に溶接可能な銅系材料としては、純銅、アルミ青銅、シリコン青銅等が挙げられるが、溶接性ではシリコン青銅が最も好ましい結果が得られた。また、シリコン青銅の具体的な成分割合としては、Si(珪素)が1.0〜8.0wt%、Mn(マンガン)が0.3〜4.0wt%、Pb(鉛)が0.03〜4.5wt%、Al(アルミニウム)が0.03〜11.0wt%、Ni(ニッケル)が0.03〜7.0wt%、Fe(鉄)が0.03〜6.0wt%、Cu(銅)が残部であることが好ましい。
【0013】
Si(珪素)は脱酸に必要な元素であり、同時に硬度上昇元素でもある。Siが1.0wt%未満では脱酸不足でブローホールが発生しやすくなり、8.0wt%を超えると一相組織ではなく多くの相が析出し脆化する。
Mn(マンガン)は脱酸及び脱硫に必要な元素である。Mnが0.3wt%未満では添加の効果が現れず、4.0wt%を超えて添加してもそれ以上の効果は得られない。
Pb(鉛)は切削向上元素である。Pbが0.03wt%未満では添加の効果が殆どなく、4.5wt%を超えると過剰となり、溶接割れが発生しやすくなる。
Al(アルミニウム)は着色剤であり、Alが増加すると銅赤色から黄金色になり、また硬度上昇元素でもある。Alが0.03wt%未満では添加の効果が殆どなく、11.0wt%を超えると硬度伸び共に低下する。
Ni(ニッケル)は硬度上昇に有効な元素である。Niが0.03wt%未満では添加の効果が殆どなく、7.0wt%を超えると過剰になって硬度が低下する。
Fe(鉄)は結晶粒を微細化し硬度を増加する元素である。Feが0.03wt%未満では添加の効果が殆どなく、6.0wt%を超えても過剰になって添加の効果がない。
【0014】
また、上盛りとなるニッケル系材料の具体的な成分割合としては、B(ホウ素)が1.0〜6.0wt%、Cr(クロム)が5.0〜20.0wt%、Si(珪素)が1.0〜7.0wt%、Fe(鉄)が0.03〜4.0wt%、Cu(銅)が0.5〜6.0wt%、Ni(ニッケル)が残部とするのが好ましい。
【0015】
B(ホウ素)は結晶粒を微細化し硬度を高める元素である。Bが1.0wt%未満では添加の効果が極めて小さく、6.0wt%を超えると過剰になって溶接割れが発生しやすくなる。
Cr(クロム)は硬度上昇及び高温における耐酸化性を向上する元素である。Crが5.0wt%未満では添加の効果が小さく、20.0wt%を超えると過剰になって加工性が低下する。
Si(珪素)は脱酸性元素であり、湯流れを向上する元素である。Siが1.0wt%未満では湯流れに対する添加効果が小さく、7.0wt%を超えると過剰になって溶接割れが発生しやすくなる。
Fe(鉄)は結晶粒を微細化し硬度を増加する元素である。Feが0.03wt%未満では添加効果が殆どなく、4.0wt%を超えても過剰になって添加効果がない。
Cu(銅)は靱性向上に有効な元素である。Cuが0.5wt%未満では添加効果が殆どなく、6.0wt%を超えると過剰になって靱性が低下し溶接割れが発生しやすい。
【0016】
一方、本発明に係る金型の製造方法は、アルミニウム・銅系亜鉛合金を母材とした金型のエッジ部に面取り部と延長部とからなる開先を形成し、次いで前記延長部が上面となるようにして開先全体に銅系溶加材を用いて下盛り溶接を施し、この後下盛り溶接の上に型本体に非接触となるようにニッケル系溶加材を用いて上盛り溶接を施すとともに、この上盛り溶接は開先の延長部上に形成した下盛り溶接を介してガス排出を行いつつ行う構成とした。
このように下盛り溶接を介してガス排出を行いつつ上盛り溶接を行うことで、ブローホールの発生を抑制することができる。
【0017】
また、前記銅系溶加材としては、シリコン青銅からなるものが好ましく、このシリコン青銅の成分割合としては、Si(珪素)が1.0〜8.0wt%、Mn(マンガン)が0.3〜4.0wt%、Pb(鉛)が0.03〜4.5wt%、Al(アルミニウム)が0.03〜11.0wt%、Ni(ニッケル)が0.03〜7.0wt%、Fe(鉄)が0.03〜6.0wt%、Cu(銅)を残部としたものが好ましいのは前記した通りである。
【0018】
【発明の実施の形態】
以下に本発明の実施の形態を添付図面に基づいて説明する。図1(a)及び(b)は本発明を適用したトリミング金型装置の切断の前後を説明した図、図2(a)乃至(d)は同トリミング金型の切り刃の形成過程を説明した要部拡大図である。
【0019】
トリミング金型装置は上型1と下型2を備え、上型1は昇降プレート3に上端部が取り付けられ、下型2はベースプレート4上に固定される。上型1内には押えパッド5が昇降自在に支持され、この押えパッド5と昇降プレート3との間にはスプリング6が配置されている。
【0020】
押えパッド5には成形用の凹部5aが形成され、下型2にはワークWを載置する凸部2aが形成されている。また、上型1の下端内周部には切り刃7が設けられ、同じく下型2の上端外周部には切り刃8が設けられている。
【0021】
而して、図1(a)に示すように、ワークWを下型2の凸部2a上に載置した後、昇降プレート3とともに上型1及び押えパッド5を下降せしめる。すると押えパッド5の下端が上型1の下端よりも若干下に出ているので、押えパッド5によりワークWの周縁を下型2の上端外周部に押え付ける。この状態から更に上型1を下降せしめることで、図1(b)に示すように、切り刃7,8によってワークWの周縁を切断する。
【0022】
次に、切り刃の形成方法について図2に基づいて説明する。尚、切り刃7,8の何れも形成方法は同様であるので、下型2の切り刃8についてのみ説明する。
先ず、図2(a)に示すように、下型2の上端外周部に開先10をグラインダやNC工作機械等で形成する。この開先10は面取り部10aと延長部10bとからなり、面取り部10aの長さは例えば5mm、延長部10bの長さは8mm、深さは0.5mm程度とする。尚、面取り部10aはC面取りでもR面取りのいずれでもよい。
【0023】
次いで下型2を予熱して後述する下盛り溶接に備える。予熱温度は最大200℃とする。また予熱方法は下型2全体を熱してもよいが、バーナ等で開先10に沿った部分のみを局所的に加熱してもよい。
【0024】
この後、開先10に沿ってグラインダやNC工作機械等で、酸化被膜を削り取った後、図2(b)に示すように、開先10の上にTIG溶接にて下盛り11を形成する。下盛り溶接の条件は、シールドガスにヘリウムまたはアルゴンを用い、120〜150AMPの交流TIG溶接とし、下盛り溶接の溶加材として銅合金を用いる。本実施例では銅合金として、Mn(マンガン)0.84wt%、Si(珪素)3.7wt%、残部をCu(銅)としたものを用いた。
【0025】
ここで、交流TIG溶接としたことで、酸化膜を除去するクリーニング作用が働き、図3(a)、(b)に示すように、下盛りの母材への溶け込みを浅くすることができる。そして、母材への溶け込みを浅くすることで、母材を構成する亜鉛合金成分が下盛りの表面あるいは表面近くまで巻き上がるのを防止することができる。因みに亜鉛合金成分が下盛り中に巻き上がっていると、後述する上盛り溶接の際にスパッタが発生する。
【0026】
銅系材料としては上記の組成のものに限らず、前記した範囲、即ち、Si(珪素)が1.0〜8.0wt%、Mn(マンガン)が0.3〜4.0wt%、Pb(鉛)が0.03〜4.5wt%、Al(アルミニウム)が0.03〜11.0wt%、Ni(ニッケル)が0.03〜7.0wt%、Fe(鉄)が0.03〜6.0wt%、Cu(銅)が残部としたものが好ましい。
【0027】
以上の手順で、開先10の面取り部10a及び延長部10bを覆うように下盛り11を形成したならば、下盛り11の厚みをグラインダやNC工作機械等にて2mm程度に調整する。
【0028】
次いで、前記同様に少なくとも下盛り11及びその周縁を最大250℃まで加熱し、再びグラインダを用いて酸化膜を除去した後、図2(c)に示すように、下盛り11の上にTIG溶接にて上盛り12を形成する。この上盛り12は母材に接触しないように形成する。
【0029】
また、下盛り11は前記延長部10b上まで形成され、この延長部10b上まで上盛り12は形成されていないので、延長部10b上には下盛り11のみが形成され、この下盛り11は上盛り溶接の熱によって溶融状態に近くなっている。一方、上盛り溶接の際にはガスが発生する。従来であれば、このガスの逃げ場がないのであるが、本発明では延長部10bがあるので、上盛り溶接の際に発生したガスは下盛り11を通り延長部10b上から外部に排出される。
【0030】
上盛り溶接の条件は、シールドガスにヘリウムまたはアルゴンを用い、130AMPの直流TIG溶接とし、上盛り溶接の溶加材としてニッケル合金を用いる。本実施例ではニッケル合金としてB(ホウ素)2.3wt%、Si3.2wt%、残部をNi(ニッケル)としたものを用いた。
【0031】
ニッケル合金としては上記の組成のものに限らず、前記した範囲、即ち、B(ホウ素)が1.0〜6.0wt%、Cr(クロム)が5.0〜20.0wt%、Si(珪素)が1.0〜7.0wt%、Fe(鉄)が0.03〜4.0wt%、Cu(銅)が0.5〜6.0wt%、Ni(ニッケル)が残部としたものが好ましい。
【0032】
ここで、上盛り溶接を直流TIG溶接としたことで、図3(a)、(c)に示すように、上盛り12の下盛り11への溶け込みを深くすることができ、刃先の剥離強度を高めることができる。
【0033】
上盛り12を形成した後、グラインダやNC工作機械等で加工することで、図2(d)に示すように、切り刃8を得る。この切り刃8は数万ショットのトリミング成形を行うことができた。
【0034】
図4は開先形状の別実施例を示す断面図であり、この実施例にあっては上面部に沿った延長部10bだけでなく、立壁に沿った延長部10cを設けている。このように面取り部10aを挟んで両側に延長部を設けることで、切り刃の剥離強度が更に向上する。
【0035】
尚、図示例ではトリミング金型装置について説明したが、プレス金型についても本発明は適用でき、また、切り刃以外の硬度が要求される部分に本発明を適用することが可能である。
【0036】
【発明の効果】
以上に説明したように本発明によれば、切り刃等を肉盛り溶接する開先の形状として、面取り部と延長部とを備えた形状にしたので、金型母材を亜鉛合金とし、且つ肉盛りを銅系材料からなる下盛り溶接とニッケル系材料からなる上盛り溶接としても、上盛り溶接の際に発生するガスを下盛りを介して排出することができるので、ブローホール等の溶接欠陥が生じにくく、剥離強度に優れた切り刃などを肉盛り溶接で形成することができる。
【図面の簡単な説明】
【図1】(a)及び(b)は本発明を適用したトリミング金型装置の切断の前後を説明した図。
【図2】(a)乃至(d)は同トリミング金型の切り刃の形成過程を説明した要部拡大図。
【図3】(a)は切り刃の部分の金属組織を示す写真(1倍)、(b)は(a)のB部を拡大(100倍)した写真、(c)は(a)のC部を拡大(100倍)した写真。
【図4】開先形状の別実施例を示す断面図。
【図5】(a)及び(b)は従来の開先の形状を示す図。
【図6】(a)及び(b)は従来の問題点を指摘した図。
【符号の説明】
1…上型、2…下型、2a…凸部、3…昇降プレート、4…ベースプレート、5…押えパッド、5a…凹部、6…スプリング、7,8…切り刃、10…開先、10a…面取り部、10b,10c…延長部、11…下盛り、12…上盛り。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mold such as a press mold for bending a blank material into a desired shape or a trimming mold for drawing a blank material and cutting the periphery thereof, and a method for manufacturing such a mold.
[0002]
[Prior art]
The body of an automobile can be obtained by press molding, drawing or trimming a blank material. A mold for performing such molding is generally made of cast iron or cast steel and has high rigidity and can withstand hundreds of thousands of shots. However, the cost for manufacturing the mold increases.
[0003]
Therefore, as a mold suitable for high-mix low-volume production, a mold using a zinc alloy as a base material is disclosed in Japanese Patent Laid-Open Nos. 5-84591, 5-195121, and 5-208296. Yes.
[0004]
That is, Japanese Patent Laid-Open No. 5-84591 discloses that a zinc alloy containing magnesium and aluminum and having a Vickers hardness of 150 or more is build-up welded to a zinc alloy containing aluminum and copper.
Japanese Laid-Open Patent Publication No. 5-195121 proposes a zinc alloy for press dies in which aluminum is 9.5 to 30 wt%, copper is 6.0 to 20 wt%, magnesium is 0.01 to 0.2 wt%, and the balance is zinc. Has been.
Japanese Patent Laid-Open No. 5-208296 proposes the use of a zinc alloy as a base material for a plastic mold, and an aluminum alloy containing Si or the like as a filler material for repairing the mold.
[0005]
The zinc alloy is excellent in workability and the like, but is soft, so that a dissimilar metal must be provided in a specific part in order to provide a cutting blade or the like. Although plating, vapor deposition, sputtering, etc. can be considered as this means, the thickness of the formed dissimilar metal film is thin and inferior in durability, which is disadvantageous in terms of cost.
[0006]
In addition, as disclosed in Japanese Patent No. 2838657, a groove is formed at the edge of the mold, and build-up welding is performed on the groove using a high-hardness filler metal, and thereafter a grinder is used. Means for grinding are also conceivable. However, only Cu-based or Zn-based materials can be directly welded to the zinc alloy. On the other hand, there is no Cu-based or Zn-based material that has sufficient hardness to be used as a cutting blade or the like. Therefore, in parallel with the present application, the present applicant divides overlay welding into a lower overlay and an upper overlay, and uses a copper-based material that can be welded to a zinc alloy as a filler material for the overlay, A proposal has been made to use a nickel-based material that has sufficient hardness as a filler material and can be welded to a copper-based material (underlay).
[0007]
[Problems to be solved by the invention]
FIG. 5 (a) shows the shape of a groove shown in Japanese Patent No. 2838657, and FIG. 5 (b) shows the shape of a conventional groove.
In the case of these conventional groove shapes, as shown in FIG. 6 (a), when forming a bottom 101 on a base material groove 100 and forming a top 102 thereon, the width of the bottom 101 is formed. Is not sufficient, the top 102 is likely to contact the base material. And if it contacts, a sputter | spatter will fly to the site | part and will become poor welding.
[0008]
Further, a large amount of gas is generated when the upper scale 102 is formed. However, if the width of the lower scale 101 is not sufficient, there is no escape space for the gas, and this gas is entrained to form a blow hole.
[0009]
Note that if the groove 100 itself is made large, gas can be discharged through the bottom, but as shown in FIG. 6 (b), the top 102 is the base material at the center of the groove 100. Sputtering occurs on contact with. In order to prevent this, it is necessary to perform a number of underlay weldings on the groove 100, which increases the cost of welding and makes post-processing by a grinder after welding difficult.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the mold according to the present invention comprises an upper mold and a lower mold using an aluminum / copper-based zinc alloy as a base material, and a metal is formed in the groove formed at the edge portion of the upper mold and the lower mold. A hardened portion such as a cutting blade is formed by prime welding, and the shape of the groove further includes a chamfered portion and an extension portion, and the buildup welding is underlay welding made of a copper-based material covering the entire groove. And overlay welding made of a nickel-based material formed on the bottom body welding without contact with the mold body.
[0011]
Copper-based materials can be welded to both zinc alloys and nickel-based materials, and copper-based materials are used as a base, and nickel-based materials are used on top of this base to provide high-hardness meat. It becomes possible to perform serving. And especially a thing without a welding defect, such as a blow hole, is obtained by making it the shape provided with the chamfering part and the extension part as a shape of a groove | channel.
[0012]
Examples of the copper-based material that can be welded to the zinc alloy include pure copper, aluminum bronze, silicon bronze, etc., but silicon bronze is most preferable in terms of weldability. The specific component ratio of silicon bronze is 1.0 to 8.0 wt% for Si (silicon), 0.3 to 4.0 wt% for Mn (manganese), 0.03 to 4.5 wt% for Pb (lead), and Al (aluminum). Is 0.03 to 11.0 wt%, Ni (nickel) is 0.03 to 7.0 wt%, Fe (iron) is 0.03 to 6.0 wt%, and Cu (copper) is the balance.
[0013]
Si (silicon) is an element necessary for deoxidation, and at the same time is an element for increasing hardness. If Si is less than 1.0 wt%, blowholes are likely to occur due to insufficient deoxidation, and if it exceeds 8.0 wt%, many phases are precipitated and embrittled instead of a single phase structure.
Mn (manganese) is an element necessary for deoxidation and desulfurization. If Mn is less than 0.3 wt%, the effect of addition does not appear, and even if it exceeds 4.0 wt%, no further effect is obtained.
Pb (lead) is a cutting improving element. If Pb is less than 0.03 wt%, there is almost no effect of addition, and if it exceeds 4.5 wt%, it becomes excessive and weld cracks are likely to occur.
Al (aluminum) is a colorant, and when Al increases, it changes from copper red to golden, and is also a hardness increasing element. When Al is less than 0.03 wt%, there is almost no effect of addition, and when it exceeds 11.0 wt%, both the hardness elongation decreases.
Ni (nickel) is an element effective for increasing the hardness. If Ni is less than 0.03 wt%, there is almost no effect of addition, and if it exceeds 7.0 wt%, it becomes excessive and the hardness decreases.
Fe (iron) is an element that refines crystal grains and increases hardness. When Fe is less than 0.03 wt%, there is almost no effect of addition, and even if it exceeds 6.0 wt%, it becomes excessive and has no effect of addition.
[0014]
In addition, specific component ratios of the nickel-based material as the overlay are 1.0 to 6.0 wt% for B (boron), 5.0 to 20.0 wt% for Cr (chromium), and 1.0 to 7.0 wt% for Si (silicon). Fe (iron) is preferably 0.03 to 4.0 wt%, Cu (copper) is 0.5 to 6.0 wt%, and Ni (nickel) is the balance.
[0015]
B (boron) is an element that refines crystal grains and increases hardness. If B is less than 1.0 wt%, the effect of addition is extremely small, and if it exceeds 6.0 wt%, it becomes excessive and weld cracking tends to occur.
Cr (chromium) is an element that increases hardness and improves oxidation resistance at high temperatures. If Cr is less than 5.0 wt%, the effect of addition is small, and if it exceeds 20.0 wt%, it becomes excessive and the workability decreases.
Si (silicon) is a deacidifying element and is an element that improves the flow of hot water. If Si is less than 1.0 wt%, the effect of addition to the molten metal flow is small, and if it exceeds 7.0 wt%, it becomes excessive and weld cracking tends to occur.
Fe (iron) is an element that refines crystal grains and increases hardness. When Fe is less than 0.03 wt%, there is almost no effect of addition, and even if it exceeds 4.0 wt%, it becomes excessive and there is no effect of addition.
Cu (copper) is an element effective for improving toughness. If Cu is less than 0.5 wt%, there is almost no effect of addition, and if it exceeds 6.0 wt%, it becomes excessive and the toughness is lowered and weld cracking is likely to occur.
[0016]
On the other hand, in the mold manufacturing method according to the present invention, a groove composed of a chamfered portion and an extended portion is formed on the edge portion of a mold using an aluminum / copper-based zinc alloy as a base material, and then the extended portion is formed on the upper surface. In this way, the entire groove is welded using a copper-based filler metal, and then the upper part is welded using a nickel-based filler material on the lower weld so as not to contact the mold body. In addition to performing welding, this overlay welding is performed while discharging gas through the overlay welding formed on the extension of the groove.
In this manner, by performing the overlay welding while discharging the gas through the overlay welding, it is possible to suppress the occurrence of blowholes.
[0017]
Moreover, as said copper-type filler material, what consists of silicon bronze is preferable, As a component ratio of this silicon bronze, Si (silicon) is 1.0-8.0 wt%, Mn (manganese) is 0.3-4.0 wt%, Pb (lead) is 0.03 to 4.5 wt%, Al (aluminum) is 0.03 to 11.0 wt%, Ni (nickel) is 0.03 to 7.0 wt%, Fe (iron) is 0.03 to 6.0 wt%, and Cu (copper) is the balance The above is preferable as described above.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIGS. 1A and 1B are diagrams illustrating before and after cutting of a trimming mold apparatus to which the present invention is applied, and FIGS. 2A to 2D illustrate a process of forming a cutting blade of the trimming mold. FIG.
[0019]
The trimming mold apparatus includes an upper mold 1 and a lower mold 2, and the upper mold 1 has an upper end attached to a lift plate 3, and the lower mold 2 is fixed on a base plate 4. A presser pad 5 is supported in the upper mold 1 so as to be movable up and down, and a spring 6 is disposed between the presser pad 5 and the lift plate 3.
[0020]
The presser pad 5 is formed with a concave portion 5a for molding, and the lower mold 2 is formed with a convex portion 2a on which the workpiece W is placed. A cutting blade 7 is provided on the inner peripheral portion of the lower end of the upper die 1, and a cutting blade 8 is provided on the outer peripheral portion of the upper die 2.
[0021]
Thus, as shown in FIG. 1A, after placing the workpiece W on the convex portion 2 a of the lower mold 2, the upper mold 1 and the press pad 5 are lowered together with the lifting plate 3. Then, the lower end of the presser pad 5 protrudes slightly below the lower end of the upper mold 1, and the work pad W presses the periphery of the work W against the upper end outer peripheral portion of the lower mold 2. By further lowering the upper die 1 from this state, the peripheral edge of the workpiece W is cut by the cutting blades 7 and 8 as shown in FIG.
[0022]
Next, a method for forming a cutting blade will be described with reference to FIG. In addition, since both the cutting blades 7 and 8 are formed in the same manner, only the cutting blade 8 of the lower mold 2 will be described.
First, as shown in FIG. 2 (a), a groove 10 is formed on the outer periphery of the upper end of the lower mold 2 by a grinder, an NC machine tool or the like. The groove 10 includes a chamfered portion 10a and an extended portion 10b. The chamfered portion 10a has a length of, for example, 5 mm, the extended portion 10b has a length of 8 mm, and a depth of about 0.5 mm. The chamfered portion 10a may be either C chamfered or R chamfered.
[0023]
Next, the lower die 2 is preheated to prepare for underlay welding described later. The preheating temperature is a maximum of 200 ° C. In addition, the preheating method may heat the entire lower die 2, but only a portion along the groove 10 may be locally heated with a burner or the like.
[0024]
Thereafter, the oxide film is scraped off along the groove 10 by a grinder or an NC machine tool, and then a scale 11 is formed on the groove 10 by TIG welding as shown in FIG. . The conditions of underlay welding are helium or argon as the shielding gas, AC TIG welding of 120 to 150 AMP, and a copper alloy as a filler material for underlay welding. In this example, a copper alloy having Mn (manganese) 0.84 wt%, Si (silicon) 3.7 wt%, and the balance being Cu (copper) was used.
[0025]
Here, by using AC TIG welding, a cleaning action for removing the oxide film works, and as shown in FIGS. 3A and 3B, it is possible to shallowly melt the base metal. And by making the penetration into the base material shallow, it is possible to prevent the zinc alloy component constituting the base material from being rolled up to the surface of the underlay or near the surface. Incidentally, when the zinc alloy component is rolled up during the overlay, spatter is generated during the overlay welding described later.
[0026]
The copper-based material is not limited to the above-mentioned composition, but the above-described ranges, that is, Si (silicon) is 1.0 to 8.0 wt%, Mn (manganese) is 0.3 to 4.0 wt%, and Pb (lead) is 0.03 to 4.5. Preferably, wt%, Al (aluminum) is 0.03 to 11.0 wt%, Ni (nickel) is 0.03 to 7.0 wt%, Fe (iron) is 0.03 to 6.0 wt%, and Cu (copper) is the balance.
[0027]
If the scale 11 is formed so as to cover the chamfered portion 10a and the extended portion 10b of the groove 10 by the above procedure, the thickness of the scale 11 is adjusted to about 2 mm with a grinder or an NC machine tool.
[0028]
Next, at least the bottom 11 and its peripheral edge are heated to a maximum of 250 ° C. in the same manner as described above, and after removing the oxide film again using a grinder, TIG welding is performed on the bottom 11 as shown in FIG. A top 12 is formed at The upper scale 12 is formed so as not to contact the base material.
[0029]
Further, since the bottom 11 is formed up to the extension 10b and the top 12 is not formed up to the extension 10b, only the bottom 11 is formed on the extension 10b. It is close to the molten state due to the heat of overlay welding. On the other hand, gas is generated during overlay welding. Conventionally, there is no escape place for this gas. However, in the present invention, since the extension portion 10b is provided, the gas generated during the overlay welding is discharged from the extension portion 10b to the outside through the bottom overlay 11. .
[0030]
The conditions for the overlay welding are helium or argon as the shield gas, 130 AMP DC TIG welding, and nickel alloy as the filler material for overlay welding. In this embodiment, a nickel alloy having B (boron) 2.3 wt%, Si 3.2 wt%, and the balance Ni (nickel) was used.
[0031]
The nickel alloy is not limited to the above composition, but the above-described ranges, that is, B (boron) is 1.0 to 6.0 wt%, Cr (chromium) is 5.0 to 20.0 wt%, and Si (silicon) is 1.0 to 7.0 wt%. %, Fe (iron) is 0.03 to 4.0 wt%, Cu (copper) is 0.5 to 6.0 wt%, and Ni (nickel) is the balance.
[0032]
Here, since the overlay welding is DC TIG welding, as shown in FIGS. 3A and 3C, the penetration into the bottom 11 of the overlay 12 can be deepened, and the peel strength of the blade edge can be increased. Can be increased.
[0033]
After forming the upper scale 12, the cutting blade 8 is obtained as shown in FIG. 2D by processing with a grinder, NC machine tool, or the like. The cutting blade 8 was able to perform trimming molding of tens of thousands of shots.
[0034]
FIG. 4 is a cross-sectional view showing another embodiment of the groove shape. In this embodiment, not only the extended portion 10b along the upper surface portion but also the extended portion 10c along the standing wall is provided. Thus, the peeling strength of a cutting blade further improves by providing an extension part on both sides on both sides of the chamfered part 10a.
[0035]
In the illustrated example, the trimming mold apparatus has been described. However, the present invention can also be applied to a press mold, and the present invention can be applied to a portion requiring hardness other than the cutting blade.
[0036]
【The invention's effect】
As described above, according to the present invention, the shape of the groove for build-up welding a cutting blade or the like is a shape having a chamfered portion and an extended portion, so that the mold base material is a zinc alloy, and Even if the build-up is made of a copper-based material and a nickel-based material, the gas generated during the build-up welding can be discharged through the build-up, so that welding such as blow holes is possible. It is possible to form a cutting blade or the like that hardly causes defects and has excellent peel strength by overlay welding.
[Brief description of the drawings]
FIGS. 1A and 1B are diagrams illustrating before and after cutting of a trimming mold apparatus to which the present invention is applied.
FIGS. 2A to 2D are enlarged views of main parts illustrating a process of forming a cutting blade of the trimming mold.
FIGS. 3A and 3B are photographs (1 ×) showing the metal structure of the cutting blade, FIG. 3B is an enlarged (100 ×) portion B of FIG. 3A, and FIG. The photograph which expanded C part (100 times).
FIG. 4 is a cross-sectional view showing another embodiment of a groove shape.
FIGS. 5A and 5B are views showing the shape of a conventional groove. FIG.
FIGS. 6A and 6B are diagrams pointing out conventional problems.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Upper mold | type, 2 ... Lower mold | type, 2a ... Convex part, 3 ... Elevating plate, 4 ... Base plate, 5 ... Pressing pad, 5a ... Recessed part, 6 ... Spring, 7, 8 ... Cutting blade, 10 ... Groove, 10a ... chamfered portion, 10b, 10c ... extended portion, 11 ... bottom pile, 12 ... top pile

Claims (2)

アルミニウム・銅系亜鉛合金を母材とした上型及び下型からなり、これら上型及び下型のエッジ部に形成された開先に肉盛り溶接にて切り刃等の硬化部が形成された金型において、前記開先の形状は面取り部とこの面取り部につながる平坦な延長部とを備え、開先の面取り部と延長部は下盛り溶接部で覆われ、また前記肉盛り溶接は開先全体を覆うSi(珪素)が1.0〜8.0wt%、Mn(マンガン)が0.3〜4.0wt%、Pb(鉛)が0.03〜4.5wt%、Al(アルミニウム)が0.03〜11.0wt%、Ni(ニッケル)が0.03〜7.0wt%、Fe(鉄)が0.03〜6.0wt%、Cu(銅)を残部とする銅系材料からなる下盛り溶接部と、前記延長部上に形成された下盛り溶接部上を除いて下盛り溶接部上に形成されるB(ホウ素)が1.0wt%、Cr(クロム)が5.0〜20.0wt%、Si(珪素)が1.0〜7.0wt%、Fe(鉄)が0.03〜4.0wt%、Cu(銅)が0.5〜6.0wt%、Ni(ニッケル)を残部とするニッケル系材料からなる上盛り溶接にて構成されることを特徴とする金型。It consists of an upper die and a lower die made of an aluminum / copper zinc alloy as a base material, and a hardened portion such as a cutting blade is formed by build-up welding on the groove formed in the edge portion of the upper die and the lower die. In the mold, the shape of the groove includes a chamfered portion and a flat extension portion connected to the chamfered portion, the chamfered portion and the extension portion of the groove are covered with a lower welded portion, and the overlay welding is opened. Si (silicon) covering the entire tip is 1.0 to 8.0 wt%, Mn (manganese) is 0.3 to 4.0 wt%, Pb (lead) is 0.03 to 4.5 wt%, Al (aluminum) 0.03 to 11.0 wt%, Ni (nickel) 0.03 to 7.0 wt%, Fe (iron) 0.03 to 6.0 wt%, and Cu (copper) as the balance shape on the lower layer welding portion except a lower prime weld the formed on the extended portion the lower prime welds above comprising B (boron) is 1.0 wt%, Cr (chromium) is 5.0-20.0 wt%, Si (silicon) is 1.0-7.0 wt%, Fe (iron) is 0.03-4 .0wt%, Cu (copper) 0.5~6.0wt%, mold, characterized in that it is composed of the upper overlay clad part made of a nickel-based material with the remainder of Ni (nickel). アルミニウム・銅系亜鉛合金を母材とした金型のエッジ部に面取り部とこの面取り部につながる平坦な延長部とからなる開先を形成し、次いで前記延長部が上面となるようにして開先全体にSi(珪素)が1.0〜8.0wt%、Mn(マンガン)が0.3〜4.0wt%、Pb(鉛)が0.03〜4.5wt%、Al(アルミニウム)が0.03〜11.0wt%、Ni(ニッケル)が0.03〜7.0wt%、Fe(鉄)が0.03〜6.0wt%、Cu(銅)を残部とする銅系溶加材を用いて下盛り溶接を施し、この後前記延長部上に形成された下盛り溶接部上を除いた下盛り溶接部上に、B(ホウ素)が1.0wt%、Cr(クロム)が5.0〜20.0wt%、Si(珪素)が1.0〜7.0wt%、Fe(鉄)が0.03〜4.0wt%、Cu(銅)が0.5〜6.0wt%、Ni(ニッケル)を残部とするニッケル系溶加材を用いて上盛り溶接を施すことを特徴とする金型の製造方法。A groove consisting of a chamfered part and a flat extension connected to the chamfered part is formed at the edge part of a mold made of aluminum / copper zinc alloy as a base material, and then opened so that the extension part becomes the upper surface. Si (silicon) 1.0-8.0 wt%, Mn (manganese) 0.3-4.0 wt%, Pb (lead) 0.03-4.5 wt%, Al (aluminum) Copper filler metal with 0.03 to 11.0 wt%, Ni (nickel) 0.03 to 7.0 wt%, Fe (iron) 0.03 to 6.0 wt%, and Cu (copper) as the balance Then, on the lower welded portion excluding the upper welded portion formed on the extension portion, B (boron) is 1.0 wt% and Cr (chromium) is 5%. 0.0-20.0 wt%, Si (silicon) 1.0-7.0 wt%, Fe (iron) 0.03-4.0 w %, Cu (copper) 0.5~6.0wt%, the production method of the mold, characterized in that applying on layer welding using a nickel-based filler metal to balance the Ni (nickel).
JP2000043714A 2000-02-22 2000-02-22 Mold and mold manufacturing method Expired - Fee Related JP4458603B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000043714A JP4458603B2 (en) 2000-02-22 2000-02-22 Mold and mold manufacturing method
CA 2336558 CA2336558C (en) 2000-02-22 2001-02-14 Die assembly and method of making die assembly
GB0104431A GB2359505B (en) 2000-02-22 2001-02-22 Die assembly and method of manufacturing die assembly
CN01117237A CN1127385C (en) 2000-02-22 2001-02-22 Moulds and methods for manufacture thereof
BR0100788A BR0100788A (en) 2000-02-22 2001-02-22 Mold set and mold set manufacturing method
US09/789,502 US6397651B2 (en) 2000-02-22 2001-02-22 Die assembly and method of manufacturing die assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000043714A JP4458603B2 (en) 2000-02-22 2000-02-22 Mold and mold manufacturing method

Publications (2)

Publication Number Publication Date
JP2001232493A JP2001232493A (en) 2001-08-28
JP4458603B2 true JP4458603B2 (en) 2010-04-28

Family

ID=18566583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000043714A Expired - Fee Related JP4458603B2 (en) 2000-02-22 2000-02-22 Mold and mold manufacturing method

Country Status (1)

Country Link
JP (1) JP4458603B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721185B2 (en) * 2005-12-16 2011-07-13 本田技研工業株式会社 Mold repair paste
WO2007069409A1 (en) * 2005-12-16 2007-06-21 Honda Motor Co., Ltd. Method of repairing metal mold and paste agent for metal mold repair
CN102284768B (en) * 2011-07-07 2013-05-01 泸州华西机械有限责任公司 Process for surfacing welding silicon-copper alloy on carbon steel and piston-cylinder unit of surfacing welding support ring
CN107244009B (en) * 2017-07-26 2022-12-06 江苏骏伟精密部件科技股份有限公司 Hardware bending optimization embedding part in plastic part

Also Published As

Publication number Publication date
JP2001232493A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
US6397651B2 (en) Die assembly and method of manufacturing die assembly
JP3635227B2 (en) Golf club
JP7398381B2 (en) How to make welded metal blanks
JP6346386B2 (en) Sputtering target manufacturing method and sputtering target
JP4458603B2 (en) Mold and mold manufacturing method
CN111246962A (en) Method for producing a pre-coated steel sheet and related sheet
JP7047387B2 (en) Manufacturing methods for steel sheets, butt welded members, hot pressed molded products, steel pipes, hollow hardened products, and steel plates.
JP4517099B2 (en) Mold
JP6360188B2 (en) Manufacturing method of machining tool spare material and corresponding spare material
CN111278595B (en) Method for producing pre-coated steel sheets and related sheet
JP4033597B2 (en) Mold manufacturing method
JP2019089094A (en) Die repair weld material
JP4458604B2 (en) Mold and mold manufacturing method
US20170021459A1 (en) Method for producing a preliminary material for a machining tool, and corresponding preliminary material
JP3761733B2 (en) Clad mold for hot pressing and manufacturing method thereof
JP2005021899A (en) Metal clad plate and its producing method
JP2001232466A (en) Manufacture of die
JP6193651B2 (en) Resistance welding electrode
JP4646498B2 (en) Punch for press mold and manufacturing method thereof
JP2896489B2 (en) Manufacturing method of titanium clad steel blade
CN110125510B (en) Resistance brazing connection method for preparing long-size hard alloy
JP2004188482A (en) Brazing method for composite brazing material having a plurality of kinds of metallic layers and brazed product
JP2601392B2 (en) Welding material for hardfacing on cast iron
JP2006035412A (en) Slitting and trimming tool and its manufacturing method
JPH0675782B2 (en) How to repair tongue punches

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090604

A131 Notification of reasons for refusal

Effective date: 20091117

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20100209

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130219

LAPS Cancellation because of no payment of annual fees