JP4457820B2 - High corrosion resistance surface-treated steel sheet and method for producing the same - Google Patents
High corrosion resistance surface-treated steel sheet and method for producing the same Download PDFInfo
- Publication number
- JP4457820B2 JP4457820B2 JP2004269043A JP2004269043A JP4457820B2 JP 4457820 B2 JP4457820 B2 JP 4457820B2 JP 2004269043 A JP2004269043 A JP 2004269043A JP 2004269043 A JP2004269043 A JP 2004269043A JP 4457820 B2 JP4457820 B2 JP 4457820B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- film
- parts
- epoxy resin
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2222/00—Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
- C23C2222/20—Use of solutions containing silanes
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
- Chemical Treatment Of Metals (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、自動車、家電、建材用途に最適な表面処理鋼板であって、特に表面処理鋼板の製造時および表面処理皮膜中にクロムを全く含まない環境適応型表面処理鋼板及びその製造方法に関するものである。 The present invention relates to a surface-treated steel sheet that is most suitable for use in automobiles, home appliances, and building materials, and particularly relates to an environment-adaptive surface-treated steel sheet that does not contain chromium at all during the production of the surface-treated steel sheet and the surface-treated film, and a method for producing the same It is.
家電製品用鋼板、建材用鋼板、自動車用鋼板には、従来から亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に、耐食性(耐白錆性、耐赤錆性)を向上させる目的でクロム酸、重クロム酸またはその塩類を主要成分とした処理液によるクロメート処理が施された鋼板が幅広く用いられている。このクロメート処理は耐食性に優れ且つ比較的簡単に行うことができる経済的な処理方法である。 Conventionally, steel sheets for home appliances, steel sheets for building materials, and steel sheets for automobiles have been used for the purpose of improving corrosion resistance (white rust resistance, red rust resistance) on the surface of galvanized steel sheets or aluminum galvanized steel sheets. Steel plates subjected to chromate treatment with a treatment liquid containing chromic acid or a salt thereof as a main component are widely used. This chromate treatment is an economical treatment method that has excellent corrosion resistance and can be performed relatively easily.
クロメート処理は公害規制物質である6価クロムを使用するものであるが、この6価クロムは処理工程においてクローズドシステムで処理され、完全に還元・回収されて自然界には放出されていないこと、また、有機皮膜によるシーリング作用によってクロメート皮膜中からのクロム溶出もほぼゼロにできることから、実質的には6価クロムによって環境や人体が汚染されることはない。しかしながら、最近の地球環境問題から、6価クロムを含めた重金属の使用を自主的に削減しようとする動きが高まりつつある。また、廃棄製品のシュレッダーダストを投棄した場合に環境を汚染しないようにするため、製品中にできるだけ重金属を含ませない若しくはこれを削減しようとする動きも始まっている。 Chromate treatment uses hexavalent chromium, a pollution-controlling substance, but this hexavalent chromium is treated in a closed system in the treatment process, completely reduced and recovered, and not released into nature. Since the elution of chromium from the chromate film can be made almost zero by the sealing action of the organic film, the environment and the human body are not substantially contaminated by hexavalent chromium. However, due to recent global environmental problems, there is a growing trend to voluntarily reduce the use of heavy metals including hexavalent chromium. In addition, in order not to pollute the environment when the shredder dust of discarded products is dumped, there has been a movement to minimize or reduce the amount of heavy metals contained in the product.
このようなことから、亜鉛系めっき鋼板の白錆の発生を防止するために、クロメート処理によらない処理技術、所謂クロムフリー技術が数多く提案されている。例えば、無機化合物、有機化合物、有機高分子材料、あるいはこれらを組み合わせた溶液を用い、浸漬、塗布、電解処理などの方法により薄膜を生成させる方法がある。 For this reason, in order to prevent the occurrence of white rust in galvanized steel sheets, many treatment techniques that do not rely on chromate treatment, so-called chromium-free techniques, have been proposed. For example, there is a method of forming a thin film by a method such as immersion, coating, or electrolytic treatment using an inorganic compound, an organic compound, an organic polymer material, or a solution combining these.
具体的には、従来技術として、以下のような方法を挙げることができる。
(1) タンニン酸などの多価フェノールカルボン酸とシランカップリング剤を配合した処理液に浸漬しまたは処理液を塗布することにより皮膜を形成する方法(例えば、特許文献1、特許文献2など)
(2) 有機樹脂にタンニン酸などの多価フェノールカルボン酸またはリン酸化合物を配合した処理液を用いて皮膜を形成する方法(例えば、特許文献3〜特許文献6など)
(3) 有機樹脂とシランカップリング剤を配合した皮膜を塗布する方法(例えば、特許文献7〜特許文献13など)
Specifically, the following methods can be listed as conventional techniques.
(1) A method of forming a film by immersing or applying a treatment liquid in a treatment liquid containing a polyhydric phenol carboxylic acid such as tannic acid and a silane coupling agent (for example, Patent Document 1, Patent Document 2, etc.)
(2) A method of forming a film using a treatment liquid in which a polyhydric phenol carboxylic acid such as tannic acid or a phosphoric acid compound is blended with an organic resin (for example, Patent Document 3 to Patent Document 6)
(3) A method of applying a film containing an organic resin and a silane coupling agent (for example, Patent Document 7 to Patent Document 13)
上記(1)の方法としては、多価フェノールカルボン酸とシランカップリング剤、さらには金属イオンを配合した水溶液で処理する方法があり、その一つとして特許文献1などに示される方法が挙げられる。しかし、この処理方法では良好な密着性は得られるものの、十分な耐食性が得られないという欠点がある。
上記(2)の方法としては、例えば、特許文献3に多価フェノールカルボン酸、有機樹脂および金属イオンを配合した処理液で処理を行う方法が開示されている。また、特許文献4には有機樹脂とリン酸化合物を添加した処理液に浸漬しまたは処理液を塗布した後、乾燥する方法が開示されている。しかし、これらの処理液によって形成される保護皮膜は耐食性の改善にはある程度は寄与するものの、クロメート処理を施した場合のような高度の耐食性は得ることができない。
As the method of (1), there is a method of treating with an aqueous solution in which a polyhydric phenol carboxylic acid and a silane coupling agent, and further metal ions are blended. . However, although this treatment method can provide good adhesion, it has a drawback that sufficient corrosion resistance cannot be obtained.
As the above method (2), for example, Patent Document 3 discloses a method in which treatment is performed with a treatment liquid in which polyhydric phenolcarboxylic acid, an organic resin, and metal ions are blended. Patent Document 4 discloses a method of immersing in a treatment liquid to which an organic resin and a phosphoric acid compound are added or applying a treatment liquid and then drying. However, although the protective film formed by these treatment liquids contributes to a certain degree to the improvement of the corrosion resistance, a high degree of corrosion resistance as in the case of the chromate treatment cannot be obtained.
また、上記(3)の方法としては、例えば、特許文献8や特許文献9に有機樹脂とシランカップリング剤、さらにはチオカルボニル化合物、リン酸化合物、バナジウム化合物を含む皮膜を有するものが開示されているが、有機樹脂がポリウレタンやアクリルオレフィン樹脂であることなどから耐食性は十分ではない。また、特許文献11には酸変性エポキシ樹脂による皮膜を有するものが、特許文献10には水酸基・カルボキシル基・グリシジル基・リン酸基含有モノマーを共重合成分として含有する樹脂にシランカップリング剤、リン酸化合物を配合した皮膜を有するものが、それぞれ開示されているが、これらについても耐食性は十分ではない。特許文献7にはポリビニルフェノール誘導体とシランカップリング剤、リン酸などのエッチング剤を配合した皮膜を有するものが開示されているが、これも十分な耐食性は得られない。特許文献12には有機樹脂にエッチング剤を配合した皮膜を有するものが、特許文献13には有機樹脂にシランカップリング剤を配合した皮膜を有するものが、それぞれ開示されているが、具体的な記載が無く耐食性も不十分である。
したがって本発明の目的は、このような従来技術の課題を解決し、皮膜中にクロムを含まず、しかも優れた耐食性が得られる表面処理鋼板を提供することにある。
As the method (3), for example, Patent Document 8 and Patent Document 9 disclose one having a film containing an organic resin and a silane coupling agent, and further a thiocarbonyl compound, a phosphate compound, and a vanadium compound. However, the corrosion resistance is not sufficient because the organic resin is polyurethane or acrylic olefin resin. Patent Document 11 has a film made of an acid-modified epoxy resin. Patent Document 10 discloses a resin containing a hydroxyl group / carboxyl group / glycidyl group / phosphate group-containing monomer as a copolymerization component. Although the thing which has the film | membrane which mix | blended the phosphoric acid compound is disclosed, respectively, corrosion resistance is not enough also about these. Patent Document 7 discloses a film having a film in which a polyvinylphenol derivative, a silane coupling agent, and an etching agent such as phosphoric acid are blended. However, sufficient corrosion resistance cannot be obtained. Patent Document 12 discloses a film having an organic resin blended with an etching agent, while Patent Document 13 discloses a film having a film blended with an organic resin and a silane coupling agent. There is no description and the corrosion resistance is insufficient.
Accordingly, an object of the present invention is to provide a surface-treated steel sheet that solves such problems of the prior art and does not contain chromium in the film and that provides excellent corrosion resistance.
本発明者らは上記課題を解決するために、めっき鋼板の腐食を抑制するための腐食抑制の原理について以下のような検討を行った。
表面処理皮膜を形成した亜鉛系めっき鋼板の腐食は以下の過程で進む。
(1) 表面処理皮膜中に腐食因子(酸素、水、塩素イオンなど)が浸入し、これらがめっき皮膜/表面処理皮膜界面に拡散する。
(2) めっき皮膜/表面処理皮膜界面において、以下のような酸化還元反応により亜鉛が溶解する。
カソード反応:2H2O+O2+4e− → 4OH−
アノード反応:2Zn → 2Zn2++4e−
In order to solve the above-mentioned problems, the present inventors have conducted the following investigation on the principle of corrosion inhibition for inhibiting corrosion of the plated steel sheet.
The corrosion of the zinc-based plated steel sheet on which the surface treatment film is formed proceeds in the following process.
(1) Corrosion factors (oxygen, water, chlorine ions, etc.) permeate into the surface treatment film and diffuse to the plating film / surface treatment film interface.
(2) Zinc dissolves by the following oxidation-reduction reaction at the plating film / surface treatment film interface.
Cathode reaction: 2H 2 O + O 2 + 4e − → 4OH −
Anode reaction: 2Zn → 2Zn 2+ + 4e −
したがって、亜鉛系めっき鋼板の耐食性向上には、上記(1)、(2)の両方の反応の進行を抑制することが不可欠であり、そのためには、
(a) 腐食因子の拡散障壁となる高度なバリア層(主として上記カソード反応を抑制する作用をする)
(b) めっき皮膜表層を不活性化するめっき金属との反応層(主として上記アノード反応を抑制する作用をする)
を有する皮膜構成とすること、さらに好ましくは、上記反応層に欠損が生じた場合に自己補修作用が働くような皮膜構成とすることが最も効果的である。
Therefore, to improve the corrosion resistance of the galvanized steel sheet, it is essential to suppress the progress of both reactions (1) and (2).
(a) Advanced barrier layer that acts as a diffusion barrier for corrosion factors (mainly suppresses the cathode reaction)
(b) Reaction layer with plating metal that inactivates the plating film surface layer (mainly acts to suppress the anode reaction)
It is most effective to have a film configuration that has a self-repairing action when a defect occurs in the reaction layer.
本発明者は、このような皮膜構成を、従来技術のようにバリア層形成成分と反応層形成成分とを個別にコーティングすることにより形成した二層皮膜ではなく、1回のコーティングにより形成した単層皮膜内に実現させること、具体的には、皮膜上部に上記(a)のバリア層を、皮膜下部に上記(b)の反応層をそれぞれ構成させること、さらに好ましくは皮膜内に自己補修作用を生じさせる物質を析出させることにより、これらの相乗効果によって顕著な耐食性向上効果が得られることを見出した。このような単層皮膜を擬似二層皮膜と定義すると、この擬似二層皮膜を構成するバリア層と反応層との間には、従来型の2回コーティングにより形成された二層皮膜間のような明確な界面は存在しない。むしろ両者を傾斜組成化することにより、従来型の単層コーティングでは得られない高度の耐食性向上効果を発揮できるものと考えられる。 The inventor of the present invention does not form such a film structure by a single coating, but a double-layer film formed by coating the barrier layer forming component and the reaction layer forming component separately as in the prior art. Realizing in the layer coating, specifically, forming the barrier layer (a) above the coating and the reaction layer (b) above the coating, more preferably self-repairing action in the coating It was found that a significant corrosion resistance improvement effect can be obtained by these synergistic effects by precipitating a substance that causes the above. When such a single-layer coating is defined as a pseudo-two-layer coating, the barrier layer and the reaction layer constituting the pseudo-two-layer coating are between the two-layer coating formed by the conventional double coating. There is no clear interface. On the contrary, it is considered that a high degree of corrosion resistance improvement effect that cannot be obtained by the conventional single layer coating can be exhibited by making the both compositions in a gradient composition.
上記のような擬似二層皮膜は、特定の変性エポキシ樹脂と活性水素を有するヒドラジン誘導体などを反応させて得られた樹脂の水分散性液に、シランカップリング剤と特定の酸成分(リン酸、リン酸化合物など)を配合した表面処理組成物を亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に塗布し、乾燥させることにより得ることができる。
シランカップリング剤はこれまでにも無機化合物と有機化合物との密着性を向上させる作用を有することが知られており、めっき金属と水分散性樹脂との密着性を高めることが可能である。このようなシランカップリング剤の既知の作用効果に対して、上記の特定の表面処理組成物を用いた場合には、表面処理組成物に含まれる酸成分がめっき皮膜表面をエッチングによって活性化し、シランカップリング剤がこの活性化されためっき金属と皮膜形成樹脂の両方と化学結合することで、めっき金属と皮膜形成樹脂との極めて優れた密着性が得られるものと考えられる。つまり、表面処理組成物中にシランカップリング剤と特定の酸成分とを複合添加することにより、シランカップリング剤を単独添加した場合に比べ、めっき金属と皮膜形成樹脂との密着性が格段に高められ、この結果、めっき金属の腐食の進行が効果的に抑制され、特に優れた耐食性が得られるものと考えられる。
The pseudo two-layer film as described above is prepared by reacting a water-dispersible liquid of a resin obtained by reacting a specific modified epoxy resin with a hydrazine derivative having active hydrogen, and a silane coupling agent and a specific acid component (phosphoric acid). , A phosphoric acid compound, etc.) can be obtained by applying a surface treatment composition to the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet and drying it.
A silane coupling agent is known to have an effect of improving the adhesion between an inorganic compound and an organic compound so far, and can improve the adhesion between a plating metal and a water-dispersible resin. When the above-mentioned specific surface treatment composition is used for the known effects of such a silane coupling agent, the acid component contained in the surface treatment composition activates the plating film surface by etching, It is considered that extremely excellent adhesion between the plating metal and the film-forming resin can be obtained by chemically bonding the silane coupling agent with both the activated plating metal and the film-forming resin. That is, by adding a silane coupling agent and a specific acid component to the surface treatment composition, the adhesion between the plating metal and the film-forming resin is markedly greater than when the silane coupling agent is added alone. As a result, it is considered that the progress of corrosion of the plated metal is effectively suppressed and particularly excellent corrosion resistance can be obtained.
上述した皮膜構成の擬似二層皮膜が形成されるメカニズムは必ずしも明らかではないが、表面処理組成物中の酸成分とめっき皮膜表面との反応が皮膜形成に関与している可能性がある。また一方において、シランカップリング剤が関与した以下のような作用も考えられる。すなわち、水溶液中で加水分解したシランップリング剤がシラノール基(Si−OH)を有しているため、酸成分により活性化されためっき金属表面に対するシランップリング剤の水素結合的な吸着作用が促進され、めっき金属表面にシランップリング剤が濃化し、その後、乾燥することにより脱水縮合反応が起きて強固な化学結合となり、これにより皮膜下部の上記(b)の反応層(すなわち、めっき皮膜表層を不活性化するめっき金属との反応層)が形成されるとともに、皮膜上部に濃化した水分散性樹脂により上記(a)のバリア層(すなわち、腐食因子の拡散障壁となる高度のバリア層)が形成される、というメカニズムによる可能性もある。また、以上述べたような作用が複合的に生じている可能性もある。また、以上のような皮膜の形成過程において、溶解した亜鉛などのめっき金属と酸成分との反応生成物(化合物)が皮膜中に析出するものと考えられる。 Although the mechanism by which the pseudo two-layer film having the above-described film structure is formed is not necessarily clear, the reaction between the acid component in the surface treatment composition and the surface of the plating film may be involved in the film formation. On the other hand, the following actions involving a silane coupling agent are also conceivable. That is, since the silane coupling agent hydrolyzed in an aqueous solution has a silanol group (Si—OH), the hydrogen bonding adsorption action of the silane coupling agent on the surface of the plating metal activated by the acid component is promoted. When the silane coupling agent is concentrated on the metal surface and then dried, a dehydration condensation reaction takes place to form a strong chemical bond, thereby inactivating the reaction layer (b) above the coating layer (ie, the plating coating surface layer). (Reaction layer with plating metal) is formed, and the barrier layer of (a) above (that is, a high barrier layer serving as a diffusion barrier for corrosion factors) is formed by the water-dispersible resin concentrated on the upper part of the film. There is also a possibility by the mechanism. In addition, there is a possibility that the above-described action occurs in a composite manner. In addition, in the film formation process as described above, it is considered that a reaction product (compound) between a dissolved plating metal such as zinc and an acid component is deposited in the film.
このような擬似二層皮膜の防食機構についても必ずしも明らかではないが、個々の防食機構としては、上記(a)のバリア層として特定の変性エポキシ樹脂にヒドラジン誘導体を付与することによって緻密な有機高分子皮膜が形成され、これが腐食因子(酸素、水、塩素イオンなど)の透過を抑制して腐食の要因となるカソード反応を効果的に抑制すること、また、腐食反応によって溶出しためっき金属イオンを皮膜中のフリーのヒドラジン誘導体がトラップし、安定な不溶性キレート化合物層を形成すること、また、上記(b)の反応層がめっき皮膜表層を不活性化して腐食の要因となるアノード反応を効果的に抑制すること、さらに、皮膜中に析出した析出化合物が腐食環境下で溶解して酸成分(リン酸イオンなど)が生成し、この酸成分がめっき皮膜から溶出した亜鉛イオンなどの金属イオンを捕捉(金属イオンと結合して不溶性化合物を形成)する自己補修作用が得られること、さらには、シランカップリング剤が酸成分によって活性化されためっき金属面と強固に結合し、めっき金属の溶解を抑制するとともに、皮膜形成樹脂とも結合することにより、密着性の高い緻密な皮膜が形成できること、などが考えられ、これらによる複合的な防食機構により、極めて優れた耐食性(耐白錆性)が得られるものと考えられる。 Although the anticorrosion mechanism of such a pseudo-bilayer coating is not necessarily clear, the individual anticorrosion mechanism includes a dense organic polymer by adding a hydrazine derivative to a specific modified epoxy resin as the barrier layer of (a) above. A molecular film is formed, which suppresses the permeation of corrosion factors (oxygen, water, chlorine ions, etc.) and effectively suppresses the cathodic reaction that causes corrosion, and also prevents the plating metal ions eluted by the corrosion reaction. The free hydrazine derivative in the film traps to form a stable insoluble chelate compound layer, and the reaction layer in (b) above effectively inactivates the surface layer of the plating film to effectively cause an anodic reaction that causes corrosion. In addition, the precipitated compounds deposited in the film dissolve in a corrosive environment and acid components (phosphate ions, etc.) are generated. A self-repairing action that captures metal ions such as zinc ions eluted from the film (bonds with metal ions to form an insoluble compound), and is a plated metal in which a silane coupling agent is activated by an acid component. It is possible to form a dense film with high adhesion by binding to the surface firmly, suppressing dissolution of the plating metal, and also bonding with the film-forming resin. It is considered that extremely excellent corrosion resistance (white rust resistance) can be obtained.
以上が表面処理皮膜の基本的な組成と防食機構であるが、本発明者らは、表面処理組成物中にさらに特定のフッ素化合物を配合することにより、特に優れた耐食性が得られることを見出した。これは、表面処理組成物に特定のフッ素化合物を配合することにより、フッ素化合物が酸成分と共存してバリアー性に優れた(HF)nからなる膜を形成し、これにより耐食性が飛躍的に向上するものと思われる。
また、この表面処理組成物中に非クロム系防錆添加剤を配合することにより、さらに優れた耐食性が得られる。非クロム系防錆添加剤は、腐食の起点で保護皮膜を形成するためにさらに優れた防食性能が得られる。
さらに、本発明では、以上述べた表面処理皮膜の上層に第二層皮膜として特定のキレート形成樹脂を主体とする高バリア性皮膜を形成させることにより、特に高度な防食効果が得られる。
The above is the basic composition and anticorrosion mechanism of the surface treatment film. The present inventors have found that particularly excellent corrosion resistance can be obtained by further blending a specific fluorine compound in the surface treatment composition. It was. This is because, by blending a specific fluorine compound into the surface treatment composition, the fluorine compound coexists with the acid component to form a film made of (HF) n having excellent barrier properties, thereby dramatically improving the corrosion resistance. It seems to improve.
Further, by adding a non-chromium rust preventive additive to the surface treatment composition, further excellent corrosion resistance can be obtained. Since the non-chromium rust preventive additive forms a protective film at the starting point of corrosion, a further excellent anticorrosive performance can be obtained.
Furthermore, in the present invention, a particularly high anticorrosive effect can be obtained by forming a high barrier film mainly comprising a specific chelate-forming resin as the second layer film on the surface treatment film described above.
本発明は、このような知見に基づきなされたもので、その特徴は以下のとおりである。
[1]亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に、下記成分(a)〜(d)を含有する表面処理組成物を塗布し、乾燥することにより形成された皮膜厚が0.01〜1.0μmの表面処理皮膜を有し、
(a)数平均分子量400〜20000のポリアルキレングリコール、ビスフェノール型エポキシ樹脂、活性水素含有化合物およびポリイソシアネート化合物を反応させて得られたポリアルキレングリコール変性エポキシ樹脂(A)と、該ポリアルキレングリコール変性エポキシ樹脂(A)以外のエポキシ基含有樹脂(B)と、一部または全部の化合物が活性水素を有するヒドラジン誘導体(C)からなる活性水素含有化合物とを反応させて得られた樹脂を水に分散させてなる水性エポキシ樹脂分散液
(b)シランカップリング剤:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で1〜300質量部
(c)リン酸および/またはリン酸化合物:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で0.1〜80質量部
(d)三フッ化バナジウム、四フッ化バナジウムの中から選ばれる1種以上:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で0.1〜100質量部
その上層に、樹脂組成物の主成分が、皮膜形成有機樹脂(E)と一部または全部の化合物が活性水素を有するヒドラジン誘導体(G)からなる活性水素含有化合物(F)との反応生成物からなる塗料組成物を塗布し、乾燥することにより形成された皮膜厚が0.5〜2.0μmの上層皮膜を形成したことを特徴とする高耐食性表面処理鋼板。
The present invention has been made on the basis of such findings, and the features thereof are as follows.
[1] The coating thickness formed by applying and drying a surface treatment composition containing the following components (a) to (d) on the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet is 0.01 to Having a surface treatment film of 1.0 μm,
(A) a polyalkylene glycol-modified epoxy resin (A) obtained by reacting a polyalkylene glycol having a number average molecular weight of 400 to 20,000, a bisphenol type epoxy resin, an active hydrogen-containing compound and a polyisocyanate compound, and the polyalkylene glycol-modified A resin obtained by reacting an epoxy group-containing resin (B) other than the epoxy resin (A) with an active hydrogen-containing compound comprising a hydrazine derivative (C) in which some or all of the compounds have active hydrogen is used in water. Dispersed aqueous epoxy resin dispersion (b) Silane coupling agent: 1 to 300 parts by mass of solid content with respect to 100 parts by mass of resin solid content of the aqueous epoxy resin dispersion (c) phosphoric acid and / or Or phosphoric acid compound: based on 100 parts by mass of resin solid content of the aqueous epoxy resin dispersion 0.1 to 80 parts by weight in a ratio of solid content (d) trifluoride vanadium, one or more selected from among tetrafluoride vanadium solid the resin solid content 100 parts by weight of the aqueous epoxy resin dispersion 0.1 to 100 parts by mass in the proportion of the minute In the upper layer, the main component of the resin composition is a film-forming organic resin (E) and an activity comprising a hydrazine derivative (G) in which some or all of the compounds have active hydrogen High corrosion resistance, characterized in that a coating composition comprising a reaction product with a hydrogen-containing compound (F) is applied and dried to form an upper film having a thickness of 0.5 to 2.0 μm. Surface treated steel sheet.
[2] 上記[1]の表面処理鋼板において、エポキシ基含有樹脂(B)が、エポキシ当量が150〜5000、数平均分子量が1500〜10000のビスフェノールA型エポキシ樹脂であることを特徴とする高耐食性表面処理鋼板。
[3] 上記[1]または[2]の表面処理鋼板において、成分(a)の水性エポキシ樹脂分散液がさらに、水酸基と架橋する基を有する硬化剤を含有することを特徴とする高耐食性表面処理鋼板。
[4] 上記[1]〜[3]のいずれかの表面処理鋼板において、表面処理皮膜形成用の表面処理組成物がさらに、非クロム系防錆添加剤を、成分(a)の水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で0.1〜50質量部含有することを特徴とする高耐食性表面処理鋼板。
[5] 上記[1]〜[4]のいずれかの表面処理鋼板において、上層皮膜用塗料組成物がさらに、非クロム系防錆添加剤を、塗料組成物の樹脂固形分100質量部に対して固形分の割合で0.1〜50質量部含有することを特徴とする高耐食性表面処理鋼板。
[2] In the surface-treated steel sheet according to [1], the epoxy group-containing resin (B) is a bisphenol A type epoxy resin having an epoxy equivalent of 150 to 5000 and a number average molecular weight of 1500 to 10,000. Corrosion-resistant surface-treated steel sheet.
[3] The surface-treated steel sheet according to [1] or [2], wherein the aqueous epoxy resin dispersion of component (a) further contains a curing agent having a group that crosslinks with a hydroxyl group. Treated steel sheet.
[4] In the surface-treated steel sheet according to any one of the above [1] to [3], the surface treatment composition for forming a surface treatment film further comprises a non-chromium rust preventive additive, and an aqueous epoxy resin of component (a) A highly corrosion-resistant surface-treated steel sheet comprising 0.1 to 50 parts by mass of solid content with respect to 100 parts by mass of resin solid content of the dispersion.
[5] In the surface-treated steel sheet according to any one of [1] to [4], the coating composition for the upper film further includes a non-chromium rust preventive additive with respect to 100 parts by mass of the resin solid content of the coating composition. A high corrosion resistance surface-treated steel sheet, characterized by containing 0.1 to 50 parts by mass in a solid content ratio.
[6] 上記[4]又は[5]の表面処理鋼板において、表面処理皮膜形成用の表面処理組成物および/または上層皮膜用塗料組成物が非クロム系防錆添加剤として、下記(e1)〜(e7)の中から選ばれる1種以上を含有することを特徴とする高耐食性表面処理鋼板。
(e1)酸化ケイ素
(e2)カルシウムおよび/またはカルシウム化合物
(e3)難溶性リン酸化合物
(e4)モリブデン酸化合物
(e5)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の、S原子を含有する有機化合物
(e6)バナジウム化合物
(e7)ヒドラジド化合物、ピラゾール化合物、トリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、ピリダジン化合物の中から選ばれる1種以上の、N原子を含有する有機化合物
[7] 上記[1]〜[6]のいずれかの表面処理鋼板において、成分(b)のシランカップリング剤として、反応性官能基としてアミノ基を有するシランカップリング剤の少なくとも1種を含有することを特徴とする高耐食性表面処理鋼板。
[8] 上記[1]〜[7]のいずれかの表面処理鋼板において、上層皮膜用塗料組成物がさらに、固形潤滑剤を、塗料組成物の樹脂固形分100質量部に対して固形分の割合で1〜30質量部含有することを特徴とする高耐食性表面処理鋼板。
[6] In the surface-treated steel sheet according to [4] or [5] above, the surface treatment composition for forming the surface treatment film and / or the coating composition for the upper film is used as a non-chromium anticorrosive additive as described below (e1) A highly corrosion-resistant surface-treated steel sheet comprising one or more selected from the group consisting of (e7).
(E1) Silicon oxide (e2) Calcium and / or calcium compound (e3) Slightly soluble phosphate compound (e4) Molybdate compound (e5) Selected from triazoles, thiols, thiadiazoles, thiazoles, thiurams One or more organic compounds containing S atoms (e6) Vanadium compounds (e7) One or more N atoms selected from hydrazide compounds, pyrazole compounds, triazole compounds, tetrazole compounds, thiadiazole compounds, pyridazine compounds Contains organic compounds
[7] The surface-treated steel sheet according to any one of [1] to [6], wherein the silane coupling agent of component (b) contains at least one silane coupling agent having an amino group as a reactive functional group A highly corrosion-resistant surface-treated steel sheet characterized by:
[8] In the surface-treated steel sheet according to any one of the above [1] to [7], the coating composition for the upper layer film further includes a solid lubricant with a solid content of 100 parts by mass of the resin solid content of the coating composition. A highly corrosion-resistant surface-treated steel sheet containing 1 to 30 parts by mass in a proportion.
[9]亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に、下記成分(a)〜(d)を含有する表面処理組成物を塗布し、到達板温が30〜150℃の温度で乾燥することにより皮膜厚が0.01〜1.0μmの表面処理皮膜を形成し、
(a)数平均分子量400〜20000のポリアルキレングリコール、ビスフェノール型エポキシ樹脂、活性水素含有化合物およびポリイソシアネート化合物を反応させて得られたポリアルキレングリコール変性エポキシ樹脂(A)と、該ポリアルキレングリコール変性エポキシ樹脂(A)以外のエポキシ基含有樹脂(B)と、一部または全部の化合物が活性水素を有するヒドラジン誘導体(C)からなる活性水素含有化合物とを反応させて得られた樹脂を水に分散させてなる水性エポキシ樹脂分散液
(b)シランカップリング剤:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で1〜300質量部
(c)リン酸および/またはリン酸化合物:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で0.1〜80質量部
(d)三フッ化バナジウム、四フッ化バナジウムの中から選ばれる1種以上:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で0.1〜100質量部
その上層に、樹脂組成物の主成分が、皮膜形成有機樹脂(E)と一部または全部の化合物が活性水素を有するヒドラジン誘導体(G)からなる活性水素含有化合物(F)との反応生成物からなる塗料組成物を塗布し、到達板温が30〜150℃の温度で乾燥することにより皮膜厚が0.5〜2.0μmの上層皮膜を形成することを特徴とする高耐食性表面処理鋼板の製造方法。
[9] A surface treatment composition containing the following components (a) to (d) is applied to the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet, and is dried at a temperature of an ultimate plate temperature of 30 to 150 ° C. To form a surface treatment film having a film thickness of 0.01 to 1.0 μm,
(A) a polyalkylene glycol-modified epoxy resin (A) obtained by reacting a polyalkylene glycol having a number average molecular weight of 400 to 20,000, a bisphenol type epoxy resin, an active hydrogen-containing compound and a polyisocyanate compound, and the polyalkylene glycol-modified A resin obtained by reacting an epoxy group-containing resin (B) other than the epoxy resin (A) with an active hydrogen-containing compound comprising a hydrazine derivative (C) in which some or all of the compounds have active hydrogen is used in water. Dispersed aqueous epoxy resin dispersion (b) Silane coupling agent: 1 to 300 parts by mass of solid content with respect to 100 parts by mass of resin solid content of the aqueous epoxy resin dispersion (c) phosphoric acid and / or Or phosphoric acid compound: based on 100 parts by mass of resin solid content of the aqueous epoxy resin dispersion 0.1 to 80 parts by weight in a ratio of solid content (d) trifluoride vanadium, one or more selected from among tetrafluoride vanadium solid the resin solid content 100 parts by weight of the aqueous epoxy resin dispersion 0.1 to 100 parts by mass in the proportion of the minute In the upper layer, the main component of the resin composition is a film-forming organic resin (E) and an activity comprising a hydrazine derivative (G) in which some or all of the compounds have active hydrogen A coating composition comprising a reaction product with the hydrogen-containing compound (F) is applied and dried at a temperature of 30 to 150 ° C. to form an upper film having a film thickness of 0.5 to 2.0 μm. A method for producing a highly corrosion-resistant surface-treated steel sheet.
本発明の表面処理鋼板は、皮膜中にクロムを含まないにもかかわらず非常に優れた平板および加工後の耐食性を有し、しかも溶接性、塗装性にも優れている。このため本発明の表面処理鋼板は、自動車用途に特に有用である。 The surface-treated steel sheet of the present invention has a very excellent flat plate and post-processing corrosion resistance despite the fact that it does not contain chromium in the film, and also has excellent weldability and paintability. For this reason, the surface-treated steel sheet of the present invention is particularly useful for automobile applications.
以下、本発明の詳細とその限定理由を説明する。
本発明の表面処理鋼板のベースとなる亜鉛系めっき鋼板としては、亜鉛めっき鋼板、Zn−Ni合金めっき鋼板、Zn−Fe合金めっき鋼板(電気めっき鋼板、合金化溶融亜鉛めっき鋼板)、Zn−Cr合金めっき鋼板、Zn−Mn合金めっき鋼板、Zn−Co合金めっき鋼板、Zn−Co−Cr合金めっき鋼板、Zn−Cr−Ni合金めっき鋼板、Zn−Cr−Fe合金めっき鋼板、Zn−Al合金めっき鋼板(例えば、Zn−5%Al合金めっき鋼板、Zn−55%Al合金めっき鋼板)、Zn−Mg合金めっき鋼板、Zn−Al−Mg合金めっき鋼板(例えば、Zn−6%Al−3%Mg合金めっき鋼板、Zn−11%Al−3%Mg合金めっき鋼板)、さらにはこれらのめっき鋼板のめっき皮膜中に金属酸化物、ポリマーなどを分散した亜鉛系複合めっき鋼板(例えば、Zn−SiO2分散めっき鋼板)などを用いることができる。
The details of the present invention and the reasons for limitation will be described below.
Examples of the zinc-based plated steel sheet used as the base of the surface-treated steel sheet of the present invention include galvanized steel sheet, Zn-Ni alloy-plated steel sheet, Zn-Fe alloy-plated steel sheet (electroplated steel sheet, galvannealed steel sheet), Zn-Cr. Alloy-plated steel sheet, Zn-Mn alloy-plated steel sheet, Zn-Co alloy-plated steel sheet, Zn-Co-Cr alloy-plated steel sheet, Zn-Cr-Ni alloy-plated steel sheet, Zn-Cr-Fe alloy-plated steel sheet, Zn-Al alloy plating Steel plate (for example, Zn-5% Al alloy-plated steel plate, Zn-55% Al alloy-plated steel plate), Zn-Mg alloy-plated steel plate, Zn-Al-Mg alloy-plated steel plate (for example, Zn-6% Al-3% Mg) Alloy-plated steel sheets, Zn-11% Al-3% Mg alloy-plated steel sheets), and metal oxides, polymers, etc. are dispersed in the plating film of these plated steel sheets Zinc-based composite-plated steel sheet (for example, Zn-SiO 2 dispersion plating steel plate) was the like can be used.
また、上記のようなめっきのうち、同種または異種のものを2層以上めっきした複層めっき鋼板を用いることもできる。
また、本発明の表面処理鋼板のベースとなるアルミニウム系めっき鋼板としては、アルミニウムめっき鋼板、Al−Si合金めっき鋼板などを用いることができる。
また、めっき鋼板としては、鋼板面に予めNiなどの薄目付めっきを施し、その上に上記のような各種めっきを施したものであってもよい。
めっき方法としては、電解法(水溶液中での電解または非水溶媒中での電解)、溶融法、気相法のうち、実施可能ないずれの方法を採用することもできる。
さらに、めっきの黒変を防止する目的で、めっき皮膜中に1〜2000ppm程度のNi,Co,Feの微量元素を析出させたり、或いはめっき皮膜表面にNi,Co,Feを含むアルカリ性水溶液または酸性水溶液による表面調整処理を施し、これらの元素を析出させるようにしてもよい。
In addition, among the above-described plating, a multi-layer plated steel sheet in which two or more layers of the same type or different types are plated can also be used.
Moreover, as an aluminum system plated steel plate used as the base of the surface treatment steel plate of this invention, an aluminum plating steel plate, an Al-Si alloy plating steel plate, etc. can be used.
Moreover, as a plated steel plate, the steel plate surface may be previously plated with lightness such as Ni, and various plating as described above may be performed thereon.
As a plating method, any feasible method among an electrolytic method (electrolysis in an aqueous solution or electrolysis in a non-aqueous solvent), a melting method, and a gas phase method can be adopted.
Furthermore, for the purpose of preventing blackening of the plating, a trace element of about 1 to 2000 ppm of Ni, Co, Fe is deposited in the plating film, or an alkaline aqueous solution containing Ni, Co, Fe on the surface of the plating film or acidic You may make it surface-treat with an aqueous solution and precipitate these elements.
次に、上記亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に、第一層皮膜として形成される表面処理皮膜およびこの皮膜形成用の表面処理組成物について説明する。
本発明の表面処理鋼板において、亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に形成される表面処理皮膜は、下記成分(a)〜(d)を含有する表面処理組成物を塗布し、乾燥することにより形成された表面処理皮膜である。この表面処理皮膜はクロムを全く含まない。
(a)数平均分子量400〜20000のポリアルキレングリコール、ビスフェノール型エポキシ樹脂、活性水素含有化合物およびポリイソシアネート化合物を反応させて得られたポリアルキレングリコール変性エポキシ樹脂(A)と、該ポリアルキレングリコール変性エポキシ樹脂(A)以外のエポキシ基含有樹脂(B)と、活性水素を有するヒドラジン誘導体(C)と、さらに必要に応じて、このヒドラジン誘導体(C)以外の活性水素含有化合物(D)とを反応させて得られた樹脂を水に分散させてなる水性エポキシ樹脂分散液
(b)シランカップリング剤:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で1〜300質量部
(c)リン酸および/またはリン酸化合物:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で0.1〜80質量部
(d)1分子中にフッ素を1〜5個含有する化合物:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で0.1〜100質量部
Next, the surface treatment film formed as the first layer film and the surface treatment composition for forming this film on the surface of the zinc-based plated steel sheet or the aluminum-based plated steel sheet will be described.
In the surface-treated steel sheet of the present invention, the surface-treated film formed on the surface of the zinc-based plated steel sheet or the aluminum-based plated steel sheet is applied with a surface treatment composition containing the following components (a) to (d) and dried. It is the surface treatment film formed by this. This surface treatment film does not contain any chromium.
(A) a polyalkylene glycol-modified epoxy resin (A) obtained by reacting a polyalkylene glycol having a number average molecular weight of 400 to 20,000, a bisphenol type epoxy resin, an active hydrogen-containing compound and a polyisocyanate compound, and the polyalkylene glycol-modified An epoxy group-containing resin (B) other than the epoxy resin (A), a hydrazine derivative (C) having active hydrogen, and an active hydrogen-containing compound (D) other than the hydrazine derivative (C) as necessary. Aqueous epoxy resin dispersion obtained by dispersing the resin obtained by the reaction in water (b) Silane coupling agent: 1 to 1 in terms of solid content with respect to 100 parts by mass of resin solid content of the aqueous epoxy resin dispersion 300 parts by mass (c) Phosphoric acid and / or phosphoric acid compound: of the aqueous epoxy resin dispersion 0.1 to 80 parts by mass of solid content with respect to 100 parts by mass of fat solid content (d) Compound containing 1 to 5 fluorine atoms in one molecule: 100 mass of resin solid content of the aqueous epoxy resin dispersion 0.1 to 100 parts by mass with respect to parts by solid content
まず、上記成分(a)である水性エポキシ樹脂分散液について説明する。
この水性エポキシ樹脂分散液は、特定のポリアルキレングリコール変性エポキシ樹脂(A)と、このポリアルキレングリコール変性エポキシ樹脂(A)以外のエポキシ基含有樹脂(B)と、活性水素を有するヒドラジン誘導体(C)と、さらに必要に応じてこのヒドラジン誘導体(C)以外の活性水素含有化合物(D)とを反応させて得られた樹脂を水に分散させたものである。
上記ポリアルキレングリコール変性エポキシ樹脂(A)は、数平均分子量400〜20000のポリアルキレングリコールと、ビスフェノール型エポキシ樹脂と、活性水素含有化合物と、ポリイソシアネート化合物とを反応させて得られたものである。
First, the aqueous epoxy resin dispersion that is the component (a) will be described.
This aqueous epoxy resin dispersion includes a specific polyalkylene glycol-modified epoxy resin (A), an epoxy group-containing resin (B) other than the polyalkylene glycol-modified epoxy resin (A), and a hydrazine derivative (C ) And, if necessary, a resin obtained by reacting an active hydrogen-containing compound (D) other than the hydrazine derivative (C), is dispersed in water.
The polyalkylene glycol-modified epoxy resin (A) is obtained by reacting a polyalkylene glycol having a number average molecular weight of 400 to 20000, a bisphenol type epoxy resin, an active hydrogen-containing compound, and a polyisocyanate compound. .
上記ポリアルキレングリコールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコールなどを用いることができるが、そのなかでも特に、ポリエチレングリコールが好適である。ポリアルキレングリコールの数平均分子量は、得られる樹脂の水分散性、貯蔵性などの点から400〜20000、好ましくは500〜10000の範囲が適している。
また、上記ビスフェノール型エポキシ樹脂は、1分子中に少なくとも1個のエポキシ基を有するビスフェノール系化合物であって、特に、ビスフェノール系化合物とエピハロヒドリン(例えば、エピクロルヒドリン)との縮合反応によって得られるビスフェノールのジグリシジルエーテルが、可撓性および防食性に優れた皮膜が得られやすいため好適である。
As the polyalkylene glycol, for example, polyethylene glycol, polypropylene glycol, polybutylene glycol and the like can be used, and among them, polyethylene glycol is particularly preferable. The number average molecular weight of the polyalkylene glycol is suitably in the range of 400 to 20000, preferably 500 to 10,000, from the viewpoint of water dispersibility and storage properties of the resulting resin.
The bisphenol-type epoxy resin is a bisphenol compound having at least one epoxy group in one molecule, and in particular, a bisphenol diester obtained by a condensation reaction between a bisphenol compound and an epihalohydrin (for example, epichlorohydrin). Glycidyl ether is preferable because a film excellent in flexibility and corrosion resistance can be easily obtained.
ビスフェノール型エポキシ樹脂の調製に使用することができるビスフェノール系化合物の代表例としては、ビス(4−ヒドロキシフェニル)−2,2−プロパン、ビス(4−ヒドロキシフェニル)−1,1−エタン、ビス(4−ヒドロキシフェニル)−メタン、4,4′−ジヒドロキシジフェニルエーテル、4,4′−ジヒドロキシジフェニルスルホン、ビス(4−ヒドロキシフェニル)−1,1−イソブタン、ビス(4−ヒドロキシ−3−t−ブチルフェニル)−2,2−プロパンなどが挙げられる。このようなビスフェノール系化合物を用いて調製されるエポキシ樹脂のうち、ビスフェノールA型エポキシ樹脂は可撓性および防食性などに優れた皮膜を得られるという点で特に好適である。
また、ビスフェノール型エポキシ樹脂は、ポリアルキレングリコール変性エポキシ樹脂の製造時における製造安定性などの点から、一般に約310〜10000、特に望ましくは約320〜2000の数平均分子量を有していることが好ましく、また、エポキシ当量は約155〜5000、特に望ましくは約160〜1000の範囲のものが好ましい。
Typical examples of bisphenol compounds that can be used for the preparation of bisphenol-type epoxy resins include bis (4-hydroxyphenyl) -2,2-propane, bis (4-hydroxyphenyl) -1,1-ethane, and bis. (4-hydroxyphenyl) -methane, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenylsulfone, bis (4-hydroxyphenyl) -1,1-isobutane, bis (4-hydroxy-3-t- Butylphenyl) -2,2-propane and the like. Of the epoxy resins prepared using such bisphenol-based compounds, bisphenol A type epoxy resins are particularly suitable in that a film excellent in flexibility and corrosion resistance can be obtained.
Further, the bisphenol type epoxy resin generally has a number average molecular weight of about 310 to 10,000, particularly preferably about 320 to 2,000, from the viewpoint of production stability during production of the polyalkylene glycol-modified epoxy resin. The epoxy equivalent is preferably in the range of about 155 to 5000, particularly desirably about 160 to 1000.
上記活性水素含有化合物は、ポリアルキレングリコール変性エポキシ樹脂(A)中のイソシアネート基のブロッキングのために使用されるものである。その代表的なものとしては、例えば、メタノール、エタノール、ジエチレングリコールモノブチルエーテルなどの1価アルコール;酢酸、プロピオン酸などの1価カルボン酸;エチルメルカプタンなどの1価チオールが挙げられる。また、それ以外のブロッキング剤(活性水素含有化合物)としては、ジエチルアミンなどの第2級アミン;ジエチレントリアミン、モノエタノールアミンなどの1個の第2級アミノ基またはヒドロキシル基と1個以上の第1級アミノ基を含有するアミン化合物の第1級アミノ基を、ケトン、アルデヒド若しくはカルボン酸と、例えば100〜230℃の温度で加熱反応させることによりアルジミン、ケチミン、オキサゾリン若しくはイミダゾリンに変性した化合物;メチルエチルケトキシムなどのようなオキシム;フェノール、ノニルフェノールなどのフェノール類などが挙げられる。これらの化合物は一般に30〜2000、特に望ましくは30〜200の範囲の数平均分子量を有することが好ましい。 The active hydrogen-containing compound is used for blocking isocyanate groups in the polyalkylene glycol-modified epoxy resin (A). Typical examples thereof include monohydric alcohols such as methanol, ethanol and diethylene glycol monobutyl ether; monovalent carboxylic acids such as acetic acid and propionic acid; monovalent thiols such as ethyl mercaptan. Other blocking agents (active hydrogen-containing compounds) include secondary amines such as diethylamine; one secondary amino group or hydroxyl group such as diethylenetriamine and monoethanolamine and one or more primary groups. A compound in which the primary amino group of an amine compound containing an amino group is modified to aldimine, ketimine, oxazoline or imidazoline by heating reaction with a ketone, aldehyde or carboxylic acid at a temperature of, for example, 100 to 230 ° C .; methyl ethyl ketoxime And oximes such as phenol; phenols such as phenol and nonylphenol; These compounds generally have a number average molecular weight in the range of 30 to 2000, particularly preferably 30 to 200.
上記ポリイソシアネート化合物は、1分子中にイソシアネート基を2個以上、好ましくは2個または3個有する化合物であり、ポリウレタン樹脂の製造に一般に用いられるものが同様に使用できる。そのようなポリイソシアネート化合物としては、脂肪族系、脂環族系、芳香族系などのポリイソシアネート化合物が包含される。代表的なものとしては、ヘキサメチレンジイソシアネート(HMDI)、HMDIのビウレット化合物、HMDIのイソシアヌレート化合物などの脂肪族系ポリイソシアネート化合物;イソホロンジイソシアネート(IPDI)、IPDIのビウレット化合物、IPDIのイソシアヌレート化合物、水素添加キシリレンジイソシアネート、水素添加4,4′−ジフェニルメタンジイソシアネートなどの脂環族系ポリイソシアネート化合物;トリレンジイソシアネート、キシリレンジイソシアネートなどの芳香族系ポリイソシアネート化合物などを例示できる。 The polyisocyanate compound is a compound having 2 or more, preferably 2 or 3 isocyanate groups in one molecule, and those generally used for the production of polyurethane resins can be used in the same manner. Such polyisocyanate compounds include aliphatic, alicyclic and aromatic polyisocyanate compounds. Representative examples include aliphatic polyisocyanate compounds such as hexamethylene diisocyanate (HMDI), HMDI biuret compound, HMDI isocyanurate compound; isophorone diisocyanate (IPDI), IPDI biuret compound, IPDI isocyanurate compound, Examples thereof include alicyclic polyisocyanate compounds such as hydrogenated xylylene diisocyanate and hydrogenated 4,4′-diphenylmethane diisocyanate; aromatic polyisocyanate compounds such as tolylene diisocyanate and xylylene diisocyanate.
ポリアルキレングリコール変性エポキシ樹脂(A)の製造時における各成分の配合割合は、一般には下記の範囲とするのが適当である。
すなわち、ポリアルキレングリコールの水酸基とポリイソシアネート化合物のイソシアネート基との当量比は1/1.2〜1/10、好ましくは1/1.5〜1/5、特に好ましくは1/1.5〜1/3とするのが適当である。また、活性水素含有化合物の水酸基とポリイソシアネート化合物のイソシアネート基との当量比は1/2〜1/100、好ましくは1/3〜1/50、特に好ましくは1/3〜1/20とするのが適当である。また、ポリアルキレングリコール、ビスフェノール型エポキシ樹脂および活性水素含有化合物の水酸基の合計量とポリイソシアネート化合物のイソシアネート基との当量比は1/1.5以下、好ましくは1/0.1〜1/1.5、特に好ましくは1/0.1〜1/1.1とするのが適当である。
In general, the blending ratio of each component during the production of the polyalkylene glycol-modified epoxy resin (A) is suitably in the following range.
That is, the equivalent ratio of the hydroxyl group of the polyalkylene glycol to the isocyanate group of the polyisocyanate compound is 1 / 1.2 to 1/10, preferably 1 / 1.5 to 1/5, particularly preferably 1 / 1.5 to A value of 1/3 is appropriate. The equivalent ratio of the hydroxyl group of the active hydrogen-containing compound to the isocyanate group of the polyisocyanate compound is 1/2 to 1/100, preferably 1/3 to 1/50, particularly preferably 1/3 to 1/20. Is appropriate. The equivalent ratio of the total amount of hydroxyl groups of the polyalkylene glycol, bisphenol type epoxy resin and active hydrogen-containing compound to the isocyanate group of the polyisocyanate compound is 1 / 1.5 or less, preferably 1 / 0.1 to 1/1. .5, particularly preferably 1 / 0.1 to 1 / 1.1.
上記ポリアルキレングリコール、ビスフェノール型エポキシ樹脂、活性水素含有化合物およびポリイソシアネート化合物の反応は、公知の方法により行うことができる。
上記で得られたポリアルキレングリコール変性エポキシ樹脂(A)と、このポリアルキレングリコール変性エポキシ樹脂(A)以外のエポキシ基含有樹脂(B)と、活性水素を有するヒドラジン誘導体(C)と、さらに必要に応じてこのヒドラジン誘導体(C)以外の活性水素含有化合物(D)とを反応させることにより、容易に水中に分散することができ、且つ素材に対する付着性の良好なエポキシ樹脂を得ることができる。
The reaction of the polyalkylene glycol, the bisphenol type epoxy resin, the active hydrogen-containing compound and the polyisocyanate compound can be performed by a known method.
The polyalkylene glycol-modified epoxy resin (A) obtained above, an epoxy group-containing resin (B) other than the polyalkylene glycol-modified epoxy resin (A), a hydrazine derivative (C) having active hydrogen, and further necessary Accordingly, by reacting with the active hydrogen-containing compound (D) other than the hydrazine derivative (C), an epoxy resin that can be easily dispersed in water and has good adhesion to the material can be obtained. .
上記ポリアルキレングリコール変性エポキシ樹脂(A)以外のエポキシ基含有樹脂(B)としては、ビスフェノールA、ビスフェノールF、ノボラック型フェノールなどのポリフェノール類とエピクロルヒドリンなどのエピハロヒドリンとを反応させてグリシジル基を導入してなるか、若しくはこのグリシジル基導入反応生成物にさらにポリフェノール類を反応させて分子量を増大させてなる芳香族エポキシ樹脂;さらには脂肪族エポキシ樹脂、脂環式エポキシ樹脂などが挙げられ、これらの1種を単独でまたは2種以上を混合して使用することができる。これらのエポキシ樹脂は、特に低温での皮膜形成性を必要とする場合には数平均分子量が1500以上であることが好適である。
また、エポキシ基含有樹脂(B)としては、上記エポキシ基含有樹脂中のエポキシ基または水酸基に各種変性剤を反応させた樹脂を挙げることができ、例えば、乾性油脂肪酸を反応させたエポキシエステル樹脂;アクリル酸またはメタクリル酸などを含有する重合性不飽和モノマー成分で変性したエポキシアクリレート樹脂;イソシアネート化合物を反応させたウレタン変性エポキシ樹脂などを挙げることができる。
As the epoxy group-containing resin (B) other than the polyalkylene glycol-modified epoxy resin (A), a glycidyl group is introduced by reacting polyphenols such as bisphenol A, bisphenol F, and novolac type phenol with an epihalohydrin such as epichlorohydrin. Or an aromatic epoxy resin obtained by further reacting this glycidyl group-introduced reaction product with a polyphenol to increase the molecular weight; and further, an aliphatic epoxy resin, an alicyclic epoxy resin, etc. One kind can be used alone, or two or more kinds can be mixed and used. These epoxy resins preferably have a number average molecular weight of 1500 or more, particularly when film formation at low temperatures is required.
Examples of the epoxy group-containing resin (B) include resins obtained by reacting various modifiers with epoxy groups or hydroxyl groups in the epoxy group-containing resin. For example, epoxy ester resins obtained by reacting a dry oil fatty acid. An epoxy acrylate resin modified with a polymerizable unsaturated monomer component containing acrylic acid or methacrylic acid; a urethane-modified epoxy resin reacted with an isocyanate compound;
さらに、エポキシ基含有樹脂(B)としては、エポキシ基を有する不飽和モノマーとアクリル酸エステルまたはメタクリル酸エステルを必須とする重合性不飽和モノマー成分を溶液重合法、エマルション重合法または懸濁重合法などによって合成したエポキシ基含有モノマーと共重合したアクリル系共重合体樹脂を挙げることができ、上記重合性不飽和モノマー成分としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−、iso−若しくはtert−ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレートなどのアクリル酸またはメタクリル酸のC1〜C24のアルキルエステル;アクリル酸、メタクリル酸、スチレン、ビニルトルエン、アクリルアミド、アクリロニトリル、N−メチロール(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミドのC1〜4アルキルエーテル化物;N,N−ジエチルアミノエチルメタクリレートなどを挙げることができる。また、エポキシ基を有する不飽和モノマーとしては、グリシジルメタアクリレート、グリシジルアクリレート、3,4エポキシシクロヘキシル−1−メチル(メタ)アクリレーなど、エポキシ基と重合性不飽和基を持つものであれば、特に制限されるものではない。
また、このアクリル系共重合体樹脂はポリエステル樹脂、エポキシ樹脂、フェノール樹脂などによって変性させた樹脂とすることもできる。
Further, as the epoxy group-containing resin (B), an unsaturated monomer having an epoxy group and a polymerizable unsaturated monomer component essentially comprising an acrylic ester or a methacrylic ester are used as a solution polymerization method, emulsion polymerization method or suspension polymerization method. An acrylic copolymer resin copolymerized with an epoxy group-containing monomer synthesized by a method such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl ( Acrylic or methacrylic acid such as meth) acrylate, n-, iso- or tert-butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate C1-C24 Alkyl ester; acrylic acid, methacrylic acid, styrene, vinyl toluene, acrylamide, acrylonitrile, N-methylol (meth) acrylamide, C1-4 alkyl etherified product of N-methylol (meth) acrylamide; N, N-diethylaminoethyl methacrylate, etc. Can be mentioned. Moreover, as an unsaturated monomer which has an epoxy group, if it has an epoxy group and a polymerizable unsaturated group, such as glycidyl methacrylate, glycidyl acrylate, and 3,4 epoxy cyclohexyl-1-methyl (meth) acrylate, It is not limited.
The acrylic copolymer resin may be a resin modified with a polyester resin, an epoxy resin, a phenol resin, or the like.
上記エポキシ基含有樹脂(B)として特に好ましいのは、ビスフェノールAとエピパロヒドリンとの反応生成物である下記化学構造式に代表される樹脂であり、耐食性に優れているため特に好適である。
このようなビスフェノールA型エポキシ樹脂は、当業界において広く知られた製造法により得ることができる。
Particularly preferable as the epoxy group-containing resin (B) is a resin represented by the following chemical structural formula, which is a reaction product of bisphenol A and epiparohydrin, and is particularly preferable because of its excellent corrosion resistance.
Such a bisphenol A type epoxy resin can be obtained by a production method widely known in the art.
上記エポキシ基含有樹脂(B)のエポキシ基と反応する活性水素含有化合物としては、下記のものが挙げられる。
・活性水素を有するヒドラジン誘導体
・活性水素を有する第1級または第2級のアミン化合物
・アンモニア、カルボン酸などの有機酸
・塩化水素などのハロゲン化水素類
・アルコール類、チオール類
・活性水素を有しないヒドラジン誘導体または第3級アミンと酸との混合物である4級塩化剤
上記水性エポキシ樹脂分散液を調整する際には、これらの1種または2種以上を使用できるが、優れた耐食性を得るために、活性水素含有化合物の少なくとも一部(好ましくは全部)は、活性水素を有するヒドラジン誘導体であることが必要である。すなわち、これらのうち活性水素を有するヒドラジン誘導体(C)を必須成分とし、必要に応じてこのヒドラジン誘導体(C)以外の活性水素含有化合物(D)を用いる。
Examples of the active hydrogen-containing compound that reacts with the epoxy group of the epoxy group-containing resin (B) include the following.
・ Hydrazine derivatives with active hydrogen ・ Primary or secondary amine compounds with active hydrogen ・ Organic acids such as ammonia and carboxylic acids ・ Hydrogen halides such as hydrogen chloride ・ Alcohols, thiols ・ Active hydrogen Quaternary chlorinating agent which is a mixture of hydrazine derivative or tertiary amine and acid which does not have, when adjusting the aqueous epoxy resin dispersion, one or more of these can be used, but excellent corrosion resistance In order to obtain, at least a part (preferably all) of the active hydrogen-containing compound needs to be a hydrazine derivative having active hydrogen. That is, among these, a hydrazine derivative (C) having active hydrogen is an essential component, and an active hydrogen-containing compound (D) other than the hydrazine derivative (C) is used as necessary.
上記活性化水素を有するアミン化合物の代表例としては、以下のものを挙げることができる。
(1) ジエチレントリアミン、ヒドロキシエチルアミノエチルアミン、エチルアミノエチルアミン、メチルアミノプロピルアミンなどの1個の2級アミノ基と1個以上の1級アミノ基を含有するアミン化合物の1級アミノ基を、ケトン、アルデヒドまたはカルボン酸と例えば100〜230℃程度の温度で加熱反応させてアルジミン、ケチミン、オキサゾリンまたはイミダゾリンに変性した化合物;
(2) ジエチルアミン、ジエタノールアミン、ジ−n−または−ios−プロパノールアミン、N−メチルエタノールアミン、N−エチルエタノールアミンなどの第2級モノアミン;
(3) モノエタノールアミンなどのようなモノアルカノールアミンとジアルキル(メタ)アクリルアミドとをミカエル付加反応により付加させて得られる第2級アミン含有化合物;
(4) モノエタノールアミン、ネオペンタノールアミン、2−アミノプロパノール、3−アミノプロパノール、2−ヒドロキシ−2′(アミノプロポキシ)エチルエーテルなどのアルカノールアミンの1級アミン基をケチミンに変性した化合物;
The following can be mentioned as a typical example of the amine compound which has the said activated hydrogen.
(1) a primary amino group of an amine compound containing one secondary amino group and one or more primary amino groups, such as diethylenetriamine, hydroxyethylaminoethylamine, ethylaminoethylamine, methylaminopropylamine, etc .; A compound modified with aldimine, ketimine, oxazoline or imidazoline by heat reaction with aldehyde or carboxylic acid at a temperature of about 100 to 230 ° C., for example;
(2) Secondary monoamines such as diethylamine, diethanolamine, di-n- or -ios-propanolamine, N-methylethanolamine, N-ethylethanolamine;
(3) a secondary amine-containing compound obtained by adding a monoalkanolamine such as monoethanolamine and a dialkyl (meth) acrylamide by a Michael addition reaction;
(4) A compound obtained by modifying a primary amine group of an alkanolamine such as monoethanolamine, neopentanolamine, 2-aminopropanol, 3-aminopropanol, 2-hydroxy-2 ′ (aminopropoxy) ethyl ether to ketimine;
活性水素含有化合物の一部として使用できる上記4級塩化剤は、活性水素を有しないヒドラジン誘導体または第3級アミンはそれ自体ではエポキシ基と反応性を有しないので、これらをエポキシ基と反応可能とするために酸との混合物としたものである。4級塩化剤は、必要に応じて水の存在下でエポキシ基と反応し、エポキシ基含有樹脂と4級塩を形成する。4級塩化剤を得るために使用される酸は、酢酸、乳酸などの有機酸、塩酸などの無機酸のいずれでもよい。また、4級塩化剤を得るために使用される活性水素を有しないヒドラジン誘導体としては、例えば3,6−ジクロロピリダジンなどを、また、第3級アミンとしては、例えば、ジメチルエタノールアミン、トリエチルアミン、トリメチルアミン、トリイソプロピルアミン、メチルジエタノールアミンなどを挙げることができる。 The quaternary chlorinating agent that can be used as a part of the active hydrogen-containing compound can react with an epoxy group because a hydrazine derivative or a tertiary amine that does not have an active hydrogen is not reactive with an epoxy group by itself. Therefore, it is a mixture with an acid. A quaternary chlorinating agent reacts with an epoxy group in the presence of water as necessary to form a quaternary salt with an epoxy group-containing resin. The acid used to obtain the quaternary chlorinating agent may be any of organic acids such as acetic acid and lactic acid, and inorganic acids such as hydrochloric acid. Examples of the hydrazine derivative having no active hydrogen used for obtaining a quaternary chlorinating agent include 3,6-dichloropyridazine, and examples of the tertiary amine include dimethylethanolamine, triethylamine, Examples include trimethylamine, triisopropylamine, and methyldiethanolamine.
上記活性水素含有化合物で最も有用で耐食性に優れた性能を発現するのが、活性水素を有するヒドラジン誘導体である。
活性水素を有するヒドラジン誘導体の具体例としては、例えば以下のものを挙げることができる。
(1) カルボヒドラジド、プロピオン酸ヒドラジド、サリチル酸ヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン酸ジヒドラジド、イソフタル酸ジヒドラジド、チオカルボヒドラジド、4,4′−オキシビスベンゼンスルホニルヒドラジド、ベンゾフェノンヒドラゾン、アミノポリアクリルアミドなどのヒドラジド化合物;
(2) ピラゾール、3,5−ジメチルピラゾール、3−メチル−5−ピラゾロン、3−アミノ−5−メチルピラゾールなどのピラゾール化合物;
It is a hydrazine derivative having active hydrogen that exhibits the most useful and excellent corrosion resistance performance among the active hydrogen-containing compounds.
Specific examples of the hydrazine derivative having active hydrogen include the following.
(1) Carbohydrazide, propionic acid hydrazide, salicylic acid hydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanoic acid dihydrazide, isophthalic acid dihydrazide, thiocarbohydrazide, 4,4'-oxybisbenzenesulfonyl hydrazide, benzophenone hydrazone, aminopolyacrylamide Hydrazide compounds such as;
(2) pyrazole compounds such as pyrazole, 3,5-dimethylpyrazole, 3-methyl-5-pyrazolone, 3-amino-5-methylpyrazole;
(3) 1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、4−アミノ−1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、5−アミノ−3−メルカプト−1,2,4−トリアゾール、2,3−ジヒドロ−3−オキソ−1,2,4−トリアゾール、1H−ベンゾトリアゾール、1−ヒドロキシベンゾトリアゾール(1水和物)、6−メチル−8−ヒドロキシトリアゾロピリダジン、6−フェニル−8−ヒドロキシトリアゾロピリダジン、5−ヒドロキシ−7−メチル−1,3,8−トリアザインドリジンなどのトリアゾール化合物; (3) 1,2,4-triazole, 3-amino-1,2,4-triazole, 4-amino-1,2,4-triazole, 3-mercapto-1,2,4-triazole, 5-amino -3-mercapto-1,2,4-triazole, 2,3-dihydro-3-oxo-1,2,4-triazole, 1H-benzotriazole, 1-hydroxybenzotriazole (monohydrate), 6- Triazole compounds such as methyl-8-hydroxytriazolopyridazine, 6-phenyl-8-hydroxytriazolopyridazine, 5-hydroxy-7-methyl-1,3,8-triazaindolizine;
(4) 5−フェニル−1,2,3,4−テトラゾール、5−メルカプト−1−フェニル−1,2,3,4−テトラゾールなどのテトラゾール化合物;
(5) 5−アミノ−2−メルカプト−1,3,4−チアジアゾール、2,5−ジメルカプト−1,3,4−チアジアゾールなどのチアジアゾール化合物;
(6) マレイン酸ヒドラジド、6−メチル−3−ピリダゾン、4,5−ジクロロ−3−ピリダゾン、4,5−ジブロモ−3−ピリダゾン、6−メチル−4,5−ジヒドロ−3−ピリダゾンなどのピリダジン化合物;
また、これらのなかでも5員環または6員環の環状構造を有し、環状構造中に窒素原子を有するピラゾール化合物、トリアゾール化合物が特に好適である。
これらのヒドラジン誘導体は1種を単独でまたは2種以上を混合して使用することができる。
(4) tetrazole compounds such as 5-phenyl-1,2,3,4-tetrazole and 5-mercapto-1-phenyl-1,2,3,4-tetrazole;
(5) thiadiazole compounds such as 5-amino-2-mercapto-1,3,4-thiadiazole and 2,5-dimercapto-1,3,4-thiadiazole;
(6) Maleic hydrazide, 6-methyl-3-pyridazone, 4,5-dichloro-3-pyridazone, 4,5-dibromo-3-pyridazone, 6-methyl-4,5-dihydro-3-pyridazone, etc. Pyridazine compounds;
Of these, pyrazole compounds and triazole compounds having a 5-membered or 6-membered ring structure and having a nitrogen atom in the ring structure are particularly suitable.
These hydrazine derivatives can be used individually by 1 type or in mixture of 2 or more types.
以上述べたようなポリアルキレングリコール変性エポキシ樹脂(A)と、このポリアルキレングリコール変性エポキシ樹脂(A)以外のエポキシ基含有樹脂(B)と、活性水素を有するヒドラジン誘導体(C)と、さらに必要に応じてこのヒドラジン誘導体(C)以外の活性水素含有化合物(D)とを、好ましくは10〜300℃、より好ましくは50〜150℃の温度で約1〜8時間反応させ、これにより得られる樹脂を水中に分散させることにより、上述した水性エポキシ樹脂分散液を得ることができる。 A polyalkylene glycol-modified epoxy resin (A) as described above, an epoxy group-containing resin (B) other than the polyalkylene glycol-modified epoxy resin (A), a hydrazine derivative (C) having active hydrogen, and further necessary The active hydrogen-containing compound (D) other than the hydrazine derivative (C) is preferably reacted at a temperature of 10 to 300 ° C., more preferably 50 to 150 ° C. for about 1 to 8 hours. The aqueous epoxy resin dispersion described above can be obtained by dispersing the resin in water.
上記反応は有機溶剤を加えて行ってもよく、使用する有機溶剤の種類は特に限定されない。例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジブチルケトン、シクロヘキサノンなどのケトン類;エタノール、ブタノール、2−エチルヘキシルアルコール、ベンジルアルコール、エチレングリコール、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテルなどの水酸基を含有するアルコール類やエーテル類;酢酸エチル、酢酸ブチル、エチレングリコールモノブチルエーテルアセテートなどのエステル類;トルエン、キシレンなどの芳香族炭化水素等を例示でき、これらの1種または2種以上を使用することができる。また、これらのなかでエポキシ樹脂との溶解性、皮膜形成性等の面からは、ケトン系またはエーテル系の溶剤が特に好ましい。 The above reaction may be performed by adding an organic solvent, and the type of the organic solvent to be used is not particularly limited. For example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, dibutyl ketone, cyclohexanone; ethanol, butanol, 2-ethylhexyl alcohol, benzyl alcohol, ethylene glycol, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether , Propylene glycol, propylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether and other alcohols and ethers containing hydroxyl groups; ethyl acetate, butyl acetate, ethylene glycol monobutyl ether acetate and other esters; toluene, xylene Aromatic hydrocarbons, etc. Indicates possible, it is possible to use one or more of these. Of these, ketone-based or ether-based solvents are particularly preferable from the viewpoints of solubility with an epoxy resin, film formation, and the like.
ポリアルキレングリコール変性エポキシ樹脂(A)と、ポリアルキレングリコール変性エポキシ樹脂(A)以外のエポキシ基含有樹脂(B)と、活性水素を有するヒドラジン誘導体(C)との配合比率は、ポリアルキレングリコール変性エポキシ樹脂(A)およびエポキシ基含有樹脂(B)中のエポキシ基に対するヒドラジン誘導体(C)中の活性水素基の当量比が0.01〜10、好ましくは0.1〜8、さらに好ましくは0.2〜4となるようにすることが、耐食性や樹脂の水分散性などの観点から適当である。
また、上述のように活性水素を有するヒドラジン誘導体(C)の一部を活性水素含有化合物(D)に置き換えることもできるが、置き換える量(すなわち、ヒドラジン誘導体(C)を含めた活性水素含有化合物中における活性水素含有化合物(D)の割合)としては90モル%以下、好ましくは70モル%以下、より好ましくは10〜60モル%の範囲内とすることが防食性、付着性の観点から適当である。
The blending ratio of the polyalkylene glycol-modified epoxy resin (A), the epoxy group-containing resin (B) other than the polyalkylene glycol-modified epoxy resin (A), and the hydrazine derivative (C) having active hydrogen is polyalkylene glycol-modified. The equivalent ratio of active hydrogen groups in the hydrazine derivative (C) to the epoxy groups in the epoxy resin (A) and the epoxy group-containing resin (B) is 0.01 to 10, preferably 0.1 to 8, and more preferably 0. 2 to 4 is appropriate from the viewpoints of corrosion resistance and water dispersibility of the resin.
Further, as described above, a part of the hydrazine derivative (C) having active hydrogen can be replaced with the active hydrogen-containing compound (D), but the amount to be replaced (that is, the active hydrogen-containing compound including the hydrazine derivative (C)) The proportion of the active hydrogen-containing compound (D) in the composition is 90 mol% or less, preferably 70 mol% or less, more preferably 10 to 60 mol%, from the viewpoint of corrosion resistance and adhesion. It is.
また、緻密なバリア皮膜を形成するために、樹脂組成物中に硬化剤を配合し、皮膜を加熱硬化させることが望ましい。樹脂組成物による皮膜を形成する場合の硬化方法としては、(1)イソシアネートと基体樹脂中の水酸基とのウレタン化反応を利用する硬化方法、(2)メラミン、尿素およびベンゾグアナミンの中から選ばれた1種以上にホルムアルデヒドを反応させてなるメチロール化合物の一部若しくは全部に炭素数1〜5の1価アルコールを反応させてなるアルキルエーテル化アミノ樹脂と基体樹脂中の水酸基との間のエーテル化反応を利用する硬化方法、が適当であるが、このうちイソシアネートと基体樹脂中の水酸基とのウレタン化反応を主反応とすることが特に好適である。 Moreover, in order to form a dense barrier film, it is desirable to mix a curing agent in the resin composition and heat cure the film. The curing method for forming a film with the resin composition was selected from (1) a curing method using a urethanization reaction between an isocyanate and a hydroxyl group in a base resin, and (2) melamine, urea, and benzoguanamine. Etherification reaction between an alkyl etherified amino resin obtained by reacting one or more methylol compounds obtained by reacting formaldehyde with one or more monovalent alcohols having 1 to 5 carbon atoms and a hydroxyl group in the base resin. However, it is particularly preferable to use a urethanization reaction between an isocyanate and a hydroxyl group in the base resin as a main reaction.
上記(1)の硬化方法で用いることができる硬化剤としてのポリイソシアネート化合物は、1分子中に少なくとも2個のイソシアネート基を有する脂肪族、脂環族(複素環を含む)または芳香族イソシアネート化合物、若しくはそれらの化合物を多価アルコールで部分反応させた化合物である。このようなポリイソシアネート化合物としては、例えば以下のものが例示できる。
(i) m−またはp−フェニレンジイソシアネート、2,4−または2,6−トリレンジイソシアネート、o−またはp−キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート、イソホロンジイソシアネート
(ii) 上記(i)の化合物単独またはそれらの混合物と多価アルコール(エチレングリコール、プロピレングリコールなどの2価アルコール類;グリセリン、トリメチロールプロパンなどの3価アルコール;ペンタエリスリトールなどの4価アルコール;ソルビトール、ジペンタエリスリトールなどの6価アルコールなど)との反応生成物であって、1分子中に少なくとも2個のイソシアネートが残存する化合物
これらのポリイソシアネート化合物は、1種を単独でまたは2種以上を混合して使用できる。
The polyisocyanate compound as a curing agent that can be used in the curing method (1) is an aliphatic, alicyclic (including heterocyclic) or aromatic isocyanate compound having at least two isocyanate groups in one molecule. Or a compound obtained by partially reacting these compounds with a polyhydric alcohol. Examples of such polyisocyanate compounds include the following.
(i) m- or p-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate, o- or p-xylylene diisocyanate, hexamethylene diisocyanate, dimer acid diisocyanate, isophorone diisocyanate
(ii) The above compound (i) alone or a mixture thereof and a polyhydric alcohol (dihydric alcohols such as ethylene glycol and propylene glycol; trihydric alcohols such as glycerin and trimethylolpropane; tetrahydric alcohols such as pentaerythritol; A compound obtained by reaction with a hexahydric alcohol such as sorbitol and dipentaerythritol), in which at least two isocyanates remain in one molecule. These polyisocyanate compounds may be used alone or in combination of two or more. Can be used in combination.
また、ポリイソシアネート化合物の保護剤(ブロック剤)としては、例えば、
(1) メタノール、エタノール、プロパノール、ブタノール、オクチルアルコールなどの脂肪族モノアルコール類;
(2) エチレングリコールおよび/またはジエチレングリコールのモノエーテル類、例えば、メチル、エチル、プロピル(n−,iso)、ブチル(n−,iso,sec)などのモノエーテル;
(3) フェノール、クレゾールなどの芳香族アルコール;
(4) アセトオキシム、メチルエチルケトンオキシムなどのオキシム;
などが使用でき、これらの1種または2種以上と前記ポリイソシアネート化合物とを反応させることにより、少なくとも常温下で安定に保護されたポリイソシアネート化合物を得ることができる。
Moreover, as a protective agent (blocking agent) of a polyisocyanate compound, for example,
(1) Aliphatic monoalcohols such as methanol, ethanol, propanol, butanol, octyl alcohol;
(2) Ethylene glycol and / or diethylene glycol monoethers, for example, monoethers such as methyl, ethyl, propyl (n-, iso), butyl (n-, iso, sec);
(3) Aromatic alcohols such as phenol and cresol;
(4) oximes such as acetooxime and methyl ethyl ketone oxime;
A polyisocyanate compound that is stably protected at least at room temperature can be obtained by reacting one or more of these with the polyisocyanate compound.
このようなポリイソシアネート化合物(a2)は、水性エポキシ樹脂分散液(a)(上記成分(a))に対して、硬化剤として(a)/(a2)=95/5〜55/45(不揮発分の質量比)、好ましくは(a)/(a2)=90/10〜65/35の割合で配合するのが適当である。ポリイソシアネート化合物には吸水性があり、これを(a)/(a2)=55/45を超えて配合すると表面処理皮膜の密着性を劣化させてしまう。さらに、未反応のポリイソシアネート化合物が上層皮膜中に移動し、上層皮膜の硬化阻害や密着性不良を起こしてしまう。このような観点から、ポリイソシアネート化合物(a2)の配合量は(a)/(a2)=55/45以下とすることが好ましい。 Such a polyisocyanate compound (a2) has a curing agent of (a) / (a2) = 95/5 to 55/45 (nonvolatile) with respect to the aqueous epoxy resin dispersion (a) (the component (a)). (Mass ratio of minute), preferably (a) / (a2) = 90/10 to 65/35. The polyisocyanate compound has water absorption, and if it is blended in excess of (a) / (a2) = 55/45, the adhesion of the surface treatment film is deteriorated. Furthermore, the unreacted polyisocyanate compound moves into the upper layer film, which causes inhibition of curing of the upper layer film and poor adhesion. From such a viewpoint, the blending amount of the polyisocyanate compound (a2) is preferably (a) / (a2) = 55/45 or less.
なお、水分散性樹脂は以上のような架橋剤(硬化剤)の添加により十分に架橋するが、さらに低温架橋性を増大させるため、公知の硬化促進触媒を使用することが望ましい。この硬化促進触媒としては、例えば、N−エチルモルホリン、ジブチル錫ジラウレート、ナフテン酸コバルト、塩化第1スズ、ナフテン酸亜鉛、硝酸ビスマスなどが使用できる。
また、付着性など若干の物性向上を狙いとして、エポキシ基含有樹脂(B)とともに公知のアクリル、アルキッド、ポリエステル等の樹脂を混合して用いることもできる。
The water-dispersible resin is sufficiently crosslinked by the addition of the crosslinking agent (curing agent) as described above, but it is desirable to use a known curing accelerating catalyst in order to further increase the low-temperature crosslinking property. Examples of the curing accelerating catalyst include N-ethylmorpholine, dibutyltin dilaurate, cobalt naphthenate, stannous chloride, zinc naphthenate, and bismuth nitrate.
In addition, for the purpose of slightly improving physical properties such as adhesion, a known resin such as acrylic, alkyd, or polyester can be mixed and used together with the epoxy group-containing resin (B).
ポリアルキレングリコール変性エポキシ樹脂(A)、エポキシ基含有樹脂(B)および活性水素を有するヒドラジン誘導体(C)(さらに必要に応じて活性水素含有化合物(D))の反応生成物を水分散化するには、例えば以下のような手法を採ることができる。
(1) エポキシ基含有樹脂(すなわち、樹脂(A),(B))のエポキシ基と活性水素含有化合物である二塩基酸または第2級アミンなどを反応させ、中和剤である3級アミン、酢酸または燐酸などで中和、水分散化させる手法
(2) エポキシ樹脂とポリエチレングリコール、ポリプロピレングリコールなどの末端水酸基含有ポリアルキレンオキサイドをイソシアネートと反応させてなる変性エポキシ樹脂を分散剤に用いて、水分散化させる手法
(3) 上記(1)と(2)を併用する手法
表面処理組成物には、上述した特定の水分散性樹脂以外に、その他の水分散性樹脂および/または水溶性樹脂として、例えば、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、エポキシ系樹脂、エチレン系樹脂、アルキッド系樹脂、フェノール樹脂、オレフィン樹脂などの1種または2種以上を、全樹脂固形分中での割合で15mass%程度を上限として配合してもよい。
The reaction product of polyalkylene glycol-modified epoxy resin (A), epoxy group-containing resin (B) and hydrazine derivative (C) having active hydrogen (and active hydrogen-containing compound (D) if necessary) is dispersed in water. For example, the following method can be employed.
(1) A tertiary amine which is a neutralizing agent by reacting an epoxy group of an epoxy group-containing resin (ie, resin (A) or (B)) with a dibasic acid or secondary amine which is an active hydrogen-containing compound. , Neutralization with acetic acid or phosphoric acid, water dispersion method
(2) A method of dispersing in water using a modified epoxy resin obtained by reacting an epoxy resin with a terminal hydroxyl group-containing polyalkylene oxide such as polyethylene glycol or polypropylene glycol with an isocyanate.
(3) Method of using both (1) and (2) in combination In addition to the specific water-dispersible resin described above, other surface-dispersible resins and / or water-soluble resins include, for example, acrylic Resin, urethane resin, polyester resin, epoxy resin, ethylene resin, alkyd resin, phenol resin, olefin resin, etc. You may mix | blend as an upper limit.
次に、上記成分(b)であるシランカップリング剤について説明する。
このシランカップリング剤としては、例えば、ビニルメトキシシラン、ビニルエトキシシラン、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメエキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、p−スチリルトリメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、γ−イソシアネートプロピルトリエトキシシラン、γ−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−(ビニルベンジルアミン)−β−アミノエチル−γ−アミノプロピルトリメトキシシランなどを挙げることができ、これらの1種を単独でまたは2種以上を混合して使用することができる。
Next, the silane coupling agent which is the said component (b) is demonstrated.
Examples of the silane coupling agent include vinyl methoxy silane, vinyl ethoxy silane, vinyl trichloro silane, vinyl trimethoxy silane, vinyl triethoxy silane, β- (3,4 epoxy cyclohexyl) ethyl trimethoxy silane, and γ-glycid. Xylpropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ -Aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-me Tacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, p-styryltrimethoxysilane, γ -Acryloxypropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, γ-chloropropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, γ-isocyanatopropyl Triethoxysilane, γ-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N- (vinylbenzylamine) -β-aminoethyl-γ-aminopropyltri Etc. can be mentioned Tokishishiran, these one may be used alone or in combination of two or more.
本発明において、表面処理組成物が特定の酸成分とともにシランカップリング剤を含むことにより耐白錆性が向上するには、先に述べたような理由が考えられる。
また、上記シランカップリング剤のなかでも、上記成分(a)の水分散性樹脂と反応性が高い官能基を有するという観点から、特に反応性官能基としてアミノ基を有すシランカップリング剤が好ましい。このようなシランカップリング剤としては、例えば、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメエキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシランなどが挙げられ、具体的には、信越化学(株)製の「KBM−903」、「KBE−903」、「KBM−603」、「KBE−602」、「KBE−603」(いずれも商品名)などを用いることができる。
In the present invention, the reason described above is considered to improve the white rust resistance by including a silane coupling agent together with a specific acid component in the surface treatment composition.
Among the silane coupling agents, a silane coupling agent having an amino group as a reactive functional group is particularly preferable from the viewpoint of having a functional group highly reactive with the water-dispersible resin of the component (a). preferable. Examples of such silane coupling agents include N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ. -Aminopropyltrimexysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, etc., specifically, “KBM-903” and “KBE-903” manufactured by Shin-Etsu Chemical Co., Ltd. , “KBM-603”, “KBE-602”, “KBE-603” (all are trade names), and the like.
シランカップリング剤の配合量は、上記成分(a)である水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で1〜300質量部、好ましくは5〜100質量部、さらに好ましくは15〜50質量部とするのが適当である。シランカップリング剤の配合量が1質量部未満では耐食性が劣り、一方、300質量部を超えると十分な皮膜が形成できないため、水分散性樹脂との密着性とバリア性を高める効果が発揮できず、耐食性が低下する。 The compounding amount of the silane coupling agent is 1 to 300 parts by mass, preferably 5 to 100 parts by mass in terms of the solid content with respect to 100 parts by mass of the resin solid content of the aqueous epoxy resin dispersion as the component (a). More preferably, the content is 15 to 50 parts by mass. If the amount of the silane coupling agent is less than 1 part by mass, the corrosion resistance is inferior. On the other hand, if it exceeds 300 parts by mass, a sufficient film cannot be formed, so that the effect of improving the adhesion and barrier properties with the water-dispersible resin can be exhibited. Therefore, the corrosion resistance is reduced.
次に、上記成分(c)であるリン酸および/またはリン酸化合物は、不活性なめっき金属表面に作用してめっき金属表面を活性化させる作用を有する。このリン酸とリン酸化合物はそれぞれ単独で用いてもよいし、併用してもよい。
リン酸化合物の種類は特に限定されないが、特に水溶性リン酸塩が好ましく、例えば、オルトリン酸、ピロリン酸、ポリリン酸、メタリン酸などの金属塩の1種または2種以上を用いることができる。また、有機リン酸の塩(例えば、フィチン酸、フィチン酸塩、ホスホン酸、ホスホン酸塩およびこれらの金属塩)の1種以上を添加してもよい。また、それらのなかでも第一リン酸塩が表面処理組成物の安定性などの面から好適である。
皮膜中でのリン酸塩の存在形態も特別な限定はなく、また、結晶若しくは非結晶であるか否かも問わない。また、皮膜中でのリン酸塩のイオン性、溶解度についても特別な制約はない。
Next, phosphoric acid and / or a phosphoric acid compound as the component (c) has an action of activating the plated metal surface by acting on the inactive plated metal surface. The phosphoric acid and the phosphoric acid compound may be used alone or in combination.
The type of the phosphoric acid compound is not particularly limited, but a water-soluble phosphate is particularly preferable. For example, one or more metal salts such as orthophosphoric acid, pyrophosphoric acid, polyphosphoric acid, and metaphosphoric acid can be used. Moreover, you may add 1 or more types of the salt (for example, phytic acid, phytate, phosphonic acid, phosphonate, and these metal salts) of organic phosphoric acid. Of these, the primary phosphate is preferable from the viewpoint of the stability of the surface treatment composition.
There is no particular limitation on the form of phosphate present in the film, and it may be crystalline or non-crystalline. There are no particular restrictions on the ionicity and solubility of the phosphate in the film.
先に述べたようにシランカップリング剤は活性化されためっき金属と皮膜形成樹脂の両方と化学結合することで、めっき金属と皮膜形成樹脂との優れた密着性と耐食性が得られるが、めっき金属表面には不可避的に不活性な部分が存在し、このような不活性なサイトでは上記化学結合が生じにくく防錆効果を十分発揮できない。水溶性リン酸塩はこのようなめっき皮膜の部分に対して、皮膜形成時に緻密な難溶性化合物を形成する。すなわち、水溶性リン酸塩のリン酸イオンによるめっき皮膜の溶解に伴いめっき皮膜/表面処理組成物界面でpHが上昇し、その結果、水溶性リン酸塩の沈殿物皮膜が形成され、これが耐食性の向上に寄与する。 As described above, the silane coupling agent chemically bonds with both the activated plating metal and the film-forming resin, thereby providing excellent adhesion and corrosion resistance between the plating metal and the film-forming resin. There are unavoidably inactive portions on the metal surface, and such an inactive site hardly causes the above-mentioned chemical bond and cannot sufficiently exhibit the rust prevention effect. The water-soluble phosphate forms a dense hardly soluble compound at the time of film formation on such a plated film portion. That is, as the plating film is dissolved by the phosphate ions of the water-soluble phosphate, the pH increases at the plating film / surface treatment composition interface, resulting in the formation of a precipitate film of the water-soluble phosphate, which is corrosion resistant. It contributes to the improvement.
また、特に優れた耐食性を得るという観点からは、水溶性リン酸塩のカチオン種としてはAl、Mn、Ni、Mgが特に望ましく、これらの中から選ばれる1種以上の元素を含む水溶性リン酸塩を用いることが好ましい。このような水溶性リン酸塩としては、例えば、第一リン酸アルミニウム、第一リン酸マンガン、第一リン酸ニッケル、第一リン酸マグネシウムが挙げられ、これらのうちでも特に第一リン酸アルミニウムが最も好ましい。また、そのカチオン成分とP2O5成分のモル比[カチオン]/[P2O5]は0.4〜1.0であることが好ましい。モル比[カチオン]/[P2O5]が0.4未満では可溶性のリン酸によって皮膜の難溶性が損なわれ、耐食性が低下するので好ましくない。一方、1.0を超えると処理液安定性が著しく失われるので好ましくない。 From the viewpoint of obtaining particularly excellent corrosion resistance, Al, Mn, Ni, and Mg are particularly desirable as the cationic species of the water-soluble phosphate, and the water-soluble phosphorus containing one or more elements selected from these is preferred. It is preferable to use an acid salt. Examples of such water-soluble phosphates include primary aluminum phosphate, primary manganese phosphate, primary nickel phosphate, primary magnesium phosphate, and among these, primary aluminum phosphate is particularly preferable. Is most preferred. The molar ratio of the cationic component and P 2 O 5 component [cation] / [P 2 O 5] is preferably from 0.4 to 1.0. If the molar ratio [cation] / [P 2 O 5 ] is less than 0.4, the solubility of the film is impaired by the soluble phosphoric acid, and the corrosion resistance is lowered. On the other hand, if it exceeds 1.0, the stability of the processing solution is remarkably lost, which is not preferable.
リン酸および/またはリン酸化合物の配合量は、上記成分(a)である水性エポキシ樹脂分散液の樹脂固形分100質量部に対して、固形分の割合の合計で0.1〜80質量部、好ましくは1〜60質量部、さらに好ましくは5〜50質量部とするのが適当である。リン酸および/またはリン酸化合物の配合量が0.1質量部未満では耐食性が劣り、一方、80質量部を超えると皮膜の可溶成分が増えることから、耐食性が低下するため好ましくない。 The blending amount of the phosphoric acid and / or phosphoric acid compound is 0.1 to 80 parts by mass in total of the solid content with respect to 100 parts by mass of the resin solid content of the aqueous epoxy resin dispersion as the component (a). The amount is preferably 1 to 60 parts by mass, more preferably 5 to 50 parts by mass. If the blending amount of phosphoric acid and / or phosphoric acid compound is less than 0.1 parts by mass, the corrosion resistance is inferior. On the other hand, if it exceeds 80 parts by mass, the soluble component of the film increases, which is not preferable because the corrosion resistance decreases.
上記成分(d)であるフッ素化合物、すなわち、1分子中にフッ素を1〜5個含有する化合物としては、フルオロリン酸、フルオロリン酸カルシウムなどのリン酸化合物;三フッ化バナジウム、四フッ化バナジウム、フッ化セシウム、フッ化ストロンチウム、フッ化アンチモン、フッ化ルビジウム、フッ化マグネシウム、フッ化アルミニウム、フッ化コバルト、フッ化ニッケル、フッ化チタン、フッ化ジルコニウムなどの金属化合物;テトラフルオロホウ酸、フッ化水素酸およびこれらの塩などが挙げられ、これらの1種を単独でまたは2種以上を混合して用いることができる。特に耐食性の観点から、三フッ化バナジウム、四フッ化バナジウムなどのバナジウム化合物が好ましい。これはバナジウムの不動態化効果によるもので、バナジウム化合物を上記フッ素化合物中に単独で添加しても構わない。 Examples of the fluorine compound as the component (d), that is, a compound containing 1 to 5 fluorine atoms in one molecule include phosphoric acid compounds such as fluorophosphoric acid and calcium fluorophosphate; vanadium trifluoride, vanadium tetrafluoride, Metal compounds such as cesium fluoride, strontium fluoride, antimony fluoride, rubidium fluoride, magnesium fluoride, aluminum fluoride, cobalt fluoride, nickel fluoride, titanium fluoride, zirconium fluoride; tetrafluoroboric acid, fluorine Examples thereof include hydrofluoric acid and salts thereof. One of these may be used alone, or two or more thereof may be mixed and used. In particular, vanadium compounds such as vanadium trifluoride and vanadium tetrafluoride are preferable from the viewpoint of corrosion resistance. This is due to the passivation effect of vanadium, and the vanadium compound may be added alone to the fluorine compound.
フッ素化合物の配合量は、上記成分(a)である水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で0.1〜100質量部、好ましくは1〜60質量部、さらに好ましくは5〜30質量部とするのが適当である。フッ素化合物の配合量が0.1質量部未満では耐食性が劣り、一方、100質量部を超えると溶液状態が不安定となり、耐食性が低下するばかりでなく、経済的にも不利である。 The compounding quantity of a fluorine compound is 0.1-100 mass parts in the ratio of solid content with respect to 100 mass parts of resin solid content of the aqueous | water-based epoxy resin dispersion which is the said component (a), Preferably 1-60 mass parts, More preferably, the content is 5 to 30 parts by mass. When the blending amount of the fluorine compound is less than 0.1 parts by mass, the corrosion resistance is inferior. On the other hand, when it exceeds 100 parts by mass, the solution state becomes unstable, the corrosion resistance is lowered, and it is economically disadvantageous.
表面処理組成物には、耐食性向上を目的として、必要に応じて非クロム系防錆添加剤を配合することができる。表面処理組成物中にこのような非クロム系防錆添加剤を配合することにより、特に優れた防食性能(自己補修性)を得ることができる。
この非クロム系防錆添加剤は、特に下記(e1)〜(e7)の中から選ばれる1つ以上を用いることが好ましい。
(e1)酸化ケイ素
(e2)カルシウム又はカルシウム化合物
(e3)難溶性リン酸化合物
(e4)モリブデン酸化合物
(e5)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の、S原子を含有する有機化合物
(e6)バナジウム化合物
(e7)ヒドラジド化合物、ピラゾール化合物、トリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、ピリダジン化合物の中から選ばれる1種以上の、N原子を含有する有機化合物
これら(e1)〜(e7)の非クロム系防錆添加剤の詳細及び防食機構は以下の通りである。
A non-chromium rust preventive additive can be blended with the surface treatment composition as needed for the purpose of improving corrosion resistance. Particularly excellent anticorrosion performance (self-repairing property) can be obtained by blending such a non-chromium rust preventive additive into the surface treatment composition.
In particular, it is preferable to use one or more selected from the following (e1) to (e7) as the non-chromium-based antirust additive.
(E1) Silicon oxide (e2) Calcium or calcium compound (e3) Slightly soluble phosphate compound (e4) Molybdate compound (e5) One kind selected from triazoles, thiols, thiadiazoles, thiazoles, thiurams The above organic compounds containing S atoms (e6) Vanadium compounds (e7) One or more N atoms selected from hydrazide compounds, pyrazole compounds, triazole compounds, tetrazole compounds, thiadiazole compounds, and pyridazine compounds Organic compounds The details and anticorrosion mechanisms of the non-chromium rust preventive additives (e1) to (e7) are as follows.
まず、上記(e1)の成分としては微粒子シリカであるコロイダルシリカや乾式シリカを使用することができるが、耐食性の観点からは特に、カルシウムをその表面に結合させたカルシウムイオン交換シリカを使用するのが望ましい。
コロイダルシリカとしては、例えば、日産化学(株)製のスノーテックスO、20、30、40、C、S(いずれも商品名)を用いることができ、また、ヒュームドシリカとしては、日本アエロジル(株)製のAEROSIL R971、R812、R811、R974、R202、R805、130、200、300、300CF(いずれも商品名)を用いることができる。また、カルシウムイオン交換シリカとしては、W.R.Grace&Co.製のSHIELDEX C303、SHIELDEX AC3、SHIELDEX AC5(いずれも商品名)、富士シリシア化学(株)製のSHIELDEX、SHIELDEX SY710(いずれも商品名)などを用いることができる。これらシリカは、腐食環境下において緻密で安定な亜鉛の腐食生成物の生成に寄与し、この腐食生成物がめっき表面に緻密に形成されることによって、腐食の促進を抑制する。
First, as the component (e1), colloidal silica or dry silica, which is fine particle silica, can be used. From the viewpoint of corrosion resistance, calcium ion-exchanged silica in which calcium is bound to the surface is used. Is desirable.
As colloidal silica, for example, SNOWTEX O, 20, 30, 40, C, S (all trade names) manufactured by Nissan Chemical Co., Ltd. can be used, and as fumed silica, Nippon Aerosil ( AEROSIL R971, R812, R811, R974, R202, R805, 130, 200, 300, 300CF (all trade names) manufactured by Co., Ltd. can be used. As calcium ion exchange silica, WRGrace & Co. SHIELDEX C303, SHIELDEX AC3, SHIELDEX AC5 (all are trade names) manufactured by SHIELDEX, SHIELDEX, SHIELDEX SY710 (all are trade names) manufactured by Fuji Silysia Chemical Co., Ltd., etc. can be used. These silicas contribute to the production of dense and stable zinc corrosion products in a corrosive environment, and the corrosion products are formed densely on the plating surface, thereby suppressing the promotion of corrosion.
また、上記(e2)、(e3)の成分は沈殿作用によって特に優れた防食性能(自己補修性)を発現する。
上記(e2)の成分であるカルシウム化合物は、カルシウム酸化物、カルシウム水酸化物、カルシウム塩のいずれでもよく、これらの1種または2種以上を使用できる。また、カルシウム塩の種類にも特に制限はなく、ケイ酸カルシウム、炭酸カルシウム、リン酸カルシウムなどのようなカチオンとしてカルシウムのみを含む単塩のほか、リン酸カルシウム・亜鉛、リン酸カルシウム・マグネシウムなどのようなカルシウムとカルシウム以外のカチオンを含む複塩を使用してもよい。この(e2)の成分は、腐食環境下においてめっき金属である亜鉛やアルミニウムよりも卑なカルシウムが優先溶解し、これがカソード反応により生成したOH−と緻密で難溶性の生成物として欠陥部を封鎖し、腐食反応を抑制する。また、上記のようなシリカとともに配合された場合には、表面にカルシウムイオンが吸着し、表面電荷を電気的に中和して凝集する。その結果、緻密で且つ難溶性の保護皮膜が生成して腐食が封鎖し、腐食反応を抑制する。
In addition, the above components (e2) and (e3) exhibit particularly excellent anticorrosion performance (self-repairing property) due to precipitation.
The calcium compound as the component (e2) may be any of calcium oxide, calcium hydroxide, and calcium salt, and one or more of these can be used. In addition, there are no particular restrictions on the type of calcium salt. In addition to simple salts containing only calcium as a cation such as calcium silicate, calcium carbonate, and calcium phosphate, calcium and calcium such as calcium phosphate / zinc, calcium phosphate / magnesium, etc. Double salts containing other cations may be used. The components (e2) is baser calcium than zinc and aluminum as the plating metal in a corrosive environment is preferentially dissolved, this OH produced by the cathode reaction - sequestering defective portion as a product of dense and poorly soluble And suppress the corrosion reaction. Moreover, when it mix | blends with the above silicas, a calcium ion adsorb | sucks to the surface and neutralizes a surface charge electrically and aggregates. As a result, a dense and sparingly soluble protective film is formed to block the corrosion and suppress the corrosion reaction.
また、上記(e3)である難溶性リン酸化合物としては、難溶性リン酸塩を用いることができる。この難溶性リン酸塩は単塩、複塩などの全ての種類の塩を含む。また、それを構成する金属カチオンに限定はなく、難溶性のリン酸亜鉛、リン酸マグネシウム、リン酸カルシウム、リン酸アルミニウムなどのいずれの金属カチオンでもよい。また、リン酸イオンの骨格や縮合度などにも限定はなく、正塩、二水素塩、一水素塩または亜リン酸塩のいずれでもよく、さらに、正塩はオルトリン酸塩の他、ポリリン酸塩などの全ての縮合リン酸塩を含む。この難溶性リン化合物を用いることにより、腐食によって溶出しためっき金属の亜鉛やアルミニウムと、加水分解により解離したリン酸イオンとが錯形成反応し、緻密で且つ難溶性の保護皮膜が生成することによって腐食起点が封鎖され、腐食反応が抑制される。 Moreover, as a poorly soluble phosphoric acid compound which is said (e3), a poorly soluble phosphate can be used. This sparingly soluble phosphate includes all types of salts such as simple salts and double salts. Moreover, there is no limitation in the metal cation which comprises it, and any metal cation, such as poorly soluble zinc phosphate, magnesium phosphate, calcium phosphate, aluminum phosphate, may be sufficient. Further, there is no limitation on the skeleton or the degree of condensation of phosphate ions, and any of normal salt, dihydrogen salt, monohydrogen salt or phosphite may be used. Includes all condensed phosphates such as salts. By using this poorly soluble phosphorus compound, the plating metal zinc or aluminum eluted by corrosion and the phosphate ions dissociated by hydrolysis undergo a complex formation reaction, thereby producing a dense and hardly soluble protective film. The starting point of corrosion is blocked, and the corrosion reaction is suppressed.
また、上記(e4)のモリブデン酸化合物としては、例えば、モリブデン酸塩を用いることができる。このモリブデン酸塩は、その骨格、縮合度に限定はなく、例えばオルトモリブデン酸塩、パラモリブデン酸塩、メタモリブデン酸塩などが挙げられる。また、単塩、複塩などの全ての塩を含み、複塩としてはリン酸モリブデン酸塩などが挙げられる。モリブデン酸化合物は不動態化効果によって自己補修性を発現する。すなわち、腐食環境下で溶存酸素と共にめっき皮膜表面に緻密な酸化物を形成することで腐食起点を封鎖し、腐食反応を抑制する。 As the molybdate compound (e4), for example, molybdate can be used. The molybdate is not limited in its skeleton and degree of condensation, and examples thereof include orthomolybdate, paramolybdate, and metamolybdate. Moreover, all salts, such as a single salt and a double salt, are included, and phosphoric acid molybdate etc. are mentioned as a double salt. Molybdate compounds exhibit self-repairing properties due to the passivating effect. That is, by forming a dense oxide on the plating film surface together with dissolved oxygen in a corrosive environment, the corrosion starting point is blocked and the corrosion reaction is suppressed.
また、上記(e5)の有機化合物としては、例えば、以下のようなものを挙げることができる。すなわち、トリアゾール類としては、1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、5−アミノ−3−メルカプト−1,2,4−トリアゾール、1H−ベンゾトリアゾールなどが、またチオール類としては、1,3,5−トリアジン−2,4,6−トリチオール、2−メルカプトベンツイミダゾールなどが、またチアジアゾール類としては、5−アミノ−2−メルカプト−1,3,4−チアジアゾール、2,5−ジメルカプト−1,3,4−チアジアゾールなどが、またチアゾール類としては、2−N,N−ジエチルチオベンゾチアゾール、2−メルカプトベンゾチアゾール類などが、またチウラム類としては、テトラエチルチウラムジスルフィドなどが、それぞれ挙げられる。これらの有機化合物は吸着効果によって自己補修性を発現する。すなわち、腐食によって溶出した亜鉛やアルミニウムがこれらの有機化合物が有する硫黄を含む極性基に吸着して不活性皮膜を形成することで腐食起点を封鎖し、腐食反応を抑制する。
また、上記(e6)のバナジウム化合物としては、例えば、5価のバナジウム化合物、4価のバナジウム化合物が適用できる。特に耐食性の観点から4価のバナジウム化合物が好ましい。
Examples of the organic compound (e5) include the following. That is, as triazoles, 1,2,4-triazole, 3-amino-1,2,4-triazole, 3-mercapto-1,2,4-triazole, 5-amino-3-mercapto-1,2 1,4-triazole, 1H-benzotriazole, etc., and as thiols, 1,3,5-triazine-2,4,6-trithiol, 2-mercaptobenzimidazole, etc., and as thiadiazoles, 5- Amino-2-mercapto-1,3,4-thiadiazole, 2,5-dimercapto-1,3,4-thiadiazole and the like, and as thiazoles, 2-N, N-diethylthiobenzothiazole, 2-mercapto Examples include benzothiazoles, and examples of thiurams include tetraethylthiuram disulfide. It is. These organic compounds exhibit self-repairing properties due to the adsorption effect. That is, zinc and aluminum eluted by corrosion are adsorbed to polar groups containing sulfur contained in these organic compounds to form an inert film, thereby blocking the corrosion starting point and suppressing the corrosion reaction.
As the vanadium compound (e6), for example, a pentavalent vanadium compound or a tetravalent vanadium compound can be applied. In particular, a tetravalent vanadium compound is preferable from the viewpoint of corrosion resistance.
また、上記(e7)の有機化合物としては、例えば、以下のようなものを挙げることができる。すなわち、ヒドラジド化合物としては、カルボヒドラジド、プロピオン酸ヒドラジド、サリチル酸ヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン酸ジヒドラジド、イソフタル酸ジヒドラジド、チオカルボヒドラジド、4,4′−オキシビスベンゼンスルホニルヒドラジド、ベンゾフェノンヒドラゾン、アミノポリアクリルアミドなど;ピラゾール化合物としては、ピラゾール、3,5−ジメチルピラゾール、3−メチル−5−ピラゾロン、3−アミノ−5−メチルピラゾールなど;トリアゾール化合物としては、1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、4−アミノ−1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、5−アミノ−3−メルカプト−1,2,4−トリアゾール、2,3−ジヒドロ−3−オキソ−1,2,4−トリアゾール、1H−ベンゾトリアゾール、1−ヒドロキシベンゾトリアゾール(1水和物)、6−メチル−8−ヒドロキシトリアゾロピリダジン、6−フェニル−8−ヒドロキシトリアゾロピリダジン、5−ヒドロキシ−7−メチル−1,3,8−トリアザインドリジンなど;テトラゾール化合物としては、5−フェニル−1,2,3,4−テトラゾール、5−メルカプト−1−フェニル−1,2,3,4−テトラゾールなど;チアジアゾール化合物としては、5−アミノ−2−メルカプト−1,3,4−チアジアゾール、2,5−ジメルカプト−1,3,4−チアジアゾールなど;ピリダジン化合物としては、マレイン酸ヒドラジド、6−メチル−3−ピリダゾン、4,5−ジクロロ−3−ピリダゾン、4,5−ジブロモ−3−ピリダゾン、6−メチル−4,5−ジヒドロ−3−ピリダゾンなどが挙げられる。また、これらのなかでも5員環又は6員環の環状構造を有し、環状構造中に窒素原子を有するピラゾール化合物、トリアゾール化合物が特に好適である。 Examples of the organic compound (e7) include the following. That is, hydrazide compounds include carbohydrazide, propionic acid hydrazide, salicylic acid hydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanoic acid dihydrazide, isophthalic acid dihydrazide, thiocarbohydrazide, 4,4'-oxybisbenzenesulfonylhydrazide, benzophenone. , Aminopolyacrylamide, etc .; as pyrazole compounds, pyrazole, 3,5-dimethylpyrazole, 3-methyl-5-pyrazolone, 3-amino-5-methylpyrazole, etc .; as triazole compounds, 1,2,4-triazole 3-amino-1,2,4-triazole, 4-amino-1,2,4-triazole, 3-mercapto-1,2,4-triazole, 5-amino-3-mercapto-1,2, -Triazole, 2,3-dihydro-3-oxo-1,2,4-triazole, 1H-benzotriazole, 1-hydroxybenzotriazole (monohydrate), 6-methyl-8-hydroxytriazolopyridazine, 6 -Phenyl-8-hydroxytriazolopyridazine, 5-hydroxy-7-methyl-1,3,8-triazaindolizine, etc .; tetrazole compounds include 5-phenyl-1,2,3,4-tetrazole, 5 -Mercapto-1-phenyl-1,2,3,4-tetrazole and the like; Examples of the thiadiazole compound include 5-amino-2-mercapto-1,3,4-thiadiazole, 2,5-dimercapto-1,3,4 -Thiadiazole and the like; as pyridazine compounds, maleic hydrazide, 6-methyl-3-pyridazone, 4, - dichloro-3-pyridazone, 4,5-dibromo-3-pyridazone, such as 6-methyl-4,5-dihydro-3-pyridazone and the like. Of these, pyrazole compounds and triazole compounds having a 5- or 6-membered ring structure and having a nitrogen atom in the ring structure are particularly suitable.
非クロム系防錆添加剤の配合量は、上記成分(a)である水性エポキシ樹脂分散液の樹脂固形分100質量部に対して、固形分の割合で0.1〜50質量部、好ましくは0.5〜30質量部とするのが適当である。この非クロム系防錆添加剤の配合量が0.1質量部未満では、耐アルカリ脱脂後の耐食性向上効果が十分に得られず、一方、50質量部を超えると塗装性及び加工性が低下するだけでなく、耐食性も低下するので好ましくない。
なお、上記(e1)〜(e7)の防錆添加剤を2種以上複合添加してもよく、この場合にはそれぞれ固有の防食作用が複合化されるため、より高度の耐食性が得られる。特に、上記(e1)の成分としてカルシウムイオン交換シリカを用い、且つこれに(e3)〜(e5)の成分の1種以上、特に好ましくは(e3)〜(e5)の成分の全部を複合添加した場合に特に優れた耐食性が得られる。
The compounding amount of the non-chromium rust preventive additive is 0.1 to 50 parts by mass, preferably 100 to 50 parts by mass of the solid content of the aqueous epoxy resin dispersion as the component (a), preferably It is appropriate that the content is 0.5 to 30 parts by mass. If the blending amount of this non-chromium rust preventive additive is less than 0.1 parts by mass, the effect of improving the corrosion resistance after alkali degreasing cannot be sufficiently obtained. In addition, the corrosion resistance is reduced, which is not preferable.
Two or more rust preventive additives (e1) to (e7) may be added in combination, and in this case, since the inherent anticorrosive action is combined, higher corrosion resistance can be obtained. In particular, calcium ion-exchanged silica is used as the component (e1), and one or more of the components (e3) to (e5), particularly preferably all of the components (e3) to (e5) are added to this. In particular, excellent corrosion resistance can be obtained.
また、表面処理皮膜(および表面処理組成物)中には、腐食抑制剤として、他の酸化物微粒子(例えば、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化セリウム、酸化アンチモンなど)、リンモリブデン酸塩(例えば、リンモリブデン酸アルミニウムなど)、有機インヒビター(例えば、ヒドラジンおよびその誘導体、チオール化合物、チオカルバミン酸塩など)などの1種または2種以上を添加できる。
さらに必要に応じて、表面処理皮膜(および表面処理組成物)中には添加剤として、有機着色顔料(例えば、縮合多環系有機顔料、フタロシアニン系有機顔料など)、着色染料(例えば、水溶性アゾ系金属染料など)、無機顔料(例えば、酸化チタンなど)、導電性顔料(例えば、亜鉛、アルミニウム、ニッケルなどの金属粉末、リン化鉄、アンチモンドープ型酸化錫など)、カップリング剤(例えば、チタンカップリング剤など)、メラミン・シアヌル酸付加物などの1種または2種以上を添加することができる。
以上のような成分を含む表面処理組成物により形成される表面処理皮膜は、乾燥膜厚が0.01〜1.0μm、好ましくは0.1〜0.8μmとする。乾燥膜厚が0.01μm未満では耐食性が不十分であり、一方、1.0μmを超えると導電性や加工性が低下する。
In the surface treatment film (and surface treatment composition), other oxide fine particles (for example, aluminum oxide, zirconium oxide, titanium oxide, cerium oxide, antimony oxide, etc.), phosphomolybdate as corrosion inhibitors. One or two or more of organic inhibitors (for example, hydrazine and its derivatives, thiol compounds, thiocarbamates, etc.) can be added.
Further, if necessary, in the surface treatment film (and surface treatment composition), as an additive, an organic coloring pigment (for example, condensed polycyclic organic pigment, phthalocyanine organic pigment, etc.), a coloring dye (for example, water-soluble) Azo metal dyes), inorganic pigments (eg, titanium oxide), conductive pigments (eg, metal powders such as zinc, aluminum, nickel, iron phosphide, antimony-doped tin oxide, etc.), coupling agents (eg, 1 type, or 2 or more types, such as a titanium coupling agent etc.) and a melamine cyanuric acid adduct.
The surface treatment film formed by the surface treatment composition containing the above components has a dry film thickness of 0.01 to 1.0 μm, preferably 0.1 to 0.8 μm. When the dry film thickness is less than 0.01 μm, the corrosion resistance is insufficient. On the other hand, when the dry film thickness exceeds 1.0 μm, the conductivity and workability are lowered.
次に、上記表面処理皮膜の上部に第二層皮膜として形成される上層皮膜(有機皮膜)について説明する。
この上層皮膜は、樹脂組成物の主成分が、皮膜形成有機樹脂(E)と一部または全部の化合物が活性水素を有するヒドラジン誘導体(G)からなる活性水素含有化合物(F)との反応生成物からなり、皮膜厚が0.5〜2.0μmの皮膜である。この上層皮膜もクロムを全く含まない。
Next, the upper layer film (organic film) formed as the second layer film on the surface treatment film will be described.
This upper layer film is a reaction product of a resin composition whose main component is a film-forming organic resin (E) and an active hydrogen-containing compound (F) comprising a hydrazine derivative (G) in which some or all of the compounds have active hydrogen. It is a film having a film thickness of 0.5 to 2.0 μm. This upper layer film also contains no chromium.
皮膜形成有機樹脂(E)の種類としては、一部または全部の化合物が活性水素を有するヒドラジン誘導体(G)からなる活性水素含有化合物(F)と反応して、皮膜形成有機樹脂に活性水素含有化合物(F)が付加、縮合などの反応により結合でき、且つ皮膜を適切に形成できる樹脂であれば特別な制約はない。この皮膜形成有機樹脂(E)としては、例えば、エポキシ樹脂、変性エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、アルキド樹脂、アクリル系共重合体樹脂、ポリブタジエン樹脂、フェノール樹脂、およびこれらの樹脂の付加物または縮合物などを挙げることができ、これらのうちの1種を単独でまたは2種以上を混合して使用することができる。 As the kind of the film-forming organic resin (E), a part or all of the compounds react with the active hydrogen-containing compound (F) composed of the hydrazine derivative (G) having active hydrogen, so that the film-forming organic resin contains active hydrogen. There is no particular limitation as long as the compound (F) can be bonded by a reaction such as addition or condensation and can form a film appropriately. Examples of the film-forming organic resin (E) include epoxy resins, modified epoxy resins, polyurethane resins, polyester resins, alkyd resins, acrylic copolymer resins, polybutadiene resins, phenol resins, and adducts of these resins or A condensate etc. can be mentioned, One of these can be used individually or in mixture of 2 or more types.
また、皮膜形成有機樹脂(E)としては、反応性、反応の容易さ、防食性などの点から、樹脂中にエポキシ基を含有するエポキシ基含有樹脂(H)が特に好ましい。このエポキシ基含有樹脂(H)としては、一部または全部の化合物が活性水素を有するヒドラジン誘導体(G)からなる活性水素含有化合物(F)と反応して、皮膜形成有機樹脂に活性水素含有化合物(F)が付加、縮合などの反応により結合でき、且つ皮膜を適切に形成できる樹脂であれば特別な制約はなく、例えば、エポキシ樹脂、変性エポキシ樹脂、エポキシ基含有モノマーと共重合したアクリル系共重合体樹脂、エポキシ基を有するポリブタジエン樹脂、エポキシ基を有するポリウレタン樹脂、およびこれらの樹脂の付加物若しくは縮合物などが挙げられ、これらのエポキシ基含有樹脂の1種を単独でまたは2種以上混合して用いることができる。
また、これらのエポキシ基含有樹脂(H)の中でも、めっき表面との密着性、耐食性の点からエポキシ樹脂、変性エポキシ樹脂が特に好適である。またその中でも、酸素などの腐食因子に対して優れた遮断性を有する熱硬化性のエポキシ樹脂や変性エポキシ樹脂が最適であり、とりわけ高度な導電性及びスポット溶接性を得るために皮膜の付着量を低レベルにする場合には特に有利である。
The film-forming organic resin (E) is particularly preferably an epoxy group-containing resin (H) containing an epoxy group in the resin from the viewpoints of reactivity, easiness of reaction, anticorrosion, and the like. As this epoxy group-containing resin (H), a part or all of the compounds react with the active hydrogen-containing compound (F) made of the hydrazine derivative (G) having active hydrogen, and the active hydrogen-containing compound is added to the film-forming organic resin. There is no special limitation as long as (F) is a resin that can be bonded by a reaction such as addition or condensation and can form a film appropriately. Examples thereof include copolymer resins, polybutadiene resins having an epoxy group, polyurethane resins having an epoxy group, and adducts or condensates of these resins. One of these epoxy group-containing resins may be used alone or in combination of two or more. It can be used by mixing.
Of these epoxy group-containing resins (H), epoxy resins and modified epoxy resins are particularly preferred from the viewpoints of adhesion to the plating surface and corrosion resistance. Among them, thermosetting epoxy resins and modified epoxy resins that have excellent barrier properties against corrosion factors such as oxygen are the most suitable, and in particular, the coating amount to obtain high conductivity and spot weldability. It is particularly advantageous when the level is low.
上記エポキシ樹脂としては、ビスフェノールA、ビスフェノールF、ノボラック型フェノールなどのポリフェノール類とエピクロルヒドリンなどのエピハロヒドリンとを反応させてグリシジル基を導入してなるか、若しくはこのグリシジル基導入反応生成物にさらにポリフェノール類を反応させて分子量を増大させてなる芳香族エポキシ樹脂、さらには脂肪族エポキシ樹脂、脂環族エポキシ樹脂などが挙げられ、これらの1種を単独でまたは2種以上を混合して使用することができる。これらのエポキシ樹脂は、特に低温での皮膜形成性を必要とする場合には数平均分子量が1500以上であることが好適である。
上記変性エポキシ樹脂としては、上記エポキシ樹脂中のエポキシ基または水酸基に各種変性剤を反応させた樹脂を挙げることができ、例えば、乾性油脂肪酸を反応させたエポキシエステル樹脂、アクリル酸またはメタクリル酸などを含有する重合性不飽和モノマー成分で変性したエポキシアクリレート樹脂、イソシアネート化合物を反応させたウレタン変性エポキシ樹脂などを例示できる。
The epoxy resin is formed by introducing a glycidyl group by reacting a polyphenol such as bisphenol A, bisphenol F, or novolak type phenol with an epihalohydrin such as epichlorohydrin, or further adding a polyphenol to the glycidyl group-introduced reaction product. An aromatic epoxy resin obtained by reacting with an aromatic epoxy resin, an aliphatic epoxy resin, an alicyclic epoxy resin, and the like. These may be used alone or in admixture of two or more. Can do. These epoxy resins preferably have a number average molecular weight of 1500 or more, particularly when film formation at low temperatures is required.
Examples of the modified epoxy resin include resins obtained by reacting various modifiers with an epoxy group or a hydroxyl group in the epoxy resin, for example, an epoxy ester resin obtained by reacting a dry oil fatty acid, acrylic acid, methacrylic acid, or the like. An epoxy acrylate resin modified with a polymerizable unsaturated monomer component containing styrene, a urethane-modified epoxy resin reacted with an isocyanate compound, and the like can be exemplified.
上記エポキシ基含有モノマーと共重合したアクリル系共重合体樹脂としては、エポキシ基を有する不飽和モノマーとアクリル酸エステルまたはメタクリル酸エステルを必須とする重合性不飽和モノマー成分とを、溶液重合法、エマルション重合法または懸濁重合法などによって合成した樹脂を挙げることができる。
上記重合性不飽和モノマー成分としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−,iso−若しくはtert−ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレートなどのアクリル酸またはメタクリル酸のC1〜24アルキルエステル;アクリル酸、メタクリル酸、スチレン、ビニルトルエン、アクリルアミド、アクリロニトリル、N−メチロール(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミドのC1〜4アルキルエーテル化物;N,N−ジエチルアミノエチルメタクリレートなどを挙げることができる。
As the acrylic copolymer resin copolymerized with the epoxy group-containing monomer, an unsaturated monomer having an epoxy group and a polymerizable unsaturated monomer component essentially comprising an acrylic ester or a methacrylic ester, a solution polymerization method, Examples thereof include resins synthesized by an emulsion polymerization method or a suspension polymerization method.
Examples of the polymerizable unsaturated monomer component include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-, iso- or tert-butyl (meth) acrylate, hexyl (meth) acrylate, C1-24 alkyl ester of acrylic acid or methacrylic acid such as 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate; acrylic acid, methacrylic acid, styrene, vinyltoluene, acrylamide, acrylonitrile, N- Examples thereof include methylol (meth) acrylamide, C1-4 alkyl etherified product of N-methylol (meth) acrylamide; N, N-diethylaminoethyl methacrylate and the like.
また、エポキシ基を有する不飽和モノマーとしては、グリシジルメタクリレート、グリシジルアクリレート、3,4−エポキシシクロヘキシルメチル(メタ)アクリレートなど、エポキシ基と重合性不飽和基を持つものであれば特別な制約はない。
また、このエポキシ基含有モノマーと共重合したアクリル系共重合体樹脂は、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂などによって変性させた樹脂とすることもできる。
The unsaturated monomer having an epoxy group is not particularly limited as long as it has an epoxy group and a polymerizable unsaturated group, such as glycidyl methacrylate, glycidyl acrylate, and 3,4-epoxycyclohexylmethyl (meth) acrylate. .
The acrylic copolymer resin copolymerized with the epoxy group-containing monomer may be a resin modified with a polyester resin, an epoxy resin, a phenol resin, or the like.
前記エポキシ樹脂として特に好ましいのは、ビスフェノールAとエピハロヒドリンとの反応生成物である下式に示される化学構造を有する樹脂であり、このエポキシ樹脂は特に耐食性に優れているため好ましい。
このようなビスフェノールA型エポキシ樹脂は、当業界において広く知られた製造法により得ることができる。
なお、皮膜形成有機樹脂(E)は、有機溶剤溶解型、有機溶剤分散型、水溶解型、水分散型のいずれであってもよい。
Particularly preferable as the epoxy resin is a resin having a chemical structure represented by the following formula, which is a reaction product of bisphenol A and epihalohydrin, and this epoxy resin is particularly preferable because of its excellent corrosion resistance.
Such a bisphenol A type epoxy resin can be obtained by a production method widely known in the art.
The film-forming organic resin (E) may be any of an organic solvent dissolution type, an organic solvent dispersion type, a water dissolution type, and a water dispersion type.
本発明では皮膜形成有機樹脂(E)の分子中にヒドラジン誘導体を付与することを狙いとしており、このため活性水素含有化合物(F)の少なくとも一部(好ましくは全部)は、活性水素を有するヒドラジン誘導体(G)であることが必要である。
皮膜形成有機樹脂(E)がエポキシ基含有樹脂である場合、そのエポキシ基と反応する活性水素含有化合物(F)として例えば以下に示すようなものを例示でき、これらの1種または2種以上を使用できるが、この場合も活性水素含有化合物(F)の少なくとも一部(好ましくは全部)は、活性水素を有するヒドラジン誘導体であることが必要である。
・活性水素を有するヒドラジン誘導体
・活性水素を有する第1級または第2級のアミン化合物
・アンモニア、カルボン酸などの有機酸
・塩化水素などのハロゲン化水素
・アルコール類、チオール類
・活性水素を有しないヒドラジン誘導体または第3級アミンと酸との混合物である4級塩化剤
The present invention aims to provide a hydrazine derivative in the molecule of the film-forming organic resin (E). Therefore, at least part (preferably all) of the active hydrogen-containing compound (F) is hydrazine having active hydrogen. It must be a derivative (G).
When the film-forming organic resin (E) is an epoxy group-containing resin, examples of the active hydrogen-containing compound (F) that reacts with the epoxy group include those shown below. In this case as well, at least a part (preferably all) of the active hydrogen-containing compound (F) needs to be a hydrazine derivative having active hydrogen.
・ Hydrazine derivatives with active hydrogen ・ Primary or secondary amine compounds with active hydrogen ・ Organic acids such as ammonia and carboxylic acids ・ Halogen halides such as hydrogen chloride ・ Alcohols and thiols ・ Having active hydrogen Quaternary chlorinating agent which is a mixture of hydrazine derivative or tertiary amine and acid
前記活性水素を有するヒドラジン誘導体(G)としては、例えば、以下のものを挙げることができる。
(1) カルボヒドラジド、プロピオン酸ヒドラジド、サリチル酸ヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン酸ジヒドラジド、イソフタル酸ジヒドラジド、チオカルボヒドラジド、4,4′−オキシビスベンゼンスルホニルヒドラジド、ベンゾフェノンヒドラゾン、アミノポリアクリルアミドなどのヒドラジド化合物;
(2) ピラゾール、3,5−ジメチルピラゾール、3−メチル−5−ピラゾロン、3−アミノ−5−メチルピラゾールなどのピラゾール化合物;
Examples of the hydrazine derivative (G) having active hydrogen include the following.
(1) Carbohydrazide, propionic acid hydrazide, salicylic acid hydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanoic acid dihydrazide, isophthalic acid dihydrazide, thiocarbohydrazide, 4,4'-oxybisbenzenesulfonyl hydrazide, benzophenone hydrazone, aminopolyacrylamide Hydrazide compounds such as;
(2) pyrazole compounds such as pyrazole, 3,5-dimethylpyrazole, 3-methyl-5-pyrazolone, 3-amino-5-methylpyrazole;
(3) 1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、4−アミノ−1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、5−アミノ−3−メルカプト−1,2,4−トリアゾール、2,3−ジヒドロ−3−オキソ−1,2,4−トリアゾール、1H−ベンゾトリアゾール、1−ヒドロキシベンゾトリアゾール(1水和物)、6−メチル−8−ヒドロキシトリアゾロピリダジン、6−フェニル−8−ヒドロキシトリアゾロピリダジン、5−ヒドロキシ−7−メチル−1,3,8−トリアザインドリジンなどのトリアゾール化合物; (3) 1,2,4-triazole, 3-amino-1,2,4-triazole, 4-amino-1,2,4-triazole, 3-mercapto-1,2,4-triazole, 5-amino -3-mercapto-1,2,4-triazole, 2,3-dihydro-3-oxo-1,2,4-triazole, 1H-benzotriazole, 1-hydroxybenzotriazole (monohydrate), 6- Triazole compounds such as methyl-8-hydroxytriazolopyridazine, 6-phenyl-8-hydroxytriazolopyridazine, 5-hydroxy-7-methyl-1,3,8-triazaindolizine;
(4) 5−フェニル−1,2,3,4−テトラゾール、5−メルカプト−1−フェニル−1,2,3,4−テトラゾールなどのテトラゾール化合物;
(5) 5−アミノ−2−メルカプト−1,3,4−チアジアゾール、2,5−ジメルカプト−1,3,4−チアジアゾールなどのチアジアゾール化合物;
(6) マレイン酸ヒドラジド、6−メチル−3−ピリダゾン、4,5−ジクロロ−3−ピリダゾン、4,5−ジブロモ−3−ピリダゾン、6−メチル−4,5−ジヒドロ−3−ピリダゾンなどのピリダジン化合物
また、これらのなかでも、5員環または6員環の環状構造を有し、環状構造中に窒素原子を有するピラゾール化合物、トリアゾール化合物が特に好適である。
これらのヒドラジン誘導体は1種を単独でまたは2種以上を混合して使用することができる。
(4) tetrazole compounds such as 5-phenyl-1,2,3,4-tetrazole and 5-mercapto-1-phenyl-1,2,3,4-tetrazole;
(5) thiadiazole compounds such as 5-amino-2-mercapto-1,3,4-thiadiazole and 2,5-dimercapto-1,3,4-thiadiazole;
(6) Maleic hydrazide, 6-methyl-3-pyridazone, 4,5-dichloro-3-pyridazone, 4,5-dibromo-3-pyridazone, 6-methyl-4,5-dihydro-3-pyridazone, etc. Pyridazine compounds Among these, pyrazole compounds and triazole compounds having a 5-membered or 6-membered ring structure and having a nitrogen atom in the ring structure are particularly suitable.
These hydrazine derivatives can be used individually by 1 type or in mixture of 2 or more types.
活性水素含有化合物(F)の一部として使用できる上記活性水素を有するアミン化合物の代表例としては、例えば、以下のものを挙げることができる。
(1) ジエチレントリアミン、ヒドロキシエチルアミノエチルアミン、エチルアミノエチルアミン、メチルアミノプロピルアミンなどの1個の2級アミノ基と1個以上の1級アミノ基を含有するアミン化合物の1級アミノ基を、ケトン、アルデヒド若しくはカルボン酸と例えば100〜230℃程度の温度で加熱反応させてアルジミン、ケチミン、オキサゾリン若しくはイミダゾリンに変性した化合物;
Typical examples of the amine compound having active hydrogen that can be used as part of the active hydrogen-containing compound (F) include the following.
(1) A primary amino group of an amine compound containing one secondary amino group and one or more primary amino groups, such as diethylenetriamine, hydroxyethylaminoethylamine, ethylaminoethylamine, and methylaminopropylamine, A compound modified with aldimine, ketimine, oxazoline or imidazoline by heat reaction with aldehyde or carboxylic acid at a temperature of about 100 to 230 ° C., for example;
(2) ジエチルアミン、ジエタノールアミン、ジ−n−または−iso−プロパノールアミン、N−メチルエタノールアミン、N−エチルエタノールアミンなどの第2級モノアミン;
(3) モノエタノールアミンのようなモノアルカノールアミンとジアルキル(メタ)アクリルアミドとをミカエル付加反応により付加させて得られた第2級アミン含有化合物;
(4) モノエタノールアミン、ネオペンタノールアミン、2−アミノプロパノール、3−アミノプロパノール、2−ヒドロキシ−2′(アミノプロポキシ)エチルエーテルなどのアルカノールアミンの1級アミノ基をケチミンに変性した化合物;
(2) Secondary monoamines such as diethylamine, diethanolamine, di-n- or -iso-propanolamine, N-methylethanolamine, N-ethylethanolamine;
(3) a secondary amine-containing compound obtained by adding a monoalkanolamine such as monoethanolamine and a dialkyl (meth) acrylamide by a Michael addition reaction;
(4) A compound obtained by modifying a primary amino group of an alkanolamine such as monoethanolamine, neopentanolamine, 2-aminopropanol, 3-aminopropanol, 2-hydroxy-2 '(aminopropoxy) ethyl ether to ketimine;
活性水素含有化合物(F)の一部として使用できる上記4級塩化剤は、活性水素を有しないヒドラジン誘導体または第3級アミンはそれ自体ではエポキシ基と反応性を有しないので、これらをエポキシ基と反応可能とするために酸との混合物としたものである。4級塩化剤は、必要に応じて水の存在下でエポキシ基と反応し、エポキシ基含有樹脂と4級塩を形成する。
4級塩化剤を得るために使用される酸は、酢酸、乳酸などの有機酸、塩酸などの無機酸のいずれでもよい。また、4級塩化剤を得るために使用される活性水素を有しないヒドラジン誘導体としては、例えば3,6−ジクロロピリダジンなどを、また、第3級アミンとしては、例えば、ジメチルエタノールアミン、トリエチルアミン、トリメチルアミン、トリイソプロピルアミン、メチルジエタノールアミンなどを挙げることができる。
The quaternary chlorinating agent that can be used as a part of the active hydrogen-containing compound (F) is a hydrazine derivative or a tertiary amine that does not have active hydrogen and is not reactive with an epoxy group by itself. In order to be able to react with the acid. The quaternary chlorinating agent reacts with an epoxy group in the presence of water as necessary to form a quaternary salt with the epoxy group-containing resin.
The acid used to obtain the quaternary chlorinating agent may be any of organic acids such as acetic acid and lactic acid, and inorganic acids such as hydrochloric acid. Examples of the hydrazine derivative having no active hydrogen used for obtaining a quaternary chlorinating agent include 3,6-dichloropyridazine, and examples of the tertiary amine include dimethylethanolamine, triethylamine, Examples include trimethylamine, triisopropylamine, and methyldiethanolamine.
皮膜形成有機樹脂(E)と一部または全部の化合物が活性水素を有するヒドラジン誘導体(G)からなる活性水素含有化合物(F)との反応生成物は、皮膜形成有機樹脂(E)と活性水素含有化合物(F)とを10〜300℃、好ましくは50〜150℃で約1〜8時間程度反応させて得られる。
この反応は有機溶剤を加えて行ってもよく、使用する有機溶剤の種類は特に限定されない。例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジブチルケトン、シクロヘキサノンなどのケトン類;エタノール、ブタノール、2−エチルヘキシルアルコール、ベンジルアルコール、エチレングリコール、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテルなどの水酸基を含有するアルコール類やエーテル類;酢酸エチル、酢酸ブチル、エチレングリコールモノブチルエーテルアセテートなどのエステル類;トルエン、キシレンなどの芳香族炭化水素などを例示でき、これらの1種または2種以上を使用することができる。また、これらのなかでエポキシ樹脂との溶解性、塗膜形成性などの面からは、ケトン系またはエーテル系の溶剤が特に好ましい。
The reaction product of the film-forming organic resin (E) and the active hydrogen-containing compound (F) composed of a hydrazine derivative (G) in which a part or all of the compounds have active hydrogen is the film-forming organic resin (E) and active hydrogen. It is obtained by reacting the containing compound (F) at 10 to 300 ° C., preferably 50 to 150 ° C., for about 1 to 8 hours.
This reaction may be performed by adding an organic solvent, and the type of the organic solvent to be used is not particularly limited. For example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, dibutyl ketone, cyclohexanone; ethanol, butanol, 2-ethylhexyl alcohol, benzyl alcohol, ethylene glycol, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether , Propylene glycol, propylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether and other alcohols and ethers containing hydroxyl groups; ethyl acetate, butyl acetate, ethylene glycol monobutyl ether acetate and other esters; toluene, xylene Aromatic hydrocarbons etc. Illustration can, it is possible to use one or more of these. Of these, ketone-based or ether-based solvents are particularly preferred from the standpoints of solubility with an epoxy resin and film-forming properties.
皮膜形成有機樹脂(E)と一部または全部の化合物が活性水素を有するヒドラジン誘導体(G)からなる活性水素含有化合物(F)との配合比率は、固形分の割合で皮膜形成有機樹脂(E)100質量部に対して、活性水素含有化合物(F)を0.5〜20質量部、特に好ましくは1.0〜10質量部とするのが望ましい。
また、皮膜形成有機樹脂(E)がエポキシ基含有樹脂(H)である場合には、エポキシ基含有樹脂(H)と活性水素含有化合物(F)との配合比率は、活性水素含有化合物(F)の活性水素基の数とエポキシ基含有樹脂(H)のエポキシ基の数との比率[活性水素基数/エポキシ基数]が0.01〜10、より好ましくは0.1〜8、さらに好ましくは0.2〜4とすることが耐食性などの点から適当である。
The blending ratio of the film-forming organic resin (E) and the active hydrogen-containing compound (F) composed of a hydrazine derivative (G) in which a part or all of the compounds have active hydrogen is a solid content ratio. ) The active hydrogen-containing compound (F) is preferably 0.5 to 20 parts by mass, particularly preferably 1.0 to 10 parts by mass with respect to 100 parts by mass.
When the film-forming organic resin (E) is an epoxy group-containing resin (H), the blending ratio of the epoxy group-containing resin (H) and the active hydrogen-containing compound (F) is the active hydrogen-containing compound (F ) And the number of epoxy groups in the epoxy group-containing resin (H) [number of active hydrogen groups / number of epoxy groups] is 0.01 to 10, more preferably 0.1 to 8, and still more preferably. It is appropriate to set it to 0.2-4 from points, such as corrosion resistance.
また、活性水素含有化合物(F)中における活性水素を有するヒドラジン誘導体(G)の割合は10〜100モル%、より好ましくは30〜100モル%、さら好ましくは40〜100モル%とすることが適当である。活性水素を有するヒドラジン誘導体(G)の割合が10モル%未満では有機皮膜に十分な防錆機能を付与することができず、得られる防錆効果は皮膜形成有機樹脂とヒドラジン誘導体を単に混合して使用した場合と大差なくなる。 Moreover, the ratio of the hydrazine derivative (G) having active hydrogen in the active hydrogen-containing compound (F) is 10 to 100 mol%, more preferably 30 to 100 mol%, and further preferably 40 to 100 mol%. Is appropriate. If the ratio of the hydrazine derivative (G) having active hydrogen is less than 10 mol%, the organic film cannot be provided with a sufficient rust prevention function, and the resulting rust prevention effect is simply mixing the film-forming organic resin and the hydrazine derivative. It is no different from the case of using it.
本発明では緻密なバリヤー皮膜を形成するために、樹脂組成物中に硬化剤を配合し、有機皮膜(上層皮膜)を加熱硬化させることが望ましい。
樹脂組成物皮膜を形成する場合の硬化方法としては、(i)イソシアネートと基体樹脂中の水酸基とのウレタン化反応を利用する硬化方法、(ii)メラミン、尿素およびベンゾグアナミンの中から選ばれた1種以上にホルムアルデヒドを反応させてなるメチロール化合物の一部若しくは全部に炭素数1〜5の1価アルコールを反応させてなるアルキルエーテル化アミノ樹脂と基体樹脂中の水酸基との間のエーテル化反応を利用する硬化方法、が適当であるが、このうちイソシアネートと基体樹脂中の水酸基とのウレタン化反応を主反応とすることが特に好適である。
In the present invention, in order to form a dense barrier film, it is desirable to mix a curing agent in the resin composition and heat cure the organic film (upper layer film).
As a curing method in the case of forming a resin composition film, (i) a curing method utilizing a urethanization reaction between an isocyanate and a hydroxyl group in a base resin, (ii) 1 selected from melamine, urea and benzoguanamine Etherification reaction between an alkyl etherified amino resin obtained by reacting a monohydric alcohol having 1 to 5 carbon atoms with a part or all of a methylol compound obtained by reacting formaldehyde with a seed or more and a hydroxyl group in a base resin. The curing method to be used is suitable, and among these, it is particularly preferable to use a urethanization reaction between isocyanate and a hydroxyl group in the base resin as a main reaction.
上記(i)の硬化方法で用いるポリイソシアネート化合物は、1分子中に少なくとも2個のイソシアネート基を有する脂肪族、脂環族(複素環を含む)または芳香族イソシアネート化合物、若しくはそれらの化合物を多価アルコールで部分反応させた化合物である。このようなポリイソシアネート化合物としては、例えば以下のものが例示できる。
(1) m−またはp−フェニレンジイソシアネート、2,4−または2,6−トリレンジイソシアネート、o−またはp−キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート、イソホロンジイソシアネート
(2) 上記(1)の化合物単独またはそれらの混合物と多価アルコール(エチレングリコール、プロピレングリコールなどの2価アルコール類;グリセリン、トリメチロールプロパンなどの3価アルコール;ペンタエリスリトールなどの4価アルコール;ソルビトール、ジペンタエリスリトールなどの6価アルコールなど)との反応生成物であって、1分子中に少なくとも2個のイソシアネートが残存する化合物
これらのポリイソシアネート化合物は、1種を単独でまたは2種以上を混合して使用できる。
The polyisocyanate compound used in the curing method (i) is an aliphatic, alicyclic (including heterocycle) or aromatic isocyanate compound having at least two isocyanate groups in one molecule, or many of these compounds. It is a compound partially reacted with a monohydric alcohol. Examples of such polyisocyanate compounds include the following.
(1) m- or p-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate, o- or p-xylylene diisocyanate, hexamethylene diisocyanate, dimer acid diisocyanate, isophorone diisocyanate
(2) Compound (1) above or a mixture thereof and polyhydric alcohols (dihydric alcohols such as ethylene glycol and propylene glycol; trihydric alcohols such as glycerin and trimethylolpropane; tetrahydric alcohols such as pentaerythritol; A compound obtained by reaction with a hexahydric alcohol such as sorbitol and dipentaerythritol), in which at least two isocyanates remain in one molecule. These polyisocyanate compounds may be used alone or in combination of two or more. Can be used in combination.
また、ポリイソシアネート化合物の保護剤(ブロック剤)としては、例えば、
(1) メタノール、エタノール、プロパノール、ブタノール、オクチルアルコールなどの脂肪族モノアルコール類
(2) エチレングリコールおよび/またはジエチレングリコールのモノエーテル類、例えば、メチル、エチル、プロピル(n−,iso)、ブチル(n−,iso,sec)などのモノエーテル
(3) フェノール、クレゾールなどの芳香族アルコール
(4) アセトオキシム、メチルエチルケトンオキシムなどのオキシム
などが使用でき、これらの1種または2種以上と前記ポリイソシアネート化合物とを反応させることにより、少なくとも常温下で安定に保護されたポリイソシアネート化合物を得ることができる。
Moreover, as a protective agent (blocking agent) of a polyisocyanate compound, for example,
(1) Aliphatic monoalcohols such as methanol, ethanol, propanol, butanol and octyl alcohol
(2) Ethylene glycol and / or diethylene glycol monoethers such as methyl, ethyl, propyl (n-, iso), butyl (n-, iso, sec), etc.
(3) Aromatic alcohols such as phenol and cresol
(4) Oximes such as acetooxime and methyl ethyl ketone oxime can be used. By reacting one or more of these with the polyisocyanate compound, a polyisocyanate compound stably protected at least at room temperature is obtained. be able to.
このようなポリイソシアネート化合物(I)は、硬化剤として皮膜形成有機樹脂(E)に対し、(E)/(I)=95/5〜55/45(不揮発分の質量比)、好ましくは(E)/(I)=90/10〜65/35の割合で配合するのが適当である。ポリイソシアネート化合物には吸水性があり、これを(E)/(I)=55/45を超えて配合すると上層皮膜の密着性を劣化させてしまう。さらに、上層皮膜上に上塗り塗装を行った場合、未反応のポリイソシアネート化合物が塗膜中に移動し、塗膜の硬化阻害や密着性不良を起こしてしまう。このような観点から、ポリイソシアネート化合物(I)の配合量は(E)/(I)=55/45以下とすることが好ましい。 Such polyisocyanate compound (I) is (E) / (I) = 95/5 to 55/45 (mass ratio of non-volatile content), preferably (to the film-forming organic resin (E) as a curing agent, It is suitable to mix | blend in the ratio of E) / (I) = 90 / 10-65 / 35. The polyisocyanate compound has water absorption, and if it is blended exceeding (E) / (I) = 55/45, the adhesion of the upper layer film is deteriorated. Furthermore, when top coating is performed on the upper layer film, the unreacted polyisocyanate compound moves into the coating film, which causes inhibition of curing of the coating film and poor adhesion. From such a viewpoint, the blending amount of the polyisocyanate compound (I) is preferably (E) / (I) = 55/45 or less.
なお、皮膜形成有機樹脂(E)は以上のような架橋剤(硬化剤)の添加により十分に架橋するが、さらに低温架橋性を増大させるため、公知の硬化促進触媒を使用することが望ましい。この硬化促進触媒としては、例えば、N−エチルモルホリン、ジブチル錫ジラウレート、ナフテン酸コバルト、塩化第1スズ、ナフテン酸亜鉛、硝酸ビスマスなどが使用できる。
また、例えば皮膜形成有機樹脂(E)にエポキシ基含有樹脂を使用する場合、付着性など若干の物性向上を狙いとして、エポキシ基含有樹脂とともに公知のアクリル、アルキッド、ポリエステルなどの樹脂を混合して用いることもできる。
The film-forming organic resin (E) is sufficiently crosslinked by the addition of the crosslinking agent (curing agent) as described above, but it is desirable to use a known curing accelerating catalyst in order to further increase the low temperature crosslinking property. Examples of the curing accelerating catalyst include N-ethylmorpholine, dibutyltin dilaurate, cobalt naphthenate, stannous chloride, zinc naphthenate, and bismuth nitrate.
For example, when an epoxy group-containing resin is used for the film-forming organic resin (E), a known acrylic, alkyd, polyester, or other resin is mixed with the epoxy group-containing resin for the purpose of slightly improving physical properties such as adhesion. It can also be used.
上層皮膜には、耐食性向上を目的として、必要に応じて非クロム系防錆添加剤を含有させることができる。上層皮膜中にこのような非クロム系防錆添加剤を含有させることにより、より優れた防食性能を得ることができる。
この非クロム系防錆添加剤は特に下記(e1)〜(e7)の中から選ばれる1つ以上を用いることが好ましい。
(e1)酸化ケイ素
(e2)カルシウム又はカルシウム化合物
(e3)難溶性リン酸化合物
(e4)モリブデン酸化合物
(e5)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の、S原子を含有する有機化合物
(e6)バナジウム化合物
(e7)ヒドラジド化合物、ピラゾール化合物、トリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、ピリダジン化合物の中から選ばれる1種以上の、N原子を含有する有機化合物
これら(e1)〜(e7)の非クロム系防錆添加剤の詳細および防食機構は、先に表面処理皮膜に関して述べた通りである。
For the purpose of improving corrosion resistance, the upper layer film may contain a non-chromium rust preventive additive as necessary. By including such a non-chromium-based anticorrosive additive in the upper layer film, more excellent anticorrosion performance can be obtained.
In particular, it is preferable to use one or more selected from the following (e1) to (e7) as the non-chromium rust preventive additive.
(E1) silicon oxide (e2) calcium or calcium compound (e3) sparingly soluble phosphate compound (e4) molybdate compound (e5) one selected from triazoles, thiols, thiadiazoles, thiazoles, thiurams Organic compound containing S atom (e6) Vanadium compound (e7) Containing one or more N atoms selected from hydrazide compounds, pyrazole compounds, triazole compounds, tetrazole compounds, thiadiazole compounds, pyridazine compounds Organic compounds The details and anticorrosion mechanism of the non-chromium rust preventive additives (e1) to (e7) are as described above for the surface treatment film.
非クロム系防錆添加剤の配合量は、皮膜形成用の樹脂組成物の固形分100質量部に対して、固形分の割合で0.1〜50質量部、好ましくは0.5〜30質量部とするのが適当である。この非クロム系防錆添加剤の配合量が0.1質量部未満では、耐アルカリ脱脂後の耐食性向上効果が十分に得られず、一方、50質量部を超えると塗装性、加工性および溶接性が低下するだけでなく、耐食性も低下するので好ましくない。
なお、上記(e1)〜(e7)の防錆添加剤を2種以上複合添加してもよく、この場合にはそれぞれ固有の防食作用が複合化されるため、より高度の耐食性が得られる。特に、上記(e1)の成分としてカルシウムイオン交換シリカを用い、且つこれに(e3)〜(e5)の成分の1種以上、特に好ましくは(e3)〜(e5)の成分の全部を複合添加した場合に特に優れた耐食性が得られる。
The compounding amount of the non-chromium rust preventive additive is 0.1 to 50 parts by mass, preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the solid content of the resin composition for film formation. The part is appropriate. If the blending amount of this non-chromium rust preventive additive is less than 0.1 parts by mass, the effect of improving the corrosion resistance after alkali degreasing cannot be sufficiently obtained. This is not preferable because not only the properties are lowered but also the corrosion resistance is lowered.
Two or more rust preventive additives (e1) to (e7) may be added in combination, and in this case, since the inherent anticorrosive action is combined, higher corrosion resistance can be obtained. In particular, calcium ion-exchanged silica is used as the component (e1), and one or more of the components (e3) to (e5), particularly preferably all of the components (e3) to (e5) are added to this. In particular, excellent corrosion resistance can be obtained.
また、上層皮膜中には上記の防錆添加成分に加えて、腐食抑制剤として、他の酸化物微粒子(例えば、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化セリウム、酸化アンチモンなど)、リンモリブデン酸塩(例えば、リンモリブデン酸アルミニウムなど)、有機リン酸およびその塩(例えば、フィチン酸、フィチン酸塩、ホスホン酸、ホスホン酸塩、およびこれらの金属塩、アルカリ金属塩、アルカリ土類金属塩など)、有機インヒビター(例えば、ヒドラジン誘導体、チオール化合物、ジチオカルバミン酸塩など)などの1種または2種以上を添加できる。 In addition to the above anticorrosive additive components, the upper layer film also contains other oxide fine particles (eg, aluminum oxide, zirconium oxide, titanium oxide, cerium oxide, antimony oxide), phosphomolybdic acid as a corrosion inhibitor. Salts (eg, aluminum phosphomolybdate), organic phosphoric acid and its salts (eg, phytic acid, phytate, phosphonic acid, phosphonate, and metal salts thereof, alkali metal salts, alkaline earth metal salts, etc. ), Organic inhibitors (for example, hydrazine derivatives, thiol compounds, dithiocarbamates, etc.) can be added.
上層皮膜中には、さらに必要に応じて、皮膜の加工性を向上させる目的で固形潤滑剤を配合することができる。
本発明に適用できる固形潤滑剤としては、例えば、以下のようなものが挙げられ、これらの1種または2種以上を用いることができる。
(1) ポリオレフィンワックス、パラフィンワックス:例えば、ポリエチレンワックス、合成パラフィン、天然パラフィン、マイクロワックス、塩素化炭化水素など
(2) フッ素樹脂微粒子:例えば、ポリフルオロエチレン樹脂(ポリ4フッ化エチレン樹脂など)、ポリフッ化ビニル樹脂、ポリフッ化ビニリデン樹脂など
If necessary, a solid lubricant can be blended in the upper film for the purpose of improving the workability of the film.
Examples of the solid lubricant applicable to the present invention include the following, and one or more of these can be used.
(1) Polyolefin wax, paraffin wax: For example, polyethylene wax, synthetic paraffin, natural paraffin, micro wax, chlorinated hydrocarbon, etc.
(2) Fluorine resin fine particles: For example, polyfluoroethylene resin (polytetrafluoroethylene resin, etc.), polyvinyl fluoride resin, polyvinylidene fluoride resin, etc.
また、この他にも、脂肪酸アミド系化合物(例えば、ステアリン酸アミド、パルミチン酸アミド、メチレンビスステアロアミド、エチレンビスステアロアミド、オレイン酸アミド、エシル酸アミド、アルキレンビス脂肪酸アミドなど)、金属石けん類(例えば、ステアリン酸カルシウム、ステアリン酸鉛、ラウリン酸カルシウム、パルミチン酸カルシウムなど)、金属硫化物(例えば、二硫化モリブデン、二硫化タングステンなど)、グラファイト、フッ化黒鉛、窒化ホウ素、ポリアルキレングリコール、アルカリ金属硫酸塩などの1種または2種以上を用いてもよい。 In addition, fatty acid amide compounds (eg, stearic acid amide, palmitic acid amide, methylene bis stearoamide, ethylene bis stearoamide, oleic acid amide, esylic acid amide, alkylene bis fatty acid amide), metal Soaps (eg, calcium stearate, lead stearate, calcium laurate, calcium palmitate, etc.), metal sulfides (eg, molybdenum disulfide, tungsten disulfide, etc.), graphite, graphite fluoride, boron nitride, polyalkylene glycol, You may use 1 type, or 2 or more types, such as an alkali metal sulfate.
以上の固形潤滑剤の中でも、特に、ポリエチレンワックス、フッ素樹脂微粒子(なかでも、ポリ4フッ化エチレン樹脂微粒子)が好適である。
ポリエチレンワックスとしては、例えば、ヘキスト社製のセリダスト 9615A、セリダスト 3715、セリダスト 3620、セリダスト 3910(いずれも商品名)、三洋化成(株)製のサンワックス 131−P、サンワックス 161−P(いずれも商品名)、三井石油化学(株)製のケミパール W−100、ケミパール W−200、ケミパール W−500、ケミパール W−800、ケミパール W−950(いずれも商品名)などを用いることができる。
Among the above solid lubricants, polyethylene wax and fluororesin fine particles (in particular, polytetrafluoroethylene resin fine particles) are preferable.
Examples of the polyethylene wax include Celite dust 9615A, Celite dust 3715, Celite dust 3620, Celidust 3910 (all trade names) manufactured by Hoechst, Sun wax 131-P and Sun wax 161-P manufactured by Sanyo Chemical Co., Ltd. (Trade name), Chemipearl W-100, Chemipearl W-200, Chemipearl W-500, Chemipearl W-800, Chemipearl W-950 (all trade names) manufactured by Mitsui Petrochemical Co., Ltd. can be used.
また、フッ素樹脂微粒子としては、テトラフルオロエチレン微粒子が最も好ましく、例えば、ダイキン工業(株)製のルブロン L−2、ルブロン L−5(いずれも商品名)、三井・デュポン(株)製のMP1100、MP1200(いずれも商品名)、旭アイシーアイフロロポリマーズ(株)製のフルオンディスパージョン AD1、フルオンディスパージョン AD2、フルオン L141J、フルオン L150J、フルオン L155J(いずれも商品名)などが好適である。
また、これらのなかで、ポリオレフィンワックスとテトラフルオロエチレン微粒子の併用により特に優れた潤滑効果が期待できる。
上層皮膜中での固形潤滑剤の配合量は、皮膜形成用の樹脂組成物の固形分100質量部に対して、固形分の割合で1〜30質量部、好ましくは1〜10質量部とする。固形潤滑剤の配合量が1質量部未満では潤滑効果が乏しく、一方、配合量が30質量部を超えると塗装性が低下するので好ましくない。
The fluororesin fine particles are most preferably tetrafluoroethylene fine particles. For example, Lubron L-2, Lubron L-5 (both trade names) manufactured by Daikin Industries, Ltd., MP1100 manufactured by Mitsui DuPont Co., Ltd. MP1200 (all trade names), Fullon Dispersion AD1, Fullon Dispersion AD2, Fullon L141J, Fullon L150J, and Fullon L155J (all trade names) manufactured by Asahi IC Fluoropolymers Co., Ltd. are suitable.
Among these, a particularly excellent lubricating effect can be expected by the combined use of polyolefin wax and tetrafluoroethylene fine particles.
The blending amount of the solid lubricant in the upper layer film is 1 to 30 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the solid content of the resin composition for film formation. . If the blending amount of the solid lubricant is less than 1 part by mass, the lubricating effect is poor. On the other hand, if the blending amount exceeds 30 parts by mass, the paintability is lowered, which is not preferable.
本発明の表面処理鋼板が有する上層皮膜は、皮膜形成有機樹脂(E)と一部または全部の化合物が活性水素を有するヒドラジン誘導体(G)からなる活性水素含有化合物(F)との反応生成物(樹脂組成物)を主成分とし、これに必要に応じて硬化剤、非クロム系防錆添加剤、固形潤滑剤などが添加されるが、さらに必要に応じて、添加剤として、有機着色顔料(例えば、縮合多環系有機顔料、フタロシアニン系有機顔料など)、着色染料(例えば、有機溶剤可溶性アゾ系染料、水溶性アゾ系金属染料など)、無機顔料(例えば、酸化チタンなど)、キレート剤(例えば、チオールなど)、導電性顔料(例えば、亜鉛、アルミニウム、ニッケルなどの金属粉末、リン化鉄、アンチモンドープ型酸化錫など)、カップリング剤(例えば、シランカップリング剤、チタンカップリング剤など)、メラミン・シアヌル酸付加物などの1種又は2種以上を添加することができる。 The upper layer film of the surface-treated steel sheet of the present invention is a reaction product of a film-forming organic resin (E) and an active hydrogen-containing compound (F) comprising a hydrazine derivative (G) in which some or all of the compounds have active hydrogen. (Resin composition) as a main component, and a curing agent, a non-chromium anticorrosive additive, a solid lubricant, etc. are added to this as necessary, and if necessary, an organic coloring pigment as an additive (For example, condensed polycyclic organic pigments, phthalocyanine organic pigments, etc.), colored dyes (for example, organic solvent-soluble azo dyes, water-soluble azo metal dyes, etc.), inorganic pigments (for example, titanium oxide, etc.), chelating agents (For example, thiol), conductive pigment (for example, metal powder such as zinc, aluminum, nickel, iron phosphide, antimony-doped tin oxide, etc.), coupling agent (for example, silane) Coupling agent, titanium coupling agent) may be added to one or more of melamine-cyanuric acid adduct.
また、上記主成分および添加成分を含む皮膜形成用の塗料組成物は、通常、溶媒(有機溶剤および/または水)を含有し、さらに必要に応じて中和剤などが添加される。
上記有機溶剤としては、上記皮膜形成有機樹脂(E)と活性水素含有化合物(F)との反応生成物を溶解または分散でき、塗料組成物として調整できるものであれば特別な制約なく、例えば、先に例示した種々の有機溶剤を使用することができる。
上記中和剤は、皮膜形成有機樹脂(E)を中和して水性化するために必要に応じて配合されるものであり、皮膜形成有機樹脂(E)がカチオン性樹脂である場合には酢酸、乳酸、蟻酸などの酸を中和剤として使用することができる。
上層皮膜の乾燥膜厚は0.5〜2.0μm、好ましくは0.5〜1.5μmとする。上層皮膜の膜圧が0.5μm未満では耐食性が不十分であり、一方、膜厚が2.0μmを超えると溶接性や電着塗装性が低下する。
また、溶接性や電着塗装性の観点からは、第一層の表面処理皮膜と第二層の上層皮膜の合計膜厚は2.0μm以下であることが好ましい。
Moreover, the coating composition for film formation containing the said main component and an additional component normally contains a solvent (an organic solvent and / or water), and also a neutralizer etc. are added as needed.
The organic solvent is not particularly limited as long as it can dissolve or disperse the reaction product of the film-forming organic resin (E) and the active hydrogen-containing compound (F) and can be prepared as a coating composition. The various organic solvents exemplified above can be used.
The neutralizing agent is blended as necessary to neutralize the film-forming organic resin (E) to make it water-based. When the film-forming organic resin (E) is a cationic resin, Acids such as acetic acid, lactic acid and formic acid can be used as a neutralizing agent.
The dry film thickness of the upper layer film is 0.5 to 2.0 μm, preferably 0.5 to 1.5 μm. When the film pressure of the upper film is less than 0.5 μm, the corrosion resistance is insufficient, while when the film thickness exceeds 2.0 μm, the weldability and the electrodeposition coating property are deteriorated.
Further, from the viewpoint of weldability and electrodeposition coating properties, the total film thickness of the surface treatment film of the first layer and the upper film of the second layer is preferably 2.0 μm or less.
次に、本発明の表面処理鋼板の製造方法について説明する。
亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に上記表面処理皮膜を形成するには、上述した組成を有する表面処理組成物(処理液)を乾燥皮膜厚が上記範囲となるようにめっき鋼板面に塗布し、水洗することなく加熱乾燥させる。
表面処理組成物をめっき鋼板面に形成する方法としては、塗布法、浸漬法、スプレー法のいずれでもよい。塗布処理方法としては、ロールコーター(3ロール方式、2ロール方式など)、スクイズコーター、ダイコーターなどいずれの方法でもよい。また、スクイズコーターなどによる塗布処理または浸漬処理、スプレー処理の後に、エアナイフ法やロール絞り法により塗布量の調整、外観の均一化、膜厚の均一化を行うことも可能である。
Next, the manufacturing method of the surface treatment steel plate of this invention is demonstrated.
In order to form the surface treatment film on the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet, the surface treatment composition (treatment liquid) having the above-described composition is applied to the surface of the plated steel sheet so that the dry film thickness is in the above range. Apply and heat dry without rinsing.
As a method for forming the surface treatment composition on the surface of the plated steel sheet, any of a coating method, a dipping method, and a spray method may be used. As a coating treatment method, any method such as a roll coater (3-roll method, 2-roll method, etc.), a squeeze coater, or a die coater may be used. In addition, after the coating process or dipping process using a squeeze coater or the like, or the spray process, the coating amount can be adjusted, the appearance can be made uniform, and the film thickness can be made uniform by an air knife method or a roll drawing method.
表面処理組成物をコーティングした後は、水洗することなく加熱乾燥を行う。加熱乾燥手段としては、ドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉などを用いることができる。加熱乾燥は到達板温で30〜150℃、好ましくは40℃〜140℃の範囲で行うことが望ましい。この加熱乾燥温度が30℃未満では皮膜中に水分が多量に残り、耐食性が不十分となる。また、加熱乾燥温度が150℃を超えると非経済的であるばかりでなく、皮膜に欠陥が生じ耐食性が低下する。また、加熱乾燥温度が150℃を超えるとBH鋼板に適用できなくなるため好ましくない。
上記のようにして形成された表面処理皮膜の上層には、第二層皮膜として上層皮膜(有機樹脂皮膜)を形成する。第二層皮膜用の塗料組成物を上述した膜厚となるよう上記表面処理皮膜面に塗布し、加熱乾燥させる。塗料組成物の塗布は、上述した表面処理皮膜の形成に用いた方法に準じて行えばよい。
After coating the surface treatment composition, it is dried by heating without washing with water. As the heating and drying means, a dryer, a hot air furnace, a high frequency induction heating furnace, an infrared furnace or the like can be used. Heat drying is preferably performed in the range of 30 to 150 ° C., preferably 40 to 140 ° C., at the ultimate plate temperature. If the heating and drying temperature is less than 30 ° C., a large amount of moisture remains in the film, resulting in insufficient corrosion resistance. Further, when the heating and drying temperature exceeds 150 ° C., not only is it uneconomical, but also defects occur in the film, resulting in a decrease in corrosion resistance. Moreover, since it becomes impossible to apply to a BH steel plate when heat drying temperature exceeds 150 degreeC, it is unpreferable.
An upper layer film (organic resin film) is formed as the second layer film on the upper layer of the surface treatment film formed as described above. The coating composition for the second layer film is applied to the surface-treated film surface so as to have the above-described film thickness, and dried by heating. Application | coating of a coating composition should just be performed according to the method used for formation of the surface treatment film mentioned above.
塗料組成物の塗布後、通常は水洗することなく、加熱乾燥を行うが、塗料組成物の塗布後に水洗工程を実施しても構わない。加熱乾燥処理には、ドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉などを用いることができる。加熱乾燥は到達板温で30〜150℃、好ましくは40℃〜140℃の範囲で行うことが望ましい。この加熱乾燥温度が30℃未満では皮膜中に水分が多量に残り、耐食性が不十分となる。また、加熱乾燥温度が150℃を超えると非経済的であるばかりでなく、皮膜に欠陥が生じ耐食性が低下する。また、加熱乾燥温度が150℃を超えるとBH鋼板に適用できなくなるため好ましくない。 After application of the coating composition, drying is usually performed without washing with water, but a washing process may be performed after application of the coating composition. For the heat drying treatment, a dryer, a hot air furnace, a high-frequency induction heating furnace, an infrared furnace, or the like can be used. Heat drying is preferably performed in the range of 30 to 150 ° C., preferably 40 to 140 ° C., at the ultimate plate temperature. If the heating and drying temperature is less than 30 ° C., a large amount of moisture remains in the film, resulting in insufficient corrosion resistance. In addition, when the heating and drying temperature exceeds 150 ° C., not only is it uneconomical, but defects occur in the film and the corrosion resistance decreases. Moreover, since it becomes impossible to apply to a BH steel plate when heat drying temperature exceeds 150 degreeC, it is unpreferable.
したがって、本発明の表面処理鋼板の製造方法およびその好ましい実施形態は以下のとおりである。
[1] 亜鉛系めっき鋼板またはアルミニウム系めっき鋼板の表面に、下記成分(a)〜(d)を含有する表面処理組成物を塗布し、到達板温が30〜150℃の温度で乾燥することにより皮膜厚が0.01〜1.0μmの表面処理皮膜を形成し、
(a)数平均分子量400〜20000のポリアルキレングリコール、ビスフェノール型エポキシ樹脂、活性水素含有化合物およびポリイソシアネート化合物を反応させて得られたポリアルキレングリコール変性エポキシ樹脂(A)と、該ポリアルキレングリコール変性エポキシ樹脂(A)以外のエポキシ基含有樹脂(B)と、一部または全部の化合物が活性水素を有するヒドラジン誘導体(C)からなる活性水素含有化合物とを反応させて得られた樹脂を水に分散させてなる水性エポキシ樹脂分散液
(b)シランカップリング剤:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で1〜300質量部
(c)リン酸および/またはリン酸化合物:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で0.1〜80質量部
(d)1分子中にフッ素を1〜5個含有する化合物:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で0.1〜100質量部
その上層に、樹脂組成物の主成分が、皮膜形成有機樹脂(E)と一部または全部の化合物が活性水素を有するヒドラジン誘導体(G)からなる活性水素含有化合物(F)との反応生成物からなる塗料組成物を塗布し、到達板温が30〜150℃の温度で乾燥することにより皮膜厚が0.5〜2.0μmの上層皮膜を形成することを特徴とする高耐食性表面処理鋼板の製造方法。
Therefore, the manufacturing method of the surface treatment steel plate of this invention and its preferable embodiment are as follows.
[1] A surface treatment composition containing the following components (a) to (d) is applied to the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet, and dried at a final plate temperature of 30 to 150 ° C. To form a surface treatment film having a film thickness of 0.01 to 1.0 μm,
(A) a polyalkylene glycol-modified epoxy resin (A) obtained by reacting a polyalkylene glycol having a number average molecular weight of 400 to 20,000, a bisphenol type epoxy resin, an active hydrogen-containing compound and a polyisocyanate compound, and the polyalkylene glycol-modified A resin obtained by reacting an epoxy group-containing resin (B) other than the epoxy resin (A) with an active hydrogen-containing compound comprising a hydrazine derivative (C) in which some or all of the compounds have active hydrogen is used in water. Dispersed aqueous epoxy resin dispersion (b) Silane coupling agent: 1 to 300 parts by mass of solid content with respect to 100 parts by mass of resin solid content of the aqueous epoxy resin dispersion (c) phosphoric acid and / or Or phosphoric acid compound: based on 100 parts by mass of resin solid content of the aqueous epoxy resin dispersion 0.1 to 80 parts by mass in terms of the amount of form (d) Compound containing 1 to 5 fluorines in one molecule: in a proportion of solids to 100 parts by mass of resin solids of the aqueous epoxy resin dispersion 0.1 to 100 parts by mass An active hydrogen-containing compound (G) comprising, as an upper layer, the main component of the resin composition is a film-forming organic resin (E) and a hydrazine derivative (G) in which some or all of the compounds have active hydrogen. A coating composition comprising a reaction product with F) is applied and dried at a final plate temperature of 30 to 150 ° C. to form an upper film having a film thickness of 0.5 to 2.0 μm. A method for producing a highly corrosion-resistant surface-treated steel sheet.
[2] 上記[1]の製造方法において、エポキシ基含有樹脂(B)が、エポキシ当量が150〜5000、数平均分子量が1500〜10000のビスフェノールA型エポキシ樹脂であることを特徴とする高耐食性表面処理鋼板の製造方法。
[3] 上記[1]または[2]の製造方法において、成分(a)の水性エポキシ樹脂分散液がさらに、水酸基と架橋する基を有する硬化剤を含有することを特徴とする高耐食性表面処理鋼板の製造方法。
[4] 上記[1]〜[3]のいずれかの製造方法において、表面処理皮膜形成用の表面処理組成物がさらに、非クロム系防錆添加剤を、成分(a)の水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で0.1〜50質量部含有することを特徴とする高耐食性表面処理鋼板の製造方法。
[5] 上記[1]〜[4]のいずれかの製造方法において、上層皮膜形成用塗料組成物がさらに、非クロム系防錆添加剤を、塗料組成物の樹脂固形分100質量部に対して固形分の割合で0.1〜50質量部含有することを特徴とする高耐食性表面処理鋼板の製造方法。
[2] High corrosion resistance characterized in that, in the production method of [1], the epoxy group-containing resin (B) is a bisphenol A type epoxy resin having an epoxy equivalent of 150 to 5000 and a number average molecular weight of 1500 to 10,000. Manufacturing method of surface-treated steel sheet.
[3] In the production method of [1] or [2], the aqueous epoxy resin dispersion of component (a) further contains a curing agent having a group that crosslinks with a hydroxyl group. A method of manufacturing a steel sheet.
[4] In the production method according to any one of [1] to [3], the surface treatment composition for forming a surface treatment film further comprises a non-chromium rust preventive additive, and an aqueous epoxy resin dispersion of component (a) The manufacturing method of the highly corrosion-resistant surface-treated steel plate characterized by containing 0.1-50 mass parts in the ratio of solid content with respect to 100 mass parts of resin solid content of a liquid.
[5] In the production method according to any one of [1] to [4], the coating composition for forming an upper film further includes a non-chromium rust preventive additive with respect to 100 parts by mass of a resin solid content of the coating composition. The manufacturing method of the highly corrosion-resistant surface treatment steel plate characterized by containing 0.1-50 mass parts in the ratio of solid content.
[6] 上記[4]または[5]の製造方法において、表面処理皮膜形成用の表面処理組成物および/または上層皮膜形成用塗料組成物が、非クロム系防錆添加剤として、下記(e1)〜(e7)の中から選ばれる1種以上を含有することを特徴とする高耐食性表面処理鋼板の製造方法。
(e1)酸化ケイ素
(e2)カルシウムおよび/またはカルシウム化合物
(e3)難溶性リン酸化合物
(e4)モリブデン酸化合物
(e5)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の、S原子を含有する有機化合物
(e6)バナジウム化合物
(e7)ヒドラジド化合物、ピラゾール化合物、トリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、ピリダジン化合物の中から選ばれる1種以上の、N原子を含有する有機化合物
[7] 上記[1]〜[6]のいずれかの製造方法において、成分(b)のシランカップリング剤として、反応性官能基としてアミノ基を有するシランカップリング剤の少なくとも1種を含有することを特徴とする高耐食性表面処理鋼板の製造方法。
[8] 上記[1]〜[7]のいずれかの製造方法において、上層皮膜形成用塗料組成物がさらに、固形潤滑剤を、塗料組成物の樹脂固形分100質量部に対して固形分の割合で1〜30質量部含有することを特徴とする高耐食性表面処理鋼板の製造方法。
[6] In the production method of [4] or [5] above, a surface treatment composition for forming a surface treatment film and / or a coating composition for forming an upper film is used as a non-chromic rust preventive additive (e1 )-(E7) 1 or more types chosen from among, The manufacturing method of the highly corrosion-resistant surface treatment steel plate characterized by the above-mentioned.
(E1) Silicon oxide (e2) Calcium and / or calcium compound (e3) Slightly soluble phosphate compound (e4) Molybdate compound (e5) Selected from triazoles, thiols, thiadiazoles, thiazoles, thiurams One or more organic compounds containing S atoms (e6) Vanadium compounds (e7) One or more N atoms selected from hydrazide compounds, pyrazole compounds, triazole compounds, tetrazole compounds, thiadiazole compounds, pyridazine compounds Contains organic compounds
[7] In the production method of any one of [1] to [6], the component (b) contains at least one silane coupling agent having an amino group as a reactive functional group as the silane coupling agent. A method for producing a highly corrosion-resistant surface-treated steel sheet.
[8] In the production method according to any one of [1] to [7], the coating composition for forming an upper layer film further comprises a solid lubricant with a solid content of 100 parts by mass of the resin solid content of the coating composition. The manufacturing method of the highly corrosion-resistant surface-treated steel plate characterized by containing 1-30 mass parts in a ratio.
第一層形成用の表面処理組成物は、樹脂組成物として表2に示す水溶性または水分散性エポキシ樹脂を用い、これにシランカップリング剤(表3)、リン酸またはリン酸化合物(表4)、1分子中にフッ素を1〜5個含有する化合物(表5)、非クロム系防錆添加剤(表6)を適宜配合し、塗料用分散機(サンドグラインダー)を用いて所定時間攪拌し、表面処理組成物を調製した。 The surface treatment composition for forming the first layer uses a water-soluble or water-dispersible epoxy resin shown in Table 2 as a resin composition, and a silane coupling agent (Table 3), phosphoric acid or a phosphoric acid compound (Table) 4) A compound containing 1 to 5 fluorine atoms in one molecule (Table 5) and a non-chromium rust preventive additive (Table 6) are appropriately blended, and a predetermined time using a paint disperser (sand grinder). The surface treatment composition was prepared by stirring.
表2に示す水溶性または水分散性エポキシ樹脂は以下のようにして製造した。
・ポリアルキレングリコール変性エポキシ樹脂の製造
<製造例1>
温度計、撹拌機、冷却管を備えたガラス製四つ口フラスコに、数平均分子量4000のポリエチレングリコール1688gとメチルエチルケトン539g加え、60℃で撹拌混合し均一透明になった後、トリレンジイソシアネート171gを加え、2時間反応させた後、エピコート834X90(エポキシ樹脂,シェルジャパン社製,エポキシ当量250)1121g、ジエチレングリコーリエチルエーテル66gおよび1%ジブチルチンジラウレート溶液1.1gを添加し、さらに2時間反応させた。その後80℃まで昇温し、3時間反応させてイソシアネート価が0.6以下になったことを確認した。その後90℃まで昇温し、減圧蒸留により固形分濃度が81.7%になるまでメチルエチルケトンを除去した。除去後、プロピレングリコールモノメチルエーテル659g、脱イオン水270gを加えて希釈し、固形分濃度76%のポリアルキレングリコール変性エポキシ樹脂溶液A1を得た。
Water-soluble or water-dispersible epoxy resins shown in Table 2 were produced as follows.
-Production of polyalkylene glycol-modified epoxy resin <Production Example 1>
To a glass four-necked flask equipped with a thermometer, stirrer and condenser, 1688 g of polyethylene glycol having a number average molecular weight of 4000 and 539 g of methyl ethyl ketone were added and stirred and mixed at 60 ° C., and then 171 g of tolylene diisocyanate was added. In addition, after reacting for 2 hours, Epicote 834X90 (epoxy resin, manufactured by Shell Japan, epoxy equivalent 250) 1121 g, 66 g of diethyleneglycolethyl ether and 1.1 g of 1% dibutyltin dilaurate solution were added, and further reacted for 2 hours. I let you. Thereafter, the temperature was raised to 80 ° C. and reacted for 3 hours to confirm that the isocyanate value was 0.6 or less. Thereafter, the temperature was raised to 90 ° C., and methyl ethyl ketone was removed by distillation under reduced pressure until the solid content concentration reached 81.7%. After removal, 659 g of propylene glycol monomethyl ether and 270 g of deionized water were added and diluted to obtain a polyalkylene glycol-modified epoxy resin solution A1 having a solid concentration of 76%.
・水性エポキシ樹脂分散液の製造
<製造例2>
EP1004(エポキシ樹脂,油化シェルエポキシ社製,エポキシ当量1000)2029gとプロピレングリコールモノブチルエーテル697gを四つ口フラスコに仕込み、110℃まで昇温して1時間で完全にエポキシ樹脂を溶解した。このものに、製造例1で得たポリアルキレングリコール変性エポキシ樹脂溶液A1を1180gおよび3−アミノ−1,2,4−トリアゾール(分子量84)311.7g加えて100℃で5時間反応させた後、プロピレングリコールモノブチルエーテル719.6gを加えて樹脂溶液D1を得た。
上記樹脂溶液D1を257.6gにMF−K60X(イソシアネート硬化剤,旭化成工業社製)50gおよびScat24(硬化触媒)0.3gを混合し、よく攪拌した後、水692.1gを少しずつ滴下・混合撹拌し、水性エポキシ樹脂分散液E1を得た。
・ Production of aqueous epoxy resin dispersion <Production Example 2>
2029 g of EP1004 (epoxy resin, manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent 1000) and 697 g of propylene glycol monobutyl ether were charged into a four-necked flask, heated to 110 ° C. and completely dissolved in 1 hour. After 1180 g of the polyalkylene glycol-modified epoxy resin solution A1 obtained in Production Example 1 and 311.7 g of 3-amino-1,2,4-triazole (molecular weight 84) were added to this product and reacted at 100 ° C. for 5 hours. Then, 719.6 g of propylene glycol monobutyl ether was added to obtain a resin solution D1.
257.6 g of the above resin solution D1 was mixed with 50 g of MF-K60X (isocyanate curing agent, manufactured by Asahi Kasei Kogyo Co., Ltd.) and 0.3 g of Scat24 (curing catalyst), and after stirring well, 692.1 g of water was added dropwise little by little. Mixing and stirring were performed to obtain an aqueous epoxy resin dispersion E1.
<製造例3>(ヒドラジン誘導体を含有しない水性エポキシ樹脂分散液)
EP1004(エポキシ樹脂,油化シェルエポキシ社製,エポキシ当量1000)2029gとプロピレングリコールモノブチルエーテル697gを四つ口フラスコに仕込み、110℃まで昇温して1時間で完全にエポキシ樹脂を溶解した。このものに、製造例1で得たポリアルキレングリコール変性エポキシ樹脂溶液A1を1180gおよびプロピレングリコールモノブチルエーテル527.0gを加えて樹脂溶液D2を得た。
上記樹脂溶液D2を257.6gにMF−K60X(イソシアネート硬化剤,旭化成工業社製)50gおよびScat24(硬化触媒)0.3gを混合しよく攪拌した後、水692.1gを少しずつ滴下・混合撹拌し、水性エポキシ樹脂分散液E2を得た。
<Production Example 3> (Aqueous epoxy resin dispersion containing no hydrazine derivative)
2029 g of EP1004 (epoxy resin, manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent 1000) and 697 g of propylene glycol monobutyl ether were charged into a four-necked flask, heated to 110 ° C. and completely dissolved in 1 hour. 1180 g of the polyalkylene glycol-modified epoxy resin solution A1 obtained in Production Example 1 and 527.0 g of propylene glycol monobutyl ether were added to this to obtain a resin solution D2.
To 257.6 g of the above resin solution D2, 50 g of MF-K60X (isocyanate curing agent, manufactured by Asahi Kasei Kogyo Co., Ltd.) and 0.3 g of Scat24 (curing catalyst) were mixed and stirred well, and then 692.1 g of water was dropped and mixed little by little. The mixture was stirred to obtain an aqueous epoxy resin dispersion E2.
第二層形成用の塗料組成物は、樹脂組成物として表7に示すものを用い、これに非クロム系防錆添加剤(表6)、固形潤滑剤(表8)を適宜配合し、塗料用分散機(サンドグラインダー)を用いて所定時間攪拌し、塗料組成物を調製した。
表7に示す樹脂組成物の基体樹脂(反応生成物)は以下のようにして合成した。
<合成例1>
EP828(油化シェルエポキシ社製,エポキシ当量187)1870部とビスフェノールA912部、テトラエチルアンモニウムブロマイド2部、メチルイソブチルケトン300部を四つ口フラスコに仕込み、140℃まで昇温して4時間反応させ、エポキシ当量1391、固形分90%のエポキシ樹脂を得た。このものに、エチレングリコールモノブチルエーテル1500部を加えてから100℃に冷却し、3,5−ジメチルピラゾール(分子量96)を96部とジブチルアミン(分子量129)を129部加えて、エポキシ基が消失するまで6時間反応させた後、冷却しながらメチルイソブチルケトン205部を加えて、固形分60%のピラゾール変性エポキシ樹脂を得た。これを樹脂組成物(1)とする。この樹脂組成物(1)は、皮膜形成有機樹脂(E)と、活性水素を有するヒドラジン誘導体(G)を50mol%含む活性水素含有化合物との反応生成物である。
As the coating composition for forming the second layer, the resin composition shown in Table 7 is used, and a non-chromium anticorrosive additive (Table 6) and a solid lubricant (Table 8) are appropriately blended into the coating composition. The mixture was stirred for a predetermined time using a dispersing machine (sand grinder) to prepare a coating composition.
The base resin (reaction product) of the resin composition shown in Table 7 was synthesized as follows.
<Synthesis Example 1>
EP828 (manufactured by Yuka Shell Epoxy Co., Epoxy Equivalent 187) 1870 parts, bisphenol A 912 parts, tetraethylammonium bromide 2 parts, methyl isobutyl ketone 300 parts are charged into a four-necked flask and heated to 140 ° C. and reacted for 4 hours. An epoxy resin having an epoxy equivalent of 1391 and a solid content of 90% was obtained. To this product, 1500 parts of ethylene glycol monobutyl ether was added and cooled to 100 ° C., 96 parts of 3,5-dimethylpyrazole (molecular weight 96) and 129 parts of dibutylamine (molecular weight 129) were added, and the epoxy group disappeared. After reacting for 6 hours, 205 parts of methyl isobutyl ketone was added while cooling to obtain a pyrazole-modified epoxy resin having a solid content of 60%. This is designated as resin composition (1). This resin composition (1) is a reaction product of a film-forming organic resin (E) and an active hydrogen-containing compound containing 50 mol% of a hydrazine derivative (G) having active hydrogen.
<合成例2>
EP1007(油化シェルエポキシ社製,エポキシ当量2000)4000部とエチレングリコールモノブチルエーテル2239部を四つ口フラスコに仕込み、120℃まで昇温して1時間で完全にエポキシ樹脂を溶解した。このものを100℃に冷却し、3−アミノ−1,2,4−トリアゾール(分子量84)を168部加えて、エポキシ基が消失するまで6時間反応させた後、冷却しながらメチルイソブチルケトン540部を加えて、固形分60%のトリアゾール変成エポキシ樹脂を得た。これを樹脂組成物(2)とする。この樹脂組成物(2)は、皮膜形成有機樹脂(E)と、活性水素を有するヒドラジン誘導体(G)を100mol%含む活性水素含有化合物との反応生成物である。
<Synthesis Example 2>
4000 parts of EP1007 (manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent 2000) and 2239 parts of ethylene glycol monobutyl ether were charged into a four-necked flask and heated to 120 ° C. to completely dissolve the epoxy resin in 1 hour. This was cooled to 100 ° C., 168 parts of 3-amino-1,2,4-triazole (molecular weight 84) was added and reacted for 6 hours until the epoxy group disappeared, and then methyl isobutyl ketone 540 while cooling. A triazole-modified epoxy resin having a solid content of 60% was obtained. This is designated as resin composition (2). This resin composition (2) is a reaction product of a film-forming organic resin (E) and an active hydrogen-containing compound containing 100 mol% of a hydrazine derivative (G) having active hydrogen.
<合成例3>
イソホロンジイソシアネート(イソシアネート当量111)222部とメチルイソブチルケトン34部を四つ口フラスコに仕込み、30〜40℃に保ってメチルエチルケトキシム(分子量87)87部を3時間かけて滴下後、40℃に2時間保ち、イソシアネート当量309、固形分90%の部分ブロックイソシアネートを得た。
次いで、EP828(油化シェルエポキシ社製、エポキシ当量187)1496部とビスフェノールA684部、テトラエチルアンモニウムブロマイド1部、メチルイソブチルケトン241部を四つ口フラスコに仕込み、140℃まで昇温して4時間反応させ、エポキシ当量1090、固形分90%のエポキシ樹脂を得た。このものに、メチルイソブチルケトン1000部を加えてから100℃に冷却し、3−メルカプト−1,2,4−トリアゾール(分子量101)を202部加えて、エポキシ基が消失するまで6時間反応させた後、上記固形分90%の部分ブロックイソシアネートを230部加え100℃で3時間反応させ、イソシアネート基が消失したことを確認した。さらに、エチレングリコールモノブチルエーテル461部を加えて、固形分60%のトリアゾール変成エポキシ樹脂を得た。これを樹脂組成物(3)とする。この樹脂組成物(3)は、皮膜形成有機樹脂(E)と、活性水素を有するヒドラジン誘導体(G)を100mol%含む活性水素含有化合物との反応生成物である。
<Synthesis Example 3>
222 parts of isophorone diisocyanate (isocyanate equivalent 111) and 34 parts of methyl isobutyl ketone were charged into a four-necked flask and maintained at 30 to 40 ° C., and 87 parts of methyl ethyl ketoxime (molecular weight 87) was added dropwise over 3 hours. By maintaining the time, a partially blocked isocyanate having an isocyanate equivalent of 309 and a solid content of 90% was obtained.
Subsequently, 1428 parts of EP828 (manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent 187), 684 parts of bisphenol A, 1 part of tetraethylammonium bromide and 241 parts of methyl isobutyl ketone were charged into a four-necked flask and heated to 140 ° C. for 4 hours. Reaction was performed to obtain an epoxy resin having an epoxy equivalent of 1090 and a solid content of 90%. To this, 1000 parts of methyl isobutyl ketone was added and then cooled to 100 ° C., and 202 parts of 3-mercapto-1,2,4-triazole (molecular weight 101) was added and reacted for 6 hours until the epoxy group disappeared. Thereafter, 230 parts of the partially blocked isocyanate having a solid content of 90% was added and reacted at 100 ° C. for 3 hours to confirm that the isocyanate group had disappeared. Further, 461 parts of ethylene glycol monobutyl ether was added to obtain a triazole-modified epoxy resin having a solid content of 60%. This is designated as resin composition (3). This resin composition (3) is a reaction product of a film-forming organic resin (E) and an active hydrogen-containing compound containing 100 mol% of a hydrazine derivative (G) having active hydrogen.
<合成例4>
EP828(油化シェルエポキシ社製、エポキシ当量187)1870部とビスフェノールA912部、テトラエチルアンモニウムブロマイド2部、メチルイソブチルケトン300部を四つ口フラスコに仕込み、140℃まで昇温して4時間反応させ、エポキシ当量1391、固形分90%のエポキシ樹脂を得た。このものに、エチレングリコールモノブチルエーテル1500部を加えてから100℃に冷却し、ジブチルアミン(分子量129)を258部加えて、エポキシ基が消失するまで6時間反応させた後、冷却しながらメチルイソブチルケトン225部を加えて、固形分60%のエポキシアミン付加物を得た。これを樹脂組成物(4)とする。この樹脂組成物(4)は、皮膜形成有機樹脂(E)と、活性水素を有するヒドラジン誘導体(G)を含まない活性水素含有化合物との反応生成物である。
<Synthesis Example 4>
EP828 (manufactured by Yuka Shell Epoxy Co., Epoxy Equivalent 187) 1870 parts, bisphenol A 912 parts, tetraethylammonium bromide 2 parts, methyl isobutyl ketone 300 parts are charged into a four-necked flask and heated to 140 ° C. and reacted for 4 hours. An epoxy resin having an epoxy equivalent of 1391 and a solid content of 90% was obtained. To this was added 1500 parts of ethylene glycol monobutyl ether, cooled to 100 ° C., added with 258 parts of dibutylamine (molecular weight 129), reacted for 6 hours until the epoxy group disappeared, and then cooled with methyl isobutyl. 225 parts of ketone was added to obtain an epoxyamine adduct having a solid content of 60%. This is designated as resin composition (4). This resin composition (4) is a reaction product of a film-forming organic resin (E) and an active hydrogen-containing compound that does not contain a hydrazine derivative (G) having active hydrogen.
冷延鋼板をベースとした家電、建材、自動車部品用のめっき鋼板である、表1に示すめっき鋼板を処理原板として用いた。なお、鋼板の板厚は評価の目的に応じて所定の板厚のものを採用した。このめっき鋼板の表面をアルカリ脱脂処理、水洗乾燥した後、上記第一層形成用の表面処理組成物をロールコーターにより塗布し、各種温度で加熱乾燥した。皮膜の膜厚は、表面処理組成物の固形分(加熱残分)または塗布条件(ロールの圧下力、回転速度など)により調整した。
次いで、上記第二層形成用の塗料組成物をロールコーターにより塗布し、各種温度で加熱乾燥した。皮膜の膜厚は、塗料組成物の固形分(加熱残分)または塗布条件(ロールの圧下力、回転速度など)により調整した。
The plated steel sheet shown in Table 1, which is a plated steel sheet for home appliances, building materials, and automobile parts based on cold-rolled steel sheets, was used as a processing original sheet. In addition, the thing of predetermined | prescribed board thickness was employ | adopted for the board thickness of the steel plate according to the objective of evaluation. After the surface of this plated steel sheet was subjected to alkali degreasing treatment, washed with water and dried, the surface treatment composition for forming the first layer was applied with a roll coater and dried by heating at various temperatures. The film thickness of the film was adjusted by the solid content (heating residue) of the surface treatment composition or coating conditions (rolling force of the roll, rotation speed, etc.).
Next, the coating composition for forming the second layer was applied by a roll coater and dried by heating at various temperatures. The film thickness of the film was adjusted by the solid content (heating residue) of the coating composition or application conditions (rolling force of roll, rotation speed, etc.).
得られた表面処理鋼板の皮膜組成と品質性能(耐食性、加工後耐食性、溶接性、電着塗装性)を評価した結果を表9〜表22に示す。なお、品質性能の評価は以下のようにして行った。
(1)耐食性
各サンプルについて、下記の複合サイクル試験(CCT)を施し、42サイクル経過後の白錆発生面積率および赤錆発生面積率で評価した。
塩水噴霧(JIS Z 2371に基づく):4時間
↓
乾燥(60℃):2時間
↓
湿潤(50℃、95%RH):2時間
その評価基準は以下の通りである。
◎ :白錆発生面積率10%未満
○ :白錆発生面積率10%以上、30%未満
○−:白錆発生面積率30%以上で赤錆発生なし
△ :赤錆発生ありで、赤錆発生面積率10%未満
× :赤錆発生面積率10%以上
Tables 9 to 22 show the results of evaluating the coating composition and quality performance (corrosion resistance, post-processing corrosion resistance, weldability, electrodeposition coating property) of the obtained surface-treated steel sheet. The quality performance was evaluated as follows.
(1) Corrosion resistance About each sample, the following combined cycle test (CCT) was given, and it evaluated by the white rust generation | occurrence | production area ratio and the red rust generation | occurrence | production area ratio after 42 cycles progress.
Salt spray (based on JIS Z 2371): 4 hours ↓
Dry (60 ° C): 2 hours ↓
Wet (50 ° C., 95% RH): 2 hours The evaluation criteria are as follows.
◎: White rust generation area ratio less than 10% ○: White rust generation area ratio of 10% or more and less than 30% ○-: White rust generation area ratio of 30% or more and no red rust generation △: Red rust generation, red rust generation area ratio Less than 10% ×: Red rust generation area ratio 10% or more
(2)加工後耐食性
各サンプルに対して、下記の条件によるドロービードで変形と摺動を付加し、このサンプルを日本パーカライジング(株)製「FC−4460」を用いて、45℃、2分間の条件で脱脂した後、前記「(1)耐食性」で行ったCCTを施し、30サイクル経過後の白錆発生面積率および赤錆発生面積率で評価した。
押付荷重:800kgf
引抜速度:1000mm/min
ビード肩R:オス側5mmR,メス側5mmR
押し込み深さ:7mm
使用油:プレトンR−352L
その評価基準は以下の通りである。
◎ :白錆発生面積率10%未満
○ :白錆発生面積率10%以上、30%未満
○−:白錆発生面積率30%以上で、赤錆発生なし
△ :赤錆発生ありで、赤錆発生面積率10%未満
× :赤錆発生面積率10%以上
(2) Corrosion resistance after processing For each sample, deformation and sliding were added with a draw bead according to the following conditions, and this sample was used at 45 ° C. for 2 minutes using “FC-4460” manufactured by Nihon Parkerizing Co., Ltd. After degreasing under the conditions, the CCT performed in “(1) Corrosion resistance” was performed, and the white rust generation area ratio and the red rust generation area ratio after 30 cycles were evaluated.
Pressing load: 800kgf
Drawing speed: 1000mm / min
Bead shoulder R: Male side 5mmR, Female side 5mmR
Pushing depth: 7mm
Oil used: Preton R-352L
The evaluation criteria are as follows.
◎: White rust generation area ratio less than 10% ○: White rust generation area ratio of 10% or more and less than 30% ○-: White rust generation area ratio of 30% or more, no red rust generation △: Red rust generation, red rust generation area Rate of less than 10% ×: Red rust generation area rate of 10% or more
(3)溶接性
各サンプルについて、使用電極:CF型Cr−Cu電極、加圧力:200kgf、通電時間:10サイクル/50Hz、溶接電流:10kAの条件で連続打点性の溶接試験を行い、連続打点数で評価した。その評価基準は以下の通りである。
◎ :2000点以上
○ :1000点以上、2000点未満
△ :500点以上、1000点未満
× :500点未満
(4)電着塗装性
各サンプルにカチオン系電着塗料(関西ペイント(株)製「GT−10」)を膜厚30μmとなるように塗装した後、130℃×30分の焼付を行った。塗装したサンプルを沸水中に2時間浸漬し、直ちに碁盤目(10×10個、1mm間隔)のカットを入れて接着テープによる貼着・剥離を行い、塗膜の剥離面積率を測定した。その評価基準は以下の通りである。
◎ :剥離なし
○ :剥離面積率5%未満
△ :剥離面積率5%以上、20%未満
× :剥離面積率20%以上
(3) Weldability With respect to each sample, a welding test with continuous spotting was performed under the conditions of using electrode: CF-type Cr—Cu electrode, applied pressure: 200 kgf, energizing time: 10 cycles / 50 Hz, welding current: 10 kA, and continuously hitting. The score was evaluated. The evaluation criteria are as follows.
◎: 2000 points or more ○: 1000 points or more, less than 2000 points △: 500 points or more, less than 1000 points ×: Less than 500 points (4) Electrodeposition coating property After coating “GT-10”) to a film thickness of 30 μm, baking was performed at 130 ° C. for 30 minutes. The coated sample was immersed in boiling water for 2 hours, immediately cut in a grid pattern (10 × 10, 1 mm interval), attached and peeled with an adhesive tape, and the peeled area ratio of the coating film was measured. The evaluation criteria are as follows.
◎: No peeling ○: Peeling area ratio less than 5% △: Peeling area ratio of 5% or more and less than 20% ×: Peeling area ratio of 20% or more
なお、表9〜表22中に記載の*1〜*10は以下の内容を指す。
*1:表1に記載のNo.(めっき鋼板)
*2:表2に記載のNo.(水溶性または水分散性エポキシ樹脂)
*3:表3に記載のNo.(シランカップリング剤)
*4:表4に記載のNo.(リン酸またはリン酸化合物)
*5:表5に記載のNo.(1分子中にフッ素を1〜5個含有する化合物)
*6:表6に記載のNo.(防錆添加剤)
*7:質量部(水溶性または水分散性エポキシ樹脂以外の成分については、水溶性または水分散性エポキシ樹脂の固形分100質量部に対する質量部)
*8:表7に記載のNo.(樹脂組成物)
*9:表8に記載のNo.(固形潤滑剤)
*10:質量部(有機樹脂以外の成分については、有機樹脂の固形分100質量部に対する質量部)
In addition, * 1 to * 10 described in Tables 9 to 22 indicate the following contents.
* 1: No. described in Table 1. (Plated steel plate)
* 2: No. in Table 2 (Water-soluble or water-dispersible epoxy resin)
* 3: No. described in Table 3 (Silane coupling agent)
* 4: No. in Table 4 (Phosphoric acid or phosphoric acid compound)
* 5: No. in Table 5 (Compound containing 1 to 5 fluorine atoms in one molecule)
* 6: No. in Table 6 (Anti-rust additive)
* 7: parts by mass (for components other than water-soluble or water-dispersible epoxy resins, parts by mass with respect to 100 parts by mass of the solid content of the water-soluble or water-dispersible epoxy resin)
* 8: No. in Table 7 (Resin composition)
* 9: No. in Table 8 (Solid lubricant)
* 10: parts by mass (for components other than organic resins, parts by mass relative to 100 parts by mass of solid content of organic resin)
Claims (9)
(a)数平均分子量400〜20000のポリアルキレングリコール、ビスフェノール型エポキシ樹脂、活性水素含有化合物およびポリイソシアネート化合物を反応させて得られたポリアルキレングリコール変性エポキシ樹脂(A)と、該ポリアルキレングリコール変性エポキシ樹脂(A)以外のエポキシ基含有樹脂(B)と、一部または全部の化合物が活性水素を有するヒドラジン誘導体(C)からなる活性水素含有化合物とを反応させて得られた樹脂を水に分散させてなる水性エポキシ樹脂分散液
(b)シランカップリング剤:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で1〜300質量部
(c)リン酸および/またはリン酸化合物:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で0.1〜80質量部
(d)三フッ化バナジウム、四フッ化バナジウムの中から選ばれる1種以上:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で0.1〜100質量部
その上層に、樹脂組成物の主成分が、皮膜形成有機樹脂(E)と一部または全部の化合物が活性水素を有するヒドラジン誘導体(G)からなる活性水素含有化合物(F)との反応生成物からなる塗料組成物を塗布し、乾燥することにより形成された皮膜厚が0.5〜2.0μmの上層皮膜を形成したことを特徴とする高耐食性表面処理鋼板。 The film thickness formed by applying a surface treatment composition containing the following components (a) to (d) to the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet and drying is 0.01 to 1.0 μm. Has a surface treatment film of
(A) a polyalkylene glycol-modified epoxy resin (A) obtained by reacting a polyalkylene glycol having a number average molecular weight of 400 to 20,000, a bisphenol type epoxy resin, an active hydrogen-containing compound and a polyisocyanate compound, and the polyalkylene glycol-modified A resin obtained by reacting an epoxy group-containing resin (B) other than the epoxy resin (A) with an active hydrogen-containing compound comprising a hydrazine derivative (C) in which some or all of the compounds have active hydrogen is used in water. Dispersed aqueous epoxy resin dispersion (b) Silane coupling agent: 1 to 300 parts by mass of solid content with respect to 100 parts by mass of resin solid content of the aqueous epoxy resin dispersion (c) phosphoric acid and / or Or phosphoric acid compound: based on 100 parts by mass of resin solid content of the aqueous epoxy resin dispersion 0.1 to 80 parts by weight in a ratio of solid content (d) trifluoride vanadium, one or more selected from among tetrafluoride vanadium solid the resin solid content 100 parts by weight of the aqueous epoxy resin dispersion 0.1 to 100 parts by mass in the proportion of the minute In the upper layer, the main component of the resin composition is a film-forming organic resin (E) and an activity comprising a hydrazine derivative (G) in which some or all of the compounds have active hydrogen High corrosion resistance, characterized in that a coating composition comprising a reaction product with a hydrogen-containing compound (F) is applied and dried to form an upper film having a thickness of 0.5 to 2.0 μm. Surface treated steel sheet.
(e1)酸化ケイ素
(e2)カルシウムおよび/またはカルシウム化合物
(e3)難溶性リン酸化合物
(e4)モリブデン酸化合物
(e5)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の、S原子を含有する有機化合物
(e6)バナジウム化合物
(e7)ヒドラジド化合物、ピラゾール化合物、トリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、ピリダジン化合物の中から選ばれる1種以上の、N原子を含有する有機化合物 The surface treatment composition for forming the surface treatment film and / or the coating composition for the upper film contains at least one selected from the following (e1) to (e7) as a non-chromium rust preventive additive. The highly corrosion-resistant surface-treated steel sheet according to claim 4 or 5, characterized in that:
(E1) silicon oxide (e2) calcium and / or calcium compound (e3) poorly soluble phosphate compound (e4) molybdate compound (e5) selected from triazoles, thiols, thiadiazoles, thiazoles, thiurams One or more organic compounds containing S atoms (e6) Vanadium compounds (e7) One or more N atoms selected from hydrazide compounds, pyrazole compounds, triazole compounds, tetrazole compounds, thiadiazole compounds, pyridazine compounds Contains organic compounds
(a)数平均分子量400〜20000のポリアルキレングリコール、ビスフェノール型エポキシ樹脂、活性水素含有化合物およびポリイソシアネート化合物を反応させて得られたポリアルキレングリコール変性エポキシ樹脂(A)と、該ポリアルキレングリコール変性エポキシ樹脂(A)以外のエポキシ基含有樹脂(B)と、一部または全部の化合物が活性水素を有するヒドラジン誘導体(C)からなる活性水素含有化合物とを反応させて得られた樹脂を水に分散させてなる水性エポキシ樹脂分散液
(b)シランカップリング剤:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で1〜300質量部
(c)リン酸および/またはリン酸化合物:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で0.1〜80質量部
(d)三フッ化バナジウム、四フッ化バナジウムの中から選ばれる1種以上:前記水性エポキシ樹脂分散液の樹脂固形分100質量部に対して固形分の割合で0.1〜100質量部
その上層に、樹脂組成物の主成分が、皮膜形成有機樹脂(E)と一部または全部の化合物が活性水素を有するヒドラジン誘導体(G)からなる活性水素含有化合物(F)との反応生成物からなる塗料組成物を塗布し、到達板温が30〜150℃の温度で乾燥することにより皮膜厚が0.5〜2.0μmの上層皮膜を形成することを特徴とする高耐食性表面処理鋼板の製造方法。 The coating thickness is obtained by applying a surface treatment composition containing the following components (a) to (d) to the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet, and drying at a final plate temperature of 30 to 150 ° C. Forms a surface treatment film of 0.01 to 1.0 μm,
(A) a polyalkylene glycol-modified epoxy resin (A) obtained by reacting a polyalkylene glycol having a number average molecular weight of 400 to 20,000, a bisphenol type epoxy resin, an active hydrogen-containing compound and a polyisocyanate compound, and the polyalkylene glycol-modified A resin obtained by reacting an epoxy group-containing resin (B) other than the epoxy resin (A) with an active hydrogen-containing compound comprising a hydrazine derivative (C) in which some or all of the compounds have active hydrogen is used in water. Dispersed aqueous epoxy resin dispersion (b) Silane coupling agent: 1 to 300 parts by mass of solid content with respect to 100 parts by mass of resin solid content of the aqueous epoxy resin dispersion (c) phosphoric acid and / or Or phosphoric acid compound: based on 100 parts by mass of resin solid content of the aqueous epoxy resin dispersion 0.1 to 80 parts by weight in a ratio of solid content (d) trifluoride vanadium, one or more selected from among tetrafluoride vanadium solid the resin solid content 100 parts by weight of the aqueous epoxy resin dispersion 0.1 to 100 parts by mass in the proportion of the minute In the upper layer, the main component of the resin composition is a film-forming organic resin (E) and an activity comprising a hydrazine derivative (G) in which some or all of the compounds have active hydrogen A coating composition comprising a reaction product with the hydrogen-containing compound (F) is applied and dried at a temperature of 30 to 150 ° C. to form an upper film having a film thickness of 0.5 to 2.0 μm. A method for producing a highly corrosion-resistant surface-treated steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004269043A JP4457820B2 (en) | 2004-09-15 | 2004-09-15 | High corrosion resistance surface-treated steel sheet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004269043A JP4457820B2 (en) | 2004-09-15 | 2004-09-15 | High corrosion resistance surface-treated steel sheet and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006082366A JP2006082366A (en) | 2006-03-30 |
JP4457820B2 true JP4457820B2 (en) | 2010-04-28 |
Family
ID=36161257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004269043A Expired - Fee Related JP4457820B2 (en) | 2004-09-15 | 2004-09-15 | High corrosion resistance surface-treated steel sheet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4457820B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5578757B2 (en) * | 2006-06-13 | 2014-08-27 | 朝日化学工業株式会社 | Surface treatment agent and steel plate |
US10508203B2 (en) | 2014-09-26 | 2019-12-17 | The Boeing Company | Compositions and coatings with non-chrome corrosion inhibitor particles |
CN114606613B (en) * | 2022-03-09 | 2023-06-27 | 杭州惠丰化纤有限公司 | Antioxidant corrosion-resistant spandex coated yarn and preparation method thereof |
CN115109507A (en) * | 2022-03-25 | 2022-09-27 | 国家能源集团宁夏煤业有限责任公司 | Anticorrosive coating composition, anticorrosive coating, preparation method and application of anticorrosive coating, and anticorrosive coating |
CN116791072B (en) * | 2023-08-14 | 2024-02-23 | 广东宏泰节能环保工程有限公司 | Metal surface treatment passivating agent and preparation method and application thereof |
-
2004
- 2004-09-15 JP JP2004269043A patent/JP4457820B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006082366A (en) | 2006-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4500113B2 (en) | High corrosion resistance surface-treated steel sheet and method for producing the same | |
JP4940577B2 (en) | High corrosion resistance surface-treated steel sheet and method for producing the same | |
KR100776811B1 (en) | Surface-treated steel sheet excellent in resistance to white rust and method for production thereof | |
US7348068B2 (en) | Surface-treated steel sheet excellent in corrosion resistance, conductivity, and coating appearance | |
JP3665046B2 (en) | Surface-treated steel sheet excellent in white rust resistance and method for producing the same | |
JP2004263252A (en) | Chromium-free chemically treated steel sheet excellent in resistance to white rust | |
JP3903739B2 (en) | Organic coated steel plate with excellent corrosion resistance | |
JP4844128B2 (en) | High corrosion resistance surface-treated steel sheet and manufacturing method thereof | |
JP3977756B2 (en) | Surface-treated steel sheet excellent in white rust resistance and method for producing the same | |
JP4457819B2 (en) | High corrosion resistance surface-treated steel sheet and method for producing the same | |
JP4879793B2 (en) | High corrosion resistance surface-treated steel sheet | |
JP2008000910A (en) | Highly anticorrosive surface treated steel sheet and its manufacturing method | |
JP3968955B2 (en) | Organic coated steel plate with excellent corrosion resistance | |
JP5345874B2 (en) | High corrosion resistance surface-treated steel sheet | |
JP2008274419A (en) | Surface treated steel sheet having excellent corrosion resistance, electrodeposition coating adhesion and weldability | |
JP4879792B2 (en) | High corrosion resistance surface-treated steel sheet | |
JP4099218B2 (en) | High corrosion-resistant surface-treated steel sheet and manufacturing method thereof | |
JP4534592B2 (en) | Weldable high corrosion-resistant surface-treated steel sheet for automobiles and method for producing the same | |
JP4110750B2 (en) | Organic coated steel sheet with excellent corrosion resistance and conductivity | |
JP2004156081A (en) | Surface treated steel sheet superior in electromagnetic wave shielding property and corrosion resistance, and manufacturing method therefor | |
JP4419532B2 (en) | Surface-treated steel sheet with excellent corrosion resistance, conductivity, and coating appearance | |
JP2007009232A (en) | Surface-treated steel sheet and manufacturing method therefor | |
JP4457821B2 (en) | High corrosion resistance surface-treated steel sheet and method for producing the same | |
JP4096524B2 (en) | Organic coated steel sheet with excellent corrosion resistance in high temperature and high humidity environment | |
JP2005206947A (en) | Surface treated steel sheet having excellent white rust resistance, and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091001 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091013 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100119 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100201 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4457820 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130219 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130219 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |