JP4455159B2 - Urea SCR system - Google Patents

Urea SCR system Download PDF

Info

Publication number
JP4455159B2
JP4455159B2 JP2004152687A JP2004152687A JP4455159B2 JP 4455159 B2 JP4455159 B2 JP 4455159B2 JP 2004152687 A JP2004152687 A JP 2004152687A JP 2004152687 A JP2004152687 A JP 2004152687A JP 4455159 B2 JP4455159 B2 JP 4455159B2
Authority
JP
Japan
Prior art keywords
catalyst
ammonia
scr
stage
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004152687A
Other languages
Japanese (ja)
Other versions
JP2005334681A (en
Inventor
啓 前田
Original Assignee
財団法人日本自動車研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人日本自動車研究所 filed Critical 財団法人日本自動車研究所
Priority to JP2004152687A priority Critical patent/JP4455159B2/en
Publication of JP2005334681A publication Critical patent/JP2005334681A/en
Application granted granted Critical
Publication of JP4455159B2 publication Critical patent/JP4455159B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、排気ガス中のNOxをアンモニアで還元して浄化する尿素SCRシステムに関するものである。   The present invention relates to a urea SCR system for purifying NOx in exhaust gas by reducing with ammonia.

内燃機関等の排気ガス中のNOxを浄化する一般的な手段として、排気通路の上流側から酸化触媒、水素吸脱着部及びNOx浄化触媒を順次配置した排気ガス浄化システムが提供されている。   As a general means for purifying NOx in exhaust gas of an internal combustion engine or the like, an exhaust gas purification system in which an oxidation catalyst, a hydrogen adsorption / desorption portion, and a NOx purification catalyst are sequentially arranged from the upstream side of the exhaust passage is provided.

ところで、近時、NOx低減技術に尿素を用いたSCR(Selectve Catalytic Reductionの略)の選択的還元触媒法である尿素SCRシステムが開発されている。これは、排気ガス中のNOxを選択的に触媒に吸着させ、そこに尿素水溶液を噴霧し還元反応でNOxを窒素と水に分解し排出させるシステムである。   Recently, a urea SCR system, which is a selective reduction catalyst method of SCR (abbreviation of Selective Catalytic Reduction) using urea for NOx reduction technology, has been developed. This is a system in which NOx in exhaust gas is selectively adsorbed by a catalyst, an aqueous urea solution is sprayed thereon, and NOx is decomposed into nitrogen and water by a reduction reaction and discharged.

従来の尿素SCRシステムは図4で示すように、内燃機関1等の排気通路2の上流側から排気ガス中のNOの酸化活性を高めるための前段酸化触媒部3と、排気ガス中のNOxをアンモニアで還元するためのSCR触媒部4aと、アンモニアを除去するための後段酸化触媒部5とを順次配置し、前記段酸化触媒部3とSCR触媒部4aとの間に尿素水液を添加6するようにした構成であり、SCR触媒部4aは酸点が混在した吸着剤8が用いられている。尚、符号7はアンモニアを示す。   As shown in FIG. 4, the conventional urea SCR system includes a pre-stage oxidation catalyst unit 3 for increasing the oxidation activity of NO in the exhaust gas from the upstream side of the exhaust passage 2 of the internal combustion engine 1 and the like, and NOx in the exhaust gas. An SCR catalyst unit 4a for reducing with ammonia and a post-stage oxidation catalyst unit 5 for removing ammonia are sequentially arranged, and urea aqueous solution is added between the stage oxidation catalyst unit 3 and the SCR catalyst unit 4a. The SCR catalyst unit 4a uses an adsorbent 8 in which acid sites are mixed. Reference numeral 7 denotes ammonia.

上記従来の尿素SCRシステムは尿素SCR制御が下記の要因で困難である。
(1)尿素噴射後、NOxを浄化できるまでの応答遅れがある。
(2)尿素を噴射できない温度領域がある。
(3)還元剤の吸蔵可能量が不足する。
(4)システム内の還元剤の吸蔵可能量の推定が困難である。
In the conventional urea SCR system, urea SCR control is difficult due to the following factors.
(1) There is a response delay until NOx can be purified after urea injection.
(2) There is a temperature range where urea cannot be injected.
(3) The amount of reducing agent that can be stored is insufficient.
(4) It is difficult to estimate the storable amount of the reducing agent in the system.

上記(1)の応答遅れは尿素からNOxを浄化する反応機構の中でどこが律速になるか解明する過程で解決する方法が分かる可能性がある。尿素SCR用触媒は1960年代から研究が進められているが、従来では高温での活性化を上げることを中心に研究されていおり、低温での応答遅れに関してはあまり考慮されていない。そのため、応答遅れの改善に関しては研究の余地があった。 There is a possibility that the response delay of the above (1) can be solved in the process of elucidating where the rate is limited in the reaction mechanism for purifying NOx from urea. Urea SCR catalysts have been researched since the 1960s. Conventionally, research has been focused on increasing activation at high temperatures, and little consideration has been given to response delay at low temperatures. Therefore, there was room for research on improving response delay.

上記(2)の尿素を噴射できない温度領域は、主に尿素から生成するイソシアネートをアンモニアに変換する反応の温度依存に関連する。イソシアネートの熱分解温度を下げるためには触媒を用いることが考えられるが、170℃以下でイソシアネートをアンモニアまで選択的に分解するのは困難である。また、尿素を噴射するノズルを加熱することでノズル部分でイソシアネートの分解を促進することが考えられているが、ノズルを加熱すると尿素水の水分が蒸発し、尿素がノズルを詰まらせる原因となる不具合が生じる。また、低温ではNOx排出量が少なく、SCRシステムの吸蔵可能量が増えれば、低温での還元剤不足は対応可能になる。 The temperature range in which urea cannot be injected in the above (2) is mainly related to the temperature dependence of the reaction for converting isocyanate produced from urea into ammonia. Although it is conceivable to use a catalyst to lower the thermal decomposition temperature of isocyanate, it is difficult to selectively decompose isocyanate to ammonia at 170 ° C. or lower. In addition, it is considered that the decomposition of isocyanate is promoted at the nozzle portion by heating the nozzle that injects urea, but when the nozzle is heated, the water of the urea water evaporates, causing urea to clog the nozzle. A malfunction occurs. Moreover, if the NOx emission amount is small at low temperatures and the storable amount of the SCR system is increased, the shortage of reducing agent at low temperatures can be dealt with.

上記(3)の還元剤の吸蔵可能量が不足は、SCR触媒量を増加させるだけでは対応できない。図5及び図6にその概念図を示す。すなわち、触媒量を増加させた場合でもアンモニアが脱離する温度は触媒量により変化しない。触媒量を増加させると、触媒温度が高温側にシフトした場合にアンモニア脱離量も増加してしまい、アンモニアスリップの原因となる。よって、SCR触媒温度とアンモニア吸着可能量の曲線を高温側にシフトさせることで、アンモニア吸着可能量を増加させる必要がある。しかし、アンモニア吸着可能量の曲線が高温側にシフトした触媒はアンモニアと触媒の吸着力が強いことを示す。そのような触媒は低温でNOxとの反応活性化が低くなる。 Insufficient storable amount of the reducing agent (3) cannot be dealt with by simply increasing the amount of SCR catalyst. The conceptual diagram is shown in FIG.5 and FIG.6. That is, even when the catalyst amount is increased, the temperature at which ammonia is desorbed does not change depending on the catalyst amount. When the catalyst amount is increased, when the catalyst temperature is shifted to a higher temperature side, the ammonia desorption amount also increases, which causes ammonia slip. Therefore, it is necessary to increase the ammonia adsorption capacity by shifting the curve of the SCR catalyst temperature and the ammonia adsorption capacity to the high temperature side. However, the catalyst whose ammonia adsorption capacity curve is shifted to the high temperature side shows that the adsorption power of ammonia and the catalyst is strong. Such a catalyst has low reaction activation with NOx at low temperatures.

このように従来の尿素SCRシステムにおいては、排気の温度が足りない場合、反応アンモニアが排出される可能性があること、尿素欠乏時にはNOxが低減されない等の解決すべき技術課題を抱えている。
特開2001−221036 特開2003−286832 特開2003−343252
As described above, the conventional urea SCR system has technical problems to be solved, such as the possibility that reactive ammonia may be discharged when the temperature of exhaust gas is insufficient, and that NOx is not reduced when urea is insufficient.
JP2001-2221036 JP 2003-286832 A JP 2003-343252 A

本発明の目的は、アンモニアスリップを防ぎ、適用温度範囲を拡大し、従来の課題を解決した尿素SCRシステムを提供することである。   An object of the present invention is to provide a urea SCR system that prevents ammonia slip, expands the application temperature range, and solves the conventional problems.

上記の目的を達成するための本発明に係る尿素SCRシステムは、下記の課題解決手段を特徴とするものである。すなわち本発明は、
内燃機関の排気通路には、その排気通路の上流側から下流側に向けて、排気ガス中のNOの酸化活性を高めるための前段酸化触媒部と、排気ガス中のNOxをアンモニアで還元するためのSCR触媒部と、アンモニアを除去するための後段酸化触媒部と順次配置されており、前記排気通路における前段酸化触媒部とSCR触媒部との間には尿素水液添加される尿素SCRシステムにおいて、
前記SCR触媒部アンモニアの脱離温度を異にした複数触媒担体組み合わせからなるとともにその複数の触媒担体が互いに前後して直列に配置されていること、および、 前記SCR触媒部にあって前段側に位置する前記触媒担体と後段側に位置する前記触媒担体との相対関係において、低温用とした前段側の触媒担体が弱い酸強度の吸着剤で構成されているとともに高温用とした後段側の触媒担体が強い酸強度の吸着剤で構成されていること
を特徴とするものである。
The urea SCR system according to the present invention for achieving the above object is characterized by the following problem solving means. That is, the present invention
The exhaust passage of an internal combustion organizations, from upstream to downstream of the exhaust passage, a pre-stage oxidation catalyst unit for increasing the oxidation activity of the NO in the exhaust gas, the NOx in the exhaust gas for reducing with ammonia SCR catalyst part and a rear-stage oxidation catalyst part for removing ammonia are sequentially arranged , and a urea SCR in which a urea aqueous solution is added between the front-stage oxidation catalyst part and the SCR catalyst part in the exhaust passage In the system,
The SCR catalyst portion is composed of a combination of a plurality of catalyst carriers having different ammonia desorption temperatures, and the plurality of catalyst carriers are arranged in series before and after each other , and in the SCR catalyst portion, In the relative relationship between the catalyst carrier located on the front stage side and the catalyst carrier located on the rear stage side, the catalyst carrier on the front stage made for low temperature is composed of a weak acid strength adsorbent and the latter stage made for high temperature. The catalyst support on the side is composed of a strong acid strength adsorbent .

本発明によると、SCR触媒部の前段の触媒担体で脱離したアンモニアを後段の触媒担体で吸着しアンモニアスリップを防止する。その結果、高温までアンモニアを吸着することができ、吸着可能量の上限を拡大することができる効果を有している。   According to the present invention, ammonia desorbed by the upstream catalyst carrier of the SCR catalyst part is adsorbed by the downstream catalyst carrier to prevent ammonia slip. As a result, ammonia can be adsorbed to a high temperature, and the upper limit of the adsorbable amount can be increased.

以下本発明を実施するための最良の形態を図面に基づき説明する。図1において、1は内燃機関であり、2はその排気通路である。この排気通路2には、その上流側から排気ガス中のNOの酸化活性を高めるための前段酸化触媒部3と、排気ガス中のNOxをアンモニアで還元するためのSCR触媒部4と、アンモニアを除去するための後段酸化触媒部5とが順次配置されており、前記前段酸化触媒部3とSCR触媒部4との間に尿素水液を添加6するようになっている。この構成は従来の尿素SCRシステムと同様である。   The best mode for carrying out the present invention will be described below with reference to the drawings. In FIG. 1, 1 is an internal combustion engine, and 2 is its exhaust passage. In this exhaust passage 2, from the upstream side, a pre-stage oxidation catalyst part 3 for increasing the oxidation activity of NO in the exhaust gas, an SCR catalyst part 4 for reducing NOx in the exhaust gas with ammonia, and ammonia A post-stage oxidation catalyst unit 5 for removal is sequentially arranged, and a urea aqueous solution is added 6 between the pre-stage oxidation catalyst unit 3 and the SCR catalyst unit 4. This configuration is the same as the conventional urea SCR system.

本発明のポイントは、SCR触媒部4の構成をアンモニアの脱離温度を異にした複数の触媒担体を組み合わせて直列に配置したことである。   The point of the present invention is that the structure of the SCR catalyst unit 4 is arranged in series by combining a plurality of catalyst carriers having different ammonia desorption temperatures.

詳しくは、前段に低温用の触媒担体Aを、後段に高温用触媒担体Bを直列に配置した構成であり、前段の低温用の触媒担体Aは弱い酸強度の吸着剤とし、後段の高温用触媒担体Bは強い酸強度の吸着剤としたことを特徴とするものである。   Specifically, a low-temperature catalyst carrier A is arranged in the front stage and a high-temperature catalyst carrier B is arranged in series in the front stage. The catalyst carrier B is an adsorbent having a strong acid strength.

上記吸着剤としては、例えばゼオライト系の担体が適当である。このゼオライトの組織を変えて酸強度を変化させると、アンモニアの吸着力(脱離温度)も変化する。酸強度を測定する手法の一つに酸点にアンモニアを吸着して、その後温度を昇温させながらアンモニアの脱離を観測するアンモニアTPDがある。   As the adsorbent, for example, a zeolitic carrier is suitable. When the acid strength is changed by changing the structure of the zeolite, the adsorption power (desorption temperature) of ammonia also changes. One technique for measuring acid strength is ammonia TPD, in which ammonia is adsorbed at an acid point, and then desorption of ammonia is observed while the temperature is raised.

上記本発明では図1で示すように、SCR触媒部4の入口から入ったアンモニア7は酸強度の弱い吸着剤の前段の低温用の触媒担体Aから脱離し、次いで、強い酸強度の吸着剤の後段の高温用触媒担体Bでトラップする。つまり、酸強度の弱い順に傾斜をかけることにより、前段の低温用の触媒担体A部分で触媒温度が高くなることで脱離したアンモニアを後段の高温用触媒担体Bで保持することができる。かくて図3示すように、高温での脱離減少するので、アンモニアスリップを防止することができる。 In the present invention, as shown in FIG. 1, the ammonia 7 entering from the inlet of the SCR catalyst unit 4 is desorbed from the low-temperature catalyst carrier A upstream of the weak acid strength adsorbent, and then the strong acid strength adsorbent. Trapping is performed by the subsequent high-temperature catalyst carrier B. That is, by applying the slope in order of decreasing acid strength, the ammonia desorbed due to the catalyst temperature becoming higher in the low-temperature catalyst carrier A portion in the preceding stage can be held in the subsequent high-temperature catalyst carrier B. Thus, as shown in FIG. 3 , desorption at a high temperature is reduced, so that ammonia slip can be prevented .

また本発明では、図2で示すように、酸強度の弱い吸着剤の前段の低温用の触媒担体Aによる実線曲線のアンモニア吸着領域に加えて、強い酸強度の吸着剤の後段の高温用触媒担体Bよる点線曲線のアンモニア吸着領域拡大するので、高温までアンモニアを吸着することができ、吸着可能量の上限を拡大することができる。 Further, in the present invention, as shown in FIG. 2, in addition to the ammonia adsorption region of the solid curve by the low-temperature catalyst carrier A in the preceding stage of the adsorbent having a weak acid strength, the high-temperature catalyst in the subsequent stage of the adsorbent having a strong acid strength. since expanded ammonia adsorption region of the dotted line curve due to carrier B, it is possible to adsorb ammonia to a high temperature, it is possible to increase the upper limit of the adsorption capacity.

本発明はこのように、低温用の触媒担体Aと高温用触媒担体Bと組み合わせてSCR触媒部4を構成したものであるから、アンモニア脱離する温度を高温に移行することができる。基本的には、これらの触媒の組み合わせでアンモニアがNOxと反応せずに脱離することを防ぐが、それでもアンモニアが脱離する場合にはアンモニア除去触媒と組み合わせる。アンモニア除去触媒は作動温度が高いことが問題になるが、高温用の触媒からアンモニア脱離がおこるような高温領域ではアンモニア除去触媒も十分に作用する。 The present invention thus can transition from those which constitute the SCR catalyst unit 4 by combining the catalyst carrier A and the high temperature catalyst support B for the low-temperature, the temperature at which desorption of ammonia at a high temperature. Basically, the combination of these catalysts prevents ammonia from desorbing without reacting with NOx, but if ammonia still desorbs, it is combined with an ammonia removal catalyst. The ammonia removal catalyst has a problem that the operating temperature is high, but the ammonia removal catalyst works sufficiently in a high temperature region where ammonia desorption occurs from the high temperature catalyst.

本発明システム構成図System configuration diagram of the present invention 本発明システムによる触媒温度とアンモニア吸着可能量を示す図The figure which shows the catalyst temperature and ammonia adsorption possible quantity with this invention system 本発明システムの概念図Conceptual diagram of the system of the present invention 従来システム構成図Conventional system configuration diagram 従来システムの概念図Conceptual diagram of conventional system 従来システムの概念図Conceptual diagram of conventional system

1 内燃機関
2 排気通路
3 前段酸化触媒部
4 SCR触媒部
5 後段酸化触媒部
6 尿素水液を添加
7 アンモニア
A 前段の低温用の触媒担体
B 後段の高温用触媒担体
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Exhaust passage 3 Pre-stage oxidation catalyst part 4 SCR catalyst part 5 Post-stage oxidation catalyst part 6 Add urea aqueous solution 7 Ammonia A Pre-stage low-temperature catalyst carrier B Rear-stage high-temperature catalyst carrier

Claims (1)

内燃機関の排気通路には、その排気通路の上流側から下流側に向けて、排気ガス中のNOの酸化活性を高めるための前段酸化触媒部と、排気ガス中のNOxをアンモニアで還元するためのSCR触媒部と、アンモニアを除去するための後段酸化触媒部と順次配置されており、前記排気通路における前段酸化触媒部とSCR触媒部との間には尿素水液添加される尿素SCRシステムにおいて、
前記SCR触媒部アンモニアの脱離温度を異にした複数触媒担体組み合わせからなるとともにその複数の触媒担体が互いに前後して直列に配置されていること、および、 前記SCR触媒部にあって前段側に位置する前記触媒担体と後段側に位置する前記触媒担体との相対関係において、低温用とした前段側の触媒担体が弱い酸強度の吸着剤で構成されているとともに高温用とした後段側の触媒担体が強い酸強度の吸着剤で構成されていること
を特徴とする尿素SCRシステム。
The exhaust passage of an internal combustion organizations, from upstream to downstream of the exhaust passage, a pre-stage oxidation catalyst unit for increasing the oxidation activity of the NO in the exhaust gas, the NOx in the exhaust gas for reducing with ammonia SCR catalyst part and a rear-stage oxidation catalyst part for removing ammonia are sequentially arranged , and a urea SCR in which a urea aqueous solution is added between the front-stage oxidation catalyst part and the SCR catalyst part in the exhaust passage In the system,
The SCR catalyst portion is composed of a combination of a plurality of catalyst carriers having different ammonia desorption temperatures, and the plurality of catalyst carriers are arranged in series before and after each other , and in the SCR catalyst portion, In the relative relationship between the catalyst carrier located on the front stage side and the catalyst carrier located on the rear stage side, the catalyst carrier on the front stage made for low temperature is composed of a weak acid strength adsorbent and the latter stage made for high temperature. A urea SCR system characterized in that the catalyst support on the side is composed of an adsorbent with strong acid strength .
JP2004152687A 2004-05-24 2004-05-24 Urea SCR system Expired - Fee Related JP4455159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004152687A JP4455159B2 (en) 2004-05-24 2004-05-24 Urea SCR system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004152687A JP4455159B2 (en) 2004-05-24 2004-05-24 Urea SCR system

Publications (2)

Publication Number Publication Date
JP2005334681A JP2005334681A (en) 2005-12-08
JP4455159B2 true JP4455159B2 (en) 2010-04-21

Family

ID=35488822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004152687A Expired - Fee Related JP4455159B2 (en) 2004-05-24 2004-05-24 Urea SCR system

Country Status (1)

Country Link
JP (1) JP4455159B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888171B2 (en) 2006-07-27 2012-02-29 株式会社デンソー Exhaust purification device
EP2339136B1 (en) * 2009-12-23 2013-08-21 FPT Motorenforschung AG Method and device for controlling an scr catalytic converter of a vehicle
JP5632195B2 (en) * 2010-05-17 2014-11-26 日野自動車株式会社 Exhaust purification device
JP2014034925A (en) * 2012-08-09 2014-02-24 Nippon Shokubai Co Ltd Removal method of nitrogen oxide
CN103266939A (en) * 2013-06-04 2013-08-28 天津亿利汽车环保科技有限公司 SCR postprocessor

Also Published As

Publication number Publication date
JP2005334681A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP5676089B2 (en) Diesel oxidation catalyst and exhaust device equipped with the same
US9810118B2 (en) Catalyst system for the reduction of NOx and NH3 emissions
Clayton et al. Pt dispersion effects during NOx storage and reduction on Pt/BaO/Al2O3 catalysts
US8105559B2 (en) Thermally regenerable nitric oxide adsorbent
US20080196398A1 (en) HC mitigation to reduce NOx spike
CN106168153A (en) Emission reduces system
JP2010507480A5 (en)
CN103071386B (en) Plasma-promoted nitrogen oxide storing reducing and removing method
US7810315B2 (en) LNT regeneration strategy to reduce NOx spike
US8069654B2 (en) Optimized rhodium usage in LNT SCR system
JP5141819B2 (en) Exhaust gas purification device for internal combustion engine
JP4455159B2 (en) Urea SCR system
JP2003530982A (en) Method for removing nitrogen oxides from an oxygen-containing gas stream
JP2013245606A (en) Exhaust gas purification system
Gandhi et al. Catalyst system for the reduction of NOx and NH3 emissions
JP2003286827A (en) Exhaust emission control device for internal combustion engine
KR101316867B1 (en) System for purifying exhaust gas and method thereof
JP6743498B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2013245617A (en) Exhaust emission control system
JP5966263B2 (en) Diesel engine exhaust gas purification device and purification method
JP2009030479A (en) NOx PURIFICATION SYSTEM WITHOUT REDUCING AGENT
JP4470829B2 (en) Sulfur remover and exhaust purification system for internal combustion engine
Gandhi et al. Catalyst system for the reduction of NOx and NH3 emissions
JP2018091259A (en) Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
Moon et al. A study on hybrid DeNOx process using selective catalytic reduction and adsorption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees