JP4454703B2 - Surface acoustic wave filter - Google Patents

Surface acoustic wave filter Download PDF

Info

Publication number
JP4454703B2
JP4454703B2 JP28409896A JP28409896A JP4454703B2 JP 4454703 B2 JP4454703 B2 JP 4454703B2 JP 28409896 A JP28409896 A JP 28409896A JP 28409896 A JP28409896 A JP 28409896A JP 4454703 B2 JP4454703 B2 JP 4454703B2
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
wave filter
electrode
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28409896A
Other languages
Japanese (ja)
Other versions
JPH10135779A (en
Inventor
清磨 近藤
勇次 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Media Electronics Co Ltd
Original Assignee
Hitachi Media Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Media Electronics Co Ltd filed Critical Hitachi Media Electronics Co Ltd
Priority to JP28409896A priority Critical patent/JP4454703B2/en
Publication of JPH10135779A publication Critical patent/JPH10135779A/en
Application granted granted Critical
Publication of JP4454703B2 publication Critical patent/JP4454703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、弾性表面波を用いたデバイスである弾性表面波フィルタに係り、特に多電極弾性表面波フィルタを同一圧電基板上に複数個配置した弾性表面波フィルタに関する。
【0002】
【従来の技術】
近年、携帯電話やコ−ドレス電話等は小型、軽量化が進み急速に普及しており、このような携帯電話などには無線信号を処理するための弾性表面波フィルタが使用されている。この弾性表面波フィルタは入力から出力までの間の挿入損失を低減するために、表面波伝搬方向に沿って多数のインタ−デジタルトランスデュ−サ(IDT)を配置し、その両側に反射器を形成した弾性表面波フィルタが知られている(例えば特開平6−204781号公報参照)。
【0003】
従来、通常は1つのパッケ−ジには1つの弾性表面波フィルタを入れて使用していた。2つの異なる機能が要求される所謂デュアル型弾性表面波フィルタにおいては、弾性表面波フィルタを有する2つの圧電基板を1つのパッケ−ジに入れる方法も用いられているが、生産性が良くない。
【0004】
又、1つの圧電基板に2つの弾性表面波フィルタを形成する方法が提案されている(例えば特開平6−104686号公報参照)。しかし、ワイヤが多いことにより電磁結合の影響で挿入損失が増加し、帯域外減衰量も小さくなるため、ワイヤが多い多電極構造では問題がある。
図5に従来の多電極弾性表面波フィルタの例を示す。同図において、1は圧電基板、2a,2bは多電極弾性表面波フィルタ、3a,3bは入力端子、4a,4bは入力端子、5a,5bは反射器、6a,6bは入力電極、7a,7bは出力電極、8a,8bはワイヤである。
【0005】
同図に示すように第1の多電極弾性表面波フィルタ2aにおいて入力IDTを構成する入力電極6aと出力IDTを構成する出力電極7aが対向して櫛型状電極6a,7aを構成し、その櫛型状電極6a,7aの両側に反射器5a,5aが配置されている。第2の多電極弾性表面波フィルタ2bも同様に入力電極6bと出力電極7bが対向して櫛型状電極6b,7bを構成し、その櫛型状電極6b,7bの両側に反射器5b,5bが配置されている。
【0006】
前記弾性表面波フィルタ2aの反射器5a−櫛型状電極6a,7a−反射器5a、ならびに弾性表面波フィルタ2bの反射器5b−櫛型状電極6b,7b−反射器5bは、ともに弾性表面波伝搬方向Xに沿って直線上に配置され、かつ2つの弾性表面波フィルタ2a,2bは弾性表面波伝搬方向Xと直交する方向に並んでいる。
【0007】
そして弾性表面波フィルタ2aのワイヤ8aは出力端子4aに接続されるものを除き全て入力端子側に配線され、また弾性表面波フィルタ2bのワイヤ8bは入力端子3bに接続されるものを除き全て出力端子側に配線されている。
【0008】
【発明が解決しようとする課題】
このように構成された弾性表面波フィルタの周波数特性を図6に示す。同図から明らかなように前記構成の弾性表面波フィルタは、挿入損失Yの増大及び帯域外減衰量の劣化を生じている。
【0009】
この原因は、それぞれの弾性表面波フィルタの接地ワイヤが片側に集中し、直達波が増大したためと考えられる。また、入出力端子3a,3b,4a,4bに接続するワイヤ8a,8bの長さが著しく異なるため、挿入損失の増大を招いている。このように従来の弾性表面波フィルタは、互いへのワイヤによる電磁結合や弾性表面波の干渉が生じ、優れた性能を有する弾性表面波フィルタが得られていない。
【0010】
本発明の目的は、このような従来技術の欠点を解消し、帯域外減衰量が大きく、低損失の性能的に優れた弾性表面波フィルタを提供することにある。
【0011】
【課題を解決するための手段】
前記目的を達成するため、本発明は、
第1の入力電極と第1の出力電極とを対向して構成した第1の櫛型状電極と、その第1の櫛型状電極の両側に配置した第1の基板端部側反射器と第1の基板中央側反射器とを備えた第1の多電極弾性表面波フィルタと、
第2の入力電極と第2の出力電極とを対向して構成した第2の櫛型状電極と、その第2の櫛型状電極の両側に配置した第2の基板端部側反射器と第2の基板中央側反射器とを備えた第2の多電極弾性表面波フィルタとを、
同一の圧電基板上に、各多電極弾性表面波フィルタの櫛型状電極と反射器が弾性表面波伝搬方向に沿って設けられた弾性表面波フィルタを対象とするものである。
【0012】
そして前記圧電基板上の弾性表面波伝搬方向と直交する方向の略中央部に、前記第1の多電極弾性表面波フィルタと第2の多電極弾性表面波フィルタ弾性表面波伝搬方向に沿って並んで配置されることにより、前記第1の多電極弾性表面波フィルタの第1の基板中央側反射器と、前記第2の多電極弾性表面波フィルタの第2の基板中央側反射器が隣接するように並べられて、
前記第1の基板中央側反射器と第2の基板中央側反射器の弾性表面波伝搬方向と直交する方向のずれ間隔をd1とし、櫛型状電極の繰返し周期を1/2λとしたときに、下記の関係にあり、
0<d1<50λ (ただしλは、使用する周波数帯域の波長)
かつ、前記第1の櫛型状電極の第1の基板端部側反射器と対向する端面から、前記第2の櫛型状電極の第2の基板端部側反射器と対向する端面までの配置間隔をd2とし、下記の関係にあり、
0<d2<200λ
前記第1の多電極弾性表面波フィルタの入出力電極から延びるアース導体線ならびに前記第2の多電極弾性表面波フィルタの入出力電極から延びるアース導体線がそれぞれ分散して前記圧電基板の端部側に延びていることを特徴とする。
【0013】
【発明の実施の形態】
本発明は前述のように、第1の多電極弾性表面波フィルタと第2の多電極弾性表面波フィルタを弾性表面波伝搬方向に沿って配置することにより、互いの特性への干渉が抑制され、各々の弾性表面波フィルタの入出力ワイヤの長さがほぼ均等となり、最適インピーダンス整合がとれる。そのために挿入損失の低減、ならびに帯域外減衰量の向上が図れ、性能的に優れた弾性表面波フィルタを提供することができる。
【0014】
次に本発明の実施の形態を図とともに説明する。図1は第1の実施の形態に係る弾性表面波フィルタの概略構成図、図2はそれの周波数特性図である。
【0015】
図1に示すように1つの圧電基板1上に、2つの異なる周波数帯域を利用する機能を備えた第1の多電極弾性表面波フィルタ2aと第2の多電極弾性表面波フィルタ2bが配置されている。
前記圧電基板1として、64°回転Y軸カットX軸伝搬のニオブ酸リチウムからなる圧電基板を使用した。第1の弾性表面波フィルタ2aの中心周波数は818MHz、第2の弾性表面波フィルタ2bの中心周波数は872.5MHzで、弾性表面波フィルタ2aの波長λは5.5μmである。
【0016】
この実施の形態では低い方の中心周波数は818MHz、高い方の中心周波数は872.5MHzであるが、低い方の周波数は810〜826MHz、高い方の周波数は870〜885MHzの帯域から適宜に選択可能である。
【0017】
同図に示すように第1の弾性表面波フィルタ2aと第2の弾性表面波フィルタ2bは、図5に示す従来例とは異なり弾性表面波伝搬方向Xに沿って配置され、かつその伝搬方向Xに対して直交する方向に若干ずらせている。なお、具体的なずれ量については後述する。
【0018】
第1の弾性表面波フィルタ2aにおいて、入力IDTを構成する5個の入力電極6aと、出力IDTを構成する4個の出力電極7aが対向して反復数が4回の櫛型状電極6a,7aを形成し、その櫛型状電極6a,7aの両側に反射器5a,5aがそれぞれ配置されている。
【0019】
第2の多電極弾性表面波フィルタ2bも同様に、入力IDTを構成する5個の入力電極6bと、出力IDTを構成する4個の出力電極7bが対向して反復数が4回の櫛型状電極6b,7bを形成し、その櫛型状電極6b,7bの両側に反射器5b,5bがそれぞれ配置されている。
【0020】
前記第1の多電極弾性表面波フィルタ2aの反射器5a−櫛型状電極6a,7a−反射器5a、ならびに第2の多電極弾性表面波フィルタ2bの反射器5b−櫛型状電極6b,7b−反射器5bは、ともに弾性表面波伝搬方向Xに沿って直線上に配置されている。
【0021】
そして前記櫛型状電極6a,7aと櫛型状電極6b,7bの間の距離d1を82.5μm(15λ)とし、さらに第1の弾性表面波フィルタ2aと第2の弾性表面波フィルタ2bの隣合わせの反射器5a,5bの間の距離d2を137.5μm(25λ)とした。
【0022】
このような配置構成にすると、相手側のIDTによる反射で干渉されることがなく、また入出力のワイヤ8a,8bの長さもほぼ均等となるため、図2に示すように低損失でかつ大きな帯域外減衰量の周波数特性が得られる。
【0023】
本実施の形態では、2つの弾性表面波フィルタの櫛型状電極の干渉を抑圧するため、前記距離d1を15λとしている(但し、λは低い方の周波数帯域を利用する波長)。この干渉はd1を特定の距離以上にすると十分無視出来る大きさに抑圧され、本発明者なの実験により50λより大きくしても相互干渉は変化しないことが判った。むしろd1を大きくしすぎると、入出力のワイヤの長さが著しく異なることによりインピ−ダンス整合がとれないという問題が生じる。
【0024】
一方、2つの弾性表面波フィルタ間の距離d2はワイヤが交差しない範囲で小さくすることができ、小さい方がチップの長さを短くできるという利点がある。反射器5a,5bの本数が少ない場合d2を約0とすることができる。本実施例では4回反復構造のため、反射器を5aは31本,5bは19本としている。反復数を減らして反射器の本数が200本程度の場合には、d2を約200λとすれば実現できる。
【0025】
すなわち、0<d1<50λかつ0<d2<200λとすることにより、第1の多電極弾性表面波フィルタと第2の多電極弾性表面波フィルタが、弾性表面波伝搬方向に沿って、しかもその弾性表面波伝搬方向と直交する方向にずれて配置された弾性表面波フィルタとして優れた特性を発揮することができる。
【0026】
図3は本発明の第2の実施の形態に係る弾性表面波フィルタの概略構成図で、前記第1の実施の形態と相違する点は、第1の弾性表面波フィルタ2aと第2の弾性表面波フィルタ2bが、圧電基板1のほぼ中央部において、弾性表面波伝搬方向Xに沿ってほぼ直線上に配置されている点である。
【0027】
この弾性表面波フィルタの周波数特性は図4に示すように、図6の従来のものと比較すると帯域外減衰量Yが大幅に減少している。これは接地用ワイヤを入出力それぞれの両側に分離して配置しているため、直達波が減少していることによる。また、入出力端子に接続するワイヤの長さをほぼ同じとすることができ、最適インピ−ダンス整合がとれるため、挿入損失が低減している。
【0028】
なお、この第2の実施の形態に係る弾性表面波フィルタでは、帯域内のリップルが増大するという新たな問題生じることが判った。この原因は、2つの弾性表面波フィルタを同一直線上に配置したためである。また漏れ損失を低減するために櫛型状電極の両側に反射器を設けているが、この反射器を通過して漏れた波が僅かではあるがもう一方の弾性表面波フィルタに影響を与えるためである。さらに一方の弾性表面波フィルタが動作する周波数において、他方の弾性表面波フィルタの櫛型状電極が反射器として動作することも原因となっている。
【0029】
このような問題を解決するために、第1の実施の形態では前述のように、櫛型状電極を次のように配置した。
【0030】
0<d1<50λ かつ 0<d2<200λ
この範囲外だと、ワイヤによるアイソレ−ションなどの悪さや、一方の多電極弾性表面波フィルタからもれた波が、もう一方の多電極弾性表面波フィルタのIDTにより反射され影響を及ぼすことがある。
【0031】
【発明の効果】
本発明は前述のような構成になっており、帯域外減衰量が大きく、低損失の性能的に優れた弾性表面波フィルタを提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る弾性表面波フィルタの概略構成図である。
【図2】その弾性表面波フィルタの周波数特性図である。
【図3】本発明の第2の実施の形態に係る弾性表面波フィルタの概略構成図である。
【図4】その弾性表面波フィルタの周波数特性図である。
【図5】従来の弾性表面波フィルタの概略構成図である。
【図6】その弾性表面波フィルタの周波数特性図である。
【符号の説明】
1 圧電基板
2a 第1の多電極弾性表面波フィルタ
2b 第2の多電極弾性表面波フィルタ
3a 第1の入力端子
3b 第2の入力端子
4a 第1の出力端子
4b 第2の出力端子
5a 第1の反射器
5b 第2の反射器
6a 第1の入力電極
6b 第2の入力電極
7a 第1の出力電極
7b 第2の出力電極
8a ワイヤ
8b ワイヤ
X 弾性表面波伝搬方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface acoustic wave filter that is a device using surface acoustic waves, and more particularly to a surface acoustic wave filter in which a plurality of multi-electrode surface acoustic wave filters are arranged on the same piezoelectric substrate.
[0002]
[Prior art]
In recent years, cellular phones, cordless phones, and the like are rapidly becoming more compact and lighter, and surface acoustic wave filters for processing radio signals are used in such cellular phones. This surface acoustic wave filter has a large number of inter-digital transducers (IDTs) arranged along the surface wave propagation direction to reduce the insertion loss from the input to the output, and reflectors on both sides thereof. A formed surface acoustic wave filter is known (see, for example, JP-A-6-204781).
[0003]
Conventionally, one surface acoustic wave filter is usually used in one package. In a so-called dual type surface acoustic wave filter that requires two different functions, a method of putting two piezoelectric substrates having surface acoustic wave filters in one package is also used, but productivity is not good.
[0004]
A method of forming two surface acoustic wave filters on one piezoelectric substrate has been proposed (see, for example, Japanese Patent Laid-Open No. 6-104686). However, since there are many wires, the insertion loss increases due to the influence of electromagnetic coupling, and the out-of-band attenuation becomes small, so there is a problem in the multi-electrode structure with many wires.
FIG. 5 shows an example of a conventional multi-electrode surface acoustic wave filter. In the figure, 1 is a piezoelectric substrate, 2a and 2b are multi-electrode surface acoustic wave filters, 3a and 3b are input terminals, 4a and 4b are input terminals, 5a and 5b are reflectors, 6a and 6b are input electrodes, 7a, 7b is an output electrode, and 8a and 8b are wires.
[0005]
As shown in the figure, in the first multi-electrode surface acoustic wave filter 2a, the input electrode 6a constituting the input IDT and the output electrode 7a constituting the output IDT are opposed to each other to form comb-like electrodes 6a and 7a. Reflectors 5a and 5a are arranged on both sides of the comb-shaped electrodes 6a and 7a. Similarly, in the second multi-electrode surface acoustic wave filter 2b, the input electrode 6b and the output electrode 7b face each other to form comb-shaped electrodes 6b and 7b, and reflectors 5b and 6b are formed on both sides of the comb-shaped electrodes 6b and 7b. 5b is arranged.
[0006]
The reflector 5a-comb-like electrodes 6a, 7a-reflector 5a of the surface acoustic wave filter 2a and the reflector 5b-comb-like electrodes 6b, 7b-reflector 5b of the surface acoustic wave filter 2b are both elastic surfaces. The surface acoustic wave filters 2 a and 2 b are arranged along a straight line along the wave propagation direction X, and are arranged in a direction orthogonal to the surface acoustic wave propagation direction X.
[0007]
All the wires 8a of the surface acoustic wave filter 2a are wired on the input terminal side except those connected to the output terminal 4a, and all the wires 8b of the surface acoustic wave filter 2b are output except for those connected to the input terminal 3b. Wired on the terminal side.
[0008]
[Problems to be solved by the invention]
FIG. 6 shows frequency characteristics of the surface acoustic wave filter configured as described above. As is apparent from the figure, the surface acoustic wave filter having the above-described configuration causes an increase in insertion loss Y and a deterioration in out-of-band attenuation.
[0009]
This is probably because the ground wires of the respective surface acoustic wave filters are concentrated on one side and the direct wave increases. Further, since the lengths of the wires 8a and 8b connected to the input / output terminals 3a, 3b, 4a and 4b are remarkably different, the insertion loss is increased. As described above, the conventional surface acoustic wave filter causes electromagnetic coupling by the wire to each other and interference of the surface acoustic wave, and a surface acoustic wave filter having excellent performance has not been obtained.
[0010]
An object of the present invention is to provide a surface acoustic wave filter that eliminates the drawbacks of the prior art, has a large out-of-band attenuation, and is excellent in performance with low loss.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides:
A first comb-shaped electrode configured such that the first input electrode and the first output electrode are opposed to each other; a first substrate end side reflector disposed on both sides of the first comb-shaped electrode ; A first multi-electrode surface acoustic wave filter comprising a first substrate center side reflector ;
A second comb-shaped electrode configured such that the second input electrode and the second output electrode are opposed to each other; a second substrate end side reflector disposed on both sides of the second comb-shaped electrode ; A second multi-electrode surface acoustic wave filter provided with a second substrate center side reflector ,
The object is a surface acoustic wave filter in which comb-shaped electrodes and reflectors of each multi-electrode surface acoustic wave filter are provided along the surface acoustic wave propagation direction on the same piezoelectric substrate.
[0012]
The first multi-electrode surface acoustic wave filter and the second multi-electrode surface acoustic wave filter are arranged along the surface acoustic wave propagation direction at a substantially central portion in a direction orthogonal to the surface acoustic wave propagation direction on the piezoelectric substrate. By arranging them side by side, the first substrate center-side reflector of the first multi-electrode surface acoustic wave filter and the second substrate center-side reflector of the second multi-electrode surface acoustic wave filter are adjacent to each other. Lined up like
When the gap between the first substrate center side reflector and the second substrate center side reflector in the direction orthogonal to the surface acoustic wave propagation direction is d1, and the repetition period of the comb-shaped electrode is 1 / 2λ Have the following relationship :
0 <d1 <50λ (where λ is the wavelength of the frequency band to be used)
And from the end surface facing the first substrate end side reflector of the first comb-shaped electrode to the end surface facing the second substrate end side reflector of the second comb-shaped electrode The arrangement interval is d2, and has the following relationship:
0 <d2 <200λ
The ground conductor wire extending from the input / output electrode of the first multi-electrode surface acoustic wave filter and the ground conductor wire extending from the input / output electrode of the second multi-electrode surface acoustic wave filter are dispersed to each end of the piezoelectric substrate. It is characterized by extending to the side .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as described above, by arranging the first multi-electrode surface acoustic wave filter and the second multi-electrode surface acoustic wave filter along the surface acoustic wave propagation direction, interference with each other's characteristics is suppressed. The lengths of the input / output wires of each surface acoustic wave filter are substantially uniform, and optimum impedance matching can be achieved. Therefore, it is possible to reduce the insertion loss and improve the out-of-band attenuation, and provide a surface acoustic wave filter excellent in performance.
[0014]
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a surface acoustic wave filter according to the first embodiment, and FIG. 2 is a frequency characteristic diagram thereof.
[0015]
As shown in FIG. 1, a first multi-electrode surface acoustic wave filter 2 a and a second multi-electrode surface acoustic wave filter 2 b having a function of using two different frequency bands are arranged on one piezoelectric substrate 1. ing.
As the piezoelectric substrate 1, a piezoelectric substrate made of lithium niobate with 64 ° rotation Y-axis cut X-axis propagation was used. The center frequency of the first surface acoustic wave filter 2a is 818 MHz, the center frequency of the second surface acoustic wave filter 2b is 872.5 MHz, and the wavelength λ of the surface acoustic wave filter 2a is 5.5 μm.
[0016]
In this embodiment, the lower center frequency is 818 MHz and the higher center frequency is 872.5 MHz, but the lower frequency can be appropriately selected from the band of 810 to 826 MHz and the higher frequency is 870 to 885 MHz. It is.
[0017]
As shown in the figure, the first surface acoustic wave filter 2a and the second surface acoustic wave filter 2b are arranged along the surface acoustic wave propagation direction X unlike the conventional example shown in FIG. It is slightly shifted in the direction orthogonal to X. A specific deviation amount will be described later.
[0018]
In the first surface acoustic wave filter 2a, the five input electrodes 6a constituting the input IDT and the four output electrodes 7a constituting the output IDT face each other, and the comb-like electrodes 6a having four repetitions are provided. 7a is formed, and reflectors 5a and 5a are arranged on both sides of the comb-shaped electrodes 6a and 7a, respectively.
[0019]
Similarly, in the second multi-electrode surface acoustic wave filter 2b, the five input electrodes 6b constituting the input IDT and the four output electrodes 7b constituting the output IDT are opposed to each other, and the number of repetitions is four. Electrode 6b, 7b is formed, and reflectors 5b, 5b are arranged on both sides of the comb-shaped electrode 6b, 7b, respectively.
[0020]
Reflector 5a-comb-like electrodes 6a, 7a-reflector 5a of the first multi-electrode surface acoustic wave filter 2a and reflector 5b-comb-like electrode 6b of the second multi-electrode surface acoustic wave filter 2b Both 7b-reflectors 5b are arranged on a straight line along the surface acoustic wave propagation direction X.
[0021]
The distance d1 between the comb-shaped electrodes 6a and 7a and the comb-shaped electrodes 6b and 7b is 82.5 μm (15λ), and the first surface acoustic wave filter 2a and the second surface acoustic wave filter 2b The distance d2 between the adjacent reflectors 5a and 5b was 137.5 μm (25λ).
[0022]
With such an arrangement, there is no interference due to reflection by the IDT on the other side, and the lengths of the input / output wires 8a and 8b are substantially equal. Therefore, as shown in FIG. The frequency characteristic of the out-of-band attenuation is obtained.
[0023]
In the present embodiment, the distance d1 is set to 15λ in order to suppress interference between the comb-shaped electrodes of the two surface acoustic wave filters (where λ is a wavelength using the lower frequency band). This interference is suppressed to a sufficiently negligible level when d1 is set to a specific distance or more, and it has been found by experiments of the present inventor that the mutual interference does not change even if it exceeds 50λ. On the other hand, if d1 is too large, there is a problem that impedance matching cannot be achieved because the lengths of the input and output wires are significantly different.
[0024]
On the other hand, the distance d2 between the two surface acoustic wave filters can be reduced as long as the wires do not intersect, and the smaller one has the advantage that the length of the chip can be shortened. When the number of reflectors 5a and 5b is small, d2 can be set to about zero. In this embodiment, since the structure is repeated four times, 31 reflectors 5a and 19 reflectors 5b are provided. When the number of reflectors is reduced and the number of reflectors is about 200, this can be realized by setting d2 to about 200λ.
[0025]
That is, by setting 0 <d1 <50λ and 0 <d2 <200λ, the first multi-electrode surface acoustic wave filter and the second multi-electrode surface acoustic wave filter are aligned along the surface acoustic wave propagation direction. It is possible to exhibit excellent characteristics as a surface acoustic wave filter arranged so as to be shifted in a direction orthogonal to the surface acoustic wave propagation direction .
[0026]
FIG. 3 is a schematic configuration diagram of the surface acoustic wave filter according to the second embodiment of the present invention. The difference from the first embodiment is that the first surface acoustic wave filter 2a and the second elastic wave filter are the same. The surface wave filter 2b is arranged on a substantially straight line along the surface acoustic wave propagation direction X in the substantially central portion of the piezoelectric substrate 1.
[0027]
As shown in FIG. 4, the surface acoustic wave filter has an out-of-band attenuation Y significantly reduced as compared with the conventional one shown in FIG. This is because the direct wave is reduced because the grounding wires are arranged separately on both sides of the input and output. Further, the length of the wires connected to the input / output terminals can be made substantially the same, and the optimum impedance matching can be obtained, so that the insertion loss is reduced.
[0028]
It has been found that the surface acoustic wave filter according to the second embodiment has a new problem that the ripple in the band increases. This is because two surface acoustic wave filters are arranged on the same straight line. In order to reduce leakage loss, reflectors are provided on both sides of the comb-shaped electrode. However, the wave leaking through the reflector has a slight effect on the other surface acoustic wave filter. It is. Furthermore, at the frequency at which one surface acoustic wave filter operates, the comb-shaped electrode of the other surface acoustic wave filter operates as a reflector.
[0029]
In order to solve such a problem, in the first embodiment, as described above, the comb-shaped electrodes are arranged as follows.
[0030]
0 <d1 <50λ and 0 <d2 <200λ
If it is outside this range, the poor isolation such as wire or the wave leaking from one multi-electrode surface acoustic wave filter may be reflected and influenced by the IDT of the other multi-electrode surface acoustic wave filter. is there.
[0031]
【The invention's effect】
The present invention has a configuration as described above, and can provide a surface acoustic wave filter having a large out-of-band attenuation and low loss and excellent performance.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a surface acoustic wave filter according to a first embodiment of the present invention.
FIG. 2 is a frequency characteristic diagram of the surface acoustic wave filter.
FIG. 3 is a schematic configuration diagram of a surface acoustic wave filter according to a second embodiment of the present invention.
FIG. 4 is a frequency characteristic diagram of the surface acoustic wave filter.
FIG. 5 is a schematic configuration diagram of a conventional surface acoustic wave filter.
FIG. 6 is a frequency characteristic diagram of the surface acoustic wave filter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Piezoelectric substrate 2a 1st multi-electrode surface acoustic wave filter 2b 2nd multi-electrode surface acoustic wave filter 3a 1st input terminal 3b 2nd input terminal 4a 1st output terminal 4b 2nd output terminal 5a 1st Reflector 5b second reflector 6a first input electrode 6b second input electrode 7a first output electrode 7b second output electrode 8a wire 8b wire X surface acoustic wave propagation direction

Claims (1)

第1の入力電極と第1の出力電極とを対向して構成した第1の櫛型状電極と、その第1の櫛型状電極の両側に配置した第1の基板端部側反射器と第1の基板中央側反射器とを備えた第1の多電極弾性表面波フィルタと、
第2の入力電極と第2の出力電極とを対向して構成した第2の櫛型状電極と、その第2の櫛型状電極の両側に配置した第2の基板端部側反射器と第2の基板中央側反射器とを備えた第2の多電極弾性表面波フィルタとを、
同一の圧電基板上に、各多電極弾性表面波フィルタの櫛型状電極と反射器が弾性表面波伝搬方向に沿って設けられた弾性表面波フィルタにおいて、
前記圧電基板上の弾性表面波伝搬方向と直交する方向の略中央部に、前記第1の多電極弾性表面波フィルタと第2の多電極弾性表面波フィルタ弾性表面波伝搬方向に沿って並んで配置されることにより、前記第1の多電極弾性表面波フィルタの第1の基板中央側反射器と、前記第2の多電極弾性表面波フィルタの第2の基板中央側反射器が隣接するように並べられて、
前記第1の基板中央側反射器と第2の基板中央側反射器の弾性表面波伝搬方向と直交する方向のずれ間隔をd1とし、櫛型状電極の繰返し周期を1/2λとしたときに、下記の関係にあり、
0<d1<50λ (ただしλは、使用する周波数帯域の波長)
かつ、前記第1の櫛型状電極の第1の基板端部側反射器と対向する端面から、前記第2の櫛型状電極の第2の基板端部側反射器と対向する端面までの配置間隔をd2とし、下記の関係にあり、
0<d2<200λ
前記第1の多電極弾性表面波フィルタの入出力電極から延びるアース導体線ならびに前記第2の多電極弾性表面波フィルタの入出力電極から延びるアース導体線がそれぞれ分散して前記圧電基板の端部側に延びていることを特徴とする弾性表面波フィルタ。
A first comb-shaped electrode configured such that the first input electrode and the first output electrode are opposed to each other; a first substrate end side reflector disposed on both sides of the first comb-shaped electrode ; A first multi-electrode surface acoustic wave filter comprising a first substrate center side reflector ;
A second comb-shaped electrode configured such that the second input electrode and the second output electrode are opposed to each other; a second substrate end side reflector disposed on both sides of the second comb-shaped electrode ; A second multi-electrode surface acoustic wave filter provided with a second substrate center side reflector ,
In the surface acoustic wave filter in which the comb-shaped electrode and the reflector of each multi-electrode surface acoustic wave filter are provided along the surface acoustic wave propagation direction on the same piezoelectric substrate,
The first multi-electrode surface acoustic wave filter and the second multi-electrode surface acoustic wave filter are arranged along the surface acoustic wave propagation direction at a substantially central portion in a direction orthogonal to the surface acoustic wave propagation direction on the piezoelectric substrate. The first substrate center side reflector of the first multi-electrode surface acoustic wave filter and the second substrate center side reflector of the second multi-electrode surface acoustic wave filter are adjacent to each other. Lined up like
When the gap between the first substrate center side reflector and the second substrate center side reflector in the direction orthogonal to the surface acoustic wave propagation direction is d1, and the repetition period of the comb-shaped electrode is 1 / 2λ Have the following relationship :
0 <d1 <50λ (where λ is the wavelength of the frequency band to be used)
And from the end surface facing the first substrate end side reflector of the first comb-shaped electrode to the end surface facing the second substrate end side reflector of the second comb-shaped electrode The arrangement interval is d2, and has the following relationship:
0 <d2 <200λ
The ground conductor wire extending from the input / output electrode of the first multi-electrode surface acoustic wave filter and the ground conductor wire extending from the input / output electrode of the second multi-electrode surface acoustic wave filter are dispersed to each end of the piezoelectric substrate. surface acoustic wave filter characterized in that it extends to the side.
JP28409896A 1996-10-25 1996-10-25 Surface acoustic wave filter Expired - Fee Related JP4454703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28409896A JP4454703B2 (en) 1996-10-25 1996-10-25 Surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28409896A JP4454703B2 (en) 1996-10-25 1996-10-25 Surface acoustic wave filter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006291142A Division JP2007068211A (en) 2006-10-26 2006-10-26 Surface acoustic wave filter and communication apparatus employing the same

Publications (2)

Publication Number Publication Date
JPH10135779A JPH10135779A (en) 1998-05-22
JP4454703B2 true JP4454703B2 (en) 2010-04-21

Family

ID=17674189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28409896A Expired - Fee Related JP4454703B2 (en) 1996-10-25 1996-10-25 Surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JP4454703B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3509764B2 (en) * 2001-03-23 2004-03-22 株式会社村田製作所 Surface acoustic wave device, communication device

Also Published As

Publication number Publication date
JPH10135779A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
KR100434413B1 (en) Longitudinally coupled resonator type surface acoustic wave filter
KR100230655B1 (en) Saw filter apparatus
US7479855B2 (en) Longitudinally-coupled-resonator-type elastic wave filter device
US7378923B2 (en) Balanced SAW filter
US7804384B2 (en) Acoustic wave filter device utilizing filters having different acoustic wave propagation directions
EP1830467B1 (en) Surface-acoustic-wave filter device
US6781485B2 (en) Surface acoustic wave filter
US6771145B2 (en) Surface acoustic wave device
JPH01208010A (en) Monolithic lattice type elastic surface wave filter
US6873226B2 (en) Edge-reflection surface acoustic wave filter
US20020135441A1 (en) Longitudinally coupled surface acoustic wave filter
US6650206B2 (en) Surface acoustic wave filter and communication apparatus with the same
US6597262B2 (en) Surface acoustic wave filter and communication apparatus incorporating the same
US7746199B2 (en) Acoustic wave device
EP0782256B1 (en) Surface acoustic wave resonator filter apparatus
EP1251637B1 (en) Surface acoustic wave apparatus and communication apparatus
KR20020075307A (en) Surface acoustic wave filter, surface acoustic wave device using the filter, and communication device using the filter or the device
EP1267490A2 (en) Longitudinally-coupled resonator surface-acoustic wave filter and communications apparatus using the same
JPH05335881A (en) Longitudinal dual mode surface acoustic wave filter
JP4454703B2 (en) Surface acoustic wave filter
JP3419949B2 (en) Vertically coupled dual mode SAW filter
EP1030446B1 (en) Edge reflection type longitudinally coupled saw resonator filter
JP2007068211A (en) Surface acoustic wave filter and communication apparatus employing the same
JPH06232688A (en) Surface acoustic wave filter, branching device using it and mobile radio equipment
JP3435641B2 (en) Edge reflection type surface acoustic wave filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees