JP4454007B2 - Conductive support and photoelectric conversion element using the same - Google Patents

Conductive support and photoelectric conversion element using the same Download PDF

Info

Publication number
JP4454007B2
JP4454007B2 JP2003172952A JP2003172952A JP4454007B2 JP 4454007 B2 JP4454007 B2 JP 4454007B2 JP 2003172952 A JP2003172952 A JP 2003172952A JP 2003172952 A JP2003172952 A JP 2003172952A JP 4454007 B2 JP4454007 B2 JP 4454007B2
Authority
JP
Japan
Prior art keywords
conductive support
photoelectric conversion
dye
semiconductor
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003172952A
Other languages
Japanese (ja)
Other versions
JP2005011609A (en
Inventor
照久 井上
紫垣晃一郎
征明 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2003172952A priority Critical patent/JP4454007B2/en
Publication of JP2005011609A publication Critical patent/JP2005011609A/en
Application granted granted Critical
Publication of JP4454007B2 publication Critical patent/JP4454007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、導電性支持体に関し、更に詳しくは光電変換素子用導電性支持体およびそれを用いて得られる光電変換素子、並びに太陽電池に関する。
【0002】
【従来の技術】
クリーンなエネルギー源として注目されているシリコンを使用した太陽電池は、近年、一般住宅用に利用されるようになってきたが、未だ充分に普及するには至っていない。その理由としては、太陽電池そのものの性能が充分優れているとは言い難いためモジュールを大きくせざるを得ないこと、モジュール製造における生産性が低いこと、その結果、太陽電池そのものが高価になること等が挙げられる。
【0003】
シリコンを使用した太陽電池に替わる次世代の太陽電池として、1991年にグレッツェル(スイス)らによって色素増感太陽電池と呼ばれる光電変換素子を用いた光(太陽)電池が開発された(非特許文献1、特許文献1参照)。これは、グレッツェルセルとも呼ばれ、透明導電性基板上に色素によって増感され、一方の極になる酸化物半導体微粒子からなる薄膜基板と、それと対峙するようにプラチナ等の還元剤を配した対極となる基板との間に電荷移動層(レドックス物質を含む電解液)を狭持したものである。
【0004】
図1は前記非特許文献1に記載されている色素増感太陽電池のセルの断面構造を示す模式図である。図1において、符号11はガラス基板を、符号12はガラス基板11上に設けられた透明導電膜をそれぞれ示す。光はガラス基板11の上面側から入射する。透明導電膜12としては、半導体含有層が導電膜の下部に存在するため酸化スズ膜のような透明導電膜が用いられる。符号13は色素を担持した半導体含有層を示す。半導体含有層13は粒径がほぼ50nm以下の酸化チタンなどよりなる半導体粒子が透明導電膜12上に焼結した状態の多孔質構造をとっている。符号14はレドックス電解質を溶解させた電荷移動層を示し、前記色素を担持した半導体含有層13に浸潤するように設けられる。符号15は還元性のPt薄膜を示す。このPt薄膜はガラス基板11上の透明導電膜12の上に設けられている。
【0005】
こ色素増感太陽電池を大規模電力用として利用する場合、大面積にする必要があるが、大面積化すると透明導電膜だけでは抵抗が大きすぎ、電極単位面積当たりの出力電流密度が著しく低下してしまう問題があり、大規模電力用として利用するためには、この問題の解決がきわめて重要である。また、センサ、電卓などの小規模電力用として利用する場合においても、導電性支持体の抵抗を小さくすることは、光電変換効率を向上できるため重要である。
【0006】
この課題を解決するための従来技術としては、入射光の透過率を低下させずに集電用電極の導電率を向上させる目的で、透明導電膜の入射光側に鋭角なエッジを持つ金属電極が開示されている(特許文献2参照)。しかしながら、この場合、鋭角なエッジにより入射光が反射され、反射損失はあるもののほとんどの入射光が半導体含有層に届くが、前記エッジの陰になる半導体含有層が存在するため、光電変換反応に大きく影響する反応実効面積の減少は避けられず、光電変換効率が低下するおそれがある。また、透明基板に針入して、該文献の様な処理を施すことは非常に高価なものとなってしまう。
【0007】
特許文献3及び同4には半導体含有層の内部もしくは対向電極側表面に集電用電極を設ける事により、電極部の内部抵抗を低下させる方法が開示されている。しかしながら、この場合、半導体含有層が多孔質でありその上に集電用電極を配するために集電用電極と対向電極の間で短絡が起こり、十分な開放電圧が得られないという欠点がある。
【0008】
また、特許文献5には集電用電極の受光面側に光電変換の場を設けた構造の光電変換素子が記載されている。この文献に記載された光電変換素子の構造では、集電用電極の受光面側に可視光に吸収を持つ電解液層が存在するため、入射光が光電変換層に到達するまでの間に電解液による光透過損失が起きる。
【0009】
【特許文献1】
特開平1−220380号公報
【特許文献2】
特開平8−287969号公報
【特許文献3】
特開2000−243465号公報
【特許文献4】
特開2001―283941号公報
【特許文献5】
特開平10−112337号公報
【特許文献6】
特開2000−26487号公報
【特許文献7】
WO2002011213号公報
【非特許文献1】
B.Oregan,M.Gratzel,Nature,353,737(1991)
【非特許文献2】
C.J.Barbe, F Arendse, P Compt and M.Graetzel J.Am.Ceram.Soc., 80,12,3157-71 (1997)
【非特許文献3】
M.K.Nazeeruddin, A.Kay, M.Graetzel, J.Am.Chem.Soc., 115, 6382-6390 (1993)
【非特許文献4】
W.Kubo, K.Murakoshi, T.Kitamura, K.Hanabusa, H.Shirai, and S.Yanagida, Chem.Lett., 1241(1998)
【非特許文献5】
早瀬修二 未来材料 Vol3, No1, 54-59 (2003)
【非特許文献6】
K.Tennakone, G.K.R.Senadeera, D.B.R.A.De Silva and I.R.M.Kottegoda App.Phy.Letter
【0010】
【発明が解決しようとする課題】
本発明は、入射光量の損失を最小限に抑えて内部抵抗により生じる損失を抑制することにより、大面積でも光電変換効率を飛躍的に向上させることの出来る導電性支持体及びそれを用いた光電変換素子を提供することを目的としている。
【0011】
【課題を解決するための手段】
本発明者らは前記したような課題を解決すべく鋭意研究を重ねた結果、特定の位置に集電用電極を配した導電性支持体を用いることにより、導電性支持体内部の抵抗を低くく抑えるのに成功し、光電変換能等の諸物性にもきわめて良好な、高信頼性の導電性支持体及び光電変換素子が得られる事を見出し、本発明を完成させたものである。
【0012】
即ち本発明は、
(1)基板上に透明導電膜、集電用電極及び半導体含有層又は還元層をこの順で設けてなる光電変換素子用導電性支持体、
(2)集電用電極が、膜状、網目状、線状又は格子状の連続した導電性材料である(1)記載の導電性支持体、
(3)集電用電極が、Au、Pt、Ag、Cu、Al、Ni、Zn、Ti及びCrからなる群から選ばれる少なくとも一種以上の元素からなる導電性材料から形成されてなる(1)又は(2)の導電性支持体、
(4)半導体含有層が色素で増感されてなるものである(1)乃至(3)のいずれか一項に記載の導電性支持体、
(5)(4)至(5)いずれか一項に記載の導電性支持体を用いてなる光電変換素子、
(6)(5)の光電変換素子を備えてなる太陽電池
(7)基板上に透明導電膜、集電用電極及び半導体含有層をこの順に設けた一の導電性支持体と、基板上に透明導電膜、集電用電極及び還元層をこの順に設けた一の導電性支持体を所定の間隔で対向配置し、周縁をシール材で固定後、該両支持体の間隙に電荷移動層を設けることを特徴とする光電変換素子の製造方法、
に関する。
【0013】
【発明の実施の形態】
まず、図面を参照にしながら本発明の導電性支持体の一例について説明する。図4に示すものは、本発明の導電性支持体を負極、及び正極にもちいたものの模式である。即ち負極として用いるものは、基板上にまづ透明導電膜を設け、次いで集電用電極を設ける。又、正極に用いるものは、基板上に透明導電膜を設け、次いで集電用電極を設け最後に還元性能を有するPtの薄膜を設けるものである。
【0014】
以下本発明の導電性支持体について説明する。
まず、基板としてはガラス、プラスティック、ポリマーフィルム等が使用される。透明度に優れ、厚さとしては、通常0.01mm〜10mm、特に0.02〜5mmのものが好ましい。これらの基板は市場から容易に入手出来る。
【0015】
導電性支持体に設ける透明導電膜としては例えばFTO(フッ素ドープ酸化スズ)、ATO(アンチモンドープ酸化スズ)、ITO(インジウムドープ酸化スズ)に代表される導電性物質をガラス、プラスティック、ポリマーフィルム等の基板表面に薄膜化させたものが用いられる。その導電性は通常1000Ω/cm2以下、好ましくは100Ω/cm2以下である。
【0016】
本発明の導電性支持体に用いる集電用電極の材質としては導電性が高い程好ましく、好ましいものとして、金属または導電性セラミックス、導電性高分子等が挙げられる。例えば、Au、Pt、Ag、Cu、Al、Ni、Zn、Ti及びCrからなる群から選ばれる少なくとも一種以上の元素を含むものが好ましく、2種以上の金属を重ねて用いても良い。その中でも特にAu、Al、Crの上にNiを重ねたものが好ましい。導電性セラミックスとしては、SnO2、ITO、SiC、TiN、カーボン等がある。導電性高分子としてはPEDOT−PSSpoly(styrenesulfonate) /poly(1,2-dihydrothieno[3,4-b]-1,4-dioxin), 1.3%水分散液)、ポリフェニレンビニレン、ポリアニリン、ポリピロール、ポリアセチレン、ポリチオフェン等が挙げられる。
【0017】
本発明の導電性支持体に用いる集電用電極の形状としては全面に薄膜状に配設したものや、部分的に配設させた線状、格子状模様が採用され、連続性があり、導電性の高いものが好ましい。全面に薄膜状に配設したものは、特に、負極側に用いる場合には、光透過性を損なわないように注意する必要がある。又、線状や格子状のものはメッシュが細かい方がよいがメッシュ幅も考慮して、照射光量の50%以上、好ましくは70%以上透過することが好ましい。
【0018】
本発明の導電性支持体に用いる集電用電極による抵抗損失を小さくするため、集電用電極の表面抵抗は低い程よい。集電用電極の表面抵抗は50Ω/□以下であることが好ましい。30Ω/□以下の表面抵抗値が一層好ましい。集電用電極の表面抵抗の下限値に特に制限はないが、1Ω/□以下が好ましい。
【0019】
本発明の導電性支持体に用いる集電用電極の作成法としては導電性基板に設けられた透明薄膜上にフォトマスク等を施した後、所望の形状をスパッタにて得る方法、導電材もしくはプレカーサーを所望の形状に塗布した後焼成する方法。電解メッキ法、無電解メッキ法、所望の形状の網を貼り付けて用いる方法等が挙げられる。
【0020】
本発明の導電性支持体に用いる集電用電極の望ましい形状の一例の写真を図3に示す。図は金膜で作成された格子状の集電用電極を示す。
【0021】
次ぎに、半導体含有層について説明する。
半導体含有層を形成する半導体としては金属カルケニド微粒子が好ましく具体的にはTi、Zn、Sn、Nb、W、In,Zr、Y、La、Ta等の遷移金属の酸化物、Al、Si等の酸化物、StTiO3、CaTiO3、BaTiO3等のペロブスカイト型酸化物が挙げられる。この中でTiO2、ZnO、SnO2が特に好ましい。また、これらは混合して用いても良く中でもSnO2ーZnO混合系、TiO2の上にMgOやAl23を重ねたものは特に好ましい。その一次粒径は通常1〜200nm、好ましくは1〜50nmである。混合系の場合、粒子の状態で混合したり、以下に述べるスラリーもしくはペースト状態で混合したり、あるいは、層を相重ねて用いてもよい。
【0022】
半導体含有層の調製方法は酸化物半導体からなる薄膜を蒸着により直接導電性支持体上に作成する方法、基板を電極として電気的に析出させる方法、スラリーもしくはペーストを基板上に塗布またはコートした後、乾燥、硬化もしくは焼成する方法等がある。酸化物半導体電極の性能上、スラリーを用いる方法等が好ましい。スラリーは2次凝集している酸化物半導体微粒子を分散剤を用いて分散媒中に平均1次粒子径が1〜200nmになるように分散させたり、ゾルゲル法にて酸化物半導体の前駆体であるアルコキサイド等を加水分解することにより得られる(非特許文献2を参照)。
【0023】
この様にして得られた酸化物半導体微粒子の比表面積は通常1〜1000m2/g、好ましくは10〜500m2/gである。また、粒径の異なる酸化物半導体微粒子を混合して用いてもよい。スラリーを分散させる分散媒としては半導体微粒子を分散させ得るものであれば何でも良く、水、エタノール等のアルコール、アセトン、アセチルアセトン等のケトン、ヘキサン等の炭化水素等の有機溶媒が用いられ、これらは混合して用いても良く、水を用いることはスラリーの粘度変化を少なくするという点で好ましい。
【0024】
スラリーには安定した一次微粒子を得る目的で分散安定剤等を加える場合がある。用いうる分散安定剤の具体例にはポリエチレングリコール等の多価アルコール、またはフェノール、オクチルアルコール等のアルコールとの縮合物、ヒドロキシプロピルメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体、ポリアクリルアマイド、ポリ(メタ)アクリル酸及びその塩、ポリ(メタ)アクリル酸及びその塩の、アクリルアマイドと(メタ)アクリル酸またはそのアルカリ金属塩との共重合体又は(A)アクリルアマイド及び/または(メタ)アクリル酸のアルカリ金属塩と(B)(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の(メタ)アクリル酸エステル、もしくはスチレン、エチレン、プロピレン等の疎水性モノマーとの共重合体で水溶性であるポリアクリル酸系誘導体、メラミンスルホン酸ホルムアルデヒド縮合物の塩、ナフタリンスルホン酸ホルムアルデヒド縮合物の塩、高分子量のリグニンスルホン酸塩、塩酸、硝酸、酢酸等の酸が挙げられるが、本発明はこれら分散安定剤に限定されるものではない。又、これら分散安定剤は単独使用だけでなく、2種以上を併用することも出来る。
【0025】
これらの内、ポリエチレングリコール等の多価アルコール、またはフェノール、オクチルアルコール等との縮合物、分子内にカルボキシル基および/またはスルホン基および/またはアミド基を有するものが好ましく、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ナトリウム、ポリ(メタ)アクリル酸カリウム、ポリ(メタ)アクリル酸リチウム等のポリ(メタ)アクリル酸およびその塩やカルボキシメチルセルロース、塩酸、硝酸、酢酸等の酸が好ましい。
【0026】
スラリー中の酸化物半導体の濃度は1〜90重量%、好ましくは5〜80重量%である。スラリーを塗布した基板の焼成温度はおおむね基材の融点(軟化点)以下であり、通常100〜900℃(融点又は軟化点)であり、好ましくは100〜600℃(融点又は軟化点)である。また、焼成時間は特に限定はないがおおむね4時間以内が好ましい。
【0027】
半導体含有層の表面平滑性を向上させる目的で2次処理を施してもよい(非特許文献2参照)。例えば半導体と同一の金属のアルコキサイドもしくは塩化物、硝化物、硫化物等の溶液に直接、基板ごと薄膜を浸漬して乾燥もしくは再焼成することにより目的の平滑性を確保することが出来る。金属アルコキサイドとしてはチタンエトキサイド、チタンイソプロポキサイド、チタンtーブトキサイド、n−ジブチルージアセチルスズ等が挙げられ、そのアルコール溶液が用いられる。塩化物の場合には例えば四塩化チタン、塩化アルミ、塩化マグネシウム、四塩化スズ、塩化亜鉛等が挙げられ、その水溶液が用いられる。
【0028】
次に半導体含有層に色素を担持させる方法としては、該色素を溶解しうる溶媒にて色素を溶解して得た溶液、又は溶解性の低い色素にあっては色素を分散せしめて得た分散液に上記半導体含有層の設けられた基板を浸漬する方法が挙げられる。溶液又は分散液中の濃度は色素によって適宜決められる。その溶液中に基板上に作成した半導体含有層を浸す。浸漬温度はおおむね常温から溶媒の沸点迄であり、また浸漬時間は1時間から48時間程度である。色素を溶解させるのに使用しうる溶媒の具体例として、例えば、メタノール、エタノール、アセトニトリル、ジメチルスルホキサイド、ジメチルホルムアミド、t -ブタノール、トルエン等が挙げられる。溶液の色素濃度は通常1×10-6M〜1Mが良く、好ましくは1×10-5M〜1×10-1Mである。この様にして色素で増感した半導体含有層を配置した電極が得られる。
【0029】
該半導体含有層に増感色素が吸着することにより、光エネルギーを吸収して電気エネルギーに変換することができる。その場合の増感色素としてはルテニウム等の金属元素を含んだ金属錯体色素および金属を含まない有機色素もしくはそれらの混合物であって半導体微粒子と相まって光吸収を増感させるものであれば特に限定はない。
【0030】
担持する色素は1種類でも良いし、数種類混合しても良い。又、混合する場合は有機色素同士でも良いし、有機色素と金属錯体色素を混合しても良い。特に吸収波長の異なる色素同士を混合することにより、幅広い吸収波長を用いることが出来、変換効率の高い太陽電池が得られる。担持しうる金属錯体色素の例としては特に制限は無いが 非特許文献3や特許文献5に示されているフタロシアニン、ポルフィリンなどが好ましく、担持しうる有機色素としては無金属のフタロシアニン、ポルフィリンやシアニン、メロシアニン、オキソノール、トリフェニルメタン系、特許文献6に示されるアクリル酸系色素、などのメチン系色素や、キサンテン系、アゾ系、アンスラキノン系、ペリレン系等の色素が挙げられる。好ましくはルテニウム錯体やメロシアニン、上記アクリル酸系等のメチン系色素等が挙げられる。色素を混合して用いる場合の各色素の比率は特に限定は無く、それぞれの色素より最適化選択されるが、一般的に等モルずつの混合から、1つの色素につき、10%モル程度以上使用するのが好ましい。2種以上の色素を溶解もしくは分散した溶液を用いて、半導体含有層に色素を吸着する場合、溶液中の色素合計の濃度は1種類のみ担持する場合と同様でよい。色素を混合して使用する場合の溶媒としては前記したような溶媒が使用可能であり、使用する各色素用の溶媒は同一でも異なっていてもよい。
【0031】
半導体含有層に色素を担持する際、色素同士の会合を防ぐために包接化合物の共存下、色素を担持することが効果的である。ここで包接化合物としてはコール酸等のステロイド系化合物、クラウンエーテル、シクロデキストリン、カリックスアレン、ポリエチレンオキサイドなどが挙げられるが、好ましいものとしてはコール酸、デオキシコール酸、ケノデオキシコール酸、コール酸メチルエステル、コール酸ナトリウム等のコール酸類、ポリエチレンオキサイド等である。その他の共吸着剤としては酢酸、プロピオン酸、ピリジンカルボン酸、カテコールの酸性化合物も有効である。又、色素を担持させた後、4−t−ブチルピリジン等のアミン化合物で半導体電極表面を処理しても良い。処理の方法は例えばアミンのエタノール溶液に色素を担持した半導体含有層の設けられた基板を浸す方法等が採られる。
【0032】
次ぎに、本発明において、透明導電膜上又は集電用電極上に設けられる対向電極は本発明の導電性支持体の表面に酸化還元系電解質の還元反応を触媒的に作用する白金、カーボン、ロジウム、ルテニウム等を蒸着したり、導電性微粒子前駆体を塗布、焼成したものが用いられる。
【0033】
本発明の導電性支持体の一般的な作製方法としてはFTOガラスのFTO等の透明導電膜上にフォトマスク等を用いて、所望の形状の集電用電極をスパッタ法によって得る方法、集電用電極の材料である導電材もしくはそのプレカーサーを所望の形状にスクリーン塗布後、焼成する方法、電解メッキ法、無電解メッキ法、所望の形状の網状物を貼り付ける方法等が採用出来る。
本発明の導電性支持体を負極または正極として用いるときの製法の一般的なものとしては負極に用いる場合は本発明の導電性支持体の集電用電極上に半導体含有層になる酸化物半導体微粒子ペースト等を塗設、焼成した後、色素を吸着させて負極とする。一方、正極として用いる場合は負極の場合と同様に本発明の導電性支持体の集電用電極上に還元層になる白金等をスパッタ法によって堆積させて正極を得る。
【0034】
次ぎに本発明の導電性支持体を用いた光電変換素子を図面により説明する。図2は本発明の光電変換素子の一例の断面模式図である。
図2に示されているように、本発明の光電変換素子においては、光透過性の透明な基板21の少なくとも一方(図2では両方の場合)の透明導電膜22上に集電用電極23を配した上に、片方の集電用電極23上に色素担持半導体含有層24、他方の集電用電極23上には白金等の還元剤層25を設けたものである。色素担持半導体含有層24と還元剤層25の間に電荷移動層26を挟持して、周囲を封止することにより光電変換素子を得る。本発明の光電変換素子は導電性支持体の透明導電性膜の上に重ねて集電用電極を用いる点で図1に示された従来の光電変換素子と相違する。色素担持半導体層24と集電用電極22の配設順序が逆である点で、特許文献2,3と異なる。本発明の導電性支持体の適用出来る光電変換素子としては、一般的に光エネルギーを電気エネルギーに変換する素子のすべてが挙げられる。
【0035】
本発明の光電変換素子は上記酸化物半導体含有層に色素を担持させた半導体電極と対極と電荷移動層から構成される。電荷移動層は酸化還元系電解質対や正孔輸送材料等を溶媒や常温溶融塩(イオン性液体)中に溶解させた溶液が用いられる。
【0036】
本発明の光電変換素子に用いる酸化還元系電解質としてはハロゲンイオンを対イオンとするハロゲン化合物及びハロゲン分子からなるハロゲン酸化還元系電解質、フェロシアン酸塩−フェリシアン酸塩やフェロセン−フェリシニウムイオン、コバルト錯体などの金属錯体等の金属酸化還元系電解質、アルキルチオール−アルキルジスルフィド、ビオロゲン色素、ヒドロキノン−キノン等の有機酸化還元系電解質などをあげることができるが、ハロゲン酸化還元系電解質が好ましい。
【0037】
ハロゲン化合物−ハロゲン分子からなるハロゲン酸化還元系電解質におけるハロゲン分子としては、例えばヨウ素分子や臭素分子等があげられ、ヨウ素分子が好ましい。又、ハロゲンイオンを対イオンとするハロゲン化合物としては、例えばLiI、NaI、KI、CsI、CaI2、CuI等のハロゲン化金属塩あるいはテトラアルキルアンモニウムヨーダイド、イミダゾリウムヨーダイド、1−メチルー3−アルキルイミダゾリウムヨーダイド、ピリジニウムヨーダイドなどのハロゲンの有機4級アンモニウム塩等があげられるが、ヨウ素イオンを対イオンとする塩類化合物が好ましい。ヨウ素イオンを対イオンとする塩類化合物としては、例えばヨウ化リチウム、ヨウ化ナトリウム、ヨウ化トリメチルアンモニウム塩等があげられる。
【0038】
又、電荷移動層は酸化還元系電解質を含む溶液の形で構成されている場合、その溶媒には電気化学的に不活性なものが用いられる。例えばアセトニトリル、プロピレンカーボネート、エチレンカーボネート、3−メトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、ジメトキシエタン、ジエチルカーボネート、ジエチルエーテル、ジエチルカーボネート、ジメチルカーボネート、1、2−ジメトキシエタン、ジメチルホルムアミド、ジメチルスルホキサイド、1、3−ジオキソラン、メチルフォルメート、2ーメチルテトラヒドロフラン、3−メトキシーオキサジリジン−2−オン、γ−ブチロラクトン、スルフォラン、テトラヒドロフラン、水等が挙げられ、これらの中でも、特に、アセトニトリル、プロピレンカーボネート、エチレンカーボネート、3−メトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、3−メトキシオキサジリジン−2−オン、γ−ブチロラクトン等が好ましい。これらは単独もしくは2種以上組み合わせて用いても良い。酸化還元系電解質の濃度は通常0.01〜99重量%で、好ましくは0.1〜90重量%である。
【0039】
又、電荷移動層に酸化還元系電解質を含む形で構成されている場合にその溶媒的に用いるものに常温溶融液(イオン性液体)がある。常温溶融液の例としては、例えば、1−メチル−3−アルキルイミダゾリウムヨーダイド、ビニルイミダゾリウムテトラフルオライド、1−エチルイミダゾ−ルスルフォネート、アルキルイミダゾリウムトリフルオロメチルスルホニルイミド、1−メチルピロリンジニウムアイオダオド等が挙げられる。また、光電変換素子の耐久性向上の目的で電荷移動層に低分子ゲル化剤を溶解させて増粘させたもの(非特許文献4を参照)や反応性成分を併用して電荷移動層注入後に反応させてゲル電解質とすることもできる(非特許文献5を参照)。
【0040】
一方、完全固体型としては酸化還元系電解質の代わりに正孔輸送材料やP型半導体を用いることもできる。正孔輸送材料としてはアミン誘導体やポリアセチレン、ポリアニリン、ポリチオフェンなどの導電性高分子やディスコティック液晶などが挙げられ、また、P型半導体としてはCuI、CuSCN等が挙げられる(非特許文献6を参照)。
【0041】
対向電極は導電性支持体の表面に酸化還元系電解質の還元反応を触媒的に作用する白金、カーボン、ロジウム、ルテニウム等を蒸着したり、導電性微粒子前駆体を塗布、焼成して調製される。
【0042】
2つの導電性支持体をシールする材料としてはペースト上のシール剤の他に熱可塑フィルム等を用いて加熱溶解させて貼り合わせる事もできる。
【0043】
本発明の導電性支持体を用いた光電変換素子は、導電性支持体表面に集電用電極を配した上に色素で増感させた半導体含有層を配した半導体電極に他方の導電性支持体上に集電用電極を配した上に還元性の白金等を配した対向電極を所定の間隔に対向配置して周囲をシールして、その間隙に電荷移動層を封入したものである。その製法としては、例えば、一方の導電性支持体の周囲にシール部分を考慮して、色素で増感された半導体含有層を配し半導体電極とする。シール剤に、グラスファイバー等のスペーサーを添加後、この半導体電極の周囲に一部に電荷移動層の注入口を残してスクリーン印刷もしくはディスペンサーによりシール剤を塗布した後、例えば100℃10分間の加熱で溶剤を蒸発させ、ついでもう一方の導電性支持体の上に白金等を配したものをそれらの導電面が対面するように上下導電性支持体を重ね合わせ、プレスにてギャップ出しを行い、高圧水銀灯にてUV光を、例えば、3000mJ/cm2照射して硬化させる。場合によっては、例えば、120℃で10分間、後硬化させることにより得ることができる。
【0044】
両導電性支持体間の間隙に電荷移動層を形成するための電解質液を注入した後、該電解質液注入口を封止して光電変換素子を得ることができる。このようにして得られた光電変換素子は接着性、耐湿熱性等の耐久性に優れたものである。
このようにして得られた光電変換素子の正極と負極にリード線を配し、その間に抵抗成分を挿入する事により本発明の太陽電池をえることが出来る。
【0045】
【実施例】
以下に実施例をあげ本発明を更に詳細に説明する。
【0046】
実施例1〜実施例7
集電用電極付き導電性支持体の作製
フッ素ドープ酸化スズガラス FTOガラス(旭硝子製、1.1mm厚、20Ω品)を用いて、図3に示したような集電用電極を透明導電面上に形成した導電性支持体を以下のように作製した。透明導電膜面上に表1の集電用電極が出来るようなポジ型レジストマスク Microposit J450(Shipley社製)を作製した。それをイオンスパッタリング装置SC−708AT(日本電子製)にて、厚さ1000Åの金膜を設けた。その後、アセトンにてレジストマスクを溶解除去させて表1の各集電用電極担持FTOガラスを得た。(実施例1〜実施例7)
その抵抗値を測定した結果を表1に示す(単位はΩ/□)。
【0047】
表1 集電用電極の形状
(実施例1)
導電性支持体3−a 図3の格子状電極において格子の間隔(線と線の間距 離)0.3mm、線の太さ5mm
(実施例2)
導電性支持体3−b 同上格子の間隔(線と線の間距離)0.2mm、線の太さ5mm間隔
(実施例3)
導電性支持体3−c 電流取出方向に対して直交方向のみ(ストライプ型)、線の太さは0.3mm、線の間隔5mm
(実施例4)
導電性支持体3−d 形状は3−cと同様、線の太さは0.2mm、線の間隔5mm
(実施例5)
導電性支持体3−e 形状は3−aと同様で材質がAuの代わりにCrを1000Åスパッタリングした上にNiを1000Åスパッタリング
(実施例6)
導電性支持体3−f 形状は3−aと同様で材質がAuの代わりにAlを2000Åスパッタリング
(実施例7)
導電性支持体3−g 形状は3−aと同様で材質がAuの代わりにPEDOT−PSS(アルドリッチ社製、poly(styrenesulfonate)
/poly(1,2-dihydrothieno[3,4-b]-1,4-dioxin), 1.3%水分散液)
(コントロール)
集電用電極を設けない
【0048】
表2

Figure 0004454007
【0049】
実施例8
両側の導電性支持体を上記3−aを用いてその導電面上に半導体含有層であるTiO2微粒子(P25;デグサ社製)をペースト状にしたものを塗布して、450℃30分焼成した後、増感色素を式(1)で示す色素N719(ソーラロニクス社製)の3×10-4Mエタノール溶液に24時間浸漬して半導体電極を作成した。つぎに、同じく3−aのFTO導電性ガラス支持体の導電面上にPtを200Å蒸着させて対向電極とした。次に、両極間にヨウ素系電荷移動層4a(ヨウ素/ヨウ化リチウム/メチルヘキシルイミダゾリウムアイオダイド(四国化成工業製)、t−ブチルピリジンをそれぞれ0.1M/0.1M/0.6M/1Mとなるように3−メトキシプロキオニトリルで調整)を充填することにより色素増感太陽電池(1)を得た。
【0050】
【化1】
Figure 0004454007
【0051】
実施例9
実施例8の導電性支持体3−aの代わりに3−cを用い、増感色素を式(2)、又ケノデオキシコール酸20mMをそれぞれ用いて、電荷移動層を4aの代わりに4b(ヨウ素/ヨウ化テトラ−n−プロピルアンモニウムをそれぞれ0.05M/0.5Mとなるようにエチレンカーボネート/アセトニトリル(6/4)で調製した以外は実施例8と同様にして色素増感太陽電池(2)を得た。
【0052】
【化2】
Figure 0004454007
【0053】
実施例10
実施例8において、半導体含有層を非特許文献2に従いゾルゲル法にてチタンアルコキサイドを加水分解することにより調製したものを用いた以外は実施例8と同様にして色素増感太陽電池(3)を得た。
【0054】
実施例11
実施例10において、増感色素を式(1)で示す色素の代わりに式(1)で示す色素と式(3)で示される色素の1:1の混合物を用いた以外は実施例8と同様にして色素増感太陽電池(4)を得た。
【0055】
実施例12
実施例8において、導電性支持体3−aの代わりに3−eを用いた以外は実施例11と同様にして色素増感太陽電池(5)を得た。
【0056】
実施例13
実施例8において、導電性支持体3−aの代わりに3−fを用いた以外は実施例11と同様にして色素増感太陽電池(6)を得た。
【0057】
【化3】
Figure 0004454007
【0058】
比較例
実施例1における導電性支持体としてコントロールを用いて各実施例と同様に色素増感太陽電池を作製した。
【0059】
光電変換効率測定
得られた各太陽電池について、各極にリード線を接続し、電圧計、電流計を配置し本発明の太陽電池を得た。各太陽電池につき、次ぎの光電変換能の測定を行った。測定する光電変換素子の大きさは実行部分を5×5cm2とした。光源は1kWキセノンランプ(ウシオ電機(株)製)を用いて、AM1.5フィルターを通して100mW/cm2とした。短絡電流、解放電圧、変換効率、形状因子はポテンシオ・ガルバノスタット(北斗電工(株)製)を用いて測定した。結果を表3に示す。
【0060】
Figure 0004454007
【0061】
【発明の効果】
導電性支持体上に集電用電極を設けることにより入射光量の損失を最小限に抑え、内部抵抗により生じる損失を抑制することにより、結果として大面積でも光電変換効率が飛躍的に向上された光電変換素子が得られ、これから極めて有用な太陽電池が得られた。
【図面の簡単な説明】
【図1】非特許文献1記載の色素増感太陽電池のセルの断面模式図である。
【図2】本発明における導電性支持体を用いた光電変換素子の一例である色素増感太陽電池の断面模式図である。
【図3】本発明における集電用電極を配した導電性支持体(実施例1で得られた金膜の格子を有する導電性支持体)の写真。
【図4】負極及び正極とした本発明の導電性支持体の模式図である。
【符号の説明】
図1において、
11 ガラス基板
12 透明導電膜
13 色素担持半導体含有層
14 電荷移動層
15 Pt薄膜
図2において、
21 ガラス基板
22 透明導電膜
23 集電用電極
24 色素担持半導体含有層
25 電荷移動層
26 Pt薄膜
図4において、
41 ガラス電極
42 透明導電膜
43 集電用電極
44 Pt薄膜
をそれぞれ示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive support, and more particularly to a conductive support for a photoelectric conversion element, a photoelectric conversion element obtained by using the same, and a solar cell.
[0002]
[Prior art]
In recent years, solar cells using silicon, which has been attracting attention as a clean energy source, have come to be used for ordinary homes, but have not yet been widely spread. The reason is that the performance of the solar cell itself cannot be said to be sufficiently good, so the module must be enlarged, the productivity in module manufacturing is low, and as a result, the solar cell itself is expensive. Etc.
[0003]
As a next-generation solar cell that replaces a solar cell using silicon, a light (solar) cell using a photoelectric conversion element called a dye-sensitized solar cell was developed by Gretzell (Switzerland) et al. 1, see Patent Document 1). This is also called a Gretzel cell, which is sensitized by a dye on a transparent conductive substrate, and a counter electrode with a reducing agent such as platinum arranged on the thin film substrate made of oxide semiconductor fine particles on one side. A charge transfer layer (electrolytic solution containing a redox substance) is sandwiched between the substrate and the substrate.
[0004]
FIG. 1 is a schematic diagram showing a cross-sectional structure of a cell of a dye-sensitized solar cell described in Non-Patent Document 1. In FIG. 1, reference numeral 11 denotes a glass substrate, and reference numeral 12 denotes a transparent conductive film provided on the glass substrate 11. Light enters from the upper surface side of the glass substrate 11. As the transparent conductive film 12, a transparent conductive film such as a tin oxide film is used because the semiconductor-containing layer exists below the conductive film. Reference numeral 13 denotes a semiconductor-containing layer carrying a dye. The semiconductor-containing layer 13 has a porous structure in which semiconductor particles made of titanium oxide having a particle size of approximately 50 nm or less are sintered on the transparent conductive film 12. Reference numeral 14 denotes a charge transfer layer in which the redox electrolyte is dissolved, and is provided so as to infiltrate the semiconductor-containing layer 13 carrying the dye. Reference numeral 15 denotes a reducing Pt thin film. The Pt thin film is provided on the transparent conductive film 12 on the glass substrate 11.
[0005]
When using this dye-sensitized solar cell for large-scale power, it is necessary to increase the area, but if the area is increased, the resistance of the transparent conductive film alone is too high, and the output current density per unit area of the electrode is significantly reduced. In order to use for large-scale power, it is extremely important to solve this problem. Even when used for small-scale power such as sensors and calculators, it is important to reduce the resistance of the conductive support because the photoelectric conversion efficiency can be improved.
[0006]
As a prior art for solving this problem, a metal electrode having a sharp edge on the incident light side of the transparent conductive film for the purpose of improving the conductivity of the collecting electrode without lowering the transmittance of incident light Is disclosed (see Patent Document 2). However, in this case, incident light is reflected by an acute edge, and although there is a reflection loss, most of the incident light reaches the semiconductor-containing layer, but since there is a semiconductor-containing layer that is behind the edge, there is a photoelectric conversion reaction. A reduction in the effective reaction area that greatly affects is unavoidable, and the photoelectric conversion efficiency may be reduced. In addition, it is very expensive to penetrate into the transparent substrate and perform the treatment as described in the document.
[0007]
Patent Documents 3 and 4 disclose a method of reducing the internal resistance of the electrode portion by providing a current collecting electrode in the semiconductor-containing layer or on the surface on the counter electrode side. However, in this case, since the semiconductor-containing layer is porous and the current collecting electrode is disposed thereon, a short circuit occurs between the current collecting electrode and the counter electrode, and a sufficient open circuit voltage cannot be obtained. is there.
[0008]
Patent Document 5 describes a photoelectric conversion element having a structure in which a photoelectric conversion field is provided on the light receiving surface side of a current collecting electrode. In the structure of the photoelectric conversion element described in this document, there is an electrolyte layer that absorbs visible light on the light-receiving surface side of the current collecting electrode, so that the electrolysis is performed before the incident light reaches the photoelectric conversion layer. Light transmission loss due to the liquid occurs.
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 1-220380
[Patent Document 2]
JP-A-8-287969
[Patent Document 3]
JP 2000-243465 A
[Patent Document 4]
JP 2001-283941 A
[Patent Document 5]
Japanese Patent Laid-Open No. 10-112337
[Patent Document 6]
JP 2000-26487 A
[Patent Document 7]
WO2002011213
[Non-Patent Document 1]
B. Oregan, M. Gratzel, Nature, 353, 737 (1991)
[Non-Patent Document 2]
CJBarbe, F Arendse, P Compt and M. Graetzel J. Am. Ceram. Soc., 80, 12, 3157-71 (1997)
[Non-Patent Document 3]
MKNazeeruddin, A. Kay, M. Graetzel, J. Am. Chem. Soc., 115, 6382-6390 (1993)
[Non-Patent Document 4]
W. Kubo, K. Murakoshi, T. Kitamura, K. Hanabusa, H. Shirai, and S. Yanagida, Chem. Lett., 1241 (1998)
[Non-Patent Document 5]
Shuji Hayase Future Materials Vol3, No1, 54-59 (2003)
[Non-Patent Document 6]
K.Tennakone, GKRSenadeera, DBRADe Silva and IRMKottegoda App.Phy.Letter
[0010]
[Problems to be solved by the invention]
The present invention provides a conductive support capable of dramatically improving the photoelectric conversion efficiency even in a large area by minimizing the loss of incident light quantity and suppressing the loss caused by the internal resistance, and a photoelectric support using the same. The object is to provide a conversion element.
[0011]
[Means for Solving the Problems]
As a result of intensive studies to solve the problems as described above, the present inventors have reduced the resistance inside the conductive support by using a conductive support in which a collecting electrode is arranged at a specific position. The present invention has been completed by finding that a highly reliable conductive support and a photoelectric conversion element can be obtained that have been successfully suppressed and have excellent physical properties such as photoelectric conversion ability.
[0012]
That is, the present invention
(1) A conductive support for a photoelectric conversion element in which a transparent conductive film, a current collecting electrode and a semiconductor-containing layer or a reducing layer are provided in this order on a substrate,
(2) The conductive support according to (1), wherein the current collecting electrode is a continuous conductive material having a film shape, a mesh shape, a linear shape, or a lattice shape,
(3) The current collecting electrode is formed of a conductive material composed of at least one element selected from the group consisting of Au, Pt, Ag, Cu, Al, Ni, Zn, Ti and Cr. Or the conductive support of (2),
(4) The conductive support according to any one of (1) to (3), wherein the semiconductor-containing layer is sensitized with a dye.
(5) A photoelectric conversion element using the conductive support according to any one of (4) to (5),
(6) Solar cell comprising the photoelectric conversion element of (5)
(7) One conductive support provided with a transparent conductive film, a current collecting electrode and a semiconductor-containing layer on the substrate in this order, and a transparent conductive film, a current collecting electrode and a reducing layer provided on the substrate in this order. A method for producing a photoelectric conversion element, comprising: arranging one conductive support opposite to each other at a predetermined interval, fixing a peripheral edge with a sealing material, and then providing a charge transfer layer in a gap between the two supports;
About.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
First, an example of the conductive support of the present invention will be described with reference to the drawings. What is shown in FIG. 4 is the model of what used the electroconductive support body of this invention for the negative electrode and the positive electrode. That is, for the negative electrode, a transparent conductive film is first provided on a substrate, and then a current collecting electrode is provided. In addition, what is used for the positive electrode is one in which a transparent conductive film is provided on a substrate, then a current collecting electrode is provided, and finally a Pt thin film having a reducing performance is provided.
[0014]
The conductive support of the present invention will be described below.
First, glass, plastic, polymer film or the like is used as the substrate. It is excellent in transparency, and the thickness is preferably 0.01 mm to 10 mm, particularly preferably 0.02 to 5 mm. These substrates are readily available from the market.
[0015]
Examples of the transparent conductive film provided on the conductive support include conductive materials represented by FTO (fluorine-doped tin oxide), ATO (antimony-doped tin oxide), ITO (indium-doped tin oxide), glass, plastic, polymer film, and the like. A thin film is used on the surface of the substrate. Its conductivity is usually 1000Ω / cm 2 Below, preferably 100 Ω / cm 2 It is as follows.
[0016]
The material for the current collecting electrode used in the conductive support of the present invention is preferably as high as possible, and preferable examples include metals, conductive ceramics, and conductive polymers. For example, those containing at least one element selected from the group consisting of Au, Pt, Ag, Cu, Al, Ni, Zn, Ti and Cr are preferable, and two or more metals may be used in an overlapping manner. Of these, a laminate of Ni on Au, Al, Cr is particularly preferable. As conductive ceramics, SnO 2 , ITO, SiC, TiN, carbon and the like. PEDOT-PSSpoly (styrenesulfonate) / poly (1,2-dihydrothieno [3,4-b] -1,4-dioxin), 1.3% aqueous dispersion), polyphenylene vinylene, polyaniline, polypyrrole , Polyacetylene, polythiophene and the like.
[0017]
As the shape of the current collecting electrode used for the conductive support of the present invention, a thin film-like one disposed on the entire surface, a partially arranged linear or grid pattern is adopted, and there is continuity. A thing with high electroconductivity is preferable. In the case of using a thin film disposed on the entire surface, particularly when used on the negative electrode side, care must be taken not to impair the light transmittance. In addition, it is better that the mesh of the linear or grid shape is fine, but considering the mesh width, it is preferable to transmit 50% or more, preferably 70% or more of the irradiation light quantity.
[0018]
In order to reduce the resistance loss due to the current collecting electrode used in the conductive support of the present invention, the surface resistance of the current collecting electrode is preferably as low as possible. The surface resistance of the current collecting electrode is preferably 50Ω / □ or less. A surface resistance value of 30Ω / □ or less is more preferable. The lower limit of the surface resistance of the current collecting electrode is not particularly limited, but is preferably 1Ω / □ or less.
[0019]
As a method for producing a current collecting electrode used for the conductive support of the present invention, a method of obtaining a desired shape by sputtering after applying a photomask or the like on a transparent thin film provided on a conductive substrate, a conductive material or A method in which a precursor is applied in a desired shape and then fired. Examples of the method include an electrolytic plating method, an electroless plating method, and a method in which a net having a desired shape is attached.
[0020]
A photograph of an example of a desirable shape of the current collecting electrode used in the conductive support of the present invention is shown in FIG. The figure shows a grid-like current collecting electrode made of a gold film.
[0021]
Next, the semiconductor-containing layer will be described.
As the semiconductor forming the semiconductor-containing layer, metal carkenide fine particles are preferable, and specifically, oxides of transition metals such as Ti, Zn, Sn, Nb, W, In, Zr, Y, La and Ta, Al, Si and the like Oxide, StTiO Three , CaTiO Three , BaTiO Three Perovskite-type oxides. TiO in this 2 ZnO, SnO 2 Is particularly preferred. In addition, these may be used in combination, and among them, SnO 2 -ZnO mixed system, TiO 2 On top of MgO or Al 2 O Three Those in which are stacked are particularly preferred. The primary particle size is usually 1 to 200 nm, preferably 1 to 50 nm. In the case of a mixed system, they may be mixed in the state of particles, mixed in a slurry or paste state described below, or layers may be used in layers.
[0022]
The method for preparing a semiconductor-containing layer is a method in which a thin film made of an oxide semiconductor is directly formed on a conductive support by vapor deposition, a method in which a substrate is used as an electrode, and a method in which a substrate is used as an electrode. There are methods such as drying, curing or baking. In view of the performance of the oxide semiconductor electrode, a method using slurry is preferable. The slurry is a secondary agglomerated oxide semiconductor fine particle dispersed in a dispersion medium using a dispersant so that the average primary particle diameter is 1 to 200 nm, or a precursor of an oxide semiconductor by a sol-gel method. It is obtained by hydrolyzing a certain alkoxide or the like (see Non-Patent Document 2).
[0023]
The specific surface area of the oxide semiconductor fine particles thus obtained is usually 1 to 1000 m. 2 / G, preferably 10-500m 2 / G. In addition, oxide semiconductor fine particles having different particle diameters may be mixed and used. The dispersion medium for dispersing the slurry may be anything as long as it can disperse the semiconductor fine particles. Water, alcohols such as ethanol, ketones such as acetone and acetylacetone, and organic solvents such as hydrocarbons such as hexane are used. A mixture may be used, and the use of water is preferable in terms of reducing the viscosity change of the slurry.
[0024]
A dispersion stabilizer or the like may be added to the slurry for the purpose of obtaining stable primary fine particles. Specific examples of the dispersion stabilizer that can be used include polyhydric alcohols such as polyethylene glycol, condensates with alcohols such as phenol and octyl alcohol, cellulose derivatives such as hydroxypropylmethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, carboxymethylcellulose, and polyacrylic. Amide, poly (meth) acrylic acid and its salt, poly (meth) acrylic acid and its salt, copolymer of acrylic amide and (meth) acrylic acid or its alkali metal salt, or (A) acrylic amide and / or Copolymerization of alkali metal salts of (meth) acrylic acid with (B) (meth) acrylic esters such as methyl (meth) acrylate and ethyl (meth) acrylate, or hydrophobic monomers such as styrene, ethylene and propylene And water soluble polyacrylic acid derivatives, melamine sulfonic acid formaldehyde condensate salts, naphthalene sulfonic acid formaldehyde condensate salts, high molecular weight lignin sulfonates, hydrochloric acid, nitric acid, acetic acid and other acids, The present invention is not limited to these dispersion stabilizers. These dispersion stabilizers can be used alone or in combination of two or more.
[0025]
Of these, polyhydric alcohols such as polyethylene glycol, condensates with phenol, octyl alcohol, etc., those having a carboxyl group and / or a sulfone group and / or an amide group in the molecule are preferred, and poly (meth) acrylic acid Poly (meth) acrylic acid such as sodium poly (meth) acrylate, potassium poly (meth) acrylate, lithium poly (meth) acrylate and salts thereof, and acids such as carboxymethylcellulose, hydrochloric acid, nitric acid and acetic acid are preferred.
[0026]
The concentration of the oxide semiconductor in the slurry is 1 to 90% by weight, preferably 5 to 80% by weight. The firing temperature of the substrate coated with the slurry is generally not higher than the melting point (softening point) of the base material, usually 100 to 900 ° C. (melting point or softening point), and preferably 100 to 600 ° C. (melting point or softening point). . The firing time is not particularly limited but is preferably within 4 hours.
[0027]
Secondary treatment may be performed for the purpose of improving the surface smoothness of the semiconductor-containing layer (see Non-Patent Document 2). For example, the desired smoothness can be ensured by immersing the thin film together with the substrate in a metal alkoxide or chloride, nitride, sulfide or the like, which is the same as the semiconductor, and drying or refiring. Examples of the metal alkoxide include titanium ethoxide, titanium isopropoxide, titanium tert-butoxide, n-dibutyl-diacetyltin, and the alcohol solution thereof is used. In the case of chloride, for example, titanium tetrachloride, aluminum chloride, magnesium chloride, tin tetrachloride, zinc chloride and the like can be mentioned, and an aqueous solution thereof is used.
[0028]
Next, as a method for supporting the dye in the semiconductor-containing layer, a solution obtained by dissolving the dye in a solvent capable of dissolving the dye, or a dispersion obtained by dispersing the dye in the case of a dye having low solubility A method of immersing the substrate provided with the semiconductor-containing layer in the liquid is mentioned. The concentration in the solution or dispersion is appropriately determined depending on the dye. The semiconductor-containing layer formed on the substrate is immersed in the solution. The immersion temperature is generally from room temperature to the boiling point of the solvent, and the immersion time is about 1 to 48 hours. Specific examples of the solvent that can be used for dissolving the dye include methanol, ethanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, t-butanol, toluene and the like. The dye concentration of the solution is usually 1 × 10 -6 M to 1M is good, preferably 1 × 10 -Five M ~ 1x10 -1 M. In this way, an electrode having a semiconductor-containing layer sensitized with a dye is obtained.
[0029]
When the sensitizing dye is adsorbed on the semiconductor-containing layer, light energy can be absorbed and converted into electric energy. The sensitizing dye in that case is not particularly limited as long as it is a metal complex dye containing a metal element such as ruthenium, an organic dye not containing a metal, or a mixture thereof and sensitizing light absorption in combination with semiconductor fine particles. Absent.
[0030]
One type of dye may be carried, or several types may be mixed. Moreover, when mixing, organic pigment | dyes may be sufficient and an organic pigment | dye and a metal complex pigment | dye may be mixed. In particular, by mixing dyes having different absorption wavelengths, a wide absorption wavelength can be used, and a solar cell with high conversion efficiency can be obtained. Examples of metal complex dyes that can be supported are not particularly limited, but phthalocyanine, porphyrin, and the like shown in Non-Patent Document 3 and Patent Document 5 are preferable, and organic dyes that can be supported are metal-free phthalocyanine, porphyrin, and cyanine. Methocyanine dyes such as merocyanine, oxonol, triphenylmethane, and acrylic acid dyes disclosed in Patent Document 6, and dyes such as xanthene, azo, anthraquinone, and perylene. Preferably, a ruthenium complex, merocyanine, methine dyes such as acrylic acid, and the like can be used. The ratio of each dye in the case of using a mixture of dyes is not particularly limited, and is selected and optimized from the respective dyes. Generally, from about equimolar mixing, about 10% mol or more per dye is used. It is preferable to do this. When the dye is adsorbed to the semiconductor-containing layer using a solution in which two or more kinds of dyes are dissolved or dispersed, the total concentration of the dyes in the solution may be the same as when only one kind is supported. As the solvent in the case of using a mixture of dyes, the above-mentioned solvents can be used, and the solvents for the respective dyes to be used may be the same or different.
[0031]
When the dye is supported on the semiconductor-containing layer, it is effective to support the dye in the presence of the inclusion compound in order to prevent the association between the dyes. Examples of the clathrate compound include steroidal compounds such as cholic acid, crown ether, cyclodextrin, calixarene, polyethylene oxide, etc., and preferred ones are cholic acid, deoxycholic acid, chenodeoxycholic acid, cholic acid methyl ester. And cholic acids such as sodium cholate, polyethylene oxide and the like. As other co-adsorbents, acidic compounds of acetic acid, propionic acid, pyridinecarboxylic acid and catechol are also effective. Alternatively, after the dye is supported, the surface of the semiconductor electrode may be treated with an amine compound such as 4-t-butylpyridine. As a treatment method, for example, a method in which a substrate provided with a semiconductor-containing layer carrying a pigment in an ethanol solution of amine is immersed.
[0032]
Next, in the present invention, the counter electrode provided on the transparent conductive film or the current collecting electrode is platinum, carbon, which acts catalytically on the surface of the conductive support of the present invention for the reduction reaction of the redox electrolyte, A material obtained by evaporating rhodium, ruthenium or the like, or applying and firing a conductive fine particle precursor is used.
[0033]
As a general method for producing the conductive support of the present invention, a method of obtaining a current collecting electrode of a desired shape by sputtering using a photomask or the like on a transparent conductive film such as FTO of FTO glass, current collection For example, a method of applying a conductive material, which is an electrode material, or a precursor thereof to a screen in a desired shape and baking it, an electroplating method, an electroless plating method, a method of attaching a net having a desired shape, or the like can be employed.
As a general manufacturing method when the conductive support of the present invention is used as a negative electrode or a positive electrode, when used as a negative electrode, an oxide semiconductor that becomes a semiconductor-containing layer on the current collecting electrode of the conductive support of the present invention After applying and baking a fine particle paste or the like, a dye is adsorbed to form a negative electrode. On the other hand, when used as a positive electrode, the positive electrode is obtained by depositing platinum or the like as a reduction layer on the current collecting electrode of the conductive support of the present invention by sputtering as in the case of the negative electrode.
[0034]
Next, a photoelectric conversion element using the conductive support of the present invention will be described with reference to the drawings. FIG. 2 is a schematic cross-sectional view of an example of the photoelectric conversion element of the present invention.
As shown in FIG. 2, in the photoelectric conversion element of the present invention, the current collecting electrode 23 is formed on the transparent conductive film 22 of at least one of the light-transmissive transparent substrates 21 (in both cases in FIG. 2). In addition, a dye-carrying semiconductor-containing layer 24 is provided on one current collecting electrode 23, and a reducing agent layer 25 such as platinum is provided on the other current collecting electrode 23. A photoelectric conversion element is obtained by sandwiching the charge transfer layer 26 between the dye-carrying semiconductor-containing layer 24 and the reducing agent layer 25 and sealing the periphery. The photoelectric conversion element of the present invention is different from the conventional photoelectric conversion element shown in FIG. 1 in that a current collecting electrode is used on a transparent conductive film of a conductive support. This is different from Patent Documents 2 and 3 in that the arrangement order of the dye-carrying semiconductor layer 24 and the current collecting electrode 22 is reversed. Examples of the photoelectric conversion element to which the conductive support of the present invention can be applied generally include all elements that convert light energy into electric energy.
[0035]
The photoelectric conversion element of the present invention comprises a semiconductor electrode in which a dye is supported on the oxide semiconductor-containing layer, a counter electrode, and a charge transfer layer. For the charge transfer layer, a solution in which a redox electrolyte pair, a hole transport material, or the like is dissolved in a solvent or a room temperature molten salt (ionic liquid) is used.
[0036]
As the redox electrolyte used in the photoelectric conversion element of the present invention, a halogen redox electrolyte comprising a halogen compound and a halogen molecule having a halogen ion as a counter ion, ferrocyanate-ferricyanate, ferrocene-ferricinium ion, Examples include metal redox electrolytes such as metal complexes such as cobalt complexes, and organic redox electrolytes such as alkyl thiol-alkyl disulfides, viologen dyes, and hydroquinone-quinones. Halogen redox electrolytes are preferred.
[0037]
Examples of the halogen molecule in the halogen redox electrolyte comprising a halogen compound-halogen molecule include iodine molecule and bromine molecule, and iodine molecule is preferable. Examples of halogen compounds having halogen ions as counter ions include LiI, NaI, KI, CsI, and CaI. 2 And halogenated metal salts such as CuI or organic alkyl quaternary ammonium salts such as tetraalkylammonium iodide, imidazolium iodide, 1-methyl-3-alkylimidazolium iodide, pyridinium iodide, etc. Salt compounds having ions as counter ions are preferred. Examples of the salt compound having iodine ion as a counter ion include lithium iodide, sodium iodide, trimethylammonium iodide salt and the like.
[0038]
When the charge transfer layer is formed in the form of a solution containing a redox electrolyte, an electrochemically inert solvent is used as the solvent. For example, acetonitrile, propylene carbonate, ethylene carbonate, 3-methoxypropionitrile, methoxyacetonitrile, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, dimethoxyethane, diethyl carbonate, diethyl ether, diethyl carbonate, dimethyl carbonate, 1,2- Examples include dimethoxyethane, dimethylformamide, dimethyl sulfoxide, 1,3-dioxolane, methyl formate, 2-methyltetrahydrofuran, 3-methoxyoxaziridin-2-one, γ-butyrolactone, sulfolane, tetrahydrofuran, and water. Among these, in particular, acetonitrile, propylene carbonate, ethylene carbonate, 3-methoxypropyl Onitoriru, methoxy acetonitrile, ethylene glycol, 3-methoxy oxaziridine-2-one, .gamma.-butyrolactone and the like are preferable. You may use these individually or in combination of 2 or more types. The concentration of the redox electrolyte is usually 0.01 to 99% by weight, preferably 0.1 to 90% by weight.
[0039]
Further, when the charge transfer layer is configured to include a redox electrolyte, a solvent used at the solvent is a room temperature melt (ionic liquid). Examples of room temperature melts include, for example, 1-methyl-3-alkylimidazolium iodide, vinyl imidazolium tetrafluoride, 1-ethylimidazole sulfonate, alkyl imidazolium trifluoromethylsulfonylimide, 1-methyl Examples include pyrrolindinium iodide. In addition, for the purpose of improving the durability of the photoelectric conversion element, the charge transfer layer is injected by using a low molecular gelling agent dissolved in the charge transfer layer to increase the viscosity (see Non-Patent Document 4) and a reactive component. It can be reacted later to obtain a gel electrolyte (see Non-Patent Document 5).
[0040]
On the other hand, as a completely solid type, a hole transport material or a P-type semiconductor can be used instead of the redox electrolyte. Examples of the hole transport material include amine derivatives, conductive polymers such as polyacetylene, polyaniline, and polythiophene, and discotic liquid crystals, and examples of the P-type semiconductor include CuI and CuSCN (see Non-Patent Document 6). ).
[0041]
The counter electrode is prepared by depositing platinum, carbon, rhodium, ruthenium, etc., which catalyze the reduction reaction of the redox electrolyte on the surface of the conductive support, or applying and firing conductive fine particle precursors. .
[0042]
As a material for sealing the two conductive supports, in addition to the sealant on the paste, a thermoplastic film or the like can be used for heating and dissolving to bond them together.
[0043]
The photoelectric conversion element using the conductive support of the present invention has a conductive electrode on the surface of the conductive support and the other conductive support on the semiconductor electrode provided with a semiconductor-containing layer sensitized with a dye. A counter electrode having a current collecting electrode disposed on a body and a reducing platinum or the like disposed at a predetermined interval is sealed so that the periphery is sealed, and a charge transfer layer is sealed in the gap. As a manufacturing method thereof, for example, a semiconductor-containing layer sensitized with a dye is disposed around one conductive support in consideration of a seal portion to form a semiconductor electrode. After adding a spacer such as glass fiber to the sealing agent, the sealing agent is applied by screen printing or a dispenser leaving a part of the injection hole of the charge transfer layer around the semiconductor electrode, and then heated at, for example, 100 ° C. for 10 minutes. Evaporate the solvent with, and then superimpose the upper and lower conductive supports so that their conductive surfaces face each other with platinum etc. placed on the other conductive support, and perform a gap with a press, UV light with a high-pressure mercury lamp, for example, 3000 mJ / cm 2 Irradiate to cure. In some cases, for example, it can be obtained by post-curing at 120 ° C. for 10 minutes.
[0044]
After injecting an electrolyte solution for forming a charge transfer layer in the gap between the two conductive supports, the electrolyte solution injection port can be sealed to obtain a photoelectric conversion element. The photoelectric conversion element thus obtained is excellent in durability such as adhesion and heat-and-moisture resistance.
Thus, the solar cell of this invention can be obtained by arranging a lead wire in the positive electrode and negative electrode of the obtained photoelectric conversion element, and inserting a resistance component between them.
[0045]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0046]
Examples 1 to 7
Production of conductive support with current collecting electrode
Fluorine-doped tin oxide glass FTO glass (manufactured by Asahi Glass Co., Ltd., 1.1 mm thickness, 20Ω product) is used to form a conductive support in which a current collecting electrode as shown in FIG. 3 is formed on a transparent conductive surface as follows. Produced. A positive resist mask Microposit J450 (manufactured by Shipley Co., Ltd.) capable of forming the current collecting electrode shown in Table 1 on the transparent conductive film surface was prepared. A gold film having a thickness of 1000 mm was provided using an ion sputtering apparatus SC-708AT (manufactured by JEOL). Then, the resist mask was dissolved and removed with acetone to obtain each current collecting electrode-supported FTO glass shown in Table 1. (Example 1 to Example 7)
The results of measuring the resistance values are shown in Table 1 (unit: Ω / □).
[0047]
Table 1 Current collecting electrode shape
Example 1
Conductive support 3-a In the grid-like electrode of FIG. 3, the grid spacing (line-to-line distance) is 0.3 mm, and the line thickness is 5 mm.
(Example 2)
Conductive support 3-b Same as above Grid spacing (distance between lines) 0.2 mm, line thickness 5 mm spacing
(Example 3)
Conductive support 3-c Only in the direction orthogonal to the current extraction direction (stripe type), line thickness is 0.3 mm, and line spacing is 5 mm
Example 4
Conductive support 3-d The shape is the same as 3-c, the line thickness is 0.2 mm, and the line spacing is 5 mm.
(Example 5)
Conductive support 3-e The shape is the same as 3-a, and the material is sputtered with 1000 kg of Cr instead of Au and sputtered with 1000 mm of Ni.
(Example 6)
Conductive support 3-f The shape is the same as 3-a, and the material is 2000 Å sputtering instead of Au.
(Example 7)
Conductive support 3-g The shape is the same as 3-a, and the material is PEDOT-PSS (Aldrich, poly (styrenesulfonate) instead of Au.
/ poly (1,2-dihydrothieno [3,4-b] -1,4-dioxin), 1.3% aqueous dispersion)
(Control)
No current collecting electrode
[0048]
Table 2
Figure 0004454007
[0049]
Example 8
TiO which is a semiconductor containing layer is formed on the conductive surface of the conductive supports on both sides using the above 3-a. 2 After applying a paste of fine particles (P25; manufactured by Degussa) and baking at 450 ° C. for 30 minutes, the sensitizing dye is 3 × 10 3 of dye N719 (manufactured by Solaronics) represented by formula (1). -Four A semiconductor electrode was prepared by immersion in an M ethanol solution for 24 hours. Next, Pt was vapor-deposited on the conductive surface of the 3-a FTO conductive glass support in the same manner to form a counter electrode. Next, iodine-type charge transfer layer 4a (iodine / lithium iodide / methylhexylimidazolium iodide (manufactured by Shikoku Kasei Kogyo Co., Ltd.), t-butylpyridine, 0.1M / 0.1M / 0.6M / The dye-sensitized solar cell (1) was obtained by filling with 1-M adjusted with 3-methoxyproxionitrile.
[0050]
[Chemical 1]
Figure 0004454007
[0051]
Example 9
Instead of the conductive support 3-a of Example 8, 3-c was used, the sensitizing dye was represented by the formula (2), and chenodeoxycholic acid 20 mM was used, and the charge transfer layer was replaced with 4b (iodine / iodine) instead of 4a. Dye-sensitized solar cell (2) in the same manner as in Example 8 except that tetra-n-propylammonium iodide was prepared in ethylene carbonate / acetonitrile (6/4) so as to be 0.05 M / 0.5 M, respectively. Got.
[0052]
[Chemical formula 2]
Figure 0004454007
[0053]
Example 10
In Example 8, a dye-sensitized solar cell (3) was used in the same manner as in Example 8, except that the semiconductor-containing layer was prepared by hydrolyzing titanium alkoxide by a sol-gel method according to Non-Patent Document 2. )
[0054]
Example 11
In Example 10, Example 8 was used except that a 1: 1 mixture of the dye represented by Formula (1) and the dye represented by Formula (3) was used instead of the dye represented by Formula (1). Similarly, a dye-sensitized solar cell (4) was obtained.
[0055]
Example 12
In Example 8, a dye-sensitized solar cell (5) was obtained in the same manner as in Example 11 except that 3-e was used instead of the conductive support 3-a.
[0056]
Example 13
In Example 8, a dye-sensitized solar cell (6) was obtained in the same manner as in Example 11 except that 3-f was used instead of the conductive support 3-a.
[0057]
[Chemical 3]
Figure 0004454007
[0058]
Comparative example
A dye-sensitized solar cell was produced in the same manner as in each example, using the control as the conductive support in Example 1.
[0059]
Photoelectric conversion efficiency measurement
About each obtained solar cell, the lead wire was connected to each pole, the voltmeter and the ammeter were arrange | positioned, and the solar cell of this invention was obtained. The following photoelectric conversion ability was measured for each solar cell. The size of the photoelectric conversion element to be measured is 5 x 5 cm. 2 It was. The light source is a 1 kW xenon lamp (manufactured by USHIO INC.) And passes through an AM1.5 filter to 100 mW / cm. 2 It was. The short circuit current, the release voltage, the conversion efficiency, and the shape factor were measured using a potentio galvanostat (manufactured by Hokuto Denko Corporation). The results are shown in Table 3.
[0060]
Figure 0004454007
[0061]
【The invention's effect】
By providing a current collecting electrode on the conductive support, the loss of incident light is minimized, and the loss caused by internal resistance is suppressed, resulting in a dramatic improvement in photoelectric conversion efficiency even in a large area. A photoelectric conversion element was obtained, and an extremely useful solar cell was obtained therefrom.
[Brief description of the drawings]
1 is a schematic cross-sectional view of a cell of a dye-sensitized solar cell described in Non-Patent Document 1. FIG.
FIG. 2 is a schematic cross-sectional view of a dye-sensitized solar cell which is an example of a photoelectric conversion element using the conductive support in the present invention.
FIG. 3 is a photograph of a conductive support (conductive support having a gold film lattice obtained in Example 1) provided with a current collecting electrode in the present invention.
FIG. 4 is a schematic view of a conductive support of the present invention as a negative electrode and a positive electrode.
[Explanation of symbols]
In FIG.
11 Glass substrate
12 Transparent conductive film
13 Dye-carrying semiconductor-containing layer
14 Charge transfer layer
15 Pt thin film
In FIG.
21 Glass substrate
22 Transparent conductive film
23 Electrode for current collection
24 Dye-carrying semiconductor-containing layer
25 Charge transfer layer
26 Pt thin film
In FIG.
41 Glass electrode
42 Transparent conductive film
43 Current collecting electrode
44 Pt thin film
Respectively.

Claims (5)

基板上に透明導電膜、集電用電極及び還元層をこの順で設けてなる光電変換素子用導電性支持体 A transparent conductive film on the substrate, the current collecting electrode及beauty changed Motoso photoelectric conversion elements for conductive support formed by providing in this order. 集電用電極が、膜状、網目状、線状又は格子状の連続した導電性材料である請求項1記載の導電性支持体 2. The conductive support according to claim 1, wherein the current collecting electrode is a continuous conductive material having a film shape, a mesh shape, a linear shape, or a lattice shape . 集電用電極が、Au、Pt、Ag、Cu、Al、Ni、Zn、Ti及びCrからなる群から選ばれる少なくとも一種以上の元素からなる導電性材料から形成されてなる請求項1又は請求項2の導電性支持体 The current collecting electrode is formed of a conductive material composed of at least one element selected from the group consisting of Au, Pt, Ag, Cu, Al, Ni, Zn, Ti and Cr. 2. Conductive support . 請求項1乃至請求項のいずれか一項に記載の導電性支持体を用いてなる光電変換素子 The photoelectric conversion element which uses the electroconductive support body as described in any one of Claims 1 thru | or 3 . 請求項記載の光電変換素子を備えてなる太陽電池 A solar cell comprising the photoelectric conversion element according to claim 4 .
JP2003172952A 2003-06-18 2003-06-18 Conductive support and photoelectric conversion element using the same Expired - Fee Related JP4454007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172952A JP4454007B2 (en) 2003-06-18 2003-06-18 Conductive support and photoelectric conversion element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003172952A JP4454007B2 (en) 2003-06-18 2003-06-18 Conductive support and photoelectric conversion element using the same

Publications (2)

Publication Number Publication Date
JP2005011609A JP2005011609A (en) 2005-01-13
JP4454007B2 true JP4454007B2 (en) 2010-04-21

Family

ID=34096912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172952A Expired - Fee Related JP4454007B2 (en) 2003-06-18 2003-06-18 Conductive support and photoelectric conversion element using the same

Country Status (1)

Country Link
JP (1) JP4454007B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4669754B2 (en) * 2005-03-09 2011-04-13 富士フイルム株式会社 Dye composition and dyeing method
JP4892197B2 (en) * 2005-04-01 2012-03-07 関西パイプ工業株式会社 Electrode substrate for dye-sensitized solar cell, photoelectrode and counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell
JP4849844B2 (en) * 2005-08-22 2012-01-11 Jx日鉱日石エネルギー株式会社 Dye-sensitized solar cell
KR100713943B1 (en) * 2005-09-15 2007-05-07 재단법인서울대학교산학협력재단 Phase change random access memory and method for manufacturing the same
JP4735860B2 (en) * 2005-09-29 2011-07-27 Toto株式会社 Specific detection method of test substance using photocurrent, electrode used therefor, measuring cell and measuring apparatus
EP1947452B1 (en) 2005-09-29 2014-05-14 Toto Ltd. Method for specifically detecting a test substance using photocurrent
EP2845882A3 (en) 2008-10-29 2015-11-18 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
JP5524557B2 (en) 2009-09-28 2014-06-18 富士フイルム株式会社 Method for producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP5620081B2 (en) 2009-09-28 2014-11-05 富士フイルム株式会社 Method for manufacturing photoelectric conversion element
JP2015018664A (en) * 2013-07-10 2015-01-29 大日本印刷株式会社 Method for manufacturing dye-sensitized solar cell, and coating liquid for forming porous layer
JP6161860B2 (en) * 2015-05-14 2017-07-12 株式会社昭和 Dye-sensitized solar cell with a collector electrode at the counter electrode

Also Published As

Publication number Publication date
JP2005011609A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
KR101430139B1 (en) Manufacturing technology perovskite-based mesoporous thin film solar cell
KR101172374B1 (en) Dye-sensitized solar cell based on perovskite sensitizer and manufacturing method thereof
JP5248770B2 (en) Photoelectric cell using mesh electrode
JP5620314B2 (en) Photoelectric conversion element, photoelectrochemical cell, dye for photoelectric conversion element and dye solution for photoelectric conversion element
EP2352202A1 (en) Functional device and method for producing the same
KR20080094021A (en) Dye sensitization photoelectric converter
JP2012113942A (en) Multilayer type photoelectric conversion element and manufacturing method thereof
EP1667275B1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2005135656A (en) Photoelectric conversion element
JP4454007B2 (en) Conductive support and photoelectric conversion element using the same
JP2010009786A (en) Dye sensitized solar cell, and dye sensitized solar cell module
JP2004241378A (en) Dye sensitized solar cell
JP2004363069A (en) Semiconductor electrode, manufacturing method thereof, and dye-sensitized solar cell using same
JP4678125B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, ELECTRONIC DEVICE AND ITS MANUFACTURING METHOD
JP2008186669A (en) Manufacturing method of dye-sensitized solar cell
JP5292549B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
US20230104362A1 (en) Dye sensitized photovoltaic cells
JP4377627B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5467237B2 (en) Dye-sensitized photoelectric conversion device and method for producing dye-sensitized solar cell using the same
KR20100066158A (en) Novel organic dye incorporating a trialkoxysilyl and preparation thereof
WO2012086377A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module, and processes for production of those
JP2011040288A (en) Method of manufacturing semiconductor film, the semiconductor film, and dye-sensitized solar cell
JP5758400B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP4507834B2 (en) Dye-sensitized photoelectric conversion element and method for producing the same
JP2005243498A (en) Method of manufacturing oxide semiconductor electrode, and method of manufacturing dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160212

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees