JP4453331B2 - Apparatus and method for detecting electrical characteristics - Google Patents

Apparatus and method for detecting electrical characteristics Download PDF

Info

Publication number
JP4453331B2
JP4453331B2 JP2003354283A JP2003354283A JP4453331B2 JP 4453331 B2 JP4453331 B2 JP 4453331B2 JP 2003354283 A JP2003354283 A JP 2003354283A JP 2003354283 A JP2003354283 A JP 2003354283A JP 4453331 B2 JP4453331 B2 JP 4453331B2
Authority
JP
Japan
Prior art keywords
region
electric field
nucleotide chain
electrical
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003354283A
Other languages
Japanese (ja)
Other versions
JP2005117917A (en
Inventor
隆義 真峯
啓 由尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003354283A priority Critical patent/JP4453331B2/en
Publication of JP2005117917A publication Critical patent/JP2005117917A/en
Application granted granted Critical
Publication of JP4453331B2 publication Critical patent/JP4453331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、ヌクレオチド鎖の電気的特性を検出する電気的特性検出装置及び方法に関するものである。 The present invention relates to an electrical characteristic sensing device and method for detecting an electrical characteristic of a nucleotide chain.

近年、DNAの塩基配列を自動的に読み取る装置であるDNAシーケンサの解析速度の高速化が図られている(例えば、特許文献1参照。)。   In recent years, the analysis speed of a DNA sequencer, which is an apparatus for automatically reading a DNA base sequence, has been increased (for example, see Patent Document 1).

しかしながら、現状ではまだ解析速度は非常に遅く、1つのDNAシーケンサにより、約30億塩基を有するヒトゲノムの解析を行おうとした場合、現状ではまだ数年以上費やしてしまう。   However, at present, the analysis speed is still very slow, and if a single genome sequencer is used to analyze a human genome having about 3 billion bases, it still consumes several years or more.

特開平8−278281号公報JP-A-8-278281

本発明は、高速にヌクレオチド鎖の電気的特性を検出することができる電気的特性検出装置及び方法を提供することを目的とする。 It is an object of the present invention to provide an electrical property detection apparatus and method that can detect electrical properties of nucleotide chains at high speed.

本発明に係る電気的特性検出装置は、検出対象となるヌクレオチド鎖を貯蔵する貯蔵領域と、上記貯蔵領域内に形成され、伸張した上記ヌクレオチド鎖の直径より広い微小領域と、上記微小領域の電気的特性の変化を検出するセンサを有する検出手段と、上記微小領域を通過する電気力線を発生する電界印加手段とを備え、上記検出手段は、上記微小領域を上記ヌクレオチド鎖が通過している間、上記微小領域の電気的特性の変化を1塩基毎に検出することを特徴とする。 An electrical property detection apparatus according to the present invention comprises a storage region for storing a nucleotide chain to be detected, a micro region formed in the storage region and wider than the stretched nucleotide chain, and an electrical property of the micro region. Detection means having a sensor for detecting a change in the physical characteristics, and an electric field applying means for generating electric lines of force that pass through the microregion, wherein the nucleotide chain passes through the microregion. In the meantime, a change in the electrical characteristics of the minute region is detected for each base.

本発明に係る電気的特性検出方法は、検出対象となるヌクレオチド鎖を貯蔵し、電気力線を発生することにより、上記ヌクレオチド鎖の直径より広い微小領域に移動させ、上記微小領域を上記ヌクレオチド鎖が通過している間、上記微小領域の電気的特性の変化を1塩基毎に検出することを特徴とする。 The electrical property detection method according to the present invention stores a nucleotide chain to be detected, generates electric lines of force, thereby moving the nucleotide chain to a minute region wider than the diameter of the nucleotide chain, and moving the minute region to the nucleotide chain. While the signal is passing, the change in the electrical characteristics of the minute region is detected for each base.

以上の本発明に係る電気的特性検出装置及び方法では、検出対象となるヌクレオチド鎖を電気泳動させて伸張する。これとともに、伸張したヌクレオチド鎖の径と同程度の大きさの微小空間へ、伸張した上記ヌクレオチド鎖を一方の端部側から電気泳動によって移動させる。この微小空間には、電気的な特性を検出するセンサを設けておく。そして、ヌクレオチド鎖が電気泳動により上記微小空間を通過中に、上記微小空間の電気的な変化を検出し、その検出結果に基づき上記ヌクレオチド鎖の塩基配列を検出する。 In the above-described electrical property detection apparatus and method according to the present invention, a nucleotide chain to be detected is electrophoresed and extended. At the same time, the stretched nucleotide chain is moved by electrophoresis from one end side to a minute space having the same size as the diameter of the stretched nucleotide chain. A sensor for detecting electrical characteristics is provided in this minute space. Then, while the nucleotide chain passes through the minute space by electrophoresis, an electrical change in the minute space is detected, and the nucleotide sequence of the nucleotide chain is detected based on the detection result.

以上のような本発明に係る電気的特性検出装置及び方法では、高速に電気的特性を検出することが可能となる。 With the electrical property detection apparatus and method according to the present invention as described above, electrical properties can be detected at high speed.

本発明を実施するための最良の形態として、本発明が適用されたDNAシーケンサについて以下説明をする。DNAシーケンサとは、ssDNAやオリゴヌクレオチド鎖等のヌクレオチド鎖の塩基配列を検出する装置である。以下、塩基配列の検出対象となるヌクレオチド鎖のことを単にターゲットDNAと呼ぶものとする。 As a best mode for carrying out the present invention, a DNA sequencer to which the present invention is applied will be described below. A DNA sequencer is a device that detects the base sequence of nucleotide chains such as ssDNA and oligonucleotide chains. Hereinafter, the nucleotide chain that is the detection target of the base sequence is simply referred to as target DNA.

図1に、本発明が適用されたDNAシーケンサ10の模式図を示す。DNAシーケンサ10は、ガラス等の絶縁部材からなる基体11の表面に、バッファ溶液を保留又は貯蔵する穴状の空間を形成する溶液保留部12が形成されている。溶液保留部12の内部空間又は内部領域には、例えば水やDNAのバッファ等の溶液13が保留されている。溶液13中には、ターゲットDNA1が滴下されている。ターゲットDNA1は、本DNAシーケンサ10の検出動作時以外は、ランダムコイル状で溶液中に浮遊している。   FIG. 1 shows a schematic diagram of a DNA sequencer 10 to which the present invention is applied. In the DNA sequencer 10, a solution holding part 12 that forms a hole-like space for holding or storing a buffer solution is formed on the surface of a base 11 made of an insulating member such as glass. A solution 13 such as water or a DNA buffer is held in the internal space or the internal region of the solution holding unit 12. In the solution 13, the target DNA 1 is dropped. The target DNA 1 is floating in the solution in the form of a random coil except during the detection operation of the DNA sequencer 10.

溶液保留部12は、その内部空間が基板11の表面に対して例えば矩形状に開口している。開口部分の所定の方向(以下、この方向をX方向というものとする。)の一辺の長さtが50μm、深さ方向の長さhが5μm程度の大きさとなっている。なお、溶液保留部12のX方向の辺の長さtは、ターゲットDNA1が伸張したときの長さよりも充分に長いものとする。   The internal space of the solution holding unit 12 is open, for example, in a rectangular shape with respect to the surface of the substrate 11. A length t of one side of a predetermined direction of the opening (hereinafter, this direction is referred to as an X direction) is about 50 μm, and a length h in the depth direction is about 5 μm. In addition, the length t of the side in the X direction of the solution storage unit 12 is sufficiently longer than the length when the target DNA 1 is expanded.

溶液保留部12のX方向に直交する方向の一側面14(以下第1の側面14という。)には、微小な円筒状の部材である円筒部15が設けられている。円筒部15は、図2に示すように、筒の中心軸の方向の一方の端部が第1の側面14に接続しており、筒の中心軸が側面14から垂直方向(X方向)に伸びるように設けられている。このため、円筒部15は、第1の側面14に接続していない他方の端部側の開口部16並びに円筒の内部空間17が、溶液保留部12の内部空間内に位置することとなる。つまり、開口部16及び内部空間17は、溶液13内に浸水している。   A cylindrical portion 15, which is a minute cylindrical member, is provided on one side surface 14 (hereinafter, referred to as a first side surface 14) in a direction orthogonal to the X direction of the solution storage portion 12. As shown in FIG. 2, the cylindrical portion 15 has one end in the direction of the central axis of the cylinder connected to the first side surface 14, and the central axis of the cylinder extends from the side surface 14 in the vertical direction (X direction). It is provided to stretch. For this reason, in the cylindrical portion 15, the opening 16 on the other end side that is not connected to the first side surface 14 and the cylindrical internal space 17 are positioned in the internal space of the solution storage portion 12. That is, the opening 16 and the internal space 17 are immersed in the solution 13.

円筒部15には、図2に示すように、その開口部16の近傍の側壁部分に、例えば金属材料からなる一対のセンサ21,22が設けられている。一対のセンサ21,22は、筒部15の中心軸を挟んで向かい合うように設けられている。センサ21,22は、電気配線21a,22aを介して、電圧検出部23に接続されている。電圧検出部23は、センサ21,22間の電圧変化(又は容量変化)を検出し、その検出結果に基づきターゲットDNA1の塩基配列を検出する。 As shown in FIG. 2, the cylindrical portion 15 is provided with a pair of sensors 21 and 22 made of, for example, a metal material on the side wall portion in the vicinity of the opening portion 16. The pair of sensors 21 and 22 are provided so as to face each other with the central axis of the cylindrical portion 15 interposed therebetween. The sensors 21 and 22 are connected to the voltage detection unit 23 via electric wirings 21a and 22a. The voltage detection unit 23 detects a voltage change (or capacitance change) between the sensors 21 and 22 and detects the base sequence of the target DNA 1 based on the detection result.

ここで、円筒部15の開口部16の直径は、伸張したターゲットDNA1が外部から筒の開口部16を通過して内部空間17に挿入可能であり、且つ、伸張したターゲットDNA1が通過する際にセンサ21,22により塩基配列の変化による電圧(又は容量)の変化を検知できる程度の大きさである。なお、この開口部16の直径並びにセンサ21の大きさ等の詳細については後述する。また、円筒部15の内部空間17の長さ(深さ)Tは、伸張したターゲットDNA1の全長の少なくとも一部分が内部空間17内に収まる程度の長さである。   Here, the diameter of the opening 16 of the cylindrical portion 15 is such that the stretched target DNA 1 can be inserted into the internal space 17 from the outside through the tube opening 16 and the stretched target DNA 1 passes. The size is such that the sensors 21 and 22 can detect a change in voltage (or capacitance) due to a change in base sequence. Details of the diameter of the opening 16 and the size of the sensor 21 will be described later. Further, the length (depth) T of the internal space 17 of the cylindrical portion 15 is such a length that at least a part of the entire length of the extended target DNA 1 can be accommodated in the internal space 17.

溶液保留部12には、X方向に直交する側面である第1の側面14に電界印加電極25が設けられており、並びに、第1の側面14にX方向に向かい合う位置にあるX方向に直交するもう一方の側面24(以下第2の側面24という。)に、電界印加電極26が設けられている。   The solution storage unit 12 is provided with an electric field applying electrode 25 on a first side surface 14 that is a side surface orthogonal to the X direction, and is orthogonal to the X direction at a position facing the first side surface 14 in the X direction. An electric field application electrode 26 is provided on the other side surface 24 (hereinafter referred to as the second side surface 24).

電界印加電極25及び26は、電界印加電極25と電界印加電極26とは、X方向に相対する位置に設けられている。電界印加電極25は、電源27の一方の極性の電極(例えばプラス電極)と電気的に接続され、電界印加電極26は、電源27の他方の極性の電極(例えばマイナス電極)と接続されている。電源27は、所定の周波数及びパワーの交流電力又はパルス電力を発生し、電界印加電極25及び26間に印加される。このため、電界印加電極25及び26は、溶液13中にX方向の電界を印加することとなる。さらに、電界印加電極25及び26は、図3に示すように、発生する電気力線の一部が円筒部15の開口部16を通過するとともに、内部空間17を通過するように設けられている。このように電気力線を構成するには、電界印加電極25及び26を、円筒部15の中心軸の延直線上に設ければよい。また、詳細は後述するが、ターゲットDNA1が電気泳動により第2の側面24側から第1の側面14側に移動させる必要があるので、第2の側面24から第1の側面14側に近づくに従い電気力線の幅(X方向に直交する方向の長さ)が狭くなるように、第2の側面24に設けられた電界印加電極24の幅(X方向に直交する方向の長さ)を広く、第1の側面14に設けられた電界印加電極14の幅(X方向に直交する方向の長さ)を狭くするのが望ましい。   The electric field application electrodes 25 and 26 are provided at positions facing the X direction in the electric field application electrode 25 and the electric field application electrode 26. The electric field application electrode 25 is electrically connected to one polarity electrode (for example, a positive electrode) of the power source 27, and the electric field application electrode 26 is connected to the other polarity electrode (for example, a negative electrode) of the power source 27. . The power source 27 generates AC power or pulse power having a predetermined frequency and power, and is applied between the electric field applying electrodes 25 and 26. For this reason, the electric field applying electrodes 25 and 26 apply an electric field in the X direction into the solution 13. Further, as shown in FIG. 3, the electric field applying electrodes 25 and 26 are provided so that part of the generated lines of electric force pass through the opening 16 of the cylindrical portion 15 and also through the internal space 17. . In order to configure the electric lines of force in this way, the electric field applying electrodes 25 and 26 may be provided on the extended straight line of the central axis of the cylindrical portion 15. Although details will be described later, since the target DNA 1 needs to be moved from the second side surface 24 side to the first side surface 14 side by electrophoresis, as the second side surface 24 approaches the first side surface 14 side, the target DNA 1 needs to be moved. The width (length in the direction perpendicular to the X direction) of the electric field application electrode 24 provided on the second side surface 24 is widened so that the width of the electric lines of force (length in the direction perpendicular to the X direction) is reduced. It is desirable to narrow the width (the length in the direction perpendicular to the X direction) of the electric field applying electrode 14 provided on the first side face 14.

以上のようなDNAシーケンサ10によるターゲットDNA1の塩基配列の検出動作について説明をする。 The operation of detecting the base sequence of the target DNA 1 by the DNA sequencer 10 as described above will be described.

まず、図4に示すように、溶液保留部12内の内部空間に、溶液13とともにターゲットDNA1を滴下する。滴下されたターゲットDNA1は、溶液13中にランダムコイル状で浮遊する。   First, as shown in FIG. 4, the target DNA 1 is dropped together with the solution 13 into the internal space in the solution holding unit 12. The dropped target DNA 1 floats in the solution 13 in a random coil shape.

続いて、図5に示すように、電源27をオンとし、電界印加電極25,26間に交流電力又はパルス電力を与えて、少なくとも円筒部15の中心軸に対して垂直方向の電気力線Eを含んだ交流電界又はパルス電界(例えば1MHz,1V/μm程度)を溶液13中に印加する。このような交流電界又はパルス電界が印加されると、ターゲットDNA1は、電気力線の方向に沿って伸張し、それとともに電気力線の方向に沿って移動を行う。この結果、ターゲットDNA1は、溶液保留部12のX方向に伸張するとともに、図5中白抜きの矢印で示すように第2の側面24から第1の側面14に向かう方向に移動していく。   Subsequently, as shown in FIG. 5, the power supply 27 is turned on, AC power or pulse power is applied between the electric field application electrodes 25 and 26, and electric lines of force E perpendicular to at least the central axis of the cylindrical portion 15. An AC electric field or a pulse electric field (for example, about 1 MHz, about 1 V / μm) is applied to the solution 13. When such an alternating electric field or a pulse electric field is applied, the target DNA 1 extends along the direction of the electric force lines and moves along with the direction of the electric force lines. As a result, the target DNA 1 extends in the X direction of the solution holding unit 12 and moves in the direction from the second side surface 24 toward the first side surface 14 as indicated by the white arrow in FIG.

続いて、図6に示すように、伸張したターゲットDNA1の端部が、円筒部15の開口部16から内部に挿入され、続いて、そのターゲットDNA1が順次内部空間17内に挿入されていく。このとき、ターゲットDNA1は、センサ21,22間を通過することとなるので、センサ21,22間の電圧(又は容量)がその塩基配列に応じて変化をする。電圧検出部23は、センサ21,22間をターゲットDNA1が電気泳動により通過している最中に、すなわち移動中にセンサ21,22間の電圧変化(又は容量変化)を検出する。そして、電圧検出部23は、検出した電圧変化(又は容量変化)に基づきターゲットDNA1の塩基配列を検出する。 Subsequently, as shown in FIG. 6, the extended end portion of the target DNA 1 is inserted into the inside through the opening portion 16 of the cylindrical portion 15, and then the target DNA 1 is sequentially inserted into the internal space 17. At this time, since the target DNA 1 passes between the sensors 21 and 22, the voltage (or capacitance) between the sensors 21 and 22 changes according to the base sequence. The voltage detector 23 detects a voltage change (or capacitance change) between the sensors 21 and 22 while the target DNA 1 is passing through the sensors 21 and 22 by electrophoresis, that is, during movement. Then, the voltage detection unit 23 detects the base sequence of the target DNA 1 based on the detected voltage change (or capacitance change).

以上のようにDNAシーケンサ10では、ターゲットDNA1を電気泳動により微小空間を通過させ、その微小空間に設けたセンサによりそのターゲットDNA1の塩基配列を直接的に検出する。このことにより、非常に高速にターゲットDNA1の塩基配列を解析することが可能となる。 As described above, in the DNA sequencer 10, the target DNA 1 is allowed to pass through the minute space by electrophoresis, and the base sequence of the target DNA 1 is directly detected by the sensor provided in the minute space. This makes it possible to analyze the base sequence of the target DNA 1 at a very high speed.

つぎに、DNAシーケンサ10の円筒部15の大きさ、ターゲットDNA1の電気泳動の速度等について検証する。   Next, the size of the cylindrical portion 15 of the DNA sequencer 10 and the electrophoresis speed of the target DNA 1 are verified.

図7は、センサ21,22、及び、伸張したターゲットDNA1の関係を模式的に示している。   FIG. 7 schematically shows the relationship between the sensors 21 and 22 and the extended target DNA 1.

まず、センサ21,22によりターゲットDNA1の塩基配列を検出するためには、ターゲットDNA1の各塩基から発生している微小の電圧(又は容量)を検出できなければならない。そのためには、一対のセンサ21,22との間の距離をWとし、伸張されたターゲットDNA1の直径をrとした場合、Wとrとの関係が、“W/r>>1”では検出できず、“W/r≒1”でなければ検出できない。すなわち、伸張されたヌクレオチド鎖の直径rが約2nm程度であるため、一対のセンサ21,22の間の距離Wは、ナノメートルオーダ又は十数ナノメートルオーダ(例えば2nm以上10nm以下程度)であることが望ましい。もっとも、Wは、伸張したヌクレオチド鎖がセンサ間を通過できなければならないので、r以上(例えば2nm以上)である必要がある。 First, in order to detect the base sequence of the target DNA 1 by the sensors 21 and 22, it is necessary to be able to detect a minute voltage (or capacitance) generated from each base of the target DNA 1. For this purpose, when the distance between the pair of sensors 21 and 22 is W and the diameter of the stretched target DNA 1 is r, the relationship between W and r is detected when “W / r >> 1”. It cannot be detected unless “W / r≈1”. That is, since the diameter r of the extended nucleotide chain is about 2 nm, the distance W between the pair of sensors 21 and 22 is on the order of nanometers or tens of nanometers (for example, about 2 nm to 10 nm). It is desirable. However, W must be r or more (for example, 2 nm or more) because the extended nucleotide chain must be able to pass between the sensors.

センサ21,22との間の距離Wをこのようにナノメートルオーダとするためには、例えばシリコンナノワイヤやカーボンナノチューブといったいわゆるナノ技術を利用して、円筒部15を形成すればよい(例えば、Y. Huang, X. Duan, Q. Wei, C. M. Lieber, Science 291, 26,January, 630, 2001 参照。)。   In order to set the distance W between the sensors 21 and 22 to the nanometer order in this way, the cylindrical portion 15 may be formed by using a so-called nano technology such as a silicon nanowire or a carbon nanotube (for example, Y Huang, X. Duan, Q. Wei, CM Lieber, Science 291, 26, January, 630, 2001).

例えば、シリコンナノワイヤ技術を用いて円筒部15を形成するには、図8に示すように、第1の側面14に2mm程度の金の微粒子31を取り付け、図9に示すようにシランガスをX方向に流すことによって、円筒部15を形成することが可能である。   For example, in order to form the cylindrical portion 15 using the silicon nanowire technology, as shown in FIG. 8, a gold fine particle 31 of about 2 mm is attached to the first side face 14, and silane gas is introduced in the X direction as shown in FIG. It is possible to form the cylindrical portion 15 by flowing it through.

そして、このような円筒部15の先端部分に、例えば半導体技術を用いてセンサ21,22を形成すればよい。   And what is necessary is just to form the sensors 21 and 22 in the front-end | tip part of such a cylindrical part 15 using a semiconductor technique, for example.

また、センサ21,22によりターゲットDNA1の塩基配列を検出するためには、一対のセンサ21,22との幅をLとし、伸張されたターゲットDNA1を構成する1つの塩基の長さをdとした場合、Lとdとの関係が“L/d≒1”であることが望ましい。すなわち、ヌクレオチド鎖の1つの塩基の長さは、0.35nm程度であるため、この程度のオーダのセンサ幅Lであることが望ましい。しかしながら、現状の半導体技術により形成することができるセンサ幅は、数十ナノメートルオーダであり、非常に難しい。 Further, in order to detect the base sequence of the target DNA 1 by the sensors 21 and 22, the width between the pair of sensors 21 and 22 is L, and the length of one base constituting the extended target DNA 1 is d. In this case, the relationship between L and d is preferably “L / d≈1”. That is, since the length of one base of the nucleotide chain is about 0.35 nm, it is desirable that the sensor width L is on the order of this level. However, the sensor width that can be formed by the current semiconductor technology is on the order of several tens of nanometers, which is very difficult.

そこで、本発明者は、伸張したターゲットDNA1を交流電界又はパルス電界により伸張し、所定の速度でセンサ間を移動させながら、1塩基毎の電圧変化(容量変化)を検出することとした。つまり、伸張したターゲットDNA1が1つの塩基分だけ移動する期間内に、少なくとも1回以上の電圧(容量)のサンプリングが可能であれば、センサの幅Lが塩基の長さdよりも長くても、その電圧変化量を検出することでターゲットDNA1の塩基配列を解析することができる。 Therefore, the present inventor has decided to detect the voltage change (capacitance change) for each base while extending the extended target DNA 1 by an AC electric field or a pulse electric field and moving between the sensors at a predetermined speed. In other words, if the voltage (capacitance) can be sampled at least once within the period in which the extended target DNA 1 moves by one base, the sensor width L may be longer than the base length d. By detecting the voltage change amount, the base sequence of the target DNA 1 can be analyzed.

具体的に、電気泳動によるターゲットDNA1の速度は、印加される電界が例えば500(V/m)であれば、V=約1.4×10−4(m/秒)となる。従って、一塩基分の移動時間(d/V)は、
d/V=0.35(nm)/1.4×10−4(m/秒)
=約2.5μ秒
となる。
Specifically, the speed of the target DNA 1 by electrophoresis is V e = about 1.4 × 10 −4 (m / second) when the applied electric field is, for example, 500 (V / m). Therefore, the transfer time for one base (d / V e ) is
d / V e = 0.35 (nm) /1.4×10 −4 (m / sec)
= About 2.5 μsec.

現状のアナログ/デジタルサンプリング技術でも、約2.5μ秒の期間内であれば、数10回〜数100回程度の電圧サンプリングが可能であり、DNAシーケンサ10によりターゲットDNA1の塩基配列を検出することが可能であることがわかる。 Even with the current analog / digital sampling technology, voltage sampling of several tens to several hundreds of times is possible within a period of about 2.5 μsec, and the base sequence of the target DNA 1 is detected by the DNA sequencer 10. It is understood that is possible.

本発明が適用されたDNAシーケンサの模式図である。It is a schematic diagram of a DNA sequencer to which the present invention is applied. 円筒部の模式図である。It is a schematic diagram of a cylindrical part. 電界印加電極により印加される電界を示す図である。It is a figure which shows the electric field applied by an electric field application electrode. 溶液中にターゲットDNAが滴下された状態を示す図である。It is a figure which shows the state by which target DNA was dripped in the solution. 溶液中に電界を印加したときの状態を示す図である。It is a figure which shows a state when an electric field is applied in a solution. ターゲットDNAの塩基配列を検出している状態を示す図である。It is a figure which shows the state which has detected the base sequence of target DNA. センサと伸張されたターゲットDNAとの関係を示す図である。It is a figure which shows the relationship between a sensor and the extended target DNA. シリコンナノワイヤを生成するために、金粒子を取り付けた状態を示す図である。It is a figure which shows the state which attached the gold particle in order to produce | generate a silicon nanowire. シリコンナノワイヤを生成するためにシランガスを流した状態を示す図である。It is a figure which shows the state which flowed silane gas in order to produce | generate a silicon nanowire.

1 ターゲットDNA、10 DNAシーケンサ、11 基体、12 溶液保留部、13 溶液、14 第1の側面、15 円筒部、16 開口部、17 内部空間、21,22 センサ、23 電圧検出、24 第2の側面、25,26 電界印加電極、27 電源   DESCRIPTION OF SYMBOLS 1 Target DNA, 10 DNA sequencer, 11 Base | substrate, 12 Solution holding | maintenance part, 13 Solution, 14 1st side surface, 15 Cylindrical part, 16 Opening part, 17 Internal space, 21, 22 Sensor, 23 Voltage detection, 24 2nd Side, 25, 26 Electric field application electrode, 27 Power supply

Claims (6)

検出対象となるヌクレオチド鎖を貯蔵する貯蔵領域と、
上記貯蔵領域内に形成され、伸張した上記ヌクレオチド鎖の直径より広い微小領域と、
上記微小領域の電気的特性の変化を検出するセンサを有する検出手段と、
上記微小領域を通過する電気力線を発生する電界印加手段とを備え、
上記検出手段は、上記微小領域を上記ヌクレオチド鎖が通過している間、上記微小領域の電気的特性の変化を1塩基毎に検出すること
を特徴とする電気的特性検出装置。
A storage region for storing a nucleotide chain to be detected;
A microregion formed in the storage region and wider than the extended diameter of the nucleotide chain;
Detection means having a sensor for detecting a change in electrical characteristics of the micro area;
Electric field application means for generating electric lines of force that pass through the minute region,
Said detecting means, while the small region above nucleotide chains have passed, the electrical characteristic detecting apparatus characterized by detecting a change in electrical properties of the microscopic regions for each base.
上記電界印加手段は、上記微小領域に交流電界を印加し、
上記ヌクレオチド鎖を電界伸張させるとともに、電気泳動により上記微小領域を移動させることを特徴とする請求項1に記載の電気的特性検出装置。
The electric field applying means applies an alternating electric field to the minute region,
2. The electrical property detection apparatus according to claim 1, wherein the nucleotide chain is subjected to electric field expansion and the minute region is moved by electrophoresis.
上記電界印加手段は、上記貯蔵領域から上記微小領域へ上記電気力線を集中させるように、交流電界を印加することを特徴とする請求項1に記載の電気的特性検出装置。 2. The electrical property detection device according to claim 1, wherein the electric field applying means applies an alternating electric field so as to concentrate the lines of electric force from the storage region to the minute region. 上記微小領域は、上記検出手段が上記電気的特性の変化を検出するための導電性の材質で覆われた、上記ヌクレオチド鎖が通過可能である領域であることを特徴とする請求項1に記載の電気的特性検出装置。 2. The minute region is a region through which the nucleotide chain can be passed, which is covered with a conductive material for the detection means to detect a change in the electrical characteristics. Electrical characteristic detection device. 上記微小領域は、中空の略円筒状の領域であることを特徴とする請求項4に記載の電気的特性検出装置。 The electrical property detection device according to claim 4, wherein the minute region is a hollow, substantially cylindrical region. 検出対象となるヌクレオチド鎖を貯蔵し、
電気力線を発生することにより、上記ヌクレオチド鎖の直径より広い微小領域に移動させ、
上記微小領域を上記ヌクレオチド鎖が通過している間、上記微小領域の電気的特性の変化を1塩基毎に検出すること
を特徴とする電気的特性検出方法。
Store the nucleotide chain to be detected,
By generating electric lines of force, it moves to a small region wider than the diameter of the nucleotide chain,
While the micro-region is the nucleotide chain has passed, the electrical characteristic detecting method characterized by detecting a change in electrical properties of the microscopic regions for each base.
JP2003354283A 2003-10-14 2003-10-14 Apparatus and method for detecting electrical characteristics Expired - Fee Related JP4453331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003354283A JP4453331B2 (en) 2003-10-14 2003-10-14 Apparatus and method for detecting electrical characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003354283A JP4453331B2 (en) 2003-10-14 2003-10-14 Apparatus and method for detecting electrical characteristics

Publications (2)

Publication Number Publication Date
JP2005117917A JP2005117917A (en) 2005-05-12
JP4453331B2 true JP4453331B2 (en) 2010-04-21

Family

ID=34612287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003354283A Expired - Fee Related JP4453331B2 (en) 2003-10-14 2003-10-14 Apparatus and method for detecting electrical characteristics

Country Status (1)

Country Link
JP (1) JP4453331B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0804491D0 (en) * 2008-03-11 2008-04-16 Iti Scotland Ltd Detecting analytes

Also Published As

Publication number Publication date
JP2005117917A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
CN107207246B (en) Nanopore-containing substrates with aligned nanoscale electronic elements and methods of making and using the same
Zheng et al. Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly
EP3825687B1 (en) Multi-nanopore sensor system and transduction elements for measurement of local electrical potential at the nanopores
AU2012284137C1 (en) Dual-pore device
US11981963B2 (en) Methods for nucleic acid sequencing by tunneling recognition
JP4825968B2 (en) Carbon nanotube sensor and manufacturing method thereof
Liu et al. AC electric field induced dielectrophoretic assembly behavior of gold nanoparticles in a wide frequency range
Ressier et al. Electrostatic nanopatterning of PMMA by AFM charge writing for directed nano-assembly
Kumemura et al. Single-DNA-molecule trapping with silicon nanotweezers using pulsed dielectrophoresis
KR20130001614A (en) Nano-sensor and method of detecting a target molecule by using the same
Laux et al. Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy
WO2015125920A1 (en) Electrodes for biomolecular sequencing device, and biomolecular sequencing device, method, and program
Rodriguez et al. Optimized hand fabricated AFM probes for simultaneous topographical and electrochemical tapping mode imaging
Liu et al. Dielectrophoretic manipulation of nano-materials and its application to micro/nano-sensors
Schmädicke et al. Copper nanowire synthesis by directed electrochemical nanowire assembly
WO2012073009A2 (en) Nanopore devices
JP4453331B2 (en) Apparatus and method for detecting electrical characteristics
US11224842B2 (en) Method and apparatus for making a nanopore in a membrane using an electric field applied via a conductive tip
KR101646182B1 (en) Bio Sensor
Si et al. Investigation on the interaction length and access resistance of a nanopore with an atomic force microscopy
KR20080004866A (en) Flow detecting method using physical change of nano material
Xu et al. Study on the large-scale assembly and fabrication method for SWCNTs nano device
Mali et al. The DNA SET: a novel device for single-molecule DNA sequencing
Chen et al. Fabrication of submicron-gap electrodes by silicon volume expansion for DNA-detection
CN106970246A (en) A kind of method that high-velocity scanning tunnelling microscope surveys insulated sample thickness pattern defect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4453331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees