JP4452564B2 - Blasting method - Google Patents

Blasting method Download PDF

Info

Publication number
JP4452564B2
JP4452564B2 JP2004176459A JP2004176459A JP4452564B2 JP 4452564 B2 JP4452564 B2 JP 4452564B2 JP 2004176459 A JP2004176459 A JP 2004176459A JP 2004176459 A JP2004176459 A JP 2004176459A JP 4452564 B2 JP4452564 B2 JP 4452564B2
Authority
JP
Japan
Prior art keywords
processed
blasting
solid lubricant
stearic acid
grit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004176459A
Other languages
Japanese (ja)
Other versions
JP2006000933A (en
Inventor
和美 谷
浩一 田中
武 小林
徹 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Original Assignee
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd filed Critical Tocalo Co Ltd
Priority to JP2004176459A priority Critical patent/JP4452564B2/en
Publication of JP2006000933A publication Critical patent/JP2006000933A/en
Application granted granted Critical
Publication of JP4452564B2 publication Critical patent/JP4452564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

本発明は、粒状物質を吹き付けて被加工面を加工するブラスト加工方法に関する。   The present invention relates to a blasting method for processing a work surface by spraying a granular material.

粒状物質を高速で吹き付けて被加工面を加工するブラスト加工は、金属材料等の表面の前処理や仕上げ処理として幅広く採用されており、その目的に応じて吹き付ける粒状物質を選定して、被加工面を粗面化、清浄化、活性化さらには表面強化するようにしている。   Blasting, which processes the surface to be processed by spraying granular material at high speed, is widely used as a pretreatment and finishing process for the surface of metal materials, etc. The surface is roughened, cleaned, activated, and further strengthened.

例えば、鋼材の表面に塗装やめっきを施す際の前処理として採用する場合は、粒状物質として丸い鋼球等のショットを用い、塗料やめっきの付着性を向上させるために、被加工面を粗面化するとともに、酸化物等の異物を除去して被加工面を清浄化するようにしている。また、各種金属材料に対する耐摩耗性付与、防食、環境遮断等の手段として汎用される溶射被覆を行う場合は、粒状物質として尖角をもった鋼やアルミナ等のグリットを用いて、被加工面を粗面化、清浄化するとともに、グリットの研削作用によって被加工面を活性化し、これらの金属材料への溶射金属の密着性を高めるようにしている。粒状物質には、切り口を有するカットコアを用いることもある。   For example, when it is used as a pretreatment when painting or plating on the surface of steel, a round surface such as a round steel ball is used as a granular material, and the work surface is roughened to improve the adhesion of paint and plating. The surface to be processed is removed, and foreign matters such as oxides are removed to clean the surface to be processed. In addition, when performing thermal spray coating that is widely used as a means for imparting wear resistance to various metal materials, anticorrosion, environmental shielding, etc., use a grit such as steel or alumina with a cusp as a granular material, Is roughened and cleaned, and the surface to be processed is activated by the grinding action of the grit to enhance the adhesion of the sprayed metal to these metal materials. A cut core having a cut surface may be used for the granular material.

このようなブラスト加工に用いられる粒状物質は、被加工面の材料よりも硬くて脆いものが多いので、高速で吹き付けられる粒状物質やその破片が被加工面に食い込んで、一部のものが被加工面に残留することがある。このように被加工面に残留する粒状物質やその破片は、被加工面を形成する材料と異種材料であるので、塗料、めっき、溶射被覆等の後処理工程や製品に対して様々な不具合をもたらす問題がある。   Many of the granular materials used for blasting are harder and more brittle than the material of the surface to be processed, so that the granular material sprayed at a high speed and its debris bite into the surface to be processed, and some of the material is covered. May remain on the machined surface. In this way, the particulate matter and fragments remaining on the surface to be processed are different materials from the material that forms the surface to be processed, and thus various problems are caused in post-processing processes and products such as paint, plating, and thermal spray coating. There are problems to bring.

例えば、金属の粒状物質の場合は、異種金属の被加工面との電気化学特性の違いによって、被加工面の腐食の原因となることがある。また、アルミナ等のセラミックの粒状物質の場合は、めっきや溶射金属との密着性が金属の被加工面よりも劣り、めっきや溶射被覆の剥離を生じさせることがある。   For example, in the case of a metal particulate material, the work surface may be corroded due to the difference in electrochemical characteristics from the work surface of a dissimilar metal. Further, in the case of a ceramic granular material such as alumina, the adhesion to the plating or sprayed metal is inferior to the surface of the metal to be processed, and the plating or sprayed coating may be peeled off.

上述したブラスト加工後の被加工面に残留する粒状物質やその破片等の異物を除去する手段としては、被加工面に圧縮空気を吹き付けて異物を吹き飛ばす方法や、被加工面を超音波洗浄する方法が知られている(例えば、非特許文献1参照。)。また、粒状物質としてドライアイス粒を用い、粒状物質を自然に昇華消失させる方法も提案されている。   As a means for removing foreign substances such as particulate matter remaining on the processed surface after blasting and fragments thereof, a method of blowing compressed air to the processed surface and blowing the foreign material, or ultrasonically cleaning the processed surface The method is known (for example, refer nonpatent literature 1). In addition, a method has been proposed in which dry ice particles are used as the particulate material, and the particulate material is naturally sublimated and eliminated.

長坂、石川、青木、「ブラスト技術」、コーテック社、1982年、p.180Nagasaka, Ishikawa, Aoki, “Blasting Technology”, Co-Tech, 1982, p. 180

上述した被加工面に圧縮空気を吹き付ける方法は、簡便ではあるが、強固に食い込んだ粒状物質やその破片は除去できない問題がある。また、被加工面を超音波洗浄する方法は、大きな被加工物には適用が難しく、かつ、被加工物を水に浸漬する必要があるので、腐食しやすい鋼材等の被加工物には適していない。   The method of spraying compressed air on the surface to be processed described above is simple, but there is a problem that the granular material and its debris that are firmly entrapped cannot be removed. Also, the ultrasonic cleaning method of the work surface is difficult to apply to large work pieces, and it is necessary to immerse the work piece in water, so it is suitable for work pieces such as steel that are easily corroded. Not.

一方、粒状物質としてドライアイス粒を用いる方法は、ドライアイス粒はあまり硬くなく、かつ破砕しやすいので、被加工物が鋼等の硬い金属の場合は、被加工面を十分に粗面化したり活性化したりすることができず、ブラスト加工の効果が満足に得られない問題がある。   On the other hand, the method using dry ice grains as a granular material is not so hard and easy to crush, so if the work piece is a hard metal such as steel, the work surface may be sufficiently roughened. There is a problem that it cannot be activated and the effect of blasting cannot be obtained satisfactorily.

そこで、本発明の課題は、ブラスト加工の効果が満足に得られることを前提として、ブラスト加工後の被加工面に残留する粒状物質やその破片等の異物を低減することである。   Accordingly, an object of the present invention is to reduce foreign matters such as particulate matter and fragments thereof remaining on a surface to be processed after blasting, on the premise that the effect of blasting can be obtained satisfactorily.

上記の課題を解決するために、本発明は、被加工面の材料よりも硬い粒状物質を吹き付けて被加工面を加工するブラスト加工方法において、前記加工される被加工面を予め固体潤滑剤で被覆し、この固体潤滑剤を500℃以下の低温で気化するものとして、前記粒状物質を吹き付けられてブラスト加工された後の被加工面を加熱し、前記被加工面に残る固体潤滑剤を気化させて除去する方法を採用した。 In order to solve the above-described problems, the present invention provides a blasting method for processing a processed surface by spraying a granular material harder than a material of the processed surface, and the processed surface to be processed with a solid lubricant in advance. Cover and vaporize the solid lubricant remaining on the work surface by heating the work surface after being blown and blown with the particulate material, assuming that the solid lubricant is vaporized at a low temperature of 500 ° C. or less. The method of removing them was adopted.

また、本発明は、被加工面の材料よりも硬い粒状物質を吹き付けて被加工面を加工するブラスト加工方法において、前記吹き付けられる粒状物質の表面を固体潤滑剤で被覆し、この固体潤滑剤を500℃以下の低温で気化するものとして、前記粒状物質を吹き付けられてブラスト加工された後の被加工面を加熱し、前記被加工面に残る固体潤滑剤を気化させて除去する方法も採用した。 Further, the present invention provides a blasting method for processing a surface to be processed by spraying a granular material harder than a material of a surface to be processed, and coating the surface of the sprayed granular material with a solid lubricant, As a method of vaporizing at a low temperature of 500 ° C. or lower, a method of heating the work surface after being blown with the particulate material and blasting to vaporize and remove the solid lubricant remaining on the work surface was also adopted. .

すなわち、加工される被加工面を予め固体潤滑剤で被覆するか、または、吹き付けられる粒状物質の表面を固体潤滑剤で被覆することにより、吹き付けられる粒状物質と被加工面との間に滑りを生じやすくさせて粒状物質の被加工面への食い込み量を減らすとともに、食い込んだ粒状物質と被加工面との界面に固体潤滑剤の層を形成して、粒状物質が被加工面から離脱しやすくし、ブラスト加工後の被加工面に残留する粒状物質やその破片等の異物を低減できるようにした。   In other words, the surface to be processed is coated with a solid lubricant in advance, or the surface of the granular material to be sprayed is coated with a solid lubricant, so that slippage is caused between the sprayed granular material and the surface to be processed. Reduces the amount of particulate matter that penetrates into the work surface, and forms a solid lubricant layer at the interface between the entrained particulate material and the work surface, making it easier for the particulate matter to leave the work surface. In addition, it is possible to reduce foreign matters such as particulate matter remaining on the surface to be processed after blasting and fragments thereof.

前記固体潤滑剤を500℃以下の低温で気化するものとすることにより、ブラスト加工後の被加工面を低温で加熱するのみで、被加工面に残る固体潤滑剤を気化させて除去することができる。溶射被覆のように被加工面が加熱されるような後続の処理を行う場合は、この後続の処理における加熱を利用することにより、余分の加熱処理を施すことなく固体潤滑剤を気化させることができる。   By vaporizing the solid lubricant at a low temperature of 500 ° C. or lower, the solid lubricant remaining on the processed surface can be vaporized and removed only by heating the processed surface after blasting at a low temperature. it can. When performing a subsequent process in which the surface to be processed is heated, such as thermal spray coating, the solid lubricant can be vaporized without performing an extra heating process by using the heating in the subsequent process. it can.

前記固体潤滑剤は、ステアリン酸、ステアリン酸塩またはこれらの混合物とすることができる。ステアリン酸塩としては、ステアリン酸亜鉛やステアリン酸カルシウム等を用いることができる。   The solid lubricant can be stearic acid, a stearate salt or a mixture thereof. As the stearate, zinc stearate, calcium stearate, or the like can be used.

本発明のブラスト加工方法は、加工される被加工面を予め固体潤滑剤で被覆するか、または、吹き付けられる粒状物質の表面を固体潤滑剤で被覆することにより、吹き付けられる粒状物質と被加工面との間に滑りを生じやすくさせて粒状物質の被加工面への食い込み量を減らすとともに、食い込んだ粒状物質と被加工面との界面に固体潤滑剤の層を形成して、粒状物質が被加工面から離脱しやすくしたので、ブラスト加工後の被加工面に残留する粒状物質やその破片等の異物を低減することができる。   In the blasting method of the present invention, the processed surface to be processed is coated with a solid lubricant in advance, or the surface of the granular material to be sprayed is coated with a solid lubricant, so that the sprayed granular material and the processed surface In order to reduce the amount of particulate matter that penetrates the surface to be machined, a solid lubricant layer is formed at the interface between the entrained particulate material and the surface to be machined. Since it is easy to detach from the processing surface, it is possible to reduce foreign matters such as particulate matter and fragments thereof remaining on the processing surface after blasting.

前記固体潤滑剤を500℃以下の低温で気化するものとすることにより、ブラスト加工後の被加工面を低温で加熱するのみで、被加工面に残る固体潤滑剤を気化させて除去することができる。溶射被覆のように被加工面が加熱されるような後続の処理を行う場合は、この後続の処理における加熱を利用することにより、余分の加熱処理を施すことなく固体潤滑剤を気化させることができる。   By vaporizing the solid lubricant at a low temperature of 500 ° C. or lower, the solid lubricant remaining on the processed surface can be vaporized and removed only by heating the processed surface after blasting at a low temperature. it can. When performing a subsequent process in which the surface to be processed is heated, such as thermal spray coating, the solid lubricant can be vaporized without performing an extra heating process by using the heating in the subsequent process. it can.

以下、図面に基づき、本発明の実施形態を説明する。第1の実施形態では、図1に示すように、機械構造用炭素鋼S45Cの被加工物1の被加工面1aを、予め固形潤滑材2としてのステアリン酸で被覆し、粒状物質を空気圧による噴射で被加工面1aに吹き付けるブラスト加工を行った。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In 1st Embodiment, as shown in FIG. 1, the to-be-processed surface 1a of the to-be-processed object 1 of carbon steel S45C for mechanical structures is previously coat | covered with the stearic acid as the solid lubricant 2, and a granular material is by an air pressure. The blasting which sprays on the to-be-processed surface 1a by injection was performed.

前記ステアリン酸は、テトラヒドロフランを溶媒として濃度が15%の溶液としたものを、3回に分けて刷毛塗りすることにより、被加工面1aを被覆した。ステアリン酸の被加工面1aへの付着量は約20g/m2とした。なお、ステアリン酸の沸点は360℃であり、比較的低温の加熱で気化する。また、90〜110℃で徐々に揮発する特性もある。 The stearic acid was a solution having a concentration of 15% using tetrahydrofuran as a solvent, and the surface to be processed 1a was coated by brushing in three portions. The amount of stearic acid deposited on the work surface 1a was about 20 g / m 2 . Note that stearic acid has a boiling point of 360 ° C. and is vaporized by heating at a relatively low temperature. In addition, there is a characteristic that it gradually evaporates at 90 to 110 ° C.

前記ブラスト加工に用いた粒状物質は白色アルミナのグリットとし、その平均粒径を328μmと700μmの2種類に変化させた。これらの粒状物質の噴射条件は以下の通りである。
・噴射空気圧:0.5MPa
・噴射距離 :150mm
・噴射角度 :90°
・噴射時間 :20秒
The granular material used for the blasting process was white alumina grit, and the average particle size was changed to two types of 328 μm and 700 μm. The injection conditions for these particulate materials are as follows.
・ Injection air pressure: 0.5MPa
・ Injection distance: 150mm
・ Injection angle: 90 °
・ Injection time: 20 seconds

実施例1として、上述したブラスト加工をした後の被加工物を用意した。比較例1として、被加工面をステアリン酸で被覆せずに、上記と同じ条件でブラスト加工した被加工物も用意した。これらの実施例1と比較例1の被加工物を、それぞれテトラヒドロフランの液中で超音波洗浄したのち、塩酸3:硝酸3:水8の混合液に浸漬して、被加工面を溶解しながら、さらに40分間超音波洗浄し、前後2回の超音波洗浄で被加工面から分離したグリットの量を測定した。なお、測定した被加工物のサンプル数は、実施例1、比較例1とも3とした。   As Example 1, a workpiece after the blasting process described above was prepared. As Comparative Example 1, there was also prepared a workpiece that was subjected to blasting under the same conditions as described above without coating the surface to be processed with stearic acid. The workpieces of Example 1 and Comparative Example 1 were ultrasonically cleaned in a tetrahydrofuran solution, respectively, and then immersed in a mixed solution of hydrochloric acid 3: nitric acid 3: water 8 while dissolving the workpiece surface. Further, ultrasonic cleaning was performed for 40 minutes, and the amount of grit separated from the surface to be processed by ultrasonic cleaning twice before and after was measured. The number of workpiece samples measured was 3 for both Example 1 and Comparative Example 1.

図2は、上記分離グリット量の測定結果を示す。この測定結果より、実施例1のものは、分離グリット量、すなわち被加工面へのグリットまたはその破片の残留量が、従来のように被加工面を被覆しない比較例1のものよりも著しく低減されていることが分かる。   FIG. 2 shows the measurement result of the separated grit amount. From this measurement result, in Example 1, the separated grit amount, that is, the residual amount of grit or its fragments on the work surface is significantly reduced as compared with the comparative example 1 that does not cover the work surface as in the prior art. You can see that.

第2の実施形態では、図3に示すように、粒状物質としての白色アルミナのグリット3の表面を固形潤滑材2としてのステアリン酸で被覆し、これを構造用炭素鋼S45Cの被加工物の被加工面に吹き付けるブラスト加工を行った。グリット3の噴射条件は第1の実施形態と同じである。   In the second embodiment, as shown in FIG. 3, the surface of grit 3 of white alumina as a particulate material is coated with stearic acid as solid lubricant 2, and this is applied to the workpiece of structural carbon steel S45C. Blasting was applied to the work surface. The injection conditions of the grid 3 are the same as those in the first embodiment.

前記グリット3の平均粒径は、328μm、700μm、1080μmの3種類に変化させ、これらを熱湯中で約90℃に温め、熱湯中にステアリン酸を投入して撹拌したのち冷却することにより、それぞれのグリット3の表面をステアリン酸で被覆した。各グリット3の被覆厚さは、平均粒径が328μmのもので約4μm、平均粒径が700μmのもので約8μm、平均粒径が1080μmのもので約12μmであった。
方法で行った。
The average particle size of the grit 3 is changed to three types of 328 μm, 700 μm, and 1080 μm, and these are heated to about 90 ° C. in hot water, and after stirring and adding stearic acid to the hot water, The surface of Grit 3 was coated with stearic acid. The coating thickness of each grit 3 was about 4 μm when the average particle size was 328 μm, about 8 μm when the average particle size was 700 μm, and about 12 μm when the average particle size was 1080 μm.
Went in the way.

実施例2として、上述したステアリン酸で被覆したグリットを用いてブラスト加工した後の被加工物を用意した。比較例2として、従来のように何も被覆しないグリットを用いてブラスト加工した後の被加工物も用意した。なお、平均粒径が328μmと700μmのグリットを用いるものについては、比較例1のものを流用した。これらの実施例2と比較例2の被加工物に、実施例1および比較例1のものと同じ方法で前後2回の超音波洗浄を施し、それぞれの被加工面から分離したグリットの量を測定した。測定した被加工物のサンプル数は、実施例2、比較例2とも3とした。   As Example 2, a workpiece after blasting using the grit coated with stearic acid described above was prepared. As Comparative Example 2, a workpiece after blasting using a grit that does not cover anything as in the prior art was also prepared. In addition, the thing of the comparative example 1 was diverted about what uses a grit with an average particle diameter of 328 micrometers and 700 micrometers. The workpieces of Example 2 and Comparative Example 2 were subjected to ultrasonic cleaning twice before and after in the same manner as in Example 1 and Comparative Example 1, and the amount of grit separated from each workpiece surface was determined. It was measured. The number of workpiece samples measured was 3 for both Example 2 and Comparative Example 2.

図4は、上記分離グリット量の測定結果を示す。この場合も、実施例2のものは、分離グリット量、すなわち被加工面へのグリットまたはその破片の残留量が、従来のようにグリットを被覆しない比較例2のものよりも著しく低減されていることが分かる。   FIG. 4 shows the measurement results of the separated grit amount. Also in this case, the separation grit amount, that is, the residual amount of grit or its fragments on the work surface is significantly reduced in Example 2 as compared with the comparative example 2 that does not cover the grit as in the prior art. I understand that.

上述した被加工面をステアリン酸で被覆してブラスト加工した被加工物を、電気炉を用いて室温の20℃から250℃まで種々の温度に加熱し、加熱後の被加工面におけるステアリン酸の残留量を測定した。ステアリン酸の残留量の測定は、テトラヒドロフラン溶液に加熱後の被加工物を浸漬して、被加工面に残留するステアリン酸を溶液中に溶解させ、ステアリン酸の溶解度によって変化するテトラヒドロフラン溶液の色調を観察して、この色調の変化度合で溶液中のステアリン酸の溶解度を定量する方法で行なった。ステアリン酸の溶解度の定量は、予め、ステアリン酸の溶解度を変化させてテトラヒドロフラン溶液の色調を画像解析装置で解析し、この解析結果に基づいて作成したステアリン酸の溶解度と溶液の色調との相関図を用いることにより行なった。   The workpiece processed by blasting the above-mentioned processed surface with stearic acid is heated to various temperatures from 20 ° C. to 250 ° C. using an electric furnace, and the stearic acid on the processed surface after heating is heated. The residual amount was measured. The residual amount of stearic acid is measured by immersing the workpiece after heating in the tetrahydrofuran solution to dissolve the stearic acid remaining on the processed surface in the solution, and changing the color tone of the tetrahydrofuran solution that changes depending on the solubility of stearic acid. Observation was performed by a method of quantifying the solubility of stearic acid in the solution based on the degree of change in color tone. The solubility of stearic acid is determined in advance by changing the solubility of stearic acid and analyzing the color tone of the tetrahydrofuran solution with an image analyzer, and the correlation between the solubility of stearic acid and the color tone of the solution created based on the analysis result. It was performed by using.

図5のグラフは、上記ステアリン酸の残留量の測定結果を示す。縦軸は、加熱をしない室温でのステアリン酸の残留量80mg/m2を100%とするステアリン酸残留率で表示した。被加工面におけるステアリン酸の残留量は、ブラスト加工によって加工前の付着量の約1/250に減少しており、加熱温度の上昇に伴って被加工面のステアリン酸残留率は急激に減少して、加熱温度が150℃以上ではステアリン酸残留率が0%となっている。ステアリン酸の沸点は360℃であるが、ブラスト加工後にける被加工面のステアリン酸の残留厚さは非常に薄いので、ステアリン酸は沸点よりもかなり低い150℃程度で完全に気化したものと思われる。この結果より、被加工面をステアリン酸で被覆しても、ブラスト加工後の被加工面を比較的低温で加熱すれば、ステアリン酸を気化によって容易に除去できることが分かる。また、グリットの表面をステアリン酸で被覆する場合も、同様に、被加工面を比較的低温で加熱すれば、ステアリン酸が容易に気化によって除去されることが推定できる。 The graph of FIG. 5 shows the measurement result of the residual amount of stearic acid. The vertical axis represents the residual rate of stearic acid with 100% of the residual amount of stearic acid 80 mg / m 2 at room temperature without heating. The residual amount of stearic acid on the surface to be processed has been reduced to about 1/250 of the amount of adhesion before processing due to blasting, and the residual rate of stearic acid on the surface to be processed suddenly decreases with increasing heating temperature. When the heating temperature is 150 ° C. or higher, the stearic acid residual rate is 0%. The boiling point of stearic acid is 360 ° C, but the residual thickness of stearic acid on the processed surface after blasting is very thin, so it seems that stearic acid was completely vaporized at about 150 ° C, which is considerably lower than the boiling point. It is. From this result, it can be seen that even if the surface to be processed is coated with stearic acid, if the surface to be processed after blasting is heated at a relatively low temperature, the stearic acid can be easily removed by vaporization. Similarly, when the surface of the grit is coated with stearic acid, it can be estimated that the stearic acid is easily removed by vaporization if the surface to be processed is heated at a relatively low temperature.

第3の実施形態では、一般構造用鋼SS400の曲げ試験片を被加工物とし、その片面の被加工面を予めステアリン酸で被覆して、白色アルミナのグリットを吹き付けるブラスト加工を行い、さらに、ブラスト加工された被加工面を溶射被覆した。ステアリン酸の被覆条件とグリットの噴射条件は第1の実施形態と同じであり、グリットの平均粒径は700μmとした。被加工面の溶射被覆は、ブラスト加工後の被加工物を約100℃で5分間保持したのち、サーメット粉末WC−12Coを大気プラズマ溶射法で被加工面に溶射する方法で行い、溶射被覆の厚さは300μmとした。   In the third embodiment, a bending test piece of the general structural steel SS400 is used as a workpiece, the one surface to be processed is coated with stearic acid in advance, and blasting is performed by spraying white alumina grit. The blasted work surface was spray coated. The stearic acid coating conditions and the grit jetting conditions were the same as in the first embodiment, and the average particle size of the grit was 700 μm. Thermal spray coating of the work surface is performed by a method of spraying the cermet powder WC-12Co on the work surface by an atmospheric plasma spraying method after holding the work after blasting at about 100 ° C. for 5 minutes. The thickness was 300 μm.

上述した被加工面を固形潤滑材であるステアリン酸で被覆してブラスト加工と溶射被覆を施した試験片(実施例4)と、被加工面を何も被覆せずにブラスト加工と溶射被覆を施した試験片(比較例4)とを用意した。参考例4として、固形潤滑材であり、500℃以下の低温では気化しない二硫化モリブデンで被加工面を被覆してブラスト加工と溶射被覆を施した試験片も用意した。各試験片の寸法は、長さ110mm、幅10mm、厚さ1.0mmである。これらの試験片について、曲げ半径を10mmとする曲げ試験(JIS Z 2248)を行い、溶射皮膜が脱落を開始する曲げ角度を求めた。各試験片のサンプル数は3とした。   A test piece (Example 4) in which the surface to be processed is coated with stearic acid, which is a solid lubricant, and subjected to blasting and thermal spraying coating, and blasting and thermal spraying coating without coating any surface to be processed An applied test piece (Comparative Example 4) was prepared. As a reference example 4, a test piece was also prepared which was a solid lubricant and was coated with molybdenum disulfide which does not evaporate at a low temperature of 500 ° C. or lower, and was subjected to blasting and thermal spray coating. Each test piece has a length of 110 mm, a width of 10 mm, and a thickness of 1.0 mm. These test pieces were subjected to a bending test (JIS Z 2248) with a bending radius of 10 mm, and the bending angle at which the sprayed coating started to fall off was determined. The number of samples of each test piece was three.

図6は、上記曲げ試験の結果を示す。溶射皮膜の脱落開始曲げ角度は、実施例4のものが40〜43°と最も大きく、溶射皮膜の密着性が非常に優れていることが分かる。これに対して、比較例4のものは、脱落開始曲げ角度が実施例4のものよりも約10°小さくてばらつきも大きく、溶射皮膜の密着性が劣り、かつ不安定である。また、参考例4のものは、脱落開始曲げ角度が比較例4のものよりも小さく、溶射皮膜の密着性が最も劣っている。   FIG. 6 shows the results of the bending test. The falling start bending angle of the thermal spray coating is the largest at 40 to 43 ° in Example 4, indicating that the adhesion of the thermal spray coating is very excellent. On the other hand, in Comparative Example 4, the drop-off start bending angle is about 10 ° smaller than that of Example 4 and the variation is large, the adhesion of the sprayed coating is inferior and unstable. Moreover, the thing of the reference example 4 has a fall | offset start bending angle smaller than the thing of the comparative example 4, and the adhesiveness of a sprayed coating is the most inferior.

上記比較例4と参考例4の曲げ試験片については、溶射皮膜の脱落部の表面を顕微鏡観察した。比較例4のものについては、脱落部に白色アルミナのグリットが残留しているのが観察され、参考例4のものについては、固形潤滑材とした二硫化モリブデンが残留しているのが観察された。したがって、グリットの残留が溶射皮膜の密着性を低下させることが確認されるとともに、被加工面を固形潤滑材で被覆してグリットの残留を防止しても、固形潤滑材が被加工面に残留すれば溶射皮膜の密着性を低下させることも確認された。   About the bending test piece of the said comparative example 4 and the reference example 4, the surface of the dropping part of a sprayed coating was observed with the microscope. In the case of Comparative Example 4, it was observed that grit of white alumina remained in the dropping part, and in the case of Reference Example 4, it was observed that molybdenum disulfide as a solid lubricant remained. It was. Therefore, it is confirmed that the residual grit reduces the adhesion of the thermal spray coating, and even if the surface to be processed is covered with a solid lubricant to prevent the residual grit, the solid lubricant remains on the surface to be processed. It was also confirmed that the adhesion of the sprayed coating was lowered.

上述した各実施形態では、ブラスト加工前の被加工面を被覆する固形潤滑材として、ステアリン酸を用いたが、ステアリン酸亜鉛やステアリン酸カルシウム等のステアリン酸塩やこれらの混合物を用いることもできる。また、ブラスト加工される被加工面の材料を鋼とし、これに吹き付ける粒状物質をアルミナのグリットとしたが、被加工面の材料は他の金属や合金としてもよく、粒状物質もアルミナのグリットに限定されることはない。   In each of the above-described embodiments, stearic acid is used as the solid lubricant for covering the surface to be processed before blasting. However, stearates such as zinc stearate and calcium stearate, and mixtures thereof can also be used. In addition, the material of the work surface to be blasted is steel, and the granular material sprayed on it is alumina grit, but the material of the work surface may be other metals or alloys, and the granular material is also alumina grit. There is no limit.

第1の実施形態でブラスト加工される被加工物の被加工面を示す断面図Sectional drawing which shows the to-be-processed surface of the to-be-processed object blasted in 1st Embodiment ブラスト加工後に図1の被加工面から分離させた分離グリット量の測定結果を示すグラフThe graph which shows the measurement result of the amount of separated grit separated from the work surface in FIG. 1 after blasting 第2の実施形態のブラスト加工で用いたグリットを示す断面図Sectional drawing which shows the grit used by the blasting of 2nd Embodiment 図3のグリットを用いたブラスト加工後の被加工面から分離させた分離グリット量の測定結果を示すグラフThe graph which shows the measurement result of the amount of separation grit separated from the processed surface after blasting using the grit of FIG. 第1の実施形態のブラスト加工後に加熱した被加工面におけるステアリン酸の残留率の測定結果を示すグラフThe graph which shows the measurement result of the residual rate of the stearic acid in the to-be-processed surface heated after the blasting of 1st Embodiment 第3の実施形態のブラスト加工後に溶射被覆を施した試験片の曲げ試験における溶射被膜の脱落開始曲げ角度を示すグラフThe graph which shows the drop | offset start bending angle of the thermal spray coating in the bending test of the test piece which gave the thermal spray coating after the blast processing of 3rd Embodiment

符号の説明Explanation of symbols

1 被加工物
1a 被加工面
2 固形潤滑材
3 グリット
1 Workpiece 1a Workpiece Surface 2 Solid Lubricant 3 Grit

Claims (3)

被加工面の材料よりも硬い粒状物質を吹き付けて被加工面を加工するブラスト加工方法において、前記加工される被加工面を予め固体潤滑剤で被覆し、この固体潤滑剤を500℃以下の低温で気化するものとして、前記粒状物質を吹き付けられてブラスト加工された後の被加工面を加熱し、前記被加工面に残る固体潤滑剤を気化させて除去するようにしたことを特徴とするブラスト加工方法。 In a blasting method of processing a processed surface by spraying a granular material harder than the material of the processed surface, the processed surface to be processed is previously coated with a solid lubricant, and the solid lubricant is cooled to a low temperature of 500 ° C. or lower. The blasting is characterized in that the surface to be processed after being blown and blasted with the particulate material is heated to vaporize and remove the solid lubricant remaining on the surface to be processed. Processing method. 被加工面の材料よりも硬い粒状物質を吹き付けて被加工面を加工するブラスト加工方法において、前記吹き付けられる粒状物質の表面を固体潤滑剤で被覆し、この固体潤滑剤を500℃以下の低温で気化するものとして、前記粒状物質を吹き付けられてブラスト加工された後の被加工面を加熱し、前記被加工面に残る固体潤滑剤を気化させて除去するようにしたことを特徴とするブラスト加工方法。 In a blasting method in which a granular material harder than the material of the surface to be processed is sprayed to process the surface to be processed, the surface of the sprayed granular material is coated with a solid lubricant, and the solid lubricant is coated at a low temperature of 500 ° C. or lower. Blasting characterized in that, as a vaporization, the processed surface after being blown and blasted with the particulate material is heated, and the solid lubricant remaining on the processed surface is vaporized and removed. Method. 前記固体潤滑剤がステアリン酸、ステアリン酸塩またはこれらの混合物である請求項1または2に記載のブラスト加工方法。 The blasting method according to claim 1 or 2 , wherein the solid lubricant is stearic acid, stearate or a mixture thereof.
JP2004176459A 2004-06-15 2004-06-15 Blasting method Expired - Fee Related JP4452564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176459A JP4452564B2 (en) 2004-06-15 2004-06-15 Blasting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176459A JP4452564B2 (en) 2004-06-15 2004-06-15 Blasting method

Publications (2)

Publication Number Publication Date
JP2006000933A JP2006000933A (en) 2006-01-05
JP4452564B2 true JP4452564B2 (en) 2010-04-21

Family

ID=35769747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176459A Expired - Fee Related JP4452564B2 (en) 2004-06-15 2004-06-15 Blasting method

Country Status (1)

Country Link
JP (1) JP4452564B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014589A (en) * 2006-07-07 2008-01-24 Mitsui Mining & Smelting Co Ltd Removal method for solid matter adhered to boiler inner wall surface

Also Published As

Publication number Publication date
JP2006000933A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
US8597724B2 (en) Corrosion protective coating through cold spray
JP5197935B2 (en) Method for the application of twin wire arc spray coating
Costil et al. Surface modifications induced by pulsed-laser texturing—Influence of laser impact on the surface properties
CN106435563B (en) A kind of method of bearing shell steel back spraying babbit coating
JP5776991B2 (en) Surface finishing method for hardened and corrosion-resistant steel plate members
Adoberg et al. The effect of surface pre-treatment and coating post-treatment to the properties of TiN coatings
JP4452564B2 (en) Blasting method
Li et al. Effects of spraying parameters and heat treatment temperature on microstructure and properties of single-pass and single-layer cold-sprayed Cu coatings on Al alloy substrate
CN103586186A (en) Vehicle coating process
Relue et al. Corrosion performance of different aluminum alloy deposits fabricated by lateral friction surfacing
CN109554656B (en) Preparation method and system of compact ceramic coating in normal-temperature atmosphere
CN108505056A (en) A kind of highly corrosion resistant surface treatment method
Gedzevičius et al. Influence of the particles velocity on the arc spraying coating adhesion
JP2014237864A (en) Manufacturing method of coated member and coated member
Pokintelitsa et al. The Study of the Kinetics of the Protective Coating Formation in the Mechanochemical Vibrational Method
TWI716170B (en) Method for treating and phosphatizing metal board without acid
Vostřák et al. Adhesion of HVOF Sprayed Coatings on Laser Textured Steel and Ceramics Substrates
Aldwell et al. Fundamental investigation into the effects of in-process heat treatment in cold spray
JP2017014603A (en) Sputtering target and manufacturing method of sputtering target
Celik et al. The effect of WC-12Co and CrC-NiCr hard coatings applied by HVOF method on the microstructure, mechanical, and surface properties of steel
Aulakh et al. Substrate Preparation and Thermal Spray Coating Performance—A Review
Rahman et al. Surface preparation by femtosecond laser-An adhesion strength perspective for suspension plasma sprayed ceramic coatings
US10835920B2 (en) Technology and process for coating a substrate with swarf particles
Lukauskaitė et al. Investigation of cathodic cleaning processes of aluminum alloy
CN106591660A (en) Surface coating for AZ91D magnesium alloy and preparation method of surface coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees