JP4451940B2 - ALC panel, cutting method thereof and cutting apparatus - Google Patents

ALC panel, cutting method thereof and cutting apparatus Download PDF

Info

Publication number
JP4451940B2
JP4451940B2 JP13634599A JP13634599A JP4451940B2 JP 4451940 B2 JP4451940 B2 JP 4451940B2 JP 13634599 A JP13634599 A JP 13634599A JP 13634599 A JP13634599 A JP 13634599A JP 4451940 B2 JP4451940 B2 JP 4451940B2
Authority
JP
Japan
Prior art keywords
corrugated
cutting
alc panel
corrugated surface
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13634599A
Other languages
Japanese (ja)
Other versions
JP2000326127A5 (en
JP2000326127A (en
Inventor
寛 小林
良晴 武藤
誠 大桐
Original Assignee
クリオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クリオン株式会社 filed Critical クリオン株式会社
Priority to JP13634599A priority Critical patent/JP4451940B2/en
Publication of JP2000326127A publication Critical patent/JP2000326127A/en
Publication of JP2000326127A5 publication Critical patent/JP2000326127A5/ja
Application granted granted Critical
Publication of JP4451940B2 publication Critical patent/JP4451940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ALC(軽量気泡コンクリート)パネルと、その被加工面を切削加工する方法及び装置に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
ALCパネルは、軽量性・耐火性及び断熱性などの優れた性質を有するため、近年、建築物の外壁材として多く使われている。ところが、ALCパネルは、型枠内で原料スラリーを成形硬化させた後、脱型してピアノ線などによりパネル状に切断されるため、表面は平滑である。したがって、表面は意匠性に乏しく、そのままでは外装材としての商品価値を十分高めることができない。
【0003】
そこで、従来は、ALCパネルに表面模様を形成するため、被加工面に主としてパネル長方向又はパネル幅方向に延びる直線的な意匠溝を切削加工する方法が実施されていた。しかし、この方法で得られた意匠溝による表面模様は、いずれも直線を基調とした単純な模様に限られており、変化に乏しい欠点を有している。
【0004】
また、本願出願人は先に、特開昭59−167203号公報において、先細りの切刃を有する回転切削刃をALCパネルに対して相対的に上下離反移動及び被加工面に沿って相対的に移動させながら、被加工面に深さ及び幅が連続的に変化する波形溝を形成する方法を提案した。この方法で得られた波形溝による表面模様は、直線を基調とした単純な模様に比べれば意匠上の新しさがあり、規則的な模様のみならず不規則的な模様を形成することもできた。
【0005】
しかし、平坦な被加工面に直接的に波形溝を形成していたため、立体感に乏しかった。また、形成される波形溝は断面V字状、U字状又は円弧状をなす溝であったため、幅の変化はよく分かっても、深さの変化が分かりにくく、その点でも立体感に欠けていた。しかも、波形溝は見る角度が変わってもあまり見え方が変化しなかった。
【0006】
本発明の目的は、上記課題を解決し、ALCパネルの被加工面に変化と立体感とに富んだ従来に無い意匠性の高い表面模様を簡単に付与することにある。
【0007】
【課題を解決するための手段】
そこで、次のような手段(1)(2)(3)をとった。
(1)ALCパネルの被加工面に切削加工された意匠溝と、前記意匠溝の切削加工により相対的に形成された凸部と、前記凸部の角縁に切削加工された斜面をなし高さ及び幅が波状に変化する波打面とを備えたALCパネル。
【0008】
(2)ALCパネルの被加工面に意匠溝を切削加工することにより相対的に凸部を形成する工程と、前記ALCパネル又は波打面切削刃を前記被加工面に沿って相対的に移動させると同時に前記被加工面に交差する方向に相対的に往復微動させ、前記凸部の角縁に前記波打面切削刃を斜めに且つ作用深さを変化させながら作用させることにより斜面をなし高さ及び幅が波状に変化する波打面を切削加工する工程とを含むALCパネルの切削加工方法。
【0009】
上記手段(1)(2)において、ALCパネル又は波打面切削刃の相対的移動は、ALCパネルを移動させる、波打面切削刃を移動させる、あるいは、ALCパネル及び波打面切削刃をともに移動させる、のいずれによるものでもよく、これらを適宜切り替えて行ってもよい。
【0010】
ALCパネル又は波打面切削刃の相対的往復微動は、ALCパネルを往復微動させる、波打面切削刃を往復微動させる、あるいは、ALCパネル及び波打面切削刃をともに往復微動させる、のいずれによるものでもよく、これらを適宜切り替えて行ってもよい。
【0011】
また、この往復微動の方向である「被加工面に交差する方向」は、被加工面に直交する方向(法線方向)でもよいし、傾斜して交差する方向(例えば波打面切削刃の回転軸の軸方向)でもよい。
【0012】
凸部の角縁に波打面切削刃を斜めに作用させる手段は、特に限定されないが、次の手段(ア)(イ)を例示することができる。
(ア)波打面切削刃の回転軸を被加工面の法線に対して所定の角度で傾斜させる。
(イ)波打面切削刃の回転軸を被加工面の法線方向とし、波打面切削刃自体を斜めに作用するように形成する。
【0013】
波打面の被加工面に対する傾斜角は、特に限定されないが、3〜30度が好ましく、5〜20度がさらに好ましい。
【0014】
波打面は凸部の中央部に平坦部が残るように切削加工されることが好ましい。凸部において波打面が占める面積と平坦部が占める面積との比は、特に限定されないが、1:0.05〜10が好ましく、1:0.1〜3がさらに好ましい。
【0015】
波打面の高さ及び幅は、規則的な波状パターンで変化させることも、不規則的な波状パターンで変化させることもできる。後者の場合、波状パターンは例えば不規則的な基本パターンの繰り返しで構成することができる。
【0016】
凸部内の相対する角縁に形成する波打面の波状パターンとしては、互いに平行又は対称である態様と、互いに異なる(平行でも対称でもない)態様とがある。
【0017】
意匠溝を挟んで対峙する凸部の角縁に形成する波打面の波状パターンは、互いに平行又は対称である態様と、互いに異なる態様とがある。
【0018】
上記のように波状パターンを異ならせる手段は、特に限定されないが、波状パターンの進行方向を反対にする手段と、波状パターンの位相をずらす手段とを例示することができる。
【0019】
凸部が複数ある場合に、一の凸部の角縁に波打面を切削加工するときには、ALCパネル又は波打面切削刃を被加工面に沿って相対的に一の方向に移動させて行い、前記一の凸部の隣の凸部の角縁に波打面を切削加工するときには、ALCパネル又は波打面切削刃を被加工面に沿って相対的に前記一の方向とは反対の方向に移動させて行うことにより、加工効率を高めることができる。
【0020】
(3)ALCパネルの被加工面に形成された凸部の角縁に斜面をなし高さ及び幅が波状に変化する波打面を切削加工する装置であって、前記凸部の角縁に斜めに作用する波打面切削刃と、前記波打面切削刃を回転駆動する機構と、前記波打面切削刃を前記被加工面に交差する方向に相対的に往復微動させる機構と、前記ALCパネル又は波打面切削刃を前記被加工面に沿って相対的に移動させる機構とを含むALCパネルの切削加工装置。
【0021】
上記手段(2)(3)において、波打面切削刃としては、軸部と、軸部に続くボス部と、ボス部の側面に設けられた側刃とからなり、ボス部の底面に底刃が設けられていないものを例示することができる。このボス部の底面には凹部が形成されることが好ましい。
【0022】
【発明の実施の形態】
以下、本発明を具体化した実施形態例について、図面を参照して説明する。
[第一実施形態]
まず、図1〜図12は第一実施形態を示している。本実施形態に使用する切削加工装置は、図1〜図4等に示すように、パネル移動機構10、ブリッジ台20、パネル長方向切削機構30及びパネル幅方向切削機構50から構成されており、これら各機構を順に説明する。
【0023】
パネル移動機構10は、左右方向に延びる長方枠状の基台11をベースにして構成されている。基台11の上には移動盤12が左右方向に移動可能に設置され、該移動盤12は基台11に設けられたパネル移動用モータ13とねじ機構(図示略)とにより左右方向に駆動されるようになっている。移動盤12の上面は、ALCパネル1をその被加工面であるパネル表面を上向きにした状態で水平に載置できるように形成されている。また、移動盤12の手前には一方のパネル小口面を当てる定規14が突設され、移動盤12の奥には他方のパネル小口面を手前側へ押圧するクランプシリンダ15が設けられている。
【0024】
ブリッジ台20は、基台11の左右方向中央部より手前側及び奥側にそれぞれ立設された前支柱21及び後支柱22と、両支柱21,22の上部間に架設され、基台11の上方を跨いで前後方向に延びるブリッジ23とからなる。
【0025】
パネル長方向切削機構30は、ブリッジ23の左側をベースにして構成されている。ブリッジ23の左側面には前後方向に延びるガイドレール31が設けられている。ガイドレール31には左側を向いて垂立した可動取付盤32が前後方向に移動可能に係着され、該可動取付盤32はブリッジ23の内部に設けられた前後駆動装置(図示略)により前後方向に駆動されるようになっている。可動取付盤32には4つの昇降装置33が前後に並設され、各昇降装置33は可動取付盤32の内部に設けられた間隔可変装置(図示略)により、図4(a)(b)に示すように相互間隔を広狭調節可能に支持されている。
【0026】
前から2番目と3番目の昇降装置33には2つの意匠溝切削ヘッド34X,34Vが垂立姿勢で取り付けられ、前から1番目と4番目の昇降装置33には2つの波打面切削ヘッド34F,34Bが傾動可能に取り付けられ、各切削ヘッド34X,34V,34F,34Bは昇降装置33により昇降されるようになっている。また、各波打面切削ヘッド34F,34Bは昇降装置33との間に設けられた傾動装置(図示略)により、図4(a)(b)に示すように傾斜角を調節可能に支持されている。35は波打面切削ヘッド34F,34Bの傾動中心である。
【0027】
意匠溝切削ヘッド34X,34Vは、回転軸36と、該回転軸36を駆動するモータ37と、該回転軸36の下端に取着された意匠溝切削刃38とからなる。意匠溝切削刃38は、所定の溝幅及び溝角の意匠溝を形成できるよう形成された公知のものである。
【0028】
波打面切削ヘッド34F,34Bは、回転軸36と、該回転軸36を駆動するモータ37と、該回転軸36の下端に取着された波打面切削刃40とからなる。そして、前記波打面切削ヘッド34Fの傾動により、その回転軸36はパネル表面の法線(本実施形態では鉛直線)に対して後方向へ0〜45度の範囲で傾斜しうる。また、前記波打面切削ヘッド34Bの傾動により、その回転軸36はパネル表面の法線に対して前方向へ0〜45度の範囲で傾斜しうる。
【0029】
波打面切削刃40は、図6(a)(b)に示すように、回転軸に挿着される軸部41と、軸部41に続くボス部42と、ボス部42の側面に放射配置で設けられた上下一対で複数対(図示例では四対)の側刃43a,43b,43c,43dとからなり、二対の側刃43a,43bと二対の側刃43c,43dとは上下にずれながらも一部が重なるように位置関係で配されている。側刃43a〜43dの回転軌跡外形は下側が縮径する台形(又は縮径しない四角形)であり、下端の回転軌跡外径は50〜60mm程度である。また、ボス部42の底面(下面)には底刃が設けられておらず、むしろ凹部44が形成されている。
【0030】
そして、波打面切削ヘッド34Fに取着された波打面切削刃40の下端の回転軌跡は、前記回転軸36の傾斜により、パネル表面(本実施形態では水平面)に対して後側が上がる方向へ0〜45度の範囲で傾斜しうる。また、波打面切削ヘッド34Bに取着された波打面切削刃40の下端の回転軌跡は、前記回転軸36の傾斜により、パネル表面に対して前側が上がる方向へ0〜45度の範囲で傾斜しうる。
【0031】
なお、意匠溝切削刃38及び波打面切削刃40の周りには、覆いと、該覆いの下部にすだれ状に取り付けられた柔軟性のある複数の切削粉飛散防止片とが設けられ、該覆いには切削粉吸引ダクトが接続されているが、切削刃を見せるためにそれらの図示は省略する。
【0032】
可動取付盤32の前端部にはエアシリンダ46が下向きに取り付けられ、そのロッド47の下端にはパネルセンサとしてのリミットスイッチ48が取着されている。
【0033】
パネル幅方向切削機構50は、ブリッジ23の右側をベースにして構成されている。ブリッジ23の右側面には前後方向に延びるガイドレール51が設けられている。ガイドレール51には正面を向いて垂立した可動取付盤52が前後方向に移動可能に係着され、該可動取付盤52はブリッジ23の内部に設けられた前後駆動装置(図示略)により前後方向に駆動されるようになっている。可動取付盤52には3つの昇降装置53が前後に並設され、各昇降装置53は可動取付盤52の内部に設けられた間隔可変装置(図示略)により、図5(a)(b)に示すように相互間隔を広狭調節可能に支持されている。
【0034】
左から1番目の昇降装置53には意匠溝切削ヘッド54Yが垂立姿勢で取り付けられ、左から2番目と3番目の昇降装置53には2つの波打面切削ヘッド54L,54Rが傾動可能に取り付けられ、各切削ヘッド54Y,54L,54Rは昇降装置53により昇降されるようになっている。また、各波打面切削ヘッド54L,54Rは昇降装置53との間に設けられた傾動装置(図示略)により、図4(a)(b)に示すように傾斜角を調節可能に支持されている。55は波打面切削ヘッド54L,54Rの傾動中心である。
【0035】
意匠溝切削ヘッド54Yは、前記意匠溝切削ヘッド34Xと同様の回転軸36とモータ37と意匠溝切削刃38とからなる。また、波打面切削ヘッド54L,54Rは、前記波打面切削ヘッド54L,54Rと同様の回転軸36とモータ37と波打面切削刃40とからなる。前記波打面切削ヘッド54Lの傾動により、その回転軸36はパネル表面の法線(本実施形態では鉛直線)に対して左方向へ0〜45度の範囲で傾斜しうる。また、前記波打面切削ヘッド54Rの傾動により、その回転軸36はパネル表面の法線に対して右方向へ0〜45度の範囲で傾斜しうる。
【0036】
そして、波打面切削ヘッド54Lに取着された波打面切削刃40の下端の回転軌跡は、前記回転軸36の傾斜により、パネル表面(本実施形態では水平面)に対して右側が上がる方向へ0〜45度の範囲で傾斜しうる。また、波打面切削ヘッド54Rに取着された波打面切削刃40の下端の回転軌跡は、前記回転軸36の傾斜により、パネル表面に対して左側が上がる方向へ0〜45度の範囲で傾斜しうる。なお、前記覆い、切削粉飛散防止片及び切削粉吸引ダクトも設けられているが、それらの図示は省略する。
【0037】
パネル移動機構10のパネル移動用モータ13、パネル長方向切削機構30の前後駆動装置、昇降装置33及びモータ37、並びに、パネル幅方向切削機構50の前後駆動装置、昇降装置53及びモータ37は、制御装置(図示略)により、その作動タイミング、作動時間、作動方向等が自動的に制御されるようになっている。
【0038】
次に、以上のように構成された切削加工装置を使用して、ALCパネル1の被加工面であるパネル表面に意匠溝を切削加工し、続いて波打面を切削加工する方法を工程順に説明する。
【0039】
(1)初期状態からの始動
図1〜図3は初期状態を示しており、基台11の左側に移動している初期状態の移動盤12の上面にALCパネル1をそのパネル長方向を左右方向とし且つパネル表面を上向きにした状態で水平に載置する。定規14にALCパネル1の一方の長辺小口面を当て、クランプシリンダ15によりALCパネル1の他方の長辺小口面を手前側へ押圧して、ALCパネル1を挟持する。このとき、切削ヘッド34X,34V,34F,34Bは、可動取付盤32により基台11より後向へ待避しているとともに、昇降装置33により上昇している。また、リミットスイッチ48もエアシリンダ46のロッド47退入により上昇している。
【0040】
制御装置のスタートスイッチを操作すると、リミットスイッチ48がエアシリンダ46のロッド47繰出により下降するとともに、ALCパネル1が移動盤12とともに右方向へ移動する。ALCパネル1の一方の短辺小口面がリミットスイッチ48の作動片を押圧すると、ALCパネル1は移動盤12の停止により所定位置で静止する。
【0041】
(2)意匠溝の切削加工(図7)
次に、切削ヘッド34X,34V,34F,34Bが可動取付盤32とともに前方向に所定量移動する。
続いて、意匠溝切削ヘッド34Xのみが昇降装置33により下降するとともに、そのモータ37が作動して意匠溝切削刃38が回転する。そして、図7(a)に示すように、ALCパネル1が左右方向(パネル長方向)に移動することにより(その左右方向切替の度に意匠溝切削ヘッド34Xは可動取付盤32とともに前後方向にパネル幅分又は溝間隔分だけ位置をずらす)、パネル表面の長辺縁とパネル幅方向中央部とに意匠溝切削刃38が作用してパネル長方向に延びる意匠溝2Xが切削加工される。その後、意匠溝切削ヘッド34Xが上昇し、ALCパネル1は右方向に移動してパネル幅方向切削機構50の前方に位置する。なお、図7〜図9において矢印付きの2点鎖線は切削順序を示している。
【0042】
次に、切削ヘッド54Y,54R,54Lが可動取付盤52とともに前方向に所定量移動する。
続いて、意匠溝切削ヘッド54Yのみが下降するとともに、その意匠溝切削刃38が回転する。そして、図7(b)に示すように、意匠溝切削ヘッド54Yが可動取付盤52とともに前後方向(パネル幅方向)に移動することにより(その前後方向切替の度にALCパネル1は左右方向に溝間隔分だけ位置をずらす)、パネル表面の短辺縁とパネル長方向途中の複数箇所とに意匠溝切削刃38が作用してパネル幅方向に延びる意匠溝2Yが切削加工される。その後、意匠溝切削ヘッド54Yが上昇する。
【0043】
この意匠溝2X,2Yの切削加工により、相対的にパネル表面には複数の四角形区画状の凸部3が形成される。意匠溝2X,2Yの溝高さは、特に限定されないが、ALCパネル1の厚さの5〜30%が好ましく、10〜20%がさらに好ましい。具体的には、次の表1の組み合わせを例示することができ、実質的に溝高さは5〜20mmとなる場合が多い。
【0044】
【表1】

Figure 0004451940
【0045】
意匠溝2X,2Yの内側面、すなわち凸部3の側面のパネル表面に対する傾斜角は、特に限定されないが、45〜80度が好ましく、50〜70度がさらに好ましい。
【0046】
切削速度(意匠溝2Xの場合はALCパネル1の送り速度、意匠溝2Yの場合は切削ヘッド54Yの送り速度)は、6〜15m/分が好ましく、8〜12m/分がさらに好ましい。同範囲より早いとパネルが欠けやすくなり、遅いと効率が悪くなる。
【0047】
なお、意匠溝2X,2Yの加工に使用する切削ヘッドや加工の順序は、上記の例に限定されず、例えば、意匠溝切削ヘッド34Xにより長辺縁及び短辺縁に意匠溝2X,2Yを加工し、意匠溝切削ヘッド34Vによりパネル幅方向中央部に意匠溝2Xを加工し、意匠溝切削ヘッド54Yによりパネル長方向途中の複数箇所に意匠溝2Yを加工してもよい。
【0048】
(3)波打面の切削加工(図8〜図9)
次に、波打面切削ヘッド54Lのみが昇降装置53により下降するとともに、そのモータ37が作動して波打面切削刃40が回転する。そして、図8(a)に示すように、波打面切削ヘッド54Lが可動取付盤52とともに前後方向に移動すると同時に(その前後方向切替の度にALCパネル1は左右方向に溝間隔分だけ位置をずらす)、波打面切削ヘッド54Lが昇降装置53によりパネル表面に直交する昇降方向(法線方向)に往復微動し、意匠溝2Yに沿う凸部3の左側の角縁に、波打面切削刃40が斜めに且つ作用深さを変化させながら作用することにより、斜面をなし高さ及び幅が波状に変化する波打面4Lが切削加工される。その後、波打面切削ヘッド54Lが上昇する。
【0049】
続いて、波打面切削ヘッド54Rのみが下降するとともに、その波打面切削刃40が回転する。そして、図8(b)に示すように、波打面切削ヘッド54Rが前後方向に移動すると同時に(その前後方向切替の度にALCパネル1は左右方向に溝間隔分だけ位置をずらす)、波打面切削ヘッド54Rが昇降装置53により昇降方向に往復微動し、意匠溝2Yに沿う凸部3の右側の角縁に、波打面切削刃40が斜めに且つ作用深さを変化させながら作用することにより、斜面をなし高さ及び幅が波状に変化する波打面4Rが切削加工される。その後、波打面切削ヘッド54Rが上昇し、ALCパネル1は右方向に移動してパネル長方向切削機構30の前方に位置する。
【0050】
続いて、波打面切削ヘッド34Fのみが下降するとともに、その波打面切削刃40が回転する。そして、図9(a)に示すように、ALCパネル1が左右方向に移動すると同時に(その左右方向切替の度に波打面切削ヘッド34Fは前後方向に溝間隔分だけ位置をずらす)、波打面切削ヘッド34Fが昇降装置33により昇降方向に往復微動し、意匠溝2Xに沿う凸部3の前側の角縁に、波打面切削刃40が斜めに且つ作用深さを変化させながら作用することにより、斜面をなし高さ及び幅が波状に変化する波打面4Fが切削加工される。その後、波打面切削ヘッド34Fが上昇する。
【0051】
続いて、波打面切削ヘッド34Bのみが下降するとともに、その波打面切削刃40が回転する。そして、図9(b)に示すように、ALCパネル1が左右方向に移動すると同時に(その左右方向切替の度に波打面切削ヘッド34Bは前後方向に溝間隔分だけ位置をずらす)、波打面切削ヘッド34Bが昇降装置33により昇降方向に往復微動し、意匠溝2Xに沿う凸部3の後側の角縁に、波打面切削刃40が斜めに且つ作用深さを変化させながら作用することにより、斜面をなし高さ及び幅が波状に変化する波打面4Bが切削加工される。その後、波打面切削ヘッド34Bが上昇する。
【0052】
波打面4L,4R,4F,4Bの切削加工後、ALCパネル1はパネル長方向切削機構30より左方向へ移動する。そして、クランプシリンダ15によるALCパネル1の押圧が解除され、前記(1)の初期状態に戻るので、ALCパネル1を移動盤12から外せばよい。
【0053】
図10は、波打面4L(4R,4F,4Bも基本的に同じ)の切削加工の様子を接近して示し、波打面切削刃40はその回転軌跡を示すことで図示を簡略化している。図10(a)に示すように、波打面切削刃40が凸部3の角縁3aに斜めに作用するとともに、昇降方向の往復微動により作用深さを変化させながら作用することにより、図10(b)に示すように、波打面4L等の高さ及び幅が波状に変化する。
【0054】
波打面4L等のパネル表面に対する傾斜角は、前記波打面切削刃40の下端の回転軌跡45のパネル表面に対する傾斜角(本例では回転軸36の鉛直線に対する傾斜角と等しい)で決まり、凸部3の側面3bのパネル表面に対する傾斜角より小さければ、特に限定されない(本例では0〜45度の範囲で調節しうる)。しかし、この波打面4L等の傾斜角は、凸部3の高さと凸部3の相互間隔(意匠溝2X,2Yの溝幅)に応じて、波打面4Lの幅が適度になるように、且つ、凸部3の中央部に平坦部3cが残るように決めることが好ましい。すなわち、一つの凸部3において、波打面4L,4R,4F,4Bが占める面積と、平坦部3cが占める面積との比は、1:0.05〜10が好ましく、1:0.1〜3がさらに好ましい。具体的には、波打面4L等の傾斜角に関して次の表2の組み合わせを例示することができ、概して3〜30度が好ましく、5〜20度がさらに好ましい。
【0055】
【表2】
Figure 0004451940
【0056】
波打面切削刃40の昇降方向の往復微動ストロークは、凸部3の高さ以下であれば、特に限定されない。この往復微動ストロークが大きいほど、波打面4L等の高さ及び幅の変化が大きくなるので、所望の表面模様に応じて適宜決定すればよい。具体的には、次の表3の組み合わせを例示することができる。
【0057】
【表3】
Figure 0004451940
【0058】
また、波打面切削刃40のボス部42の底面に底刃が設けられていないので、側刃43a〜43dが切削加工した波打面4L等を、さらに底刃が切削して均すようなことはしない。このように底刃が無いことにより、図10(a)(b)に示すように、波打面4L等には微妙な小突起4Pや該小突起4Pの直上の波幅減少部4Q(反対に平坦部3cの幅は増加)が生じるため、意匠が細かく変化して好ましい。しかも、ボス部42の底面には凹部44が形成されているので、該底面が小突起4Pや波幅減少部4Qを通過するときに、その小突起4Pや波幅減少部4Qを凹部44内に逃がすことができ、通過の支障にならないとともに、小突起4Pや波幅減少部4Qを押し潰すこともない。
【0059】
波打面4L等の高さ及び幅が波状に変化する態様(波打面切削刃40の往復微動の態様に基づく)は、特に限定されないが、次の態様(a)(b)を例示することができる。
(a)規則的な波状(例えば正弦波状、三角波状等)パターンで変化させる。
この場合、波状パターンは、ALCパネル1内において一種類でもよいし複数種類を組み合わせてもよい。
(b)不規則的な波状パターンで変化させる。
この場合も、波状パターンは、ALCパネル1内において一種類でもよいし複数種類を組み合わせてもよい。図11及び図12は、この不規則的な波状パターンの例を概略的に示している。
【0060】
図11(a)に示すように、一つの波状パターンPは、不規則的な基本パターンP0 の繰り返しで構成することが最も容易である。また、乱数により常に新たな不定パターンを発生して構成することもできる。
【0061】
一つの凸部3内の相対する角縁に形成する波打面すなわち4F対4B(又は4L対4R)の波状パターンは、図11(a)に示すように平行でもよいし、図11(b)及び図12(a)に示すように対称でもよいし、図11(c)及び図12(b)(c)に示すように異なっていてもよい。
【0062】
また、意匠溝2X(又は2Y)を挟んで対峙する凸部3の角縁に形成する波打面すなわち4F対4B(又は4L対4R)の波状パターンは、図11(a)に示すように平行でもよいし、図11(c)に示すように対称でもよいし、図11(b)及び図12(a)(b)(c)に示すように異なっていてもよい。
【0063】
図11(a)は、波打面4Fのための波状パターンPx と波打面4Bのための波状パターンPとの二種類を同一の進行方向で進行させて、各波打面4F,4Bを形成した例である。なお、波打面4F対4Bの波状パターンPは平行であるが、別の往復微動パターンに基づいて形成されるものであり、波状パターンPとしては二種類である。
図11(b)は、一種類の波状パターンPを同一の進行方向且つ同一の位相で進行させて各波打面4F,4Bを形成した例である。なお、波打面4F対4Bの波状パターンPは対称であるが、同一の往復微動パターンに基づいて形成されるものであり、波状パターンPとしては一種類である。
図11(c)は、一種類の波状パターンPを、一つの凸部3内の波打面4Fと波打面4Bとで反対の進行方向で進行させて各波打面4F,4Bを形成した例である。
図12(a)は、一種類の波状パターンPを、意匠溝2Xを挟んで対峙する凸部3間で反対の進行方向で進行させて各波打面4F,4Bを形成した例である。
図12(b)は、一種類の波状パターンPを、一つの凸部3内の波打面4Fと波打面4Bとで同一の進行方向ではあるが位相をずらして進行させて各波打面4F,4Bを形成した例である。
図12(c)は、一種類の波状パターンPを、一つの凸部3内の波打面4Fと波打面4Bとで反対の進行方向且つ位相をずらして進行させて各波打面4F,4Bを形成した例である。
【0064】
なお、切削速度(波打面4F,4Bの場合はALCパネル1の送り速度、波打面4L,4Rの場合は切削ヘッド54L,54Rの送り速度)は、6〜15m/分が好ましく、8〜12m/分がさらに好ましい。同範囲より早いとパネルが欠けやすくなり、遅いと効率が悪くなる。
また、波打面切削刃40の回転速度は、波打面の肌の質、切抜け時のパネルの欠けの有無、及び刃物の寿命から判断して、2,500〜3,500rpmが好ましい。
【0065】
以上のようにして形成された意匠溝2X,2Y、凸部3及び波打面4L,4R,4F,4Bによる表面模様は、意匠溝2X,2Y及び凸部3による直線を基調としながらも、凸部3の角縁3aに形成される高さ及び幅が波状に変化する波打面4L等の存在により、変化と立体感とに富んだ意匠性の高いものとなる。すなわち、従来のように平坦な被加工面に直接的に波形溝を形成するのではなく、凸部3の角縁3aに波打面4Lを形成するので立体感に富む。また、従来のように断面V字状等をなす波形溝ではなく、斜面をなす波打面4L等を形成するので、幅の変化のみならず高さの変化も分かりやすく、その点でも立体感に大きく寄与する。しかも、斜面をなす波打面4L等は、見る角度が変わると見え方が変化する。
【0066】
さらに、前記の通り本実施形態では、波打面4L等に生ずることのある微妙な小突起4Pや波幅減少部4Qを生じさせ、これらを削ったり押し潰したりすることなく残すことができるので、その点でも変化に富む。
【0067】
機能的に見ても、斜面をなす波打面4L等は、汚れがたまりにくいという利点がある。すなわち、従来よりALCパネルの表面の一部を割ることにより石割調の意匠面を出すことが検討されているが、この石割面は細かい凹凸が生じたときに汚れがたまりやすい。これに対して、斜面をなす波打面の方が汚れがたまりにくい(意匠的にもスマートである)。
【0068】
[第二実施形態]
次に、図13は第二実施形態を示している。本実施形態は、波打面切削刃40の構造と、波打面の切削加工方法の一部とにおいてのみ、第一実施形態と相違するものである。
【0069】
この波打面切削刃40は、意匠溝2Y(又は2X)を挟んで対峙する両側の凸部3の角縁3aに同時に斜め対称に作用する円錐状底刃49を設けたものであり、その軸部41及び波打面切削ヘッドの回転軸(図示略)はパネル表面の法線方向である。
【0070】
そして、この波打面切削刃40が回転し、波打面切削ヘッドとALCパネル1とがパネル表面に沿って相対移動するとともに、波打面切削ヘッドがパネル表面の法線方向に往復微動し、意匠溝2Yを挟んで対峙する両側の凸部3の角縁3aに斜め対称に且つ作用深さを変化させながら作用することにより、斜面をなし高さ及び幅が波状に変化する波打面4Lが切削加工される。他の事項については第一実施形態と共通である。
【0071】
なお、本発明は前記実施形態に限定されるものではなく、例えば以下のように、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。
【0072】
(1)意匠溝をパネル表面を斜めに横切る方向に形成すること。また、意匠溝を複数段構造にすること。
【0073】
(2)波打面の斜面は、断面上、直線的に傾斜する斜面に限定されず、曲線的に傾斜する斜面でもよい。
【0074】
(3)波打面切削刃は、前記実施形態のものに限定されず、例えば、図14に示すように、軸部41が波打面4Lの傾斜方向と略同じ方向に傾斜することにより、側刃401が凸部3の角縁に斜めに作用するようにした波打面切削刃40でもよい。
【0075】
(4)波打面切削ヘッド34F,34Bをいずれか一方のみとし、その傾斜方向を変えて両波打面4F,4Bを切削加工できるようにしてもよい。波打面切削ヘッド54L,54Rについても同様である。
【0076】
(5)実施形態では各波打面切削ヘッド34F,34Bを各昇降装置33により往復微動させたが、別途設けた往復微動装置により両波打面切削ヘッド34F,34Bを昇降装置33と共に一斉に往復微動させるようにしてもよい。
【0077】
(6)先に波打面を切削加工し、次に意匠溝を切削加工するようにしてもよい。このように順序を逆にしても、結果的には同様の表面模様が得られる。
【0078】
(7)意匠溝の切削加工と波打面の切削加工とを、意匠溝切削刃と波打面切削刃とによりほぼ同時に行うことにより、加工効率を高めることもできる。
【0079】
(8)ALCパネルの被加工面は、パネル表面のみならず、パネル裏面でも、パネル小口面でもよい。
【0080】
【発明の効果】
以上詳述した通り、本発明によれば、ALCパネルの被加工面に変化と立体感とに富んだ従来に無い意匠性の高い表面模様を簡単に付与することができる。
【図面の簡単な説明】
【図1】第一実施形態に係るALCパネルの切削加工装置の正面図である。
【図2】同切削加工装置の平面図である。
【図3】同切削加工装置の左側面図である。
【図4】同切削加工装置のパネル長方向切削機構を示す左側面図である。
【図5】同切削加工装置のパネル幅方向切削機構を示す左側面図である。
【図6】同切削加工装置の波打面切削刃を示し、(a)は斜め上方から見た斜視図、(b)は斜め下方から見た斜視図である。
【図7】同切削加工装置による意匠溝の切削加工工程を示す概略斜視図である。
【図8】同切削加工装置による波打面(パネル幅方向)の切削加工工程を示す概略斜視図である。
【図9】同切削加工装置による波打面(パネル長方向)の切削加工工程を示す概略斜視図である。
【図10】同波打面の切削加工の様子を接近して示し、(a)は断面図、(b)は斜視図である。
【図11】同方法における波打面の波状パターンを示す概略平面図である。
【図12】同じく波打面の波状パターンを示す概略平面図である。
【図13】第二実施形態における波打面切削刃の概略と波打面の切削加工の様子を示し、(a)は断面図、(b)は斜視図である。
【図14】変更例に係る波打面切削刃の概略と波打面の切削加工の様子を示す断面図である。
【符号の説明】
1 ALCパネル
2X,2Y 意匠溝
3 凸部
3a 角縁
3b 側面
3c 平坦部
4L,4R,4F,4B 波打面
4P 小突起
10 パネル移動機構
11 基台
12 移動盤
20 ブリッジ台
30 パネル長方向切削機構
31 ガイドレール
32 可動取付盤
33 昇降装置
34X,34V 意匠溝切削ヘッド
34F,34B 波打面切削ヘッド
36 回転軸
38 意匠溝切削刃
40 波打面切削刃
41 軸部
42 ボス部
43a,43b,43c,43d 側刃
44 凹部
45 下端の回転軌跡
49 底刃
50 パネル幅方向切削機構
51 ガイドレール
52 可動取付盤
53 昇降装置
54Y 意匠溝切削ヘッド
54L,54R 波打面切削ヘッド[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ALC (lightweight aerated concrete) panel and a method and apparatus for cutting a surface to be processed.
[0002]
[Prior art and problems to be solved by the invention]
ALC panels have excellent properties such as light weight, fire resistance, and heat insulation, and thus have been widely used in recent years as exterior wall materials for buildings. However, the surface of the ALC panel is smooth because the raw material slurry is molded and cured in a mold and then removed and cut into a panel shape with a piano wire or the like. Therefore, the surface is poor in design, and as it is, the commercial value as an exterior material cannot be sufficiently increased.
[0003]
Therefore, conventionally, in order to form a surface pattern on the ALC panel, a method of cutting a linear design groove extending mainly in the panel length direction or the panel width direction on the work surface has been performed. However, the surface pattern by the design groove obtained by this method is limited to a simple pattern based on a straight line, and has a defect of poor change.
[0004]
In addition, the applicant of the present application previously disclosed in Japanese Patent Application Laid-Open No. 59-167203 that a rotary cutting blade having a tapered cutting edge is moved up and down relatively with respect to the ALC panel and relatively along the work surface. A method for forming a corrugated groove whose depth and width continuously change on the work surface while moving is proposed. The surface pattern with corrugated grooves obtained by this method has a new design compared to a simple pattern based on a straight line, and can form not only regular patterns but also irregular patterns. It was.
[0005]
However, since the corrugated grooves were formed directly on the flat work surface, the three-dimensional effect was poor. In addition, since the corrugated groove to be formed was a groove having a V-shaped, U-shaped or arc-shaped cross section, even if the change in the width is well understood, the change in the depth is difficult to understand, and in this respect, the three-dimensional effect is lacking. It was. Moreover, the appearance of the corrugated grooves did not change much even when the viewing angle was changed.
[0006]
An object of the present invention is to solve the above-mentioned problems and to easily give a surface pattern having a high design property that is rich in change and three-dimensionality to a processed surface of an ALC panel.
[0007]
[Means for Solving the Problems]
Therefore, the following means (1), (2) and (3) were taken.
(1) A design groove cut on the surface to be processed of the ALC panel, a convex portion relatively formed by cutting the design groove, and a slope formed by cutting at the corner edge of the convex portion. An ALC panel provided with a corrugated surface whose thickness and width change in a wavy shape.
[0008]
(2) A process of forming a relatively convex portion by cutting a design groove on a processing surface of an ALC panel, and relatively moving the ALC panel or the corrugated surface cutting blade along the processing surface. At the same time, the surface is reciprocated slightly in a direction intersecting the surface to be machined, and the corrugated surface cutting blade is applied to the corner edge of the convex portion obliquely and while changing the working depth to form a slope. A method for cutting an ALC panel, including a step of cutting a corrugated surface whose height and width change in a wave shape.
[0009]
In the above means (1) and (2), the relative movement of the ALC panel or the corrugated surface cutting blade is such that the ALC panel is moved, the corrugated surface cutting blade is moved, or the ALC panel and the corrugated surface cutting blade are moved. Either of them may be used, or these may be switched appropriately.
[0010]
The relative reciprocation of the ALC panel or the corrugated surface cutting blade is any of reciprocating the ALC panel, reciprocating the corrugated surface cutting blade, or reciprocating both the ALC panel and the corrugated surface cutting blade. Or may be switched as appropriate.
[0011]
In addition, the “direction intersecting the surface to be processed” that is the direction of the reciprocating fine movement may be a direction orthogonal to the surface to be processed (normal direction), or a direction intersecting at an angle (for example, a corrugated surface cutting blade) The axial direction of the rotation axis) may also be used.
[0012]
The means for causing the corrugated surface cutting blade to act obliquely on the corner edge of the convex portion is not particularly limited, but the following means (a) and (b) can be exemplified.
(A) The rotation axis of the corrugated surface cutting blade is inclined at a predetermined angle with respect to the normal line of the surface to be processed.
(A) The rotation axis of the corrugated surface cutting blade is set to the normal direction of the surface to be processed, and the corrugated surface cutting blade itself is formed to act obliquely.
[0013]
The inclination angle of the corrugated surface with respect to the work surface is not particularly limited, but is preferably 3 to 30 degrees, and more preferably 5 to 20 degrees.
[0014]
The corrugated surface is preferably cut so that a flat portion remains at the center of the convex portion. The ratio of the area occupied by the corrugated surface to the area occupied by the flat portion in the convex portion is not particularly limited, but is preferably 1: 0.05 to 10 and more preferably 1: 0.1 to 3.
[0015]
The height and width of the corrugated surface can be changed with a regular wavy pattern or with an irregular wavy pattern. In the latter case, the wavy pattern can be constituted by repeating an irregular basic pattern, for example.
[0016]
As the wavy pattern of the corrugated surface formed at the opposite corner edges in the convex portion, there are an aspect that is parallel or symmetric to each other and an aspect that is different from each other (not parallel or symmetric).
[0017]
The corrugated pattern of the corrugated surface formed at the corner edges of the convex portions facing each other across the design groove has a mode in which they are parallel or symmetric to each other and a mode in which they are different from each other.
[0018]
The means for making the wavy patterns different as described above is not particularly limited, and examples thereof include means for reversing the traveling direction of the wavy pattern and means for shifting the phase of the wavy pattern.
[0019]
When there is a plurality of convex parts, when cutting the corrugated surface at the corner edge of one convex part, the ALC panel or the corrugated surface cutting blade is moved in one direction relatively along the work surface. When cutting the corrugated surface on the corner edge of the convex portion adjacent to the one convex portion, the ALC panel or the corrugated surface cutting blade is relatively opposite to the one direction along the work surface. The machining efficiency can be improved by moving in the direction.
[0020]
(3) An apparatus for cutting a corrugated surface whose height and width change in a wavy shape by forming a slope on the angular edge of the convex portion formed on the surface to be processed of the ALC panel, and at the angular edge of the convex portion An obliquely acting corrugated surface cutting blade, a mechanism for rotationally driving the corrugated surface cutting blade, a mechanism for relatively finely reciprocating the corrugated surface cutting blade in a direction intersecting the work surface, A cutting apparatus for an ALC panel, including a mechanism for relatively moving an ALC panel or a corrugated surface cutting blade along the surface to be processed.
[0021]
In the above means (2) and (3), the corrugated surface cutting blade is composed of a shaft portion, a boss portion following the shaft portion, and a side blade provided on the side surface of the boss portion. The thing in which the blade is not provided can be illustrated. A recess is preferably formed on the bottom surface of the boss.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[First embodiment]
1 to 12 show a first embodiment. As shown in FIGS. 1 to 4 and the like, the cutting device used in the present embodiment includes a panel moving mechanism 10, a bridge base 20, a panel length direction cutting mechanism 30, and a panel width direction cutting mechanism 50. Each of these mechanisms will be described in turn.
[0023]
The panel moving mechanism 10 is configured based on a rectangular frame-shaped base 11 extending in the left-right direction. A moving board 12 is installed on the base 11 so as to be movable in the left-right direction. The moving board 12 is driven in the left-right direction by a panel moving motor 13 and a screw mechanism (not shown) provided on the base 11. It has come to be. The upper surface of the moving board 12 is formed so that the ALC panel 1 can be placed horizontally with the panel surface, which is the surface to be processed, facing upward. In addition, a ruler 14 is provided in front of the movable board 12 so as to contact one of the panel edge surfaces, and a clamp cylinder 15 is provided behind the movable board 12 to press the other panel edge face toward the front side.
[0024]
The bridge base 20 is installed between the front strut 21 and the rear strut 22 erected on the front side and the rear side from the central portion in the left-right direction of the base 11, and between the upper portions of both struts 21 and 22. 11 And a bridge 23 extending in the front-rear direction across the top of the.
[0025]
The panel long direction cutting mechanism 30 is configured based on the left side of the bridge 23. A guide rail 31 extending in the front-rear direction is provided on the left side surface of the bridge 23. A movable mounting plate 32 suspending from the left side is attached to the guide rail 31 so as to be movable in the front-rear direction. The movable mounting plate 32 is moved back and forth by a front-rear drive device (not shown) provided inside the bridge 23. It is driven in the direction. Four elevating devices 33 are arranged in front and rear on the movable mounting plate 32, and each elevating device 33 is provided with a variable distance device (not shown) provided inside the movable mounting plate 32, as shown in FIGS. As shown in FIG. 3, the mutual interval is supported so as to be adjustable.
[0026]
Two design groove cutting heads 34X and 34V are mounted in a vertical posture on the second and third lifting devices 33 from the front, and two corrugated surface cutting heads are mounted on the first and fourth lifting devices 33 from the front. 34F and 34B are attached to be tiltable, and the cutting heads 34X, 34V, 34F and 34B are moved up and down by a lifting device 33. Each of the corrugated surface cutting heads 34F and 34B is supported by a tilting device (not shown) provided between the lifting device 33 so that the tilt angle can be adjusted as shown in FIGS. 4 (a) and 4 (b). ing. Reference numeral 35 denotes a tilt center of the corrugated surface cutting heads 34F and 34B.
[0027]
The design groove cutting heads 34 </ b> X and 34 </ b> V include a rotation shaft 36, a motor 37 for driving the rotation shaft 36, and a design groove cutting blade 38 attached to the lower end of the rotation shaft 36. The design groove cutting blade 38 is a known one formed so that a design groove having a predetermined groove width and groove angle can be formed.
[0028]
The corrugated surface cutting heads 34 </ b> F and 34 </ b> B include a rotating shaft 36, a motor 37 that drives the rotating shaft 36, and a corrugated surface cutting blade 40 attached to the lower end of the rotating shaft 36. Then, by the tilting of the corrugated surface cutting head 34F, the rotation shaft 36 can be tilted in the range of 0 to 45 degrees backward with respect to the normal line of the panel surface (vertical line in the present embodiment). Further, by the tilting of the corrugated surface cutting head 34B, the rotation shaft 36 can be tilted in the range of 0 to 45 degrees in the forward direction with respect to the normal line of the panel surface.
[0029]
As shown in FIGS. 6A and 6B, the corrugated surface cutting blade 40 radiates to a shaft portion 41 inserted into the rotation shaft, a boss portion 42 following the shaft portion 41, and a side surface of the boss portion 42. It is composed of a plurality of pairs (four pairs in the illustrated example) of side blades 43a, 43b, 43c, 43d provided in the arrangement, and the two pairs of side blades 43a, 43b and the two pairs of side blades 43c, 43d. Although they are shifted vertically, they are arranged in a positional relationship so that some of them overlap. The rotation trajectory outline of the side blades 43a to 43d is a trapezoid (or a quadrangle that does not reduce the diameter) on the lower side, and the outer diameter of the rotation trajectory at the lower end is about 50 to 60 mm. Moreover, the bottom edge (lower surface) of the boss | hub part 42 is not provided with the bottom blade, but rather the recessed part 44 is formed.
[0030]
The rotational locus of the lower end of the corrugated surface cutting blade 40 attached to the corrugated surface cutting head 34F is the direction in which the rear side rises with respect to the panel surface (horizontal plane in the present embodiment) due to the inclination of the rotation shaft 36. It can be inclined in the range of 0 to 45 degrees. Further, the rotation locus of the lower end of the corrugated surface cutting blade 40 attached to the corrugated surface cutting head 34B is in the range of 0 to 45 degrees in the direction in which the front side rises with respect to the panel surface due to the inclination of the rotation shaft 36. It can be inclined at.
[0031]
Around the design groove cutting blade 38 and the corrugated surface cutting blade 40, there are provided a cover and a plurality of flexible cutting powder scattering prevention pieces attached in a comb shape to the lower part of the cover, A cutting powder suction duct is connected to the cover, but the illustration thereof is omitted to show the cutting blade.
[0032]
An air cylinder 46 is mounted downward on the front end of the movable mounting plate 32, and a limit switch 48 as a panel sensor is attached to the lower end of the rod 47.
[0033]
The panel width direction cutting mechanism 50 is configured based on the right side of the bridge 23. A guide rail 51 extending in the front-rear direction is provided on the right side surface of the bridge 23. A movable mounting plate 52 suspended from the front is attached to the guide rail 51 so as to be movable in the front-rear direction. The movable mounting plate 52 is moved back and forth by a front-rear drive device (not shown) provided inside the bridge 23. It is driven in the direction. Three elevating devices 53 are arranged in front and rear on the movable mounting plate 52, and each elevating device 53 is shown in FIGS. 5A and 5B by an interval variable device (not shown) provided inside the movable mounting plate 52. As shown in FIG. 3, the mutual interval is supported so as to be adjustable.
[0034]
A design groove cutting head 54Y is vertically mounted on the first lifting device 53 from the left, and two corrugated surface cutting heads 54L and 54R can tilt on the second and third lifting devices 53 from the left. The cutting heads 54 </ b> Y, 54 </ b> L, 54 </ b> R are attached and lifted by a lifting device 53. Each of the corrugated surface cutting heads 54L and 54R is supported by a tilting device (not shown) provided between the lifting device 53 so that the tilt angle can be adjusted as shown in FIGS. 4 (a) and 4 (b). ing. Reference numeral 55 denotes a tilt center of the corrugated surface cutting heads 54L and 54R.
[0035]
The design groove cutting head 54Y includes a rotary shaft 36, a motor 37, and a design groove cutting blade 38 similar to the design groove cutting head 34X. The corrugated surface cutting heads 54L and 54R are composed of a rotary shaft 36, a motor 37, and a corrugated surface cutting blade 40 similar to the corrugated surface cutting heads 54L and 54R. By the tilting of the corrugated surface cutting head 54L, the rotation shaft 36 can be tilted in the range of 0 to 45 degrees to the left with respect to the normal line of the panel surface (vertical line in the present embodiment). Further, by the tilting of the corrugated surface cutting head 54R, the rotation shaft 36 can be tilted in the range of 0 to 45 degrees to the right with respect to the normal line of the panel surface.
[0036]
The rotation trajectory of the lower end of the corrugated surface cutting blade 40 attached to the corrugated surface cutting head 54L is a direction in which the right side rises with respect to the panel surface (horizontal plane in the present embodiment) due to the inclination of the rotation shaft 36. It can be inclined in the range of 0 to 45 degrees. Further, the rotational locus of the lower end of the corrugated surface cutting blade 40 attached to the corrugated surface cutting head 54R is in the range of 0 to 45 degrees in the direction in which the left side rises with respect to the panel surface due to the inclination of the rotation shaft 36. It can be inclined at. In addition, although the said cover, the cutting powder scattering prevention piece, and the cutting powder suction duct are also provided, those illustration is abbreviate | omitted.
[0037]
The panel moving motor 13 of the panel moving mechanism 10, the longitudinal drive device of the panel length direction cutting mechanism 30, the lifting device 33 and the motor 37, and the longitudinal drive device of the panel width direction cutting mechanism 50, the lifting device 53 and the motor 37 are The operation timing, the operation time, the operation direction, and the like are automatically controlled by a control device (not shown).
[0038]
Next, using the cutting apparatus configured as described above, a method of cutting the design groove on the panel surface, which is the surface to be processed of the ALC panel 1, and subsequently cutting the corrugated surface in the order of steps. explain.
[0039]
(1) Starting from the initial state
1 to 3 show the initial state, and the ALC panel 1 is placed on the upper surface of the moving board 12 in the initial state moving to the left side of the base 11 with its panel length direction set to the left-right direction and the panel surface facing upward. Place the unit horizontally. The one long side small edge surface of the ALC panel 1 is applied to the ruler 14, and the other long side small edge surface of the ALC panel 1 is pressed to the near side by the clamp cylinder 15 so as to sandwich the ALC panel 1. At this time, the cutting heads 34 </ b> X, 34 </ b> V, 34 </ b> F, 34 </ b> B are retracted rearward from the base 11 by the movable mounting plate 32 and are lifted by the lifting device 33. Further, the limit switch 48 is also raised by the retraction of the rod 47 of the air cylinder 46.
[0040]
When the start switch of the control device is operated, the limit switch 48 is lowered by feeding the rod 47 of the air cylinder 46, and the ALC panel 1 is moved rightward together with the moving board 12. When one short side facet of the ALC panel 1 presses the operating piece of the limit switch 48, the ALC panel 1 is stopped at a predetermined position by the stop of the moving board 12.
[0041]
(2) Design groove cutting (Fig. 7)
Next, the cutting heads 34 </ b> X, 34 </ b> V, 34 </ b> F, 34 </ b> B are moved forward by a predetermined amount together with the movable mounting plate 32.
Subsequently, only the design groove cutting head 34X is lowered by the elevating device 33, and the motor 37 is operated to rotate the design groove cutting blade 38. As shown in FIG. 7A, the design groove cutting head 34X moves in the front-rear direction together with the movable mounting plate 32 by moving the ALC panel 1 in the left-right direction (panel length direction). The design groove 2X extending in the panel length direction is cut by the design groove cutting blade 38 acting on the long edge of the panel surface and the center portion in the panel width direction. Thereafter, the design groove cutting head 34 </ b> X rises, and the ALC panel 1 moves to the right and is positioned in front of the panel width direction cutting mechanism 50. In addition, in FIGS. 7-9, the dashed-two dotted line with the arrow has shown the cutting order.
[0042]
Next, the cutting heads 54 </ b> Y, 54 </ b> R, 54 </ b> L move forward by a predetermined amount together with the movable mounting plate 52.
Subsequently, only the design groove cutting head 54Y is lowered, and the design groove cutting blade 38 is rotated. 7B, the design groove cutting head 54Y moves in the front-rear direction (panel width direction) together with the movable mounting plate 52 (the ALC panel 1 moves in the left-right direction each time the front-rear direction is switched. The design groove 2Y extending in the panel width direction is cut by the design groove cutting blade 38 acting on the short edge of the panel surface and a plurality of locations in the middle of the panel length. Thereafter, the design groove cutting head 54Y rises.
[0043]
By cutting the design grooves 2X and 2Y, a plurality of quadrangular section-shaped convex portions 3 are relatively formed on the panel surface. The groove height of the design grooves 2X and 2Y is not particularly limited, but is preferably 5 to 30% of the thickness of the ALC panel 1, and more preferably 10 to 20%. Specifically, the combinations of the following Table 1 can be exemplified, and the groove height is substantially 5 to 20 mm in many cases.
[0044]
[Table 1]
Figure 0004451940
[0045]
Although the inclination angle with respect to the panel surface of the inner surface of the design grooves 2X and 2Y, that is, the side surface of the convex portion 3, is not particularly limited, it is preferably 45 to 80 degrees, and more preferably 50 to 70 degrees.
[0046]
The cutting speed (the feed speed of the ALC panel 1 in the case of the design groove 2X, and the feed speed of the cutting head 54Y in the case of the design groove 2Y) is preferably 6 to 15 m / min, and more preferably 8 to 12 m / min. If it is earlier than the same range, the panel tends to be chipped, and if it is late, the efficiency becomes worse.
[0047]
The cutting head used for processing the design grooves 2X and 2Y and the processing order are not limited to the above example. For example, the design grooves 2X and 2Y are formed on the long edge and the short edge by the design groove cutting head 34X. Alternatively, the design groove 2X may be processed at the center in the panel width direction by the design groove cutting head 34V, and the design groove 2Y may be processed at a plurality of locations in the middle of the panel length by the design groove cutting head 54Y.
[0048]
(3) Cutting of corrugated surface (FIGS. 8 to 9)
Next, only the corrugated surface cutting head 54L is lowered by the lifting device 53, and the motor 37 is operated to rotate the corrugated surface cutting blade 40. As shown in FIG. 8 (a), the corrugated surface cutting head 54L moves in the front-rear direction together with the movable mounting plate 52 (at the same time the front-rear direction is switched, the ALC panel 1 is positioned by the groove interval in the left-right direction). The wavy surface cutting head 54L is finely reciprocated in the ascending / descending direction (normal direction) perpendicular to the panel surface by the elevating device 53, and the corrugated surface is formed on the left corner of the convex portion 3 along the design groove 2Y. When the cutting blade 40 acts obliquely and while changing the working depth, the corrugated surface 4L having a slope and changing in height and width in a wavy shape is cut. Thereafter, the corrugated surface cutting head 54L rises.
[0049]
Subsequently, only the corrugated surface cutting head 54R is lowered and the corrugated surface cutting blade 40 is rotated. As shown in FIG. 8B, the corrugated surface cutting head 54R moves in the front-rear direction (the ALC panel 1 is shifted by the groove interval in the left-right direction each time the front-rear direction is switched). The striking surface cutting head 54R is finely reciprocated in the ascending / descending direction by the elevating device 53, and the corrugated surface cutting blade 40 acts on the right corner of the convex portion 3 along the design groove 2Y while changing the working depth obliquely. By doing so, the corrugated surface 4R having a slope and changing in height and width in a wavy shape is cut. Thereafter, the corrugated surface cutting head 54 </ b> R rises, and the ALC panel 1 moves to the right and is positioned in front of the panel long direction cutting mechanism 30.
[0050]
Subsequently, only the corrugated surface cutting head 34F is lowered, and the corrugated surface cutting blade 40 is rotated. Then, as shown in FIG. 9A, simultaneously with the movement of the ALC panel 1 in the left-right direction (each time the left-right direction is switched, the corrugated surface cutting head 34F is shifted in the front-rear direction by the groove interval), the wave The striking surface cutting head 34F is finely reciprocated in the ascending / descending direction by the elevating device 33, and the corrugated surface cutting blade 40 acts on the front edge of the convex portion 3 along the design groove 2X while changing the working depth obliquely. By doing so, the corrugated surface 4F which forms a slope and the height and width change in a wave shape is cut. Thereafter, the corrugated surface cutting head 34F rises.
[0051]
Subsequently, only the corrugated surface cutting head 34B is lowered, and the corrugated surface cutting blade 40 is rotated. Then, as shown in FIG. 9B, simultaneously with the movement of the ALC panel 1 in the left-right direction (the wavy surface cutting head 34B shifts the position in the front-rear direction by the groove interval), The striking surface cutting head 34B is finely reciprocated in the ascending / descending direction by the elevating device 33, and the corrugated surface cutting blade 40 obliquely changes the working depth at the rear edge of the convex portion 3 along the design groove 2X. By acting, the corrugated surface 4B having a slope and changing in height and width in a wavy shape is cut. Thereafter, the corrugated surface cutting head 34B rises.
[0052]
After cutting the corrugated surfaces 4L, 4R, 4F, 4B, the ALC panel 1 moves to the left from the panel length direction cutting mechanism 30. Then, the pressing of the ALC panel 1 by the clamp cylinder 15 is released, and the state returns to the initial state of (1), so the ALC panel 1 may be removed from the moving board 12.
[0053]
FIG. 10 shows the state of cutting of the corrugated surface 4L (4R, 4F, 4B is basically the same) close up, and the corrugated surface cutting blade 40 shows its rotation trajectory to simplify the illustration. Yes. As shown in FIG. 10 (a), the corrugated surface cutting blade 40 acts obliquely on the corner edge 3a of the convex portion 3 and changes the depth of action by reciprocating fine movement in the ascending / descending direction. As shown in FIG. 10B, the height and width of the corrugated surface 4L and the like change in a wave shape.
[0054]
The inclination angle of the corrugated surface 4L or the like with respect to the panel surface is determined by the inclination angle of the rotation locus 45 at the lower end of the corrugated surface cutting blade 40 with respect to the panel surface (in this example, equal to the inclination angle of the rotation shaft 36 with respect to the vertical line). If it is smaller than the inclination angle with respect to the panel surface of the side surface 3b of the convex part 3, it will not specifically limit (in this example, it can adjust in the range of 0-45 degree | times). However, the inclination angle of the corrugated surface 4L and the like is such that the width of the corrugated surface 4L becomes appropriate according to the height of the convex portion 3 and the mutual interval between the convex portions 3 (groove widths of the design grooves 2X and 2Y). In addition, it is preferable to determine so that the flat portion 3 c remains at the center of the convex portion 3. That is, in one convex part 3, the ratio of the area occupied by the corrugated surfaces 4L, 4R, 4F, 4B and the area occupied by the flat part 3c is preferably 1: 0.05-10, and 1: 0.1. ~ 3 is more preferred. Specifically, the combinations of the following Table 2 can be exemplified with respect to the inclination angle of the corrugated surface 4L and the like, generally 3 to 30 degrees are preferable, and 5 to 20 degrees are more preferable.
[0055]
[Table 2]
Figure 0004451940
[0056]
The reciprocating fine movement stroke in the up-and-down direction of the corrugated surface cutting blade 40 is not particularly limited as long as it is equal to or less than the height of the convex portion 3. As the reciprocating fine movement stroke is larger, the change in the height and width of the corrugated surface 4L and the like becomes larger, so it may be determined as appropriate according to the desired surface pattern. Specifically, the combinations of the following Table 3 can be exemplified.
[0057]
[Table 3]
Figure 0004451940
[0058]
In addition, since the bottom blade is not provided on the bottom surface of the boss portion 42 of the corrugated surface cutting blade 40, the bottom blade further cuts and levels the corrugated surface 4L and the like cut by the side blades 43a to 43d. I don't do anything. Since there is no bottom edge in this way, as shown in FIGS. 10 (a) and 10 (b), the corrugated surface 4L and the like have subtle small protrusions 4P and a wave width reducing portion 4Q immediately above the small protrusions 4P (in contrast, Since the width of the flat portion 3c is increased), the design is preferably changed finely. Moreover, since the concave portion 44 is formed on the bottom surface of the boss portion 42, when the bottom surface passes through the small protrusion 4P and the wave width reducing portion 4Q, the small protrusion 4P and the wave width reducing portion 4Q are allowed to escape into the concave portion 44. This does not hinder passage, and does not crush the small protrusions 4P and the wave width reducing portion 4Q.
[0059]
The aspect in which the height and width of the corrugated surface 4L and the like change in a wave shape (based on the aspect of the reciprocating fine movement of the corrugated surface cutting blade 40) is not particularly limited, but the following aspects (a) and (b) are exemplified. be able to.
(A) The pattern is changed in a regular wave pattern (for example, a sine wave pattern or a triangular wave pattern).
In this case, the wavy pattern may be one type in the ALC panel 1 or a plurality of types may be combined.
(B) Change in an irregular wave pattern.
Also in this case, the wavy pattern may be one type in the ALC panel 1 or a plurality of types may be combined. 11 and 12 schematically show an example of this irregular wave pattern.
[0060]
As shown in FIG. 11 (a), it is easiest to construct one wavy pattern P by repeating an irregular basic pattern P0. It is also possible to always generate a new indefinite pattern using random numbers.
[0061]
As shown in FIG. 11 (a), the corrugated surfaces formed on the opposite corner edges in one convex portion 3, that is, the corrugated pattern of 4F vs. 4B (or 4L vs. 4R) may be parallel as shown in FIG. ) And FIG. 12 (a) may be symmetrical, or may be different as shown in FIG. 11 (c) and FIGS. 12 (b) and 12 (c).
[0062]
Moreover, as shown in FIG. 11 (a), the corrugated surface formed on the corner edge of the convex portion 3 facing each other across the design groove 2X (or 2Y), that is, the wavy pattern of 4F pair 4B (or 4L pair 4R) They may be parallel, symmetrical as shown in FIG. 11 (c), or different as shown in FIGS. 11 (b) and 12 (a), (b) and (c).
[0063]
In FIG. 11A, two types of the wavy pattern Px for the waved surface 4F and the waved pattern P for the waved surface 4B are advanced in the same traveling direction, and each of the waved surfaces 4F and 4B is moved. This is an example of formation. The wave patterns P of the corrugated surfaces 4F to 4B are parallel, but are formed based on different reciprocating fine movement patterns, and there are two types of wave patterns P.
FIG. 11B shows an example in which each waved surface 4F, 4B is formed by causing one type of wave pattern P to travel in the same traveling direction and in the same phase. Note that the wave pattern P of the corrugated surfaces 4F to 4B is symmetric, but is formed based on the same reciprocating fine movement pattern, and the wave pattern P is one type.
In FIG. 11C, one type of corrugated pattern P is caused to travel in the opposite traveling direction between the corrugated surface 4F and the corrugated surface 4B in one convex portion 3, thereby forming the corrugated surfaces 4F and 4B. This is an example.
FIG. 12A shows an example in which the corrugated surfaces 4F and 4B are formed by advancing one type of corrugated pattern P in the opposite traveling direction between the convex portions 3 facing each other across the design groove 2X.
FIG. 12B shows that one type of wavy pattern P is made to travel in the same traveling direction but with a phase shifted between the corrugated surface 4F and the corrugated surface 4B in one convex portion 3. This is an example in which the surfaces 4F and 4B are formed.
FIG. 12 (c) shows that each type of corrugated pattern 4F is caused to travel by moving one type of corrugated pattern P in the opposite traveling direction and phase between the corrugated surface 4F and the corrugated surface 4B in one convex portion 3. , 4B are formed.
[0064]
The cutting speed (feeding speed of the ALC panel 1 in the case of the corrugated surfaces 4F and 4B, and feeding speed of the cutting heads 54L and 54R in the case of the corrugated surfaces 4L and 4R) is preferably 6 to 15 m / min. More preferably, it is -12 m / min. If it is earlier than the same range, the panel tends to be chipped, and if it is late, the efficiency becomes worse.
Further, the rotational speed of the corrugated surface cutting blade 40 is preferably 2500 to 3,500 rpm, judging from the quality of the skin of the corrugated surface, the presence or absence of panel chipping at the time of cutting through, and the life of the blade.
[0065]
The surface patterns formed by the design grooves 2X and 2Y, the convex portions 3 and the corrugated surfaces 4L, 4R, 4F and 4B formed as described above are based on the straight lines formed by the design grooves 2X and 2Y and the convex portions 3, Due to the presence of the corrugated surface 4L and the like, the height and width of which are formed on the corner edge 3a of the convex portion 3 change in a wave shape, the design is rich in change and stereoscopic effect. That is, the corrugated groove is not directly formed on the flat work surface as in the prior art, but the corrugated surface 4L is formed on the corner edge 3a of the convex portion 3, so that the three-dimensional effect is rich. In addition, since the corrugated groove 4L having a slope is formed instead of the corrugated groove having a V-shaped cross section as in the prior art, not only the change in width but also the change in height is easy to understand. Greatly contributes. Moreover, the appearance of the corrugated surface 4L that forms the slope changes when the viewing angle changes.
[0066]
Furthermore, as described above, in the present embodiment, the subtle small protrusions 4P and the wave width reducing portion 4Q that may be generated on the waved surface 4L and the like can be generated, and these can be left without being scraped or crushed. In that respect, there are many changes.
[0067]
Even from a functional point of view, the corrugated surface 4L that forms a slope has an advantage that dirt does not collect easily. In other words, it has been conventionally studied that a design surface with a stone-splitting tone is obtained by splitting a part of the surface of the ALC panel, but this stone-splitting surface tends to accumulate dirt when fine irregularities occur. On the other hand, the corrugated surface that forms the slope is less likely to collect dirt (smart in design).
[0068]
[Second Embodiment]
Next, FIG. 13 shows a second embodiment. This embodiment is different from the first embodiment only in the structure of the corrugated surface cutting blade 40 and a part of the corrugated surface cutting method.
[0069]
The corrugated surface cutting blade 40 is provided with a conical bottom blade 49 that acts simultaneously and symmetrically on the corner edges 3a of the convex portions 3 on both sides facing each other across the design groove 2Y (or 2X). The rotation axis (not shown) of the shaft portion 41 and the corrugated surface cutting head is the normal direction of the panel surface.
[0070]
Then, the corrugated surface cutting blade 40 rotates, the corrugated surface cutting head and the ALC panel 1 move relative to each other along the panel surface, and the corrugated surface cutting head finely reciprocates in the normal direction of the panel surface. The corrugated surface in which the slope and the height and width change in a wavy shape by acting on the corner edges 3a of the convex portions 3 on both sides facing each other across the design groove 2Y in an obliquely symmetrical manner while changing the depth of action. 4L is cut. Other matters are common to the first embodiment.
[0071]
In addition, this invention is not limited to the said embodiment, For example, it can also be suitably changed and embodied as follows, for example in the range which does not deviate from the meaning of invention.
[0072]
(1) Form design grooves in a direction that crosses the panel surface diagonally. Also, make the design groove a multi-stage structure.
[0073]
(2) The slope of the corrugated surface is not limited to a slope inclined linearly on the cross section, and may be a slope inclined curvedly.
[0074]
(3) The corrugated surface cutting blade is not limited to that of the above embodiment. For example, as shown in FIG. 14, the shaft portion 41 is inclined in substantially the same direction as the inclined direction of the corrugated surface 4L. The corrugated surface cutting blade 40 in which the side blade 401 acts obliquely on the corner edge of the convex portion 3 may be used.
[0075]
(4) Only one of the corrugated surface cutting heads 34F and 34B may be used, and both the corrugated surfaces 4F and 4B may be cut by changing the inclination direction. The same applies to the corrugated surface cutting heads 54L and 54R.
[0076]
(5) In the embodiment, the corrugated surface cutting heads 34F and 34B are finely reciprocated by the lifting devices 33. However, both the corrugated surface cutting heads 34F and 34B are moved together with the lifting device 33 by the reciprocating fine motion device provided separately. You may make it finely reciprocate.
[0077]
(6) The corrugated surface may be cut first, and then the design groove may be cut. Even if the order is reversed in this way, the same surface pattern is obtained as a result.
[0078]
(7) The cutting efficiency of the design groove and the cutting surface of the corrugated surface can be performed almost simultaneously by the design groove cutting blade and the corrugated surface cutting blade, thereby increasing the processing efficiency.
[0079]
(8) The processed surface of the ALC panel may be not only the panel surface but also the panel back surface or the panel edge surface.
[0080]
【The invention's effect】
As described in detail above, according to the present invention, it is possible to easily give a surface pattern having a high design property that is rich in change and stereoscopic effect to the processed surface of the ALC panel.
[Brief description of the drawings]
FIG. 1 is a front view of an ALC panel cutting apparatus according to a first embodiment.
FIG. 2 is a plan view of the cutting apparatus.
FIG. 3 is a left side view of the cutting apparatus.
FIG. 4 is a left side view showing a panel length direction cutting mechanism of the cutting apparatus.
FIG. 5 is a left side view showing a panel width direction cutting mechanism of the cutting apparatus.
6A and 6B show a corrugated surface cutting blade of the cutting apparatus, wherein FIG. 6A is a perspective view seen from obliquely above, and FIG. 6B is a perspective view seen obliquely from below.
FIG. 7 is a schematic perspective view showing a design groove cutting process by the cutting apparatus.
FIG. 8 is a schematic perspective view showing a cutting process of a corrugated surface (panel width direction) by the cutting apparatus.
FIG. 9 is a schematic perspective view showing a cutting process of a corrugated surface (panel length direction) by the cutting apparatus.
FIGS. 10A and 10B are close-up views showing the state of cutting of the waved surface, where FIG. 10A is a cross-sectional view and FIG. 10B is a perspective view.
FIG. 11 is a schematic plan view showing a wavy pattern of a corrugated surface in the same method.
FIG. 12 is a schematic plan view showing a wavy pattern on the corrugated surface.
FIG. 13 shows an outline of a corrugated surface cutting blade and a state of cutting the corrugated surface in the second embodiment, wherein (a) is a cross-sectional view and (b) is a perspective view.
FIG. 14 is a cross-sectional view showing an outline of a corrugated surface cutting blade and a state of cutting the corrugated surface according to a modified example.
[Explanation of symbols]
1 ALC panel
2X, 2Y design groove
3 Convex
3a corner edge
3b side view
3c flat part
4L, 4R, 4F, 4B Corrugated surface
4P small protrusion
10 Panel moving mechanism
11 base
12 Moving board
20 Bridge stand
30 Panel long direction cutting mechanism
31 Guide rail
32 Movable mounting board
33 Lifting device
34X, 34V Design groove cutting head
34F, 34B Corrugated surface cutting head
36 Rotating shaft
38 Design groove cutting blade
40 Corrugated surface cutting blade
41 Shaft
42 Boss
43a, 43b, 43c, 43d Side blade
44 recess
45 Lower end rotation trajectory
49 Bottom blade
50 Panel width direction cutting mechanism
51 Guide rail
52 Movable mounting board
53 Lifting device
54Y Design groove cutting head
54L, 54R Corrugated surface cutting head

Claims (18)

ALCパネルの被加工面に切削加工された意匠溝と、前記意匠溝の切削加工により相対的に形成された凸部と、前記凸部の角縁に切削加工された斜面をなし高さ及び幅が波状に変化する波打面とを備えたALCパネル。  A design groove cut on the surface to be processed of the ALC panel, a convex portion relatively formed by the cutting processing of the design groove, and a slope cut into the corner edge of the convex portion. ALC panel provided with a corrugated surface that changes into a wave shape. ALCパネルの被加工面に意匠溝を切削加工することにより相対的に凸部を形成する工程と、前記ALCパネル又は波打面切削刃を前記被加工面に沿って相対的に移動させると同時に前記被加工面に交差する方向に相対的に往復微動させ、前記凸部の角縁に前記波打面切削刃を斜めに且つ作用深さを変化させながら作用させることにより斜面をなし高さ及び幅が波状に変化する波打面を切削加工する工程とを含むALCパネルの切削加工方法。  A process of forming a relatively convex portion by cutting a design groove on a processing surface of the ALC panel, and a relative movement of the ALC panel or the corrugated surface cutting blade along the processing surface By relatively reciprocatingly reciprocating in the direction intersecting the workpiece surface, the corrugated surface cutting blade acts on the corner edge of the convex portion obliquely and while changing the working depth, thereby forming a slope and height. A method of cutting an ALC panel, including a step of cutting a corrugated surface whose width changes in a wavy shape. 前記波打面の被加工面に対する傾斜角が3〜30度である請求項1記載のALCパネル。 ALC panel of claim 1, wherein the inclination angle is 3-30 degrees with respect to the processing surface of the undulating surface. 前記波打面は前記凸部の中央部に平坦部が残るように切削加工される請求項1記載のALCパネル。 The undulating surface ALC panel of claim 1, wherein the cutting to a flat portion remains in the center portion of the convex portion. 前記凸部において前記波打面が占める面積と前記平坦部が占める面積との比が1:0.05〜10である請求項4記載のALCパネル。 The ratio of the area of the corrugated surface occupied area as the flat portion occupying in the projections 1: ALC panel according to claim 4, wherein 0.05 to 10. 前記波打面の高さ及び幅を規則的な波状パターンで変化させる請求項1記載のALCパネル。 ALC panel of claim 1, wherein changing the height and width of the wavy surface in a regular wavy pattern. 前記波打面の高さ及び幅を不規則的な波状パターンで変化させる請求項1記載のALCパネル。 ALC panel of claim 1, wherein changing the height and width of the wavy surface in an irregular wavy pattern. 前記波打面の高さ及び幅を不規則的な波状パターンで変化させ、前記波状パターンは不規則的な基本パターンの繰り返しで構成される請求項1記載のALCパネル。 Wherein the height and width of the wavy surface is changed in an irregular wave pattern, ALC panel of the wavy pattern according to claim 1, wherein composed of repetitions of irregular basic pattern. 前記波打面の高さ及び幅を不規則的な波状パターンで変化させ、前記凸部内の相対する角縁に形成する前記波打面の波状パターンが互いに平行又は対称である請求項1記載のALCパネル。 The height and width of the corrugated surface are changed in an irregular corrugated pattern, and the corrugated patterns of the corrugated surface formed at opposite corner edges in the convex portion are parallel or symmetrical to each other. ALC panel. 前記波打面の高さ及び幅を不規則的な波状パターンで変化させ、前記凸部内の相対する角縁に形成する前記波打面の波状パターンが互いに異なる請求項1記載のALCパネル。 Wherein the height and width of the wavy surface is changed in an irregular wave pattern, ALC panel wavy patterns are different from each other according to claim 1, wherein said undulating surfaces forming the opposite angle edge in the convex portion. 前記波打面の高さ及び幅を不規則的な波状パターンで変化させ、前記意匠溝を挟んで対峙する前記凸部の角縁に形成する前記波打面の波状パターンが互いに平行又は対称である請求項1記載のALCパネル。 The height and width of the corrugated surface are changed in an irregular corrugated pattern, and the corrugated patterns of the corrugated surface formed on the corner edges of the convex portions facing each other across the design groove are parallel or symmetrical to each other. ALC panel of a claim 1, wherein. 前記波打面の高さ及び幅を不規則的な波状パターンで変化させ、前記意匠溝を挟んで対峙する前記凸部の角縁に形成する前記波打面の波状パターンが互いに異なる請求項1記載のALCパネル。 The height and width of the corrugated surface are changed in an irregular corrugated pattern, and the corrugated patterns of the corrugated surface formed on the corner edges of the convex portions facing each other across the design groove are different from each other. ALC panel described. 前記波打面の高さ及び幅を不規則的な波状パターンで変化させ、前記凸部内の相対する角縁に形成する前記波打面の波状パターンを、前記波状パターンの進行方向を反対にすることで、又は、前記波状パターンの位相をずらすことで、互いに異ならせる請求項記載のALCパネルの切削加工方法。 The height and width of the corrugated surface are changed by an irregular corrugated pattern, and the corrugated pattern of the corrugated surface formed at the opposite corner edges in the convex portion is reversed in the traveling direction of the corrugated pattern. The method for cutting an ALC panel according to claim 2 , wherein the ALC panel is made different from each other by shifting the phase of the wavy pattern . 前記波打面の高さ及び幅を不規則的な波状パターンで変化させ、前記意匠溝を挟んで対峙する前記凸部の角縁に形成する前記波打面の波状パターンを、前記波状パターンの進行方向を反対にすることで、又は、前記波状パターンの位相をずらすことで、互いに異ならせる請求項記載のALCパネルの切削加工方法。 By changing the height and width of the corrugated surface in an irregular corrugated pattern, the corrugated pattern of the corrugated surface formed on the corner edge of the convex portion facing the design groove is The ALC panel cutting method according to claim 2 , wherein the advancing directions are reversed or the phases of the wavy patterns are shifted from each other . 前記凸部が複数ある場合に、一の凸部の角縁に波打面を切削加工するときには、前記ALCパネル又は波打面切削刃を前記被加工面に沿って相対的に一の方向に移動させて行い、前記一の凸部の隣の凸部の角縁に波打面を切削加工するときには、前記ALCパネル又は波打面切削刃を前記被加工面に沿って相対的に前記一の方向とは反対の方向に移動させて行う請求項2記載のALCパネルの切削加工方法。  When there are a plurality of the convex portions, when cutting the corrugated surface at the corner edge of one convex portion, the ALC panel or the corrugated surface cutting blade is relatively moved along the work surface in one direction. When the corrugated surface is cut on the corner edge of the convex portion adjacent to the one convex portion, the ALC panel or the corrugated surface cutting blade is relatively moved along the surface to be processed. The ALC panel cutting method according to claim 2, wherein the ALC panel is moved in a direction opposite to the direction of the ALC panel. ALCパネルの被加工面に形成された凸部の角縁に斜面をなし高さ及び幅が波状に変化する波打面を切削加工する装置であって、前記凸部の角縁に斜めに作用する波打面切削刃と、前記波打面切削刃を回転駆動する機構と、前記波打面切削刃を前記被加工面に交差する方向に相対的に往復微動させる機構と、前記ALCパネル又は波打面切削刃を前記被加工面に沿って相対的に移動させる機構とを含むALCパネルの切削加工装置。  A device for cutting a corrugated surface whose height and width change in a wavy shape by forming a slope on the corner edge of the convex portion formed on the surface to be processed of the ALC panel, and acting obliquely on the corner edge of the convex portion A corrugated surface cutting blade that rotates, a mechanism that rotationally drives the corrugated surface cutting blade, a mechanism that relatively reciprocally moves the corrugated surface cutting blade in a direction intersecting the surface to be processed, and the ALC panel or A cutting apparatus for an ALC panel, including a mechanism for relatively moving a corrugated surface cutting blade along the surface to be processed. 前記波打面切削刃は、軸部と、該軸部に続くボス部と、該ボス部の側面に設けられた側刃とからなり、前記ボス部の底面に底刃が設けられていない請求項16記載のALCパネルの切削加工装置。The undulating surface cutting edge, a shank, and a boss portion that follows the shaft portion consists of a side edge provided on the side surface of the boss portion, it has not end cutting edge is provided on the bottom surface of the boss portion The ALC panel cutting apparatus according to claim 16 . 前記ボス部の底面に凹部が形成されている請求項17記載のALCパネルの切削加工装置。Cutting apparatus A LC panel according to claim 17, wherein the recess in the bottom surface of the boss portion is formed.
JP13634599A 1999-05-17 1999-05-17 ALC panel, cutting method thereof and cutting apparatus Expired - Lifetime JP4451940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13634599A JP4451940B2 (en) 1999-05-17 1999-05-17 ALC panel, cutting method thereof and cutting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13634599A JP4451940B2 (en) 1999-05-17 1999-05-17 ALC panel, cutting method thereof and cutting apparatus

Publications (3)

Publication Number Publication Date
JP2000326127A JP2000326127A (en) 2000-11-28
JP2000326127A5 JP2000326127A5 (en) 2006-06-08
JP4451940B2 true JP4451940B2 (en) 2010-04-14

Family

ID=15173035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13634599A Expired - Lifetime JP4451940B2 (en) 1999-05-17 1999-05-17 ALC panel, cutting method thereof and cutting apparatus

Country Status (1)

Country Link
JP (1) JP4451940B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4252234B2 (en) * 2001-10-02 2009-04-08 旭化成建材株式会社 Lightweight cellular concrete panel processing method
KR101540011B1 (en) 2011-04-19 2015-07-28 마키노 밀링 머신 주식회사 Tool path generation device and hairline processing apparatus

Also Published As

Publication number Publication date
JP2000326127A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
CN104772787B (en) Cut knife, especially vibrating blade used in the machine cuts method of sandwich plate
KR19980070874A (en) Saw blade
CN201168783Y (en) Laser powder sintering rapid forming machine
CN1106900C (en) Method of preventing tooth from continuously breaking in band saw blade, saw tooth structure of band saw bland used for method and band saw blads with tooth having same saw tooth structure
JP4451940B2 (en) ALC panel, cutting method thereof and cutting apparatus
WO2024099469A1 (en) Method for machining pcd saw blade by using laser grinding
US4545275A (en) Blade for severing fibrous material
CN203077353U (en) Progressive type rotary cutting food processor
CN101177043A (en) Roll wheel with wave grain and manufacturing method thereof
US4949768A (en) Log surface hewing process and associate surface hewing machine
CN206752180U (en) Cutter
CN2193245Y (en) Diamond rope saw multipurpose curve cutting machine
EP1390213A1 (en) One pass combination of traditional and multi-axis carving machine
JP3295061B2 (en) Surface processing method and surface processing apparatus for ALC panel
JPH07115318B2 (en) Cutting device
CN2485080Y (en) Double saw cutter for cutting frame angles
JPH0655491A (en) Groove processing method and device of mount
JPH01105705A (en) Stone cutter
CN2359085Y (en) Multipurpose programme-contrelled stoncutter
JPS59167203A (en) Method of working surface of building board
JP4046536B2 (en) Surface processing method and surface processing apparatus for ALC panel
US7066222B2 (en) Veneer slicer
JP3585002B2 (en) Automatic circular saw cutting machine and method of cutting workpiece
CN117549440B (en) Automatic stone trimming device for constructional engineering
CN2553982Y (en) Overlength arc board stone cutting machine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160205

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term