JP4451672B2 - Method for suppressing increase in contact resistance of electronic component over time, fiber for suppressing increase in contact resistance over time, and fiber product using the fiber - Google Patents

Method for suppressing increase in contact resistance of electronic component over time, fiber for suppressing increase in contact resistance over time, and fiber product using the fiber Download PDF

Info

Publication number
JP4451672B2
JP4451672B2 JP2004036021A JP2004036021A JP4451672B2 JP 4451672 B2 JP4451672 B2 JP 4451672B2 JP 2004036021 A JP2004036021 A JP 2004036021A JP 2004036021 A JP2004036021 A JP 2004036021A JP 4451672 B2 JP4451672 B2 JP 4451672B2
Authority
JP
Japan
Prior art keywords
fiber
metal
contact resistance
over time
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004036021A
Other languages
Japanese (ja)
Other versions
JP2005228905A (en
Inventor
智三 高橋
英幸 鶴海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Toyobo Co Ltd
Original Assignee
Japan Exlan Co Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd, Toyobo Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP2004036021A priority Critical patent/JP4451672B2/en
Priority to PCT/JP2005/001546 priority patent/WO2005078181A1/en
Priority to TW94103000A priority patent/TW200533805A/en
Publication of JP2005228905A publication Critical patent/JP2005228905A/en
Application granted granted Critical
Publication of JP4451672B2 publication Critical patent/JP4451672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/282Applying non-metallic protective coatings for inhibiting the corrosion of the circuit, e.g. for preserving the solderability
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0215Metallic fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/121Metallo-organic compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は電子部品の接触抵抗の経時的増加を抑制する技術に関し、詳細には、はんだ接合部や電子端子接合部における接触抵抗の経時的増加を抑制する方法、及び該方法の実現に好適な繊維に関するものである。   The present invention relates to a technique for suppressing a time-dependent increase in contact resistance of an electronic component, and more specifically, a method for suppressing a time-dependent increase in contact resistance in a solder joint or an electronic terminal joint and a method suitable for realizing the method. It is about fiber.

従来から電子回路基板(プリント基板)と電子部品の接合に使用されている電気用はんだや電子部品の電極端子には鉛が含まれているが、該鉛は溶出して環境・人体へ影響を及ぼすことが問題となっていた。この様な問題を解決すべく、電気用はんだや電極端子に鉛を含まない材料、たとえばSn−Ag系やSn−Cu系などの鉛フリーはんだや電極端子が提案されている。ところが、AgやCuなどの金属は腐食し易いため短期間で接触抵抗が増加し、電子部品が故障し易くなるという問題が生じていた。   Conventionally, electrical solder used for joining electronic circuit boards (printed boards) and electronic components and electrode terminals of electronic components contain lead, but the lead elutes and affects the environment and the human body. It was a problem. In order to solve such problems, materials that do not contain lead in electrical solder and electrode terminals, for example, lead-free solder and electrode terminals such as Sn—Ag and Sn—Cu are proposed. However, since metals such as Ag and Cu are easily corroded, there is a problem that the contact resistance increases in a short period of time, and the electronic component is likely to fail.

こうした接触抵抗増加に起因する故障を防ぎ、電子部品に対する信頼性低下を防ぐため、雰囲気中の硫黄含有化合物対策が急務となっている。その一例として活性炭などの吸着性物質を使用し、雰囲気中の硫黄含有化合物を吸着除去する技術が提案されている(例えば特許文献1)。しかしながら、活性炭による吸着除去は確実性を欠き、特に雰囲気の湿度が低下すると、吸着した水分と共に被吸着物が放出されるという問題がある。
特開平05−159558号
In order to prevent failures due to such an increase in contact resistance and prevent a decrease in reliability of electronic components, measures for sulfur-containing compounds in the atmosphere are urgently needed. As an example, a technique for adsorbing and removing sulfur-containing compounds in the atmosphere using an adsorbent substance such as activated carbon has been proposed (for example, Patent Document 1). However, the adsorption removal by activated carbon lacks certainty, and there is a problem that the adsorbed material is released together with the adsorbed moisture, particularly when the humidity of the atmosphere is lowered.
JP 05-159558 A

本発明は上記事情に鑑みてなされたものであって、その目的は、各種装置における電子部品の接触抵抗の経時的増加を抑制する方法を提供すると共に、この様な方法に好適な繊維及び繊維製品を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for suppressing an increase in contact resistance of electronic components over time in various apparatuses, and fibers and fibers suitable for such a method. Is to provide products.

本発明は、電子部品を内蔵する装置内および/または該装置外に、硫黄含有化合物との反応性を有し、且つ水に難溶性の金属および/または金属化合物の微粒子が分散している繊維製品を配置することに要旨を有する電子部品の接触抵抗の経時的増加の抑制方法である。   The present invention relates to a fiber in which fine particles of a metal and / or metal compound which are reactive with a sulfur-containing compound and hardly soluble in water are dispersed inside and / or outside the device incorporating the electronic component. This is a method for suppressing an increase in the contact resistance of an electronic component over time, which has the gist of placing products.

本発明の好ましい一態様として、前記電子部品を内蔵する装置を実質的に密閉された空間内に設置し、該装置内および/または該装置外に配置する前記繊維製品に含まれる金属および/または該金属化合物の金属としての微粒子含有率が、(B×C/100)/A>0.008を満たすものであることが推奨される。(式中、Aは装置内に繊維製品を配置した場合は装置内の容積、また装置外に繊維製品を設置した場合は装置を配置した密閉空間の容積(m)、Bは繊維製品質量(g)、Cは該繊維製品に含まれる金属および/または該金属化合物の金属としての微粒子含有率(%)を表す)
また本発明は、繊維中に硫黄含有化合物との反応性を有し、且つ水に難溶性の金属および/または該金属の金属化合物の微粒子が分散していることに要旨を有する電子部品の接触抵抗の経時的増加抑制繊維である。
According to a preferred aspect of the present invention, the device containing the electronic component is installed in a substantially sealed space, and the metal contained in the textile product disposed in and / or outside the device and / or It is recommended that the content of fine particles of the metal compound as a metal satisfy (B × C / 100) / A> 0.008. (In the formula, A is the volume in the apparatus when the fiber product is arranged in the apparatus, and if the fiber product is installed outside the apparatus, the volume of the sealed space (m 3 ) in which the apparatus is arranged, and B is the mass of the fiber product. (G), C represents the fine particle content (%) as a metal and / or metal of the metal compound contained in the textile product)
Further, the present invention provides a contact of an electronic component having a gist that fine particles of a metal and / or metal compound of the metal having a reactivity with a sulfur-containing compound and dispersed in water are dispersed in a fiber. It is a fiber that suppresses increase in resistance over time.

前記金属および/または金属化合物として好ましいのは、Ag,Cu,Zn,Mn,Feよりなる群から選択される金属、およびこれらの金属の金属化合物の少なくとも1種である。   The metal and / or metal compound is preferably a metal selected from the group consisting of Ag, Cu, Zn, Mn, and Fe, and at least one metal compound of these metals.

また前記繊維は架橋構造を有し、且つ分子中にカルボキシル基を有する繊維であって、該カルボキシル基の少なくとも一部はカルボキシル基の塩として存在していることが望ましい。   Further, it is desirable that the fiber has a crosslinked structure and has a carboxyl group in the molecule, and at least a part of the carboxyl group exists as a salt of the carboxyl group.

本発明の繊維は、単独或いは他の繊維と組み合せて綿状、不織布状、織物状、紙状、もしくは編物状にした繊維製品として使用することもできる。   The fiber of the present invention can be used as a fiber product made into a cotton shape, a nonwoven fabric shape, a woven fabric shape, a paper shape, or a knitted shape alone or in combination with other fibers.

また前記金属および/または金属化合物が、全繊維成分中に金属として0.2質量%以上含まれていることが好ましい。   Moreover, it is preferable that the said metal and / or a metal compound are contained 0.2 mass% or more as a metal in all the fiber components.

本発明の方法は、各種装置内に設けられた電子部品の接触抵抗が経時的に増加して導電不良となるのを抑制するのに効果的である。また本発明の繊維は、Sn−Ag系、Sn−Ag−Cu系、Sn−Cu系、Sn−Ag−Bi系などの各種鉛フリーはんだ;Ag系めっき端子やCu系めっき端子;Ag系端子、Cu系端子などの電子部品接合部;Cu系プリント配線などにおける硫黄含有化合物による硫化腐食の防止に効果的であり、硫化腐食に起因する接触抵抗の経時的な増加の抑制に優れた効果を発揮する。   The method of the present invention is effective in suppressing the contact resistance of electronic components provided in various apparatuses from increasing with time and causing poor conductivity. The fibers of the present invention are Sn-Ag-based, Sn-Ag-Cu-based, Sn-Cu-based, Sn-Ag-Bi-based various lead-free solders; Ag-based plated terminals and Cu-based plated terminals; Ag-based terminals It is effective for preventing sulfur corrosion caused by sulfur-containing compounds in Cu-based printed wiring, etc., and for suppressing the increase in contact resistance over time due to sulfur corrosion. Demonstrate.

特に繊維分子内に、カルボキシル基の塩を導入したものは、優れた保湿性を有するので、繊維中の金属および/または金属化合物の作用と相俟ってより高い上記抑制効果を発揮する。   In particular, those in which a salt of a carboxyl group is introduced into the fiber molecule has excellent moisturizing properties, and therefore exhibits a higher suppression effect combined with the action of the metal and / or metal compound in the fiber.

本発明に係る繊維は、上記の如く繊維中に、硫黄含有化合物との反応性を有し、且つ水に難溶性の金属および/または金属化合物の微粒子が分散しているところに要旨を有する。   The fiber according to the present invention has a gist in that fine particles of metal and / or metal compound which are reactive with sulfur-containing compounds and hardly soluble in water are dispersed in the fiber as described above.

以下、プリント基板とICなどの電子部品をはんだで接合した接合部を代表例として本発明の繊維、及び該繊維を用いた接触抵抗の増加抑制方法について説明するが、本発明ははんだ接合部に限らず、電子端子(プラグ、ソケット)やプリント配線などの様に、銀、銅、真鍮などを含む材料で構成されている接合部の接触抵抗の増加抑制にも効果的である。   Hereinafter, the fiber of the present invention and a method for suppressing an increase in contact resistance using the fiber will be described as a representative example of a joint obtained by joining a printed circuit board and an electronic component such as an IC with solder. Not limited to this, it is also effective in suppressing an increase in contact resistance of a joint made of a material containing silver, copper, brass, or the like, such as an electronic terminal (plug, socket) or printed wiring.

本発明者らは、はんだ接合部に腐食が生じると接触抵抗が増加することを確認している。特に鉛の代替金属として汎用されているAgやCuなどの金属は、硫黄含有化合物と反応し易いため、鉛含有はんだ接合部に比べて鉛フリーはんだ接合部は短期間で接触抵抗値が増加し、導電不良を生じることがわかっている。本発明の繊維によって接合部の接触抵抗の増加が抑制される機構については、必ずしも明確となっていないが、上記接触抵抗の増加は、はんだ接合部表面に硫黄含有化合物を含んだ水分の結露によって該表面に低pHの酸化性環境が形成され、接合部を構成するAgやCuが硫化されることによって、接触抵抗が増加すると考えられることから、以下の様なメカニズムによるものと思われる。   The present inventors have confirmed that contact resistance increases when corrosion occurs in a solder joint. In particular, metals such as Ag and Cu, which are widely used as lead substitute metals, easily react with sulfur-containing compounds, so the contact resistance value of lead-free solder joints increases in a short period of time compared to lead-containing solder joints. It has been found that poor electrical conductivity occurs. The mechanism by which the increase in contact resistance of the joint is suppressed by the fiber of the present invention is not necessarily clear, but the increase in contact resistance is due to condensation of moisture containing sulfur-containing compounds on the solder joint surface. Since the contact resistance is considered to increase due to the formation of a low pH oxidizing environment on the surface and sulfuration of Ag and Cu constituting the joint, it is considered to be due to the following mechanism.

即ち、繊維中に微粒子状で分散(微分散)している硫黄含有化合物と反応性を有する金属および/または該金属化合物が、雰囲気に含まれるSOxや硫化水素(HS)、メチルメルカプタン(CH−SH)等の硫黄含有化合物と化学反応を起こすことで、雰囲気中の硫黄含有化合物の濃度が低減するため、はんだ接合部に含まれているAg等の硫化腐食が抑えられ、接触抵抗の増加が抑制されると考えられている。 That is, a metal having reactivity with a sulfur-containing compound dispersed finely in a fiber (and / or fine dispersion) and / or the metal compound contains SOx, hydrogen sulfide (H 2 S), methyl mercaptan ( By causing a chemical reaction with sulfur-containing compounds such as CH 3 —SH), the concentration of sulfur-containing compounds in the atmosphere is reduced, so that sulfur corrosion such as Ag contained in solder joints is suppressed, and contact resistance It is believed that the increase in

特に繊維中の金属および/または金属化合物の微粒子は、出来るだけ小さくて、表面積の大きいものであれば、硫黄含有化合物との反応性も高く、接触抵抗の増加抑制に効果的である。したがって該微粒子の大きさは好ましくは1μm以下であることが推奨される。またこの様な微粒子が繊維中に万遍なく分散していれば、硫黄含有化合物との反応性が増すことから、出来るだけ均一な密度となる様に繊維中に分散していることが望ましい。   In particular, if the metal and / or metal compound fine particles in the fiber are as small as possible and have a large surface area, the reactivity with the sulfur-containing compound is high, and this is effective in suppressing an increase in contact resistance. Therefore, it is recommended that the size of the fine particles is preferably 1 μm or less. If such fine particles are uniformly dispersed in the fiber, the reactivity with the sulfur-containing compound is increased. Therefore, it is desirable that the fine particles are dispersed in the fiber so as to have a uniform density as much as possible.

繊維に含有させる金属および/または金属化合物の微粒子は、多湿環境下で使用しても溶解して消失しない様に、水に難溶性であることが望ましい。水に難溶性とは、常温下で水に対して実質的に不溶性であることをいい、通常の使用条件(常温、常圧)で、水と共存させても繊維から金属および/または金属化合物が実質的に溶解することがないことをいう。実質的に溶解しないとは、還元反応により金属を析出するもの、或いは溶解度積定数が10−5以下であることをいう。 The fine particles of metal and / or metal compound contained in the fiber are desirably hardly soluble in water so that they do not dissolve and disappear even when used in a humid environment. Slightly soluble in water means that it is substantially insoluble in water at room temperature. Under normal conditions of use (normal temperature and normal pressure), even if it coexists with water, it is a metal and / or metal compound from fibers. Is not substantially dissolved. “Not substantially dissolved” means that a metal is precipitated by a reduction reaction, or the solubility product constant is 10 −5 or less.

したがって本発明の繊維に含有させる金属および/または金属化合物は、少なくとも硫黄含有化合物と反応性を有すると共に、水に対して不溶性であれば、いずれも使用可能である。この様な金属および/または金属化合物としては、銀、銅、亜鉛、マンガン、鉄、ニッケル、アルミニウム、錫、モリブデン、マグネシウムなどの金属、或いはこれらの金属化合物(酸化物、水酸化物、塩化物、臭化物、ヨウ化物、炭酸塩、硫酸塩、リン酸塩、塩素酸塩、臭素酸塩、ヨウ素酸塩、亜硫酸塩、チオ硫酸塩、チオシアン酸塩、ピロリン酸塩、ポリリン酸塩、珪酸塩、アルミン酸塩、タングステン酸塩、バナジン酸塩、モリブデン酸塩、アンチモン酸塩、安息香酸塩、ジカルボン酸塩など)が例示され、これらは単独で使用し得る他、必要により2種以上を適宜組合せて使用できる。これらの中でも特に優れた効果を示すのは銀、銅、亜鉛、マンガン、鉄、及びこれらの金属化合物であり、もっとも好ましいのは、銀、及び銀化合物である。   Therefore, any metal and / or metal compound to be contained in the fiber of the present invention can be used as long as it has reactivity with at least a sulfur-containing compound and is insoluble in water. Examples of such metals and / or metal compounds include metals such as silver, copper, zinc, manganese, iron, nickel, aluminum, tin, molybdenum, and magnesium, or metal compounds thereof (oxides, hydroxides, chlorides). , Bromide, iodide, carbonate, sulfate, phosphate, chlorate, bromate, iodate, sulfite, thiosulfate, thiocyanate, pyrophosphate, polyphosphate, silicate, Examples include aluminates, tungstates, vanadates, molybdates, antimonates, benzoates, dicarboxylates, etc., which can be used alone or in combination of two or more as required. Can be used. Among these, silver, copper, zinc, manganese, iron, and their metal compounds exhibit particularly excellent effects, and silver and silver compounds are most preferable.

水に難溶性の金属や金属化合物の含有率(金属としての含有率、以下同じ)は特に限定されないが、水に難溶性の金属や金属化合物が繊維の質量に対して0.2質量%以上含まれていることが接触抵抗の増加抑制効果を得る上で望ましい。より好ましくは0.4質量%以上である。含有量が多い程、高い接触抵抗の増加抑制効果を発揮するので望ましいが、含有量が高くなるとコストも高くなり、また繊維物性が悪くなる恐れもあることから、好ましくは10質量%以下、より好ましくは5質量%以下であることが望ましい。   The content of the metal or metal compound that is hardly soluble in water (content as metal, hereinafter the same) is not particularly limited, but the metal or metal compound that is hardly soluble in water is 0.2% by mass or more based on the mass of the fiber. It is desirable that it is contained in order to obtain an effect of suppressing increase in contact resistance. More preferably, it is 0.4 mass% or more. A higher content is desirable because it exhibits an effect of suppressing the increase in high contact resistance. However, the higher the content, the higher the cost, and the fiber physical properties may be deteriorated. Preferably it is 5 mass% or less.

尚、繊維中の該金属、及び金属化合物の含有量は、該繊維を硝酸、硫酸、過塩素酸の混合液(分解状態に応じて濃度を調整する)で湿式分解した後、原子吸光法(島津製作所製:原子吸光分光度計AA−6800)によって測定された値から算出する。例えば繊維中の銀および/または銀化合物の含有量の測定は、該繊維を混合液(98%硫酸1:60%硝酸3〜5:60%過塩素酸1〜2)を用いて湿式分解した後に、原子吸光法によって測定・算出することができる。   The content of the metal and the metal compound in the fiber is determined by the atomic absorption method after the fiber is wet-decomposed with a mixed solution of nitric acid, sulfuric acid and perchloric acid (concentration is adjusted according to the decomposition state). Shimadzu Corporation: atomic absorption spectrophotometer AA-6800). For example, for the measurement of the content of silver and / or silver compound in the fiber, the fiber was wet-decomposed using a mixed solution (98% sulfuric acid 1: 60% nitric acid 3-5: 60% perchloric acid 1-2). Later, it can be measured and calculated by atomic absorption.

この様な金属および/または金属化合物を含有させる繊維としては、特に限定されないが、繊維に金属および/または金属化合物の微粒子を含有させやすく、しかも含有させた金属および/または金属化合物の保持性に優れている化学繊維が望ましい。化学繊維としては、例えばレーヨン、ポリノジック、キュプラ、リヨセルなどの再生繊維;酢酸セルロース繊維、プロミックスなどの半合成繊維;ポリアミド系繊維;ポリエステル系繊維;アクリル系繊維;ポリアクリル酸、ポリアクリル酸ナトリウム塩などのポリアクリル酸系繊維:ポリオレフィン系繊維;ビニルアルコール系繊維;ポリ塩化ビニル系繊維;ポリウレタン系繊維;ポリオキシメチレン系繊維;ポリテトラフルオロエチレン系繊維;複素環高分子系繊維が例示される。これらの繊維のうち、金属および/または金属化合物を含有させることが容易で、しかも保持性にも優れているアクリル系繊維またはポリアクリル酸系繊維が好ましく、より好ましくは繊維分子中にカルボキシル基を有するアクリル系繊維、またはポリアクリル酸系繊維である。   The fiber containing such a metal and / or metal compound is not particularly limited. However, the fiber can easily contain fine particles of the metal and / or metal compound, and the retention property of the contained metal and / or metal compound can be improved. Excellent chemical fibers are desirable. Examples of chemical fibers include regenerated fibers such as rayon, polynosic, cupra and lyocell; semi-synthetic fibers such as cellulose acetate fiber and promix; polyamide fibers; polyester fibers; acrylic fibers; polyacrylic acid and sodium polyacrylate Examples include polyacrylic fiber such as salt: polyolefin fiber; vinyl alcohol fiber; polyvinyl chloride fiber; polyurethane fiber; polyoxymethylene fiber; polytetrafluoroethylene fiber; The Of these fibers, an acrylic fiber or a polyacrylic acid fiber that is easy to contain a metal and / or a metal compound and is excellent in retention is preferred, and more preferably a carboxyl group is contained in the fiber molecule. Acrylic fiber or polyacrylic acid fiber.

また繊維中の金属および/または金属化合物は、水が存在すると硫黄含有化合物との反応性が向上し、より高レベルの接触抵抗の増加抑制効果を発揮する。したがって、上記繊維の中でも保湿性を有する繊維が好ましい。この様な保湿性は、繊維自体の物性として元々有するものであってもよいし、或いは繊維に各種処理を施して保湿性を付与、或いは向上させた繊維でもよい。例えば、架橋アクリル系繊維を基本骨格とし、該繊維分子中の官能基の少なくとも一部がカルボキシル基の塩、特に好ましくはアルカリ金属塩であるものである。カルボキシル基の塩、特にアルカリ金属塩は優れた保湿作用を有するので、該作用によって、繊維は一層高い保湿性を有するので好ましい。   In addition, the presence of water in the metal and / or metal compound in the fiber improves the reactivity with the sulfur-containing compound, and exhibits a higher level of contact resistance increase suppression effect. Accordingly, among the above fibers, fibers having moisture retention are preferable. Such moisturizing property may be originally possessed as a physical property of the fiber itself, or may be a fiber that has been given or improved with various treatments. For example, a cross-linked acrylic fiber is used as a basic skeleton, and at least a part of functional groups in the fiber molecule is a carboxyl group salt, particularly preferably an alkali metal salt. Since a salt of a carboxyl group, particularly an alkali metal salt, has an excellent moisturizing action, the fiber is preferred because of its higher moisturizing ability.

上記の様に繊維が保湿性を有していると、該保湿作用によって、HS等の硫黄含有化合物が繊維に吸収されて繊維中の金属および/または金属化合物の反応が促進される。また水分が繊維に吸湿されることによって、雰囲気中の湿度が低下し、プリント基板に水滴が付着した際に問題となるイオンマイグレーション現象の発生が抑制され、絶縁劣化防止にも極めて有効である。 As described above, when the fiber has moisture retention, the moisture retention action causes the sulfur-containing compound such as H 2 S to be absorbed by the fiber and promotes the reaction of the metal and / or metal compound in the fiber. Further, moisture is absorbed by the fibers, so that the humidity in the atmosphere is lowered, and the occurrence of ion migration phenomenon that becomes a problem when water droplets adhere to the printed circuit board is suppressed, which is extremely effective in preventing insulation deterioration.

したがって、繊維中に硫黄含有化合物との反応性を有し、且つ水に不溶性の金属および/または金属化合物が微分散していると共に、高い保湿性を有する繊維としては、架橋構造を有すると共に繊維分子中にカルボキシル基を有するものが望ましく、生産性や骨格繊維としての強度特性、量産性、コストなどを考慮して最も好ましいのは、任意の方法で架橋構造を与えたアクリル系繊維、中でも、架橋アクリル系繊維を部分加水分解することによってカルボキシル基を導入した繊維である。   Therefore, a fiber having reactivity with a sulfur-containing compound and insoluble metal and / or metal compound in water and finely dispersed in the fiber, and a fiber having high moisture retention has a cross-linked structure and a fiber. Those having a carboxyl group in the molecule are desirable, and the most preferable in consideration of productivity and strength characteristics as a skeletal fiber, mass productivity, cost, etc. are acrylic fibers that have been given a crosslinked structure by any method, It is a fiber having a carboxyl group introduced by partially hydrolyzing a cross-linked acrylic fiber.

該繊維に与えられる架橋構造は、カルボキシル基が導入された状態で繊維として適度の強度を確保しつつ、水に溶解することがなく、しかも、当該繊維に、後述するような方法で難溶性の金属および/または金属化合物を含有させる際に、物理的、化学的に劣化しない特性を与えるためであり、共有結合による架橋、イオン架橋、キレート架橋などが全て包含される。架橋を導入する方法についても特に制限されないが、繊維状に加工することの必要上、好ましくは架橋導入前の状態で常法により紡糸・延伸などで繊維状に加工した後に架橋を導入することが望ましい。   The cross-linked structure given to the fiber is not soluble in water while ensuring an appropriate strength as a fiber in a state where a carboxyl group is introduced, and is hardly soluble in the fiber by a method described later. This is because, when a metal and / or metal compound is contained, it gives properties that are not physically and chemically deteriorated, and includes all of covalent crosslinking, ionic crosslinking, chelate crosslinking, and the like. The method for introducing the crosslinking is not particularly limited, but it is necessary to process into a fiber shape, and it is preferable to introduce the crosslinking after processing into a fiber shape by spinning / stretching or the like by a conventional method in a state before introducing the crosslinking. desirable.

尚、繊維素材としてアクリロニトリル系重合体を使用し、これにヒドラジン等による架橋構造を導入したものは、繊維特性が良好であるばかりでなく、後述する様な方法で難溶性の金属および/または金属化合物よりなる微粒子の含有量を容易に高めることができ、耐熱性も良好でコスト的にも廉価に得ることができるので、実用性の高いものとして推奨される。   In addition, when an acrylonitrile-based polymer is used as a fiber material and a cross-linked structure such as hydrazine is introduced into this, not only the fiber characteristics are good, but also a hardly soluble metal and / or metal by a method described later. Since the content of fine particles made of a compound can be easily increased, good heat resistance and low cost can be obtained, it is recommended as a highly practical one.

架橋構造を有する該繊維は、当該繊維に高い保湿性を与えるため、カルボキシル基の少なくとも一部はカルボキシル基の塩、例えばアルカリ金属やアルカリ土類金属もしくはアンモニア等の塩として存在することが望ましく、特にナトリウムやカリウムなどのアルカリ金属塩として存在するものは、少ない金属塩の置換量で繊維に高い保湿性を与えることができるので好ましい。   In order that the fiber having a crosslinked structure gives high moisture retention to the fiber, it is desirable that at least a part of the carboxyl group exists as a salt of a carboxyl group, such as a salt of an alkali metal, an alkaline earth metal, or ammonia, In particular, those existing as alkali metal salts such as sodium and potassium are preferred because high moisture retention can be imparted to the fiber with a small amount of metal salt substitution.

カルボキシル基の導入は、アクリロニトリル系繊維やアクリル酸エステル系繊維の場合、通常は繊維状に加工し架橋を導入した後でニトリル基や酸エステル基を加水分解することによって行うことができる。カルボキシル基の導入量は、繊維に与える保湿性の程度に応じて、また、後述するアルカリ金属などの塩の導入量も考慮して任意に決めればよい。より優れた接触抵抗の増加を抑制する効果を得る上で好ましい導入量は、カルボキシル基として繊維1g当たり好ましくは1mmol以上、より好ましくは3mmol以上であり、好ましくは10mmol以下である。また該カルボキシル基の少なくとも60mol%以上、より好ましくは80mol%以上が前記アルカリ金属などで中和されていることが望ましい。   In the case of acrylonitrile fiber or acrylate fiber, the introduction of the carboxyl group can be usually carried out by hydrolyzing the nitrile group or acid ester group after processing into a fiber and introducing cross-linking. The introduction amount of the carboxyl group may be arbitrarily determined according to the degree of moisture retention imparted to the fiber and also taking into account the introduction amount of a salt such as an alkali metal described later. A preferable introduction amount for obtaining a more excellent effect of suppressing an increase in contact resistance is preferably 1 mmol or more, more preferably 3 mmol or more, and preferably 10 mmol or less per 1 g of fiber as a carboxyl group. Further, it is desirable that at least 60 mol% or more, more preferably 80 mol% or more of the carboxyl group is neutralized with the alkali metal or the like.

尚、金属および/または金属化合物の微粒子を含有する繊維の形態としては、特に限定されない。硫黄含有化合物との反応性をより一層向上させる上では、単位重量当たりの表面積を極力大きくし、また繊維内部の金属および/または金属化合物も有効に活用するという意味から、多孔質繊維であることが望ましく、特に、1μm程度以下の細孔を有し、それらが連通して繊維表面にまで連続している多孔質繊維が好ましい。   In addition, the form of the fiber containing fine particles of metal and / or metal compound is not particularly limited. In order to further improve the reactivity with the sulfur-containing compound, the surface area per unit weight should be as large as possible, and the metal and / or metal compound inside the fiber should be used effectively, so that the fiber should be porous. In particular, porous fibers having pores of about 1 μm or less, which are continuous to the fiber surface are preferable.

本発明の繊維の製造方法としては特に限定されず、例えば、繊維を構成する重合体に金属および/または金属化合物を混合し紡糸して繊維状に加工することによって、硫黄含有化合物との反応性を有し、且つ水に難溶性の金属および/または該金属の金属化合物の微粒子が分散している本発明の繊維を製造できる。   The method for producing the fiber of the present invention is not particularly limited. For example, by reacting a polymer constituting the fiber with a metal and / or a metal compound and spinning it into a fiber, the reactivity with the sulfur-containing compound is achieved. And a fiber of the present invention in which fine particles of a metal and / or metal compound of the metal dispersed therein are dispersed.

また上記保湿性を有すると共に、水に難溶性の金属および/または金属化合物を含有せしめた繊維は、繊維分子内のカルボキシル基に前記金属を結合させた後、化学反応によって該金属をカルボキシル基から離脱させると共に、当該金属および/または金属化合物を生成させて繊維に沈着させる方法等によって製造できる。   The fiber having the above-mentioned moisturizing property and hardly soluble in water and / or a metal compound is bonded to the carboxyl group in the fiber molecule, and then the metal is removed from the carboxyl group by a chemical reaction. It can be produced by, for example, a method in which the metal and / or metal compound is produced and deposited on the fiber while being detached.

以下、架橋アクリル系繊維に銀(又は銅)化合物を含有させる製法について具体的に説明する。   Hereafter, the manufacturing method which makes a crosslinked acrylic fiber contain a silver (or copper) compound is demonstrated concretely.

架橋アクリル系繊維は公知の方法によって製造できる。例えばアクリル系繊維を、ヒドラジン系化合物などによって架橋導入処理を行う。この架橋導入処理によって当該繊維はもはや水や一般的な溶剤には溶解しないものとなるので、紡糸の如き繊維状への加工は該架橋導入処理の前に行っておく必要がある。   Cross-linked acrylic fiber can be produced by a known method. For example, the acrylic fiber is subjected to a cross-linking introduction treatment with a hydrazine compound or the like. Since the fiber is no longer dissolved in water or a general solvent by this cross-linking introduction treatment, processing into a fiber form such as spinning needs to be performed before the cross-linking introduction treatment.

次いで、該架橋アクリル系繊維を酸またはアルカリで加水分解すると、架橋アクリル繊維分子中のニトリル基や酸エステル基は加水分解され、酸で処理した場合はH型のカルボキシル基が生成し、アルカリで処理した場合はアルカリ金属塩型のカルボキシル基が生成する。加水分解を進めるにつれて生成するカルボキシル基の量は増大するが、次工程で銀(または銅)あるいはそれらの化合物の含有量を効率よく高めるには、カルボキシル基としての生成量で好ましくは1mmol/g以上、より好ましくは3mmol/g以上であって、好ましくは10mmol/g以下、より好ましくは8mmol/g以下とすることが望ましい。ちなみに、1mmol/g程度以上とすることによって、銀(または銅)、あるいはそれらの化合物の含有量を十分に高めることができ、更に優れた接触抵抗の増加を抑制する効果が得られる。また10mmol/gを超えてカルボシキル化しても接触抵抗の増加を抑制する効果を発揮するが、繊維物性が悪くなる恐れが生じてくる。   Next, when the crosslinked acrylic fiber is hydrolyzed with an acid or alkali, the nitrile group or acid ester group in the crosslinked acrylic fiber molecule is hydrolyzed, and when treated with an acid, an H-type carboxyl group is formed, In the case of treatment, an alkali metal salt type carboxyl group is generated. The amount of carboxyl groups produced increases as the hydrolysis proceeds, but in order to efficiently increase the content of silver (or copper) or their compounds in the next step, the amount produced as carboxyl groups is preferably 1 mmol / g. As described above, it is more preferably 3 mmol / g or more, preferably 10 mmol / g or less, more preferably 8 mmol / g or less. Incidentally, by setting it to about 1 mmol / g or more, the content of silver (or copper) or a compound thereof can be sufficiently increased, and a further excellent effect of suppressing an increase in contact resistance can be obtained. Moreover, even if it exceeds 10 mmol / g, it will exhibit the effect which suppresses the increase in contact resistance, but the possibility that a fiber physical property may worsen arises.

かくしてカルボキシル基またはその金属塩が導入された架橋アクリル系繊維を、銀イオン水溶液(または銅イオン水溶液)で処理することにより、繊維分子中のカルボキシル基に銀イオン(または銅イオン)を結合させる。   Thus, by treating the crosslinked acrylic fiber into which the carboxyl group or metal salt thereof has been introduced with a silver ion aqueous solution (or copper ion aqueous solution), silver ions (or copper ions) are bonded to the carboxyl groups in the fiber molecules.

そして、金属銀や金属銅を含有せしめた架橋アクリル系繊維(すなわち、接触抵抗の増加を抑制する繊維)を製造する場合は、カルボキシル基に結合した銀イオン(または銅イオン)を還元することによって得ることができる。銀(または銅)の化合物を含む架橋アクリル系繊維を製造する場合は、銀イオン(または銅イオン)と結合して難溶性の化合物を析出する化合物を含む水溶液で処理することによって得ることができる。   And when manufacturing the cross-linked acrylic fiber (namely, the fiber which suppresses the increase in contact resistance) which contained metallic silver and metallic copper, by reducing the silver ion (or copper ion) couple | bonded with the carboxyl group, Obtainable. In the case of producing a crosslinked acrylic fiber containing a silver (or copper) compound, it can be obtained by treatment with an aqueous solution containing a compound that binds to silver ions (or copper ions) and precipitates a hardly soluble compound. .

このとき採用される還元法としては、金属イオンを金属に還元し得る方法であれば特に制限されず、例えば、金属イオンに電子を与える化合物、具体的には水素化ホウ素ナトリウム、ヒドラジン、ホルムアルデヒド、アルデヒド基を有する化合物、硫酸ヒドラジン、青酸およびその塩、次亜硫酸およびその塩、チオ硫酸、過酸化水素、ロッシェル塩、次亜リン酸やその塩などの還元剤を用いて水溶液中で還元する方法;水素や一酸化炭素などの還元性雰囲気中で熱処理する方法;光照射による方法、あるいはこれらを適宜組合せた方法などを挙げることができる。   The reduction method employed at this time is not particularly limited as long as it is a method capable of reducing a metal ion to a metal. For example, a compound that gives an electron to a metal ion, specifically sodium borohydride, hydrazine, formaldehyde, Method of reducing in an aqueous solution using a reducing agent such as a compound having an aldehyde group, hydrazine sulfate, hydrocyanic acid and salts thereof, hyposulfite and salts thereof, thiosulfuric acid, hydrogen peroxide, Rochelle salt, hypophosphorous acid and salts thereof A method of heat-treating in a reducing atmosphere such as hydrogen or carbon monoxide; a method by light irradiation, or a combination of these as appropriate.

なお水溶液中で還元反応を行うに当っては、反応系に水酸化ナトリウム、水酸化アンモニウムなどの塩基性化合物、無機酸、有機酸などのpH調整剤;クエン酸ナトリウムなどのオキシカルボン酸化合物、ホウ酸や炭酸などの無機酸、有機酸・無機酸のアルカリ塩などの緩衝剤;フッ化物などの促進剤;塩化物や臭素化物、硝酸塩などの安定剤;界面活性剤などを適宜含有させることも勿論有効である。   In carrying out the reduction reaction in an aqueous solution, the reaction system includes basic compounds such as sodium hydroxide and ammonium hydroxide, pH adjusters such as inorganic acids and organic acids; oxycarboxylic acid compounds such as sodium citrate, Buffering agents such as inorganic acids such as boric acid and carbonic acid, alkali salts of organic acids and inorganic acids; accelerators such as fluorides; stabilizers such as chlorides, bromides and nitrates; and surfactants as appropriate Of course, it is also effective.

銀(または銅)イオンと結合して難溶性の化合物を析出し得る化合物の種類も特に制限的でなく、例えば酸化物、水酸化物、塩化物、臭化物、ヨウ化物、炭酸塩、硫酸塩、リン酸塩、塩素酸塩、臭素酸塩、ヨウ素酸塩、亜硫酸塩、チオ硫酸塩、チオシアン酸塩、ピロリン酸塩、ポリリン酸塩、珪酸塩、アルミン酸塩、タングステン酸塩、バナジン酸塩、モリブデン酸塩、アンチモン酸塩、安息香酸塩、ジカルボン酸塩などが含まれる。   The type of compound that can be combined with silver (or copper) ions to precipitate a poorly soluble compound is not particularly limited. For example, oxides, hydroxides, chlorides, bromides, iodides, carbonates, sulfates, Phosphate, chlorate, bromate, iodate, sulfite, thiosulfate, thiocyanate, pyrophosphate, polyphosphate, silicate, aluminate, tungstate, vanadate, Molybdate, antimonate, benzoate, dicarboxylate and the like are included.

上記反応によって生成する銀(または銅)若しくはそれらの化合物は、上記反応で繊維分子中のカルボキシル基から金属イオンとして遊離すると同時に微細な不溶物として繊維分子の近傍に生成し沈着する。従って、これを水洗し乾燥すると、繊維の内部や繊維外面に金属や金属化合物が極めて微細な粒状物として均一に沈着したものを得ることができる。すなわち、該架橋繊維中に沈着した状態で含まれる銀(または銅)もしくはその化合物は、非常に微細で大きな表面積(即ち、硫黄含有化合物との反応界面)を持った状態で架橋繊維中に存在しているので、該架橋繊維を硫黄含有化合物が存在する雰囲気中に曝すと、微細粒状の銀(または銅)もしくはそれらの化合物は速やかに該硫黄含有化合物と反応する。更に該繊維をアルカリ中和処理(例えば苛性ソーダ等によってpHを調整したアルカリ溶液に浸漬する処理)することによって、カルボキシル基がアルカリ金属で中和されて繊維に保湿性を付与できる。この様に繊維分子中のカルボン酸塩の様な保湿性を有する官能基の共存によって、雰囲気中の水分が捕捉されるため、該水分と硫黄含有化合物との共存によって、銀(または銅)もしくはそれらの金属化合物との反応が更に促進される。したがって雰囲気中の湿度・硫黄含有化合物の濃度を低減でき、はんだ接合部の硫化を抑制できるだけでなく、イオンマイグレーション現象の発生も抑えることができるので望ましい。   Silver (or copper) or a compound thereof generated by the above reaction is released as a metal ion from a carboxyl group in the fiber molecule by the above reaction, and at the same time, is generated and deposited in the vicinity of the fiber molecule as a fine insoluble matter. Therefore, when this is washed with water and dried, it is possible to obtain a product in which the metal or metal compound is uniformly deposited as extremely fine particles inside or outside the fiber. That is, silver (or copper) or a compound thereof contained in the crosslinked fiber is present in the crosslinked fiber in a very fine and large surface area (that is, a reaction interface with the sulfur-containing compound). Therefore, when the crosslinked fiber is exposed to an atmosphere in which a sulfur-containing compound is present, fine granular silver (or copper) or a compound thereof reacts with the sulfur-containing compound quickly. Further, by subjecting the fiber to an alkali neutralization treatment (treatment of immersing in an alkaline solution adjusted in pH with caustic soda or the like), the carboxyl group can be neutralized with an alkali metal to impart moisture retention to the fiber. In this way, moisture in the atmosphere is trapped by the coexistence of a functional group having moisture retention such as a carboxylate in the fiber molecule. Therefore, by coexistence of the moisture and the sulfur-containing compound, silver (or copper) or The reaction with these metal compounds is further promoted. Therefore, it is desirable because the humidity and the concentration of the sulfur-containing compound in the atmosphere can be reduced, and not only the sulfidation of the solder joint can be suppressed, but also the occurrence of the ion migration phenomenon can be suppressed.

本発明の繊維は上記の様な特徴を有しているが、その外観形状については様々な形態を取ることができる。例えば紡績糸、ヤーン(ラップヤーンを含む)、フィラメント、不織布、織物、編物、シート状、マット状、綿状、紙状、積層体など任意の繊維製品として使用できる。また、上記本発明の繊維を単独で使用し得る他、必要に応じて他の天然繊維や合成繊維、半合成繊維などと混合(混紡、混繊を含む)して上記繊維製品とすることも勿論可能である。   Although the fiber of the present invention has the above-described characteristics, it can take various forms as to its external shape. For example, it can be used as an arbitrary fiber product such as spun yarn, yarn (including wrap yarn), filament, nonwoven fabric, woven fabric, knitted fabric, sheet shape, mat shape, cotton shape, paper shape, and laminate. In addition to being able to use the fiber of the present invention alone, it may be mixed with other natural fibers, synthetic fibers, semi-synthetic fibers, etc. (including mixed spinning and mixed fibers) as necessary to obtain the above fiber products. Of course it is possible.

即ち、前記金属および/または金属化合物を有する繊維、更には保湿性を有するカルボン酸塩と前記金属および/または金属化合物が共存する架橋構造の繊維は、他の繊維と混合して繊維製品としても、優れた接触抵抗の増加抑制効果を発揮する。   That is, the fiber having the metal and / or metal compound, and the fiber having a crosslinked structure in which the carboxylate having moisture retention and the metal and / or metal compound coexist can be mixed with other fibers as a fiber product. Excellent contact resistance increase suppression effect.

尚、本発明の金属および/または金属化合物を含有する繊維と他の繊維を混合して使用する場合、繊維製品の接触抵抗の増加抑制効果を高めるために、全繊維成分中の前記金属および/または金属化合物の含有量を調整することが好ましい。   In addition, when mixing and using the fiber containing the metal of this invention and / or a metal compound, and another fiber, in order to raise the increase inhibitory effect of the contact resistance of a textile product, the said metal in all fiber components and / or Or it is preferable to adjust content of a metal compound.

本発明の繊維製品を、電子部品を内蔵する装置内に配置する場合、全繊維成分中、前記金属および/または金属化合物が好ましくは0.2質量%以上、より好ましくは0.4質量%以上、更に好ましくは0.8質量%以上含まれていることが推奨される。尚、上限は特に限定されないが、強度等の物性が悪くなる恐れがあるので、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは2質量%以下であることが推奨される。   When the fiber product of the present invention is arranged in an apparatus incorporating an electronic component, the metal and / or metal compound is preferably 0.2% by mass or more, more preferably 0.4% by mass or more, in all fiber components. Further, it is recommended that the content is 0.8% by mass or more. Although the upper limit is not particularly limited, it is recommended that the upper limit is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 2% by mass or less because physical properties such as strength may be deteriorated. .

また上記金属および/または該金属化合物の金属としての微粒子含有量は繊維製品を装置内および/または装置外に配置する場合、装置内容積および/または装置を設置する室内容積(実質的に密閉された空間)との関係で下記要件を満たす様に適宜調整することが、該装置内の電子部品の接触抵抗の増加抑制効果を得る上で望ましい。即ち、前記電子部品を内蔵する装置を実質的に密閉された空間に設置し、該装置内および/または該装置外に配置する前記繊維製品に含まれる金属および/または該金属化合物の微粒子含有率が、(B×C/100)/A>0.008(式中、Aは装置内に繊維製品を配置した場合は装置内の容積、また装置外に繊維製品を配置した場合は装置を設置した密閉空間内の容積(m)、Bは繊維製品質量(g)、Cは該繊維製品に含まれる金属および/または該金属化合物の金属としての微粒子含有率(%)を表す)を満たすことが望ましい。より好ましくは0.03以上、更に好ましくは0.1以上である。一方、含有率を高くし過ぎると効果に対するコストが高くなることから、好ましくは10以下、より好ましくは5以下、更に好ましくは1以下である。 In addition, the fine particle content of the metal and / or the metal compound as a metal is the volume inside the device and / or the room volume (substantially sealed) when the fiber product is placed inside and / or outside the device. In order to obtain the effect of suppressing the increase in contact resistance of the electronic components in the device, it is desirable to appropriately adjust so as to satisfy the following requirements in relation to the space). That is, the device containing the electronic component is installed in a substantially sealed space, and the fine particles content of the metal and / or the metal compound contained in the fiber product disposed inside and / or outside the device. However, (B × C / 100) / A> 0.008 (where A is the volume inside the device when the fiber product is placed inside the device, and the device is placed when the fiber product is placed outside the device. The volume in the enclosed space (m 3 ), B is the mass of the fiber product (g), and C is the metal contained in the fiber product and / or the fine particle content (%) as the metal of the metal compound) It is desirable. More preferably, it is 0.03 or more, More preferably, it is 0.1 or more. On the other hand, if the content is increased too much, the cost for the effect increases, so it is preferably 10 or less, more preferably 5 or less, and even more preferably 1 or less.

以下、本発明の繊維(繊維製品を含む)を用いて接触抵抗の増加を抑制する方法について説明するが、下記方法に限定されない。   Hereinafter, although the method of suppressing the increase in contact resistance using the fiber (including the fiber product) of the present invention will be described, it is not limited to the following method.

本発明の繊維は、基本的に電子部品を内蔵する装置内および/または装置外に配置すればよい。本発明の繊維を装置内に装入しておけば、該装置内の雰囲気に含まれる硫黄含有化合物が本発明の繊維の上記作用によって除去乃至低減される。また装置外に配置した場合であっても、装置外の雰囲気中の硫黄含有化合物濃度を除去乃至低減できることから、該装置内に侵入する硫黄含有化合物含有量を除去乃至低減できるため、接触抵抗の増加を抑制する効果を発揮する。勿論、本発明の繊維を装置内/外に配置した場合は、相乗効果によって、より優れた効果が得られる。繊維を装置外に設置する場合、装置内外の雰囲気中の硫黄化合物含有量を効果的に除去乃至低減させるには、該装置を実質的に密閉された空間内(例えば、四方上下が壁で囲われており、窓や扉が設置されている部屋や、輸送用コンテナ、ダンボール、密封パッケージなどの様に外部と実質的に遮断されている空間)に設置し、上述の如く、該装置外に配置する繊維製品に含まれる金属および/または該金属化合物の金属としての微粒子含有率が、(B×C/100)/A>0.008を満たすことが望ましい。   What is necessary is just to arrange | position the fiber of this invention in the apparatus which contains an electronic component fundamentally, and / or the outside of an apparatus. If the fiber of the present invention is charged in the apparatus, the sulfur-containing compound contained in the atmosphere in the apparatus is removed or reduced by the above action of the fiber of the present invention. In addition, even when it is arranged outside the apparatus, the concentration of sulfur-containing compounds in the atmosphere outside the apparatus can be removed or reduced, so the content of sulfur-containing compounds entering the apparatus can be removed or reduced, so that the contact resistance is reduced. Demonstrate the effect of suppressing the increase. Of course, when the fiber of the present invention is arranged inside / outside the apparatus, a more excellent effect can be obtained by a synergistic effect. When the fiber is installed outside the apparatus, in order to effectively remove or reduce the sulfur compound content in the atmosphere inside and outside the apparatus, the apparatus is placed in a substantially sealed space (for example, the upper and lower sides are surrounded by walls). Installed in a room where windows and doors are installed, and in spaces that are substantially isolated from the outside, such as shipping containers, cardboard, and sealed packages). It is desirable that the fine particle content of the metal and / or metal compound contained in the fiber product to be arranged satisfy (B × C / 100) / A> 0.008.

尚、上述の如く、本発明の繊維が保湿性を有していれば、更に優れた硫黄含有化合物の除去乃至低減効果を発揮するので望ましい。   In addition, as described above, it is desirable that the fiber of the present invention has moisture retention because it exhibits a further excellent removal or reduction effect of the sulfur-containing compound.

本発明の繊維、或いは該繊維を含む繊維製品の配置場所は特に限定されない。例えば装置の換気口近傍や、保護対象である電子部品近傍に配置することも好ましい。また硫黄含有化合物は空気よりも重いことから、本発明の繊維を装置の下側に設けることも望ましい。   The arrangement | positioning place of the fiber of this invention or the textiles containing this fiber is not specifically limited. For example, it is also preferable to arrange in the vicinity of the vent of the device or in the vicinity of the electronic component to be protected. Also, since sulfur-containing compounds are heavier than air, it is also desirable to provide the fibers of the present invention on the underside of the device.

本発明の対象となる電子部品を内蔵する装置としては特に限定されず、パソコン、プリンター、コピー機、テレビ、ラジオなどの家電製品;医療用装置、コントロールパネル、制御装置、分析装置など各種産業用装置、自動車、飛行機などの電子制御装置など、あらゆる電子機器装置に適用可能である。特に本発明は銀や銅、真鍮の腐食による接触抵抗の増加抑制に効果的である。   There are no particular limitations on the device incorporating the electronic component that is the subject of the present invention; home appliances such as personal computers, printers, copiers, televisions and radios; The present invention can be applied to any electronic device such as a device, an electronic control device such as an automobile and an airplane. In particular, the present invention is effective in suppressing an increase in contact resistance due to corrosion of silver, copper and brass.

また本発明の繊維は、通常の雰囲気中に含まれる硫黄含有化合物の濃度(3ppb未満)に対してだけでなく、硫黄含有化合物濃度が、3ppb以上、更には100ppb以上の環境(工場、特に化学工場、製紙工場、温泉地域など)における接触抵抗の増加抑制にも効果的である。   The fiber of the present invention is not only for the concentration of sulfur-containing compounds contained in a normal atmosphere (less than 3 ppb), but also for an environment (factory, especially chemical It is also effective in suppressing increase in contact resistance in factories, paper mills, hot spring areas, etc.).

更にプリント配線盤等の電子部品をビニルパッケージ等に入れて輸送・保管する際や、家電製品をダンボール箱等に入れて輸送・保管する際にも、該パッケージ内に本発明の繊維、或いは繊維製品を同包することによって、実装部の硫化腐食防止、該パッケージ内の吸湿防止に有効である。   Furthermore, when transporting and storing electronic parts such as printed wiring boards in a vinyl package or the like, or when transporting and storing home appliances in a cardboard box or the like, the fiber or fiber of the present invention is contained in the package. By enclosing the product, it is effective in preventing sulfidation corrosion of the mounting part and moisture absorption in the package.

以下、実施例を挙げて本発明をより具体的に説明するが、下記実施例は上記要件から選択した例示的構成であって、適宜上記記載に基づいて構成を変更しても、本発明の効果を得ることができる。したがって本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the following examples are exemplary configurations selected from the above requirements, and even if the configurations are appropriately changed based on the above description, An effect can be obtained. Therefore, the present invention is not limited by the following examples, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the preceding and following descriptions, both of which are within the technical scope of the present invention. Is included.

試料No.1の接触抵抗の増加抑制効果について調べた。尚、試験方法は下記方法による。   Sample No. No. 1 contact resistance increase suppression effect was examined. The test method is as follows.

[硫化水素濃度測定方法]
環境庁告示第9号(昭和47年)改別表第2に基づく方法(ガスクロマトグラフ分析法)で測定した。
[Method for measuring hydrogen sulfide concentration]
It was measured by the method (gas chromatograph analysis method) based on the Environmental Agency Notification No. 9 (Showa 47) Revision Table 2.

[カルボキシル基測定方法]
開繊した試料1gを1mol/Lの塩酸水溶液50mlに浸漬、攪拌し、pH2.5以下とした後、取出してイオン交換水で水洗する。次いで脱水し、105℃の熱風乾燥機(ヤマト科学製DK400型)で乾燥させた後、裁断する。試料0.2gを精秤し[W1(g)]、ビーカーに入れる。次いで蒸留水100ml、0.1mol/L濃度の水酸化ナトリウム水溶液15ml、塩化ナトリウム0.4gをビーカーに入れて15分以上攪拌した後、ろ過し、得られたろ過液を0.1mol/Lの塩酸水溶液で滴定[X1(ml)]し(尚、指示薬にフェノールフタレインを用いる)、下記式からカルボキシル基量[Y(mmol/g)]を算出する。
カルボキシル基量[Y(mmol/g)]=(0.1×15−0.1×X1)/W1
[Carboxyl group measurement method]
1 g of the opened sample is immersed in 50 ml of a 1 mol / L hydrochloric acid aqueous solution, stirred, adjusted to pH 2.5 or less, then taken out and washed with ion-exchanged water. Next, it is dehydrated, dried with a hot air drier at 105 ° C. (DK 400 manufactured by Yamato Kagaku), and then cut. Weigh accurately 0.2 g of sample [W1 (g)] and place in a beaker. Next, 100 ml of distilled water, 15 ml of a 0.1 mol / L concentration sodium hydroxide aqueous solution, and 0.4 g of sodium chloride were placed in a beaker and stirred for 15 minutes or more, followed by filtration. The resulting filtrate was 0.1 mol / L. Titration with an aqueous hydrochloric acid solution [X1 (ml)] (note that phenolphthalein is used as an indicator), and the amount of carboxyl groups [Y (mmol / g)] is calculated from the following formula.
Amount of carboxyl group [Y (mmol / g)] = (0.1 × 15−0.1 × X1) / W1

[中和度測定方法]
開繊した試料1gを105℃の熱風乾燥機で乾燥させた後、裁断する。該試料0.4gを精秤し[W2(g)]、ビーカーに入れ、次いで蒸留水100ml、0.1mol/L濃度の水酸化ナトリウム水溶液15ml、塩化ナトリウム0.4gをビーカーに入れて15分以上攪拌した後、ろ過し、得られたろ過液を0.1mol/Lの塩酸水溶液で滴定[X2(ml)]し(尚、指示薬にフェノールフタレインを用いる)、下記式からH型カルボキシル基量[Z(mmol/g)]を算出する。
H型カルボキシル基量[Z(mmol/g)]=(0.1×15−0.1×X2)/W2
得られたH型カルボキシル基量(Z)と、上記カルボキシル基測定方法によって得られたカルボキシル基量(Y)から下記式に基づいて中和度を求める。
中和度(%)=(Y−Z)/Y×100
[Method for measuring neutralization degree]
1 g of the opened sample is dried with a hot air dryer at 105 ° C. and then cut. 0.4 g of the sample is precisely weighed [W2 (g)] and placed in a beaker, and then 100 ml of distilled water, 15 ml of 0.1 mol / L sodium hydroxide aqueous solution, and 0.4 g of sodium chloride are placed in the beaker for 15 minutes. After stirring above, the mixture was filtered, and the obtained filtrate was titrated with a 0.1 mol / L hydrochloric acid aqueous solution [X2 (ml)] (note that phenolphthalein was used as an indicator). The amount [Z (mmol / g)] is calculated.
H-type carboxyl group amount [Z (mmol / g)] = (0.1 × 15−0.1 × X2) / W2
The degree of neutralization is determined from the obtained H-type carboxyl group amount (Z) and the carboxyl group amount (Y) obtained by the carboxyl group measurement method based on the following formula.
Degree of neutralization (%) = (Y−Z) / Y × 100

[試料No.1の製造方法]
アクリロニトリル90質量%と酢酸ビニル10質量%とからなるアクリロニトリル系共重合体(30℃のジメチルホルムアミド中での極限粘度[n]=1.2)10質量部を、48質量%ロダンソーダ水溶液90質量部に溶解した紡糸原液を使用し、常法に従って紡糸、延伸(全延伸倍率:10倍)した後、乾球/湿球=120℃/60℃の雰囲気下で乾燥及び湿熱処理を施して原料繊維(単繊維繊度0.9dtex、繊維長51mm)を得た。この原料繊維を水加ヒドラジン20質量%水溶液中で、架橋導入処理(98℃、5時間)してから純水で洗浄した。洗浄後、乾燥させてから硝酸3質量%水溶液中で酸処理(90℃、2時間)し、引き続き苛性ソーダ3質量%水溶液中で加水分解処理(90℃、2時間)してから純水で洗浄した。得られた繊維には、繊維分子中にNa型カルボキシル基が5.5mmol/g導入されていた。この繊維を硝酸5質量%水溶液中で、酸処理(60℃、30分間)した後、純水で洗浄してから、油剤を付与し、更に脱水処理、乾燥処理を施し、架橋アクリル系繊維を得た。該架橋アクリル系繊維を、硝酸水溶液でpHを1.5に調整した0.1質量%硝酸銀水溶液中に浸漬させてイオン交換反応(70℃、30分間)を行い、次いで、脱水処理、純水による洗浄処理、乾燥処理を施して、銀イオン交換処理繊維を得た。更に該繊維を苛性ソーダ水溶液でpH12.5に調整したアルカリ溶液に浸漬処理(80℃、30分間)した。この処理によって、1.0質量%のAg系微粒子が沈着している繊維(繊維1)が得られた。尚、繊維中のAg含有量は、該繊維を混合溶液(硝酸、硫酸、過塩素酸)で湿式分解した後、原子吸光法によって測定した。この繊維1を使用して目付100g/m(20℃×65%RH環境下)のニードルパンチ加工不織布を作成し、試料No.1とした。
[Sample No. Manufacturing method 1]
10 parts by mass of acrylonitrile copolymer (intrinsic viscosity [n] = 1.2 in dimethylformamide at 30 ° C.) consisting of 90% by mass of acrylonitrile and 10% by mass of vinyl acetate, After spinning and drawing (total draw ratio: 10 times) according to a conventional method, the raw fiber is dried and wet heat-treated in an atmosphere of dry bulb / wet bulb = 120 ° C./60° C. (Single fiber fineness 0.9 dtex, fiber length 51 mm) was obtained. This raw fiber was subjected to crosslinking introduction treatment (98 ° C., 5 hours) in a 20% by mass aqueous solution of hydrazine hydrate and washed with pure water. After washing and drying, acid treatment (90 ° C., 2 hours) in a 3% by weight aqueous solution of nitric acid, followed by hydrolysis treatment (90 ° C., 2 hours) in a 3% by weight aqueous solution of caustic soda and washing with pure water did. In the obtained fiber, 5.5 mmol / g of Na-type carboxyl group was introduced into the fiber molecule. This fiber is acid-treated in a 5% by weight aqueous solution of nitric acid (60 ° C., 30 minutes), washed with pure water, then applied with an oil agent, further subjected to dehydration treatment and drying treatment. Obtained. The crosslinked acrylic fiber is immersed in a 0.1% by mass aqueous silver nitrate solution adjusted to pH 1.5 with an aqueous nitric acid solution to perform an ion exchange reaction (70 ° C., 30 minutes), followed by dehydration treatment, pure water A silver ion exchange treated fiber was obtained by performing a washing treatment and a drying treatment according to the above. Further, the fiber was immersed in an alkaline solution adjusted to pH 12.5 with an aqueous caustic soda solution (80 ° C., 30 minutes). By this treatment, a fiber (fiber 1) on which 1.0% by mass of Ag-based fine particles was deposited was obtained. The Ag content in the fiber was measured by atomic absorption after the fiber was wet-decomposed with a mixed solution (nitric acid, sulfuric acid, perchloric acid). Using this fiber 1, a needle punched nonwoven fabric having a basis weight of 100 g / m 2 (under an environment of 20 ° C. × 65% RH) was prepared. It was set to 1.

[接触抵抗試験]
試験No.1
雰囲気中の硫化水素濃度20ppbの試験室内(容積150m:20m×3m×高さ2.5m)の床に本発明の試料No.1(5kg)を敷設した。その後1年間に交換を要する故障が生じた電子部品を数えた。尚、試験室内には、電子部品を内蔵する装置(インバーター2台、タイマー30台、信号変換器24台)が設置され、またこれら装置内の電子部品の接合は鉛フリーはんだ(Sn−Ag系はんだ)で行なった。尚、これら該装置外に配置する繊維製品に含まれる金属および/または該金属化合物の金属としての微粒子含有率から(B×C/100)/Aを求めたところ、0.33であった。(式中、Aは室内の空間容積(m)=150、Bは繊維製品質量(g)=5000、Cは該繊維製品に含まれる金属および/または該金属化合物の金属としての微粒子含有率(%)=1)
[Contact resistance test]
Test No. 1
Sample No. of the present invention was placed on the floor of a test chamber (volume 150 m 3 : 20 m × 3 m × height 2.5 m) having a hydrogen sulfide concentration of 20 ppb in the atmosphere. 1 (5 kg) was laid. After that, we counted the number of electronic parts that had failed during one year. In the test chamber, devices containing electronic components (2 inverters, 30 timers, 24 signal converters) are installed, and the electronic components in these devices are joined by lead-free solder (Sn-Ag system). Soldering). When (B × C / 100) / A was determined from the fine particle content of the metal and / or the metal compound contained in the fiber product placed outside the apparatus, it was 0.33. (In the formula, A is the indoor space volume (m 3 ) = 150, B is the mass of the fiber product (g) = 5000, and C is the fine particle content of the metal contained in the fiber product and / or the metal compound as the metal. (%) = 1)

試験No.2(ブランク試験)
試験室内に本発明の繊維を敷設しなかった以外は、試験No.1と同様にして、1年間に故障(交換)した電子部品を内装する装置の数を数えた。尚、装置外に配置する繊維製品に含まれる金属および/または該金属化合物の金属としての微粒子含有率は試験No.1と同じである。
Test No. 2 (blank test)
Except that the fiber of the present invention was not laid in the test chamber, Test No. In the same manner as in No. 1, the number of devices equipped with electronic components that failed (replaced) in one year was counted. In addition, the content of fine particles as the metal and / or metal of the metal compound contained in the fiber product arranged outside the apparatus was determined as Test No. Same as 1.

[接触抵抗試験結果]
1年後、交換した電子部品を内装する装置の数を数えたところ、試験No.1ではタイマー2台と信号変換器1台が故障していた。試験No.2ではインバーター1台、タイマー7台、信号変換器9台が故障していた。尚、これら装置内の電子部品の接合部を調べたところ、いずれも接合部が黒く変色しており、腐食していた。
[Contact resistance test results]
One year later, the number of devices that housed the replaced electronic components was counted. In 1, two timers and one signal converter were out of order. Test No. In 2, one inverter, seven timers, and nine signal converters were out of order. When the joints of the electronic components in these devices were examined, the joints were all black and corroded.

[接触抵抗試験]
接触抵抗の増加抑制効果を調べるために、銅板を装置内(尚、電子部品を内蔵する装置に相当する)に載置して下記試験を行なった。尚、試験No.3、No.6における装置内に配置する繊維製品に含まれる金属および/または該金属化合物の金属としての微粒子含有率から(B×C/100)/Aを求めたところ、0.0088であった(式中、Aは室内の空間容積(m)=1.14、Bは繊維製品質量(g)=1、Cは該繊維製品に含まれる金属および/または該金属化合物の金属としての微粒子含有率(%)=1)。また試験No.8における(B×C/100)/Aの値は0.83であった(式中、A=0.012、B=1、C=1)。
[Contact resistance test]
In order to investigate the effect of suppressing increase in contact resistance, a copper plate was placed in the apparatus (corresponding to an apparatus incorporating an electronic component) and the following test was performed. Test No. 3, no. When (B × C / 100) / A was determined from the fine particle content of the metal and / or the metal compound contained in the fiber product placed in the apparatus in FIG. , A is the indoor space volume (m 3 ) = 1.14, B is the mass of the fiber product (g) = 1, and C is the content of fine particles as a metal and / or metal of the metal compound ( %) = 1). In addition, Test No. The value of (B × C / 100) / A in 8 was 0.83 (where A = 0.122, B = 1, C = 1).

試験No.3
硫化水素濃度50ppb(実施例1と同様の方法による測定)とした装置内(容積1.14m:99cm×99cm×116cm)に、実施例1と同様にして製造した試料No.1(10×10cm、1g)で銅板(3×5cm)を包んだものを載置し、30日経過後、銅板の電気抵抗をテスター(HIOKI3253型)で測定した。尚、雰囲気中の湿度は65%であり、また試験室の温度は20℃に維持した。
Test No. 3
Sample No. produced in the same manner as in Example 1 was placed in the apparatus (volume 1.14 m 3 : 99 cm × 99 cm × 116 cm) in a hydrogen sulfide concentration of 50 ppb (measured by the same method as in Example 1). 1 (10 × 10 cm, 1 g) wrapped with a copper plate (3 × 5 cm) was placed, and after 30 days, the electrical resistance of the copper plate was measured with a tester (HIOKI 3253 type). The humidity in the atmosphere was 65%, and the temperature of the test chamber was maintained at 20 ° C.

試験No.4
市販の綿布(10×10cm、1g)で銅板(3×5cm)を包んだ以外は試験No.3と同様にして銅板の電気抵抗を測定した。
Test No. 4
Test No. 1 except that a copper plate (3 × 5 cm) was wrapped with a commercially available cotton cloth (10 × 10 cm, 1 g). The electrical resistance of the copper plate was measured as in 3.

試験No.5
銅板を布で包まなかった以外は試験No.3と同様にして銅板の電気抵抗を測定した。
Test No. 5
Test No. except that the copper plate was not wrapped with cloth. The electrical resistance of the copper plate was measured as in 3.

試験No.6
硫化水素濃度を100ppb、雰囲気中の湿度を85%とした以外は、試験No.3と同様にして試験を行なった。
Test No. 6
Test No. 1 except that the hydrogen sulfide concentration was 100 ppb and the humidity in the atmosphere was 85%. The test was conducted in the same manner as in 3.

試験No.7
硫化水素濃度を100ppb、雰囲気中の湿度を85%とした以外は、試験No.4と同様にして試験を行なった。
Test No. 7
Test No. 1 except that the hydrogen sulfide concentration was 100 ppb and the humidity in the atmosphere was 85%. The test was conducted in the same manner as in No. 4.

試験No.8
硫化水素濃度50ppb(実施例1と同様の方法による測定)とした装置内(容積0.012m:20cm×20cm×30cm)に、実施例1と同様にして製造した試料No.1(10×10cm、1g)で銅板(3×5cm)を包んだものを載置し、30日経過後、銅板の電気抵抗をテスター(HIOKI3253型)で測定した。尚、雰囲気中の湿度は85%であり、湿度は20℃に維持した。
Test No. 8
Sample No. produced in the same manner as in Example 1 was placed in the apparatus (volume 0.012 m 3 : 20 cm × 20 cm × 30 cm) in a hydrogen sulfide concentration of 50 ppb (measured by the same method as in Example 1). 1 (10 × 10 cm, 1 g) wrapped with a copper plate (3 × 5 cm) was placed, and after 30 days, the electrical resistance of the copper plate was measured with a tester (HIOKI 3253 type). The humidity in the atmosphere was 85%, and the humidity was maintained at 20 ° C.

試験No.9
銅板を布で包まなかった以外は試験No.8と同様にして銅板の電気抵抗を測定した。
Test No. 9
Test No. except that the copper plate was not wrapped with cloth. The electrical resistance of the copper plate was measured in the same manner as in FIG.

試験No.3〜9の30日経過後の電気抵抗の結果を表1に示す。   Test No. The results of electrical resistance after 30 days from 3 to 9 are shown in Table 1.

Figure 0004451672
Figure 0004451672

試料No.1を用いた試験No.3、6、8は電気抵抗の増加抑制に高い効果を示したが、市販の綿布を用いた試験No.4、7は、銅板を布で包まなかった試験No.5、9と同様、電気抵抗の増加を抑制することが殆どできなかった。   Sample No. Test No. 1 using No. 1 3, 6, and 8 showed a high effect in suppressing the increase in electrical resistance. Nos. 4 and 7 are test Nos. In which the copper plate was not wrapped with cloth. Like 5 and 9, the increase in electrical resistance could hardly be suppressed.

Claims (8)

電子部品を内蔵する装置内および/または該装置外であって該装置が設置された実質的に密閉された空間内に、硫黄含有化合物との反応性を有し、且つ水に難溶性の銀、銅、亜鉛、マンガン、鉄、ニッケル、アルミニウム、錫、モリブデン、およびマグネシウムよりなる群から選択される1種以上の金属の微粒子、および/または、これらの金属の酸化物、水酸化物、塩化物、臭化物、ヨウ化物、炭酸塩、硫酸塩、リン酸塩、塩素酸塩、臭素酸塩、ヨウ素酸塩、亜硫酸塩、チオ硫酸塩、チオシアン酸塩、ピロリン酸塩、ポリリン酸塩、珪酸塩、アルミン酸塩、タングステン酸塩、バナジン酸塩、モリブデン酸塩、アンチモン酸塩、安息香酸塩、およびジカルボン酸塩よりなる群から選択される1種以上の金属化合物の微粒子が分散している繊維製品を配置することを特徴とする電子部品の接触抵抗の経時的増加の抑制方法。 Silver that is reactive with sulfur-containing compounds and is sparingly soluble in water in a device containing electronic components and / or in a substantially sealed space outside the device in which the device is installed Fine particles of one or more metals selected from the group consisting of copper, zinc, manganese, iron, nickel, aluminum, tin, molybdenum, and magnesium, and / or oxides, hydroxides, chlorides of these metals , Bromide, iodide, carbonate, sulfate, phosphate, chlorate, bromate, iodate, sulfite, thiosulfate, thiocyanate, pyrophosphate, polyphosphate, silicate , fiber of aluminates, tungstates, vanadates, molybdates, antimonates, microparticles benzoate, and one or more metal compounds selected from the group consisting of dicarboxylate is dispersed Method for inhibiting over time an increase in the contact resistance of the electronic component, characterized by placing the product. 前記電子部品を内蔵する装置を実質的に密閉された空間内に設置し、該装置内および/または該装置外に配置する前記繊維製品に含まれる金属および/または金属化合物の金属としての微粒子含有率が、下記式(1)を満たすものである請求項1に記載の電子部品の接触抵抗の経時的増加の抑制方法。
(B×C/100)/A>0.008 ・・・(1)
(式中、Aは装置内に繊維製品を配置した場合は装置内の容積、また装置外に繊維製品を配置した場合は装置を設置した密閉空間の容積(m3)、Bは繊維製品質量(g)、Cは該繊維製品に含まれる金属および/または金属化合物の金属としての微粒子含有率(%)を表す)
A device containing the electronic component is installed in a substantially sealed space, and contains fine particles as metal of the metal and / or metal compound contained in the fiber product arranged in and / or outside the device. The method according to claim 1, wherein the rate satisfies the following formula (1).
(B × C / 100) / A> 0.008 (1)
(In the formula, A is the volume in the apparatus when the fiber product is arranged in the apparatus, and if the fiber product is arranged outside the apparatus, the volume of the sealed space in which the apparatus is installed (m 3 ), and B is the mass of the fiber product. (G), C represents the fine particle content (%) of the metal and / or metal compound contained in the fiber product)
繊維中に、硫黄含有化合物との反応性を有し、且つ水に難溶性の銀、銅、亜鉛、マンガン、鉄、ニッケル、アルミニウム、錫、モリブデン、およびマグネシウムよりなる群から選択される1種以上の金属の微粒子、および/または、これらの金属の酸化物、水酸化物、塩化物、臭化物、ヨウ化物、炭酸塩、硫酸塩、リン酸塩、塩素酸塩、臭素酸塩、ヨウ素酸塩、亜硫酸塩、チオ硫酸塩、チオシアン酸塩、ピロリン酸塩、ポリリン酸塩、珪酸塩、アルミン酸塩、タングステン酸塩、バナジン酸塩、モリブデン酸塩、アンチモン酸塩、安息香酸塩、およびジカルボン酸塩よりなる群から選択される1種以上の金属化合物の微粒子が分散していることを特徴とする電子部品の接触抵抗の経時的増加抑制繊維。 One type selected from the group consisting of silver, copper, zinc, manganese, iron, nickel, aluminum, tin, molybdenum, and magnesium that has reactivity with sulfur-containing compounds and is hardly soluble in water. Fine particles of the above metals and / or oxides, hydroxides, chlorides, bromides, iodides, carbonates, sulfates, phosphates, chlorates, bromates, iodates of these metals , Sulfite, thiosulfate, thiocyanate, pyrophosphate, polyphosphate, silicate, aluminate, tungstate, vanadate, molybdate, antimonate, benzoate, and dicarboxylic acid A fiber for suppressing an increase in contact resistance of an electronic component over time, wherein fine particles of one or more metal compounds selected from the group consisting of salts are dispersed. 前記金属および/または金属化合物が、Ag,Cu,Zn,Mn,Feよりなる群から選択される金属、およびこれらの金属の金属化合物の少なくとも1種である請求項3に記載の接触抵抗の経時的増加抑制繊維。   The contact resistance over time according to claim 3, wherein the metal and / or metal compound is at least one of a metal selected from the group consisting of Ag, Cu, Zn, Mn, and Fe, and a metal compound of these metals. Increase suppression fiber. 前記繊維は架橋構造を有し、且つ分子中にカルボキシル基を有すると共に、該カルボキシル基の少なくとも一部はカルボキシル基の塩として存在している請求項3または4に記載の接触抵抗の経時的増加抑制繊維。   The contact resistance according to claim 3 or 4, wherein the fiber has a crosslinked structure and has a carboxyl group in the molecule, and at least a part of the carboxyl group exists as a salt of the carboxyl group. Suppression fiber. 前記金属および/または金属化合物が、全繊維成分中に金属として0.2質量%以上含まれている請求項3〜5のいずれかに記載の接触抵抗の経時的増加抑制繊維。   6. The contact resistance increasing fiber over time according to claim 3, wherein the metal and / or metal compound is contained in the total fiber component in an amount of 0.2% by mass or more as a metal. 請求項3〜5のいずれかに記載の繊維を含む綿状、不織布状、織物状、紙状、もしくは編物状からなる接触抵抗の経時的増加抑制繊維製品。   A textile product that suppresses the increase in contact resistance over time, comprising a cotton-like, non-woven fabric, woven fabric, paper-like or knitted fabric containing the fiber according to any one of claims 3 to 5. 前記金属および/または金属化合物が、全繊維成分中に金属として0.2質量%以上含まれている請求項7に記載の繊維製品。
The textile product according to claim 7, wherein the metal and / or metal compound is contained in an amount of 0.2% by mass or more as a metal in all fiber components.
JP2004036021A 2004-02-13 2004-02-13 Method for suppressing increase in contact resistance of electronic component over time, fiber for suppressing increase in contact resistance over time, and fiber product using the fiber Expired - Lifetime JP4451672B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004036021A JP4451672B2 (en) 2004-02-13 2004-02-13 Method for suppressing increase in contact resistance of electronic component over time, fiber for suppressing increase in contact resistance over time, and fiber product using the fiber
PCT/JP2005/001546 WO2005078181A1 (en) 2004-02-13 2005-01-27 Method for suppressing increase with elapse of time of contact resistance of electronic parts, and fiber for suppressing increase with elapse of time of contact resistance, and fiber product using the fiber
TW94103000A TW200533805A (en) 2004-02-13 2005-02-01 Method for suppressing increase with elapse of time of contact resistance of electronic parts, and fiber for suppressing increase with elapse of time of contact resistance, and fiber product using the fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036021A JP4451672B2 (en) 2004-02-13 2004-02-13 Method for suppressing increase in contact resistance of electronic component over time, fiber for suppressing increase in contact resistance over time, and fiber product using the fiber

Publications (2)

Publication Number Publication Date
JP2005228905A JP2005228905A (en) 2005-08-25
JP4451672B2 true JP4451672B2 (en) 2010-04-14

Family

ID=34857708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036021A Expired - Lifetime JP4451672B2 (en) 2004-02-13 2004-02-13 Method for suppressing increase in contact resistance of electronic component over time, fiber for suppressing increase in contact resistance over time, and fiber product using the fiber

Country Status (3)

Country Link
JP (1) JP4451672B2 (en)
TW (1) TW200533805A (en)
WO (1) WO2005078181A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119267A (en) * 1983-11-29 1985-06-26 東邦レーヨン株式会社 Electroplating of carbon fiber bundle
JP2001006690A (en) * 1999-06-21 2001-01-12 Toyobo Co Ltd Carbon electrode material

Also Published As

Publication number Publication date
WO2005078181A1 (en) 2005-08-25
JP2005228905A (en) 2005-08-25
TW200533805A (en) 2005-10-16

Similar Documents

Publication Publication Date Title
US4855276A (en) Solid filtration medium incorporating alumina and carbon
CN104017090B (en) A kind of method adopting hydrogen peroxide to prepare carboxycellulose
Xiao et al. Cellulose/chitosan composites prepared in ethylene diamine/potassium thiocyanate for adsorption of heavy metal ions
US20110315922A1 (en) Custom water adsorption material
CZ293288B6 (en) Process for preparing a sorptive composition
US10538598B2 (en) Phosphonium-crosslinked chitosan and methods for using and producing the same
TWI405890B (en) Anticorrosion composition
JP2006305563A (en) Manufacturing method of gas adsorption filter medium and manufacturing method of photocatalyst gas adsorption filter medium
EP0379581B1 (en) Deodorant material and process for its production
JP4451672B2 (en) Method for suppressing increase in contact resistance of electronic component over time, fiber for suppressing increase in contact resistance over time, and fiber product using the fiber
KR20030080178A (en) Indicator-attached deodorizing fiber structure
TWI418659B (en) Metal packaging with anti - rust materials
JP2009114509A (en) Rust preventive film and rust prevention method
JP6450446B2 (en) Lithium adsorption material manufacturing method and lithium adsorption material
Cuervo Blanco et al. Nanostructured MnO2 catalyst in E. crassipes (water hyacinth) for indigo carmine degradation
CA2989279C (en) Phosphonium-crosslinked chitosan and methods for using and producing the same
Kim et al. Sorption behavior of heavy metals on poorly crystalline manganese oxides: roles of water conditions and light
JPH0536559B2 (en)
KR20040007265A (en) Discoloration inhibitor for metals
JP6078192B1 (en) Textile or knitting for bedding
JP2017119271A (en) Method for treating formic acid and apparatus for treating formic acid
Telkapalliwar Defluoridation of water by using modified material developed from Ficus benghalensis leaf: characterization, kinetic and thermodynamic study
JP2009191396A (en) Deodorizing curtain and method for producing the same
Rehman et al. Mechanistic and characterization studies for sorptive elimination of emerald green dye from water by arachis hypogeal shells and citrullus lanatus peels
JP2535060B2 (en) Deodorant fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100128

R150 Certificate of patent or registration of utility model

Ref document number: 4451672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350