JP4449568B2 - Method for preventing accumulation of insoluble solid in production of styrene, and accumulation preventing apparatus therefor - Google Patents

Method for preventing accumulation of insoluble solid in production of styrene, and accumulation preventing apparatus therefor Download PDF

Info

Publication number
JP4449568B2
JP4449568B2 JP2004145286A JP2004145286A JP4449568B2 JP 4449568 B2 JP4449568 B2 JP 4449568B2 JP 2004145286 A JP2004145286 A JP 2004145286A JP 2004145286 A JP2004145286 A JP 2004145286A JP 4449568 B2 JP4449568 B2 JP 4449568B2
Authority
JP
Japan
Prior art keywords
styrene
production
accumulation
condensate
preventing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004145286A
Other languages
Japanese (ja)
Other versions
JP2005325069A (en
Inventor
裕之 原田
幸晴 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004145286A priority Critical patent/JP4449568B2/en
Publication of JP2005325069A publication Critical patent/JP2005325069A/en
Application granted granted Critical
Publication of JP4449568B2 publication Critical patent/JP4449568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、スチレンの製造における不溶性固形物の蓄積防止方法、及びそのための蓄積防止装置に関し、更に詳しくは、エチルベンゼンの脱水素反応によるスチレンの製造における脱水素反応生成ガスの冷却装置及びその周辺の配管での不溶性固形物の生成及び蓄積を防止する方法、及びそのための装置に関する。   The present invention relates to a method for preventing accumulation of insoluble solids in the production of styrene, and an accumulation prevention apparatus therefor, and more particularly, a cooling device for a dehydrogenation reaction product gas in the production of styrene by dehydrogenation of ethylbenzene and the surroundings. The present invention relates to a method for preventing the formation and accumulation of insoluble solids in piping, and an apparatus therefor.

エチルベンゼンの脱水素反応によるスチレンの製造は、一般的には、エチルベンゼンを気化させ、スチームと共に、酸化鉄を主成分とする触媒を充填した多段の脱水素反応器を通し、脱水素反応器を出た脱水素反応生成ガスを冷却用熱交換器を通して冷却し、ガスと凝縮した粗スチレン及び水を気液分離した後、油水分離槽で油水分離し、油相(粗スチレン)を複数の蒸留塔を通して、未反応のエチルベンゼン、副生成物のベンゼン、トルエン、α−メチルスチレン、スチルベン等と分離してスチレンを回収することにより行われている。   In general, styrene is produced by dehydrogenation of ethylbenzene. The benzene is generally vaporized and passed through a multistage dehydrogenation reactor packed with a catalyst mainly composed of iron oxide together with steam, and the dehydrogenation reactor is discharged. The dehydrogenation reaction product gas was cooled through a cooling heat exchanger, and the gas and condensed crude styrene and water were separated into gas and liquid, and then separated into oil and water in an oil / water separation tank, and the oil phase (crude styrene) was separated into a plurality of distillation towers. The styrene is recovered by separating it from unreacted ethylbenzene, by-product benzene, toluene, α-methylstyrene, stilbene and the like.

脱水素反応は平衡反応であり、550℃以上の高温で行われるのが一般的であるが、吸熱反応であるため反応の進行と共に温度が下がり、反応速度が低下するため、通常は脱水素反応触媒を2段以上に分け、脱水素反応によって温度の下がったガスを再加熱して、次段の脱水素反応触媒層へ導入することが行われる。その際、経時的に触媒の活性低下が起るため、各脱水素触媒層の入口温度を徐々に高くしていくことが一般に行われている。又、圧力は、平衡を有利にするため通常は減圧で行われ、最終段の脱水素触媒層の出口圧力は、通常、絶対圧力で0.03〜0.08MPaの範囲内とされる。   The dehydrogenation reaction is an equilibrium reaction and is generally carried out at a high temperature of 550 ° C. or more. However, since it is an endothermic reaction, the temperature decreases with the progress of the reaction, and the reaction rate decreases. The catalyst is divided into two or more stages, and the gas whose temperature has been lowered by the dehydrogenation reaction is reheated and introduced into the subsequent dehydrogenation reaction catalyst layer. At this time, since the activity of the catalyst decreases with time, it is generally performed to gradually increase the inlet temperature of each dehydrogenation catalyst layer. Further, the pressure is usually reduced at a reduced pressure in order to make the equilibrium advantageous, and the outlet pressure of the dehydrogenation catalyst layer in the final stage is usually set within the range of 0.03 to 0.08 MPa in absolute pressure.

脱水素反応器を出た脱水素反応生成ガスは、通常多段の冷却用熱交換器で、最終的には100℃以下まで冷却され、スチレン及び水の大部分が凝縮する。その際、脱水素反応器を出て、多段の熱交換器を通過する脱水素反応生成ガスは徐々に冷却され、300℃以下に冷却された時点で高沸点成分の凝縮が開始する。高沸点成分の凝縮開始温度は組成、濃度、熱交換器の圧力等によって変わるが、減圧での脱水素反応においては300〜100℃程度である。高沸点成分は通常、ジビニルベンゼン、ナフタレン、スチルベン、フェニルナフタレン、及びスチレン二量体、スチレン三量体等の混合物であり、その生成量は脱水素反応条件が過酷になるにつれ、即ち高温、高スチレン分圧等の条件で増加する。凝縮した高沸点成分の大部分は高速のガスによりミストとして下流に運ばれ、凝縮した粗スチレンに溶解して最終的には精製系を通りスチレンヘビーエンドとして系外に排出される。しかし、高沸点成分の凝縮液の一部は熱交換器の出口等にガス流速の低下する部分があると、そこに付着し、それが凹状部等に滞留し、熱等により徐々に重合或いは縮合等して高分子量化し、不溶性の固形物となる。生成した不溶性固形物の多くは凝縮した粗スチレン及び水により油水分離槽へ洗い流され、油相或いは水相の抜き出しポンプのストレーナーで捕捉されている。   The dehydrogenation reaction product gas leaving the dehydrogenation reactor is usually cooled to a temperature of 100 ° C. or lower in a multistage cooling heat exchanger, and most of styrene and water are condensed. At that time, the dehydrogenation reaction product gas leaving the dehydrogenation reactor and passing through the multi-stage heat exchanger is gradually cooled, and the condensation of the high-boiling components starts when it is cooled to 300 ° C. or lower. The condensation start temperature of the high-boiling components varies depending on the composition, concentration, heat exchanger pressure, etc., but is about 300 to 100 ° C. in the dehydrogenation reaction under reduced pressure. The high-boiling components are usually divinylbenzene, naphthalene, stilbene, phenylnaphthalene, and mixtures of styrene dimers, styrene trimers, etc., and the amount produced increases as the dehydrogenation reaction conditions become severe, i.e. high temperature, high It increases under conditions such as styrene partial pressure. Most of the condensed high-boiling components are transported downstream as mist by high-speed gas, dissolved in the condensed crude styrene, and finally discharged through the purification system as styrene heavy end. However, if there is a part of the high boiling point component condensate where the gas flow rate decreases at the outlet of the heat exchanger or the like, it adheres to it and stays in the concave part, etc. It becomes a high molecular weight by condensation or the like and becomes an insoluble solid. Most of the insoluble solids produced are washed away by the condensed crude styrene and water into the oil / water separation tank and captured by the strainer of the oil phase or water phase extraction pump.

しかしながら、生成した不溶性固形物の一部は冷却装置内に残留して、凝縮した粗スチレンを吸収して成長し、不溶性固形物の蓄積を増大させる。不溶性固形物の蓄積が多くなると、蓄積部分の下部等の流動性の悪い部分で、高沸点成分の高分子量化が更に促進され、時として、冷却装置の一部或いはその周辺の配管等を閉塞させることがある。特に、スチレン製造設備の連続運転の末期には触媒の活性が低下するので、脱水素反応温度が高くなり、そのため、粗スチレン中の高沸点成分の濃度が上昇して、不溶性固形物の生成が増加し、装置閉塞の恐れが高くなる。   However, some of the insoluble solids that are produced remain in the refrigeration device and absorb and grow condensed crude styrene, increasing the accumulation of insoluble solids. When the accumulation of insoluble solids increases, high molecular weight of the high boiling point component is further promoted in the poorly flowable part such as the lower part of the accumulation part, and sometimes the part of the cooling device or the surrounding piping is blocked. There are things to do. In particular, since the activity of the catalyst decreases at the end of the continuous operation of the styrene production facility, the dehydrogenation reaction temperature increases, so that the concentration of high-boiling components in the crude styrene increases and insoluble solids are generated. Increases the risk of device blockage.

これに対して、従来より、その不溶性固形物の生成を防止、或いは蓄積を防止する方法として、フェノール類、アミン類、ニトロフェノール類、ヒドロキシルアミン類等の重合禁止剤を、脱水素反応生成ガスにその凝縮開始部付近において注入することにより不溶性固形物の生成を防止する方法が知られている(例えば、特許文献1参照。)。しかし、この方法では、不溶性固形物の生成を完全に防止することは困難である。又、脱水素反応生成ガスの凝縮開始部付近に有機液体或いは有機液体と水との混合物等を注入して、生成した不溶性固形物を洗い流す方法も知られている(例えば、特許文献2参照。)。しかし、この方法では、注入部の上流で生成した固形物をも洗い流すことは困難であり、又、更に上流部に液体を注入することは熱回収の面で非効率的であって、不溶性固形物の確実な蓄積防止方法が強く望まれているのが現状である。
特開平9−100245号公報。 特開2002−265397号公報。
On the other hand, conventionally, as a method for preventing the formation of insoluble solids or preventing the accumulation, polymerization inhibitors such as phenols, amines, nitrophenols, hydroxylamines, and the like are used as dehydrogenation reaction product gas. A method for preventing the formation of insoluble solids by injecting in the vicinity of the condensation start portion is known (for example, see Patent Document 1). However, with this method, it is difficult to completely prevent the formation of insoluble solids. In addition, a method is also known in which an organic liquid or a mixture of an organic liquid and water is injected near the condensation start portion of the dehydrogenation reaction product gas to wash away the generated insoluble solids (for example, see Patent Document 2). ). However, in this method, it is difficult to wash away the solid matter generated upstream of the injection section, and it is inefficient in terms of heat recovery to inject liquid into the upstream section, and insoluble solids. At present, there is a strong demand for a method for preventing the accumulation of things.
Japanese Patent Application Laid-Open No. 9-100245. Japanese Patent Laid-Open No. 2002-265397.

本発明は、前述の現状に鑑みてなされたものであり、エチルベンゼンの脱水素反応によるスチレンの製造における脱水素反応生成ガスの冷却装置及びその周辺の配管での不溶性固形物の生成及び蓄積を防止する方法、及びそのための装置を提供することを目的とする。   The present invention has been made in view of the above-described situation, and prevents the generation and accumulation of insoluble solids in the dehydrogenation reaction product gas cooling device and the surrounding piping in the production of styrene by the dehydrogenation reaction of ethylbenzene. It is an object to provide a method and an apparatus therefor.

本発明は、エチルベンゼンの脱水素反応によるスチレンの製造における脱水素反応生成ガスを冷却するに際し、該脱水素反応生成ガスの温度が水の凝縮開始温度以上、300℃以下となる温度範囲の冷却装置部分に、凝縮液を実質的に滞留させない、スチレンの製造における不溶性固形物の蓄積防止方法、及び、エチルベンゼンの脱水素反応によるスチレンの製造における脱水素反応生成ガスの冷却装置であって、該脱水素反応生成ガスの温度が水の凝縮開始温度以上、300℃以下となる温度範囲の冷却装置部分を、凝縮液が実質的に滞留しない構造とした、スチレンの製造における不溶性固形物の蓄積防止装置、を要旨とする。   The present invention relates to a cooling device in a temperature range in which the temperature of the dehydrogenation reaction product gas is not less than the condensation start temperature of water and not more than 300 ° C. when cooling the dehydrogenation reaction product gas in the production of styrene by dehydrogenation of ethylbenzene. A method for preventing the accumulation of insoluble solids in the production of styrene, and a cooling apparatus for the dehydrogenation reaction product gas in the production of styrene by the dehydrogenation reaction of ethylbenzene, wherein the condensate is not substantially retained in the part. An apparatus for preventing the accumulation of insoluble solids in the production of styrene, in which the cooling device part in the temperature range where the temperature of the elementary reaction product gas is not less than the condensation start temperature of water and not more than 300 ° C. has a structure in which the condensate does not substantially stay. Is the gist.

本発明によれば、エチルベンゼンの脱水素反応によるスチレンの製造における脱水素反応生成ガスの冷却装置及びその周辺の配管での不溶性固形物の生成及び蓄積を防止する方法、及びそのための装置を提供することができる。   According to the present invention, there is provided a dehydrogenation reaction product gas cooling apparatus in the production of styrene by dehydrogenation of ethylbenzene, a method for preventing the formation and accumulation of insoluble solids in the surrounding piping, and an apparatus therefor. be able to.

以下に記載する構成要件の説明は、本発明の実施態様の代表例であり、これらの内容に限定されるものではない。
本発明の、スチレンの製造における不溶性固形物の蓄積防止方法において、スチレンの製造方法としては、エチルベンゼンの脱水素反応による方法である限り特に限定されるものではなく、従来公知のスチレンの製造方法を採ることができる。
The description of the constituent requirements described below is a representative example of the embodiment of the present invention, and is not limited to these contents.
In the method for preventing accumulation of insoluble solids in the production of styrene of the present invention, the method for producing styrene is not particularly limited as long as it is a method by dehydrogenation of ethylbenzene, and a conventionally known method for producing styrene is used. Can be taken.

具体的には、エチルベンゼンを反応器入口温度550〜700℃、反応器入口の圧力が絶対圧力で0.15〜0.05MPaにおいて、スチームと共に、酸化鉄を主成分とする触媒を充填した多段の脱水素反応器を通し、脱水素反応器を出た脱水素反応生成ガスを冷却用熱交換器を通して冷却し、ガスと凝縮した粗スチレン及び水を気液分離した後、油水分離槽で油水分離し、油相(粗スチレン)を複数の蒸留塔を通して、未反応のエチルベンゼン及び副生成物と分離してスチレンを回収する方法が採られる。   Specifically, ethylbenzene was charged at a reactor inlet temperature of 550 to 700 ° C., and the reactor inlet pressure was 0.15 to 0.05 MPa in absolute pressure. After passing through the dehydrogenation reactor, the dehydrogenation reaction product gas exiting the dehydrogenation reactor is cooled through a cooling heat exchanger, and the gas and condensed crude styrene and water are separated into gas and liquid, followed by oil-water separation in an oil-water separation tank. Then, the oil phase (crude styrene) is separated from unreacted ethylbenzene and by-products through a plurality of distillation towers to recover styrene.

その際、本発明においては、脱水素反応生成ガスを冷却するに際し、該脱水素反応生成ガスの温度が水の凝縮開始温度以上、300℃以下となる温度範囲の冷却装置部分に、凝縮液を実質的に滞留させないことを特徴とする。尚、ここで、「凝縮液を実質的に滞留させない」とは、凝縮液が表面張力により液滴として流路壁面に付着する場合等の不可避的な滞留は除くことを意味する。又、「冷却装置部分」とは、冷却装置のみならず、その周辺の配管等の附属機器をも含めた部分を表す。   At this time, in the present invention, when the dehydrogenation reaction product gas is cooled, the condensate is added to the cooling device portion in the temperature range where the temperature of the dehydrogenation reaction product gas is not less than the water condensation start temperature and not more than 300 ° C. It is characterized by not substantially retaining. Here, “the condensate does not substantially stay” means that unavoidable stay such as when the condensate adheres to the wall surface of the flow path as droplets due to surface tension is excluded. Further, the “cooling device part” represents not only the cooling device but also a part including attached equipment such as piping around the cooling device.

本発明において、凝縮液が実質的に滞留しないこととする方法としては、具体的には、例えば、凝縮液が存在する部分に、該凝縮液が滞留するような凹状部がない構造とするか、或いは、凹状部があれば、その底部から凝縮液を抜き出すこと等を挙げることができる。   In the present invention, as a method for substantially preventing the condensate from staying, specifically, for example, is a structure in which the condensate does not have a concave portion where the condensate stays in the part where the condensate exists? Alternatively, if there is a concave portion, the condensate can be extracted from the bottom.

通常、スチレンの製造における冷却装置は、熱応力やガス流れを優先的に考慮して設計されるため、直線的に水平配置された多管式熱交換器では、チューブバンドル部分の内径が大きく、前後の配管部の内径が小さくなっており、多管式熱交換器出口部分に液体が存在すれば滞留し易い構造となっている。これに対して、本発明において、凝縮液を実質的に滞留させない手段としては、具体的には、例えば、出口側の配管の中心線を熱交換器の中心線より下げて配置するか、或いは、出口側の配管径を熱交換器のチューブバンドル径に近づけることが好ましく行われる。又、凝縮液の円滑な流動のため、冷却装置の脱水素反応生成ガスの温度が水の凝縮開始温度以上、300℃以下の部分に、ガス流れに対して1/200以上の下り勾配をつけることが好ましく、1/100以上の勾配をつけるのが更に好ましい。   Usually, a cooling device in the production of styrene is designed with priority given to thermal stress and gas flow, so in a multi-tube heat exchanger arranged in a straight line, the inner diameter of the tube bundle part is large, The inner diameters of the front and rear piping parts are small, and the structure is easy to stay if liquid is present at the outlet of the multi-tube heat exchanger. On the other hand, in the present invention, as means for preventing the condensate from substantially staying, specifically, for example, the center line of the pipe on the outlet side is arranged lower than the center line of the heat exchanger, or It is preferable to make the pipe diameter on the outlet side close to the tube bundle diameter of the heat exchanger. In addition, for smooth flow of the condensate, a downward gradient of 1/200 or more is given to the gas flow at the part where the temperature of the dehydrogenation reaction product gas of the cooling device is not less than the water condensation start temperature and not more than 300 ° C. It is preferable that a gradient of 1/100 or more is applied.

又、これらの手段によっても、水の凝縮開始温度以上、300℃以下の部分に凝縮液の滞留が生じるような凹状部が存在する場合には、例えば、その底部から凝縮液を抜き出す手段を講じるのが好ましい。具体的には、凹状部底部に抜き出し口を設置して、連続的或いは間欠的に凝縮液を抜き出す手段が採られる。   In addition, even if these means have a concave portion in which the condensate stays in the portion of the water starting from the condensation start temperature to 300 ° C., for example, a means for extracting the condensate from the bottom is provided. Is preferred. Specifically, a means for extracting the condensate continuously or intermittently by installing an outlet at the bottom of the concave portion is employed.

尚、その際の抜き出し方法としては、凹状部からの抜き出し口を抜き出し槽に繋ぎ、抜き出した凝縮液を抜き出し槽に溜める方法を用いてもよく、又、抜き出し口からの配管を下部に位置する油水分離槽等に接続し、抜き出した凝縮液を油相の粗スチレンに溶解した後に油水分離する方法を用いてもよい。又、凝縮液の組成、性状、生成量等は、脱水素反応触媒、反応温度、反応圧力、LHSV、スチーム/原料エチルベンゼン比等のスチレンの製造条件によって変化するが、一般には80〜110℃で凝固し始めるため、これらを凹状部からの抜き出す際は、抜き出し配管での凝固、閉塞を避けるため、配管等を80℃以上、好ましくは110℃以上に保温又は/及び加熱するか、又は/及び、例えばエチルベンゼン、粗スチレン、ジエチルベンゼン等の溶剤を溶解、洗浄のために流すことが好ましい。   In addition, as a method for extracting at that time, a method of connecting the extraction port from the concave portion to the extraction tank and storing the extracted condensate in the extraction tank may be used, and the piping from the extraction port is located at the lower part. You may use the method of connecting to an oil-water separation tank etc., and separating oil-water after melt | dissolving the extracted condensate in crude styrene of an oil phase. In addition, the composition, properties, production amount, etc. of the condensate vary depending on styrene production conditions such as dehydrogenation reaction catalyst, reaction temperature, reaction pressure, LHSV, steam / raw material ethylbenzene ratio, etc., but generally at 80 to 110 ° C. In order to start solidification, when these are extracted from the concave portion, in order to avoid solidification and blockage in the extraction pipe, the pipe or the like is kept at 80 ° C. or higher, preferably 110 ° C. or higher, and / or heated. For example, it is preferable to dissolve and wash a solvent such as ethylbenzene, crude styrene, or diethylbenzene.

尚、脱水素反応生成ガスの冷却において、300℃を越える冷却装置部分については、前記高沸点成分の凝縮が起らないため、又、水の凝縮開始温度未満の部分では、前記高沸点成分の凝縮液は水によって洗い流されるか、或いは水中に重合禁止剤を入れて分散させることで重合の防止が容易であるため、本発明の適用は不要となる。   In the cooling of the dehydrogenation reaction product gas, the high boiling point component does not condense in the cooling device portion exceeding 300 ° C., and the portion of the high boiling point component is below the water condensation start temperature. Since the condensate is washed away with water or a polymerization inhibitor is added and dispersed in water for easy prevention of polymerization, the application of the present invention becomes unnecessary.

又、冷却装置の80℃未満の配管等において、特にノズル部、屈曲部、分岐部等、温度が低くなり、液が滞留し易い箇所においては、高沸点成分の組成、生成量、圧力等によっては高沸点成分の凝縮液の一部或いは大部分が凝固する可能性があるため、有機溶剤又は/及び水、或いは、前述のように重合禁止剤を含む水、等を注入、分散させる方法を併用することができる。   Also, in pipes of less than 80 ° C. of the cooling device, particularly in places where the temperature is low, such as nozzle parts, bent parts, branch parts, etc., where liquid tends to stay, depending on the composition of high-boiling components, production amount, pressure, etc. Since there is a possibility that a part or most of the condensate of the high boiling point component may be solidified, a method of injecting and dispersing an organic solvent or / and water or water containing a polymerization inhibitor as described above is used. Can be used together.

以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited by a following example, unless the summary is exceeded.

実施例1
市販されているスチレン製造用の酸化鉄系触媒(ズードケミー社製「Styromax5」)を用い、固定床流通式の3段脱水素反応器(触媒量は3段ともほぼ同量)にてエチルベンゼン(純度99%以上)からのスチレンの製造を行った。1〜3段の各脱水素反応器入口温度を580〜640℃の範囲内で徐々に上昇させた。3段合計のLHSV0.3h-1、3段脱水素反応器出口圧力を絶対圧力で0.040〜0.045MPa、スチーム/原料エチルベンゼン重量比1.2の反応条件とした。エチルベンゼンの転化率は11ヶ月で70%から60%に低下した。
Example 1
Ethylbenzene (purity) in a fixed bed flow type three-stage dehydrogenation reactor (the amount of catalyst is almost the same in all three stages) using a commercially available iron oxide catalyst for the production of styrene (“Styromax 5” manufactured by Zude Chemie). 99% or more) was produced. The inlet temperature of each of the 1st to 3rd dehydrogenation reactors was gradually increased within the range of 580 to 640 ° C. The LHSV 0.3h −1 for the total of the three stages, and the outlet pressure of the three-stage dehydrogenation reactor were set to reaction conditions of 0.040 to 0.045 MPa in absolute pressure and a steam / raw material ethylbenzene weight ratio of 1.2. The ethylbenzene conversion decreased from 70% to 60% in 11 months.

上記の脱水素反応生成ガスを多段の熱交換器を通して130±10℃まで冷却し、ガス中に水を注入することにより80±5℃(水の凝縮開始温度)まで冷却し、更に空冷式熱交換器で50±10℃まで冷却した。多段の熱交換器最終段出口部分の下部に設置したノズルに110℃に保温した抜き出し槽を取付け、ノズルの弁を開放状態にした。抜き出し槽には凝縮液が溜り、スチレン製造装置の運転開始から7ケ月間はほぼ1回/月の頻度で抜き出し槽を交換し、凝縮液の抜き出しを行った。その後、凝縮液の回収量の増加に応じて抜き出し槽の交換頻度を上げ、運転開始11ケ月後には1回/日の頻度とした。   The above dehydrogenation reaction product gas is cooled to 130 ± 10 ° C. through a multi-stage heat exchanger, cooled to 80 ± 5 ° C. (water condensation start temperature) by injecting water into the gas, and further air-cooled heat Cooled to 50 ± 10 ° C. with exchanger. An extraction tank kept at 110 ° C. was attached to a nozzle installed at the bottom of the final stage outlet of the multistage heat exchanger, and the valve of the nozzle was opened. The condensate accumulated in the extraction tank, and the condensate was extracted by exchanging the extraction tank at a frequency of about once per month for 7 months from the start of operation of the styrene production apparatus. Thereafter, the frequency of replacement of the extraction tank was increased in accordance with the increase in the amount of condensate collected, and the frequency was set to once / day after 11 months from the start of operation.

回収した凝縮液による高沸点成分の量は、運転開始11ヶ月後の時点で原料エチルベンゼン100重量部/時間に対して80×10-6重量部/時間であった。運転開始7ケ月、9ケ月、及び11ケ月後の、空冷式熱交換器入口部のドレンラインに設置したストレーナーでの固形物の捕捉量は、原料エチルベンゼン100重量部/時間に対して各々、1.3×10-6、2.6×10-6、及び2.6×10-6重量部/時間であった。11ケ月後、スチレン製造装置を停止して開放点検したところ、空冷式熱交換器入口部の配管内には不溶性固形物の蓄積は観測されなかった。 The amount of the high boiling point component by the collected condensate was 80 × 10 −6 parts by weight / hour with respect to 100 parts by weight / hour of raw material ethylbenzene at the time of 11 months after the start of operation. After 7 months, 9 months, and 11 months from the start of operation, the amount of solids captured by the strainer installed in the drain line at the inlet of the air-cooled heat exchanger is 1 for 100 parts by weight / hour of ethylbenzene, respectively. 3 × 10 −6 , 2.6 × 10 −6 , and 2.6 × 10 −6 parts by weight / hour. After 11 months, when the styrene production apparatus was stopped and opened and inspected, accumulation of insoluble solids was not observed in the piping at the inlet of the air-cooled heat exchanger.

比較例1
多段の熱交換器最終段出口部分のノズルから凝縮液の抜き出しをしなかったこと以外、実施例1と同様に運転したが、運転開始後7ケ月、及び9ケ月後の、空冷式熱交換器入口部のドレンラインに設置したストレーナーでの固形物の捕捉量は、原料エチルベンゼン100重量部/時間に対して各々、6.3×10-6、12×10-6重量部/時間であった。又、11ケ月後は固形物が回収されなかったので、スチレン製造装置を停止して開放点検したところ、空冷式熱交換器入口部の配管内に多量の不溶性固形物が蓄積しており、その大部分は、ポップコーン状のポリスチレンであった。又、多段の熱交換器最終段の出口部分のノズル付近にも不溶性固形物等が蓄積していた。
Comparative Example 1
The multi-stage heat exchanger was operated in the same manner as in Example 1 except that the condensate was not extracted from the nozzle at the outlet of the final stage, but the air-cooled heat exchanger was 7 months and 9 months after the start of operation. The amount of solids captured by the strainer installed in the drain line at the inlet was 6.3 × 10 −6 and 12 × 10 −6 parts by weight / hour, respectively, with respect to 100 parts by weight of raw material ethylbenzene. . Also, after 11 months, no solid matter was recovered, so when the styrene production equipment was stopped and opened, a large amount of insoluble solids accumulated in the piping at the inlet of the air-cooled heat exchanger. Most were popcorn-like polystyrene. Further, insoluble solids and the like were accumulated in the vicinity of the nozzle at the outlet of the final stage of the multistage heat exchanger.

Claims (6)

エチルベンゼンの脱水素反応によるスチレンの製造における脱水素反応生成ガスを冷却するに際し、該脱水素反応生成ガスの温度が水の凝縮開始温度以上、300℃以下となる温度範囲の冷却装置部分に、凝縮液を実質的に滞留させないことを特徴とする、スチレンの製造における不溶性固形物の蓄積防止方法。 When cooling the dehydrogenation reaction product gas in the production of styrene by the dehydrogenation reaction of ethylbenzene, the dehydrogenation reaction product gas is condensed in the cooling device part in the temperature range where the temperature of the dehydrogenation reaction product gas is not less than the water condensation start temperature and not more than 300 ° C. A method for preventing accumulation of insoluble solids in the production of styrene, wherein the liquid is not substantially retained. 冷却装置内の凹状部の底部から凝縮液を抜き出すことにより、凝縮液を滞留させないこととする請求項1に記載の、スチレンの製造における不溶性固形物の蓄積防止方法。 The method for preventing accumulation of insoluble solids in the production of styrene according to claim 1, wherein the condensate is not retained by extracting the condensate from the bottom of the concave portion in the cooling device. 抜き出す凝縮液の温度を80℃以上とする請求項2に記載の、スチレンの製造における不溶性固形物の蓄積防止方法。 The method for preventing accumulation of insoluble solids in the production of styrene according to claim 2, wherein the temperature of the condensed liquid to be extracted is 80 ° C or higher. エチルベンゼンの脱水素反応によるスチレンの製造における脱水素反応生成ガスの冷却装置であって、該脱水素反応生成ガスの温度が水の凝縮開始温度以上、300℃以下となる温度範囲の冷却装置部分を、凝縮液が実質的に滞留しない構造としたことを特徴とする、スチレンの製造における不溶性固形物の蓄積防止装置。 A cooling device for a dehydrogenation reaction product gas in the production of styrene by a dehydrogenation reaction of ethylbenzene, the cooling device part having a temperature range in which the temperature of the dehydrogenation reaction product gas is not less than the water condensation start temperature and not more than 300 ° C. An apparatus for preventing the accumulation of insoluble solids in the production of styrene, characterized in that the condensate does not substantially stay. 冷却装置内の凹状部の底部に凝縮液の抜き出し口を設けることにより、凝縮液が滞留しない構造とした請求項4に記載の、スチレンの製造における不溶性固形物の蓄積防止装置。 The apparatus for preventing accumulation of insoluble solids in the production of styrene according to claim 4, wherein a condensate outlet is provided at the bottom of the concave portion in the cooling device so that the condensate does not stay. 抜き出し口に、保温又は/及び加熱装置を備えた請求項5に記載の、スチレンの製造における不溶性固形物の蓄積防止装置。 6. The apparatus for preventing accumulation of insoluble solids in the production of styrene according to claim 5, wherein the outlet is provided with a heat retaining or / and heating device.
JP2004145286A 2004-05-14 2004-05-14 Method for preventing accumulation of insoluble solid in production of styrene, and accumulation preventing apparatus therefor Expired - Fee Related JP4449568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004145286A JP4449568B2 (en) 2004-05-14 2004-05-14 Method for preventing accumulation of insoluble solid in production of styrene, and accumulation preventing apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004145286A JP4449568B2 (en) 2004-05-14 2004-05-14 Method for preventing accumulation of insoluble solid in production of styrene, and accumulation preventing apparatus therefor

Publications (2)

Publication Number Publication Date
JP2005325069A JP2005325069A (en) 2005-11-24
JP4449568B2 true JP4449568B2 (en) 2010-04-14

Family

ID=35471706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004145286A Expired - Fee Related JP4449568B2 (en) 2004-05-14 2004-05-14 Method for preventing accumulation of insoluble solid in production of styrene, and accumulation preventing apparatus therefor

Country Status (1)

Country Link
JP (1) JP4449568B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2067749A1 (en) * 2007-11-29 2009-06-10 Total Petrochemicals France Process for purification of an aqueous phase containing polyaromatics
EP2065355A1 (en) * 2007-11-29 2009-06-03 Total Petrochemicals France Process for cooling the stream leaving an ethylbenzene dehydrogenation reactor

Also Published As

Publication number Publication date
JP2005325069A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
KR101914914B1 (en) Method for purifying acrylonitrile, production method and distillation apparatus
JP5535187B2 (en) Purification method of methacrylic acid
SA518400746B1 (en) Production method for (meth)acrylic acid or ester thereof
JP4449568B2 (en) Method for preventing accumulation of insoluble solid in production of styrene, and accumulation preventing apparatus therefor
JP4983041B2 (en) Caprolactam purification method
JP6889179B2 (en) Hydroformylation process
WO1998040448A1 (en) Process for preparing purified conjugated diene
TWI453192B (en) Method for production of aqueous (meth) acrylic acid
JP5364884B2 (en) Method for producing (meth) acrylonitrile
JP6391596B2 (en) Separation of acrolein from process gas of oxidation by heterogeneous catalysis of propene
JP4147015B2 (en) Gas condensation method
JP7229910B2 (en) Process for recovering aldehydes obtained by hydroformylation in two columns with increasing pressure
JP4802446B2 (en) Apparatus and method for producing diphenyl carbonate or aromatic polycarbonate using the apparatus
JP6300387B1 (en) Acrylonitrile purification method, production method, and distillation apparatus
JP6405367B2 (en) Method for producing acetaldehyde
JP2009249327A (en) Method for producing styrene and method for cooling gaseous mixture
JP2006016350A (en) Method for preventing fouling in styrene production
JP2005145880A (en) Method and apparatus for producing vinyl aromatic compound
JP2006182718A (en) Polymerization inhibiting method of copolymer comprising divinylbenzene and aromatic vinyl compound
JP7354494B2 (en) Method for producing isopropyl alcohol
JP4454332B2 (en) Distillation tower for acrylonitrile production
JP2009249328A (en) Method for cooling mixed gas
JP4186459B2 (en) Tower equipment for easily polymerizable compounds
JP5344741B2 (en) Purification method of acrylonitrile
JP5832283B2 (en) Method for producing methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees