JP4449529B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP4449529B2
JP4449529B2 JP2004095171A JP2004095171A JP4449529B2 JP 4449529 B2 JP4449529 B2 JP 4449529B2 JP 2004095171 A JP2004095171 A JP 2004095171A JP 2004095171 A JP2004095171 A JP 2004095171A JP 4449529 B2 JP4449529 B2 JP 4449529B2
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchanger
resin film
hollow
transfer plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004095171A
Other languages
Japanese (ja)
Other versions
JP2005282904A (en
Inventor
拓也 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004095171A priority Critical patent/JP4449529B2/en
Publication of JP2005282904A publication Critical patent/JP2005282904A/en
Application granted granted Critical
Publication of JP4449529B2 publication Critical patent/JP4449529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、家庭用の熱交換型換気扇やビル等の全熱交換型換気装置に使用する積層構造の熱交換器に関し、結露を繰り返すような環境でも使用できる熱交換器に関するものである。   The present invention relates to a heat exchanger having a laminated structure for use in a total heat exchange type ventilator such as a heat exchange type ventilation fan or a building for home use, and relates to a heat exchanger that can be used even in an environment where condensation is repeated.

従来、この種の熱交換器は、コルゲート加工を応用した直交流型構造のものが知られている(例えば、特許文献1参照)。   Conventionally, this type of heat exchanger is known to have a cross flow type structure using corrugating (see, for example, Patent Document 1).

以下、その熱交換器について、図18を参照しながら説明する。   Hereinafter, the heat exchanger will be described with reference to FIG.

図に示すように、熱交換板101は紙等の伝熱板102と波形の間隔板103とを貼り合わせたものであり、この熱交換ブロック104を交互に90度ずらしながら複数枚積層して熱交換器105を形成している。   As shown in the figure, a heat exchange plate 101 is a laminate of a heat transfer plate 102 such as paper and a corrugated spacing plate 103, and a plurality of heat exchange blocks 104 are laminated while being alternately shifted by 90 degrees. A heat exchanger 105 is formed.

上記構成において、一次気流Aと二次気流Bを流通すると、伝熱板102を介して一次気流Aと二次気流Bの間で熱交換する。   In the above configuration, when the primary airflow A and the secondary airflow B are circulated, heat exchange is performed between the primary airflow A and the secondary airflow B via the heat transfer plate 102.

また、この種の熱交換器には伝熱板に対する間隔板の面積比率を小さくし、熱交換効率を変えずに通風抵抗を低減しているものもある(例えば、特許文献2参照)。   In addition, there is a heat exchanger of this type in which the area ratio of the spacing plate to the heat transfer plate is reduced to reduce the ventilation resistance without changing the heat exchange efficiency (see, for example, Patent Document 2).

以下、その熱交換器について図19を参照しながら説明する。   Hereinafter, the heat exchanger will be described with reference to FIG.

図に示すように、伝熱板106の片面に断面矩形板状の中実の間隔板107を複数本30mm間隔で配し、その短辺を接着固定配置して熱交換ブロック108を形成し、この熱交換ブロック108を交互に90度ずらしながら複数枚積層して熱交換器109を得る。   As shown in the figure, a plurality of solid spacing plates 107 having a rectangular cross section in the shape of a rectangular cross section are arranged on one side of the heat transfer plate 106, and the heat exchange block 108 is formed by adhering and fixing the short sides thereof, A plurality of the heat exchanging blocks 108 are alternately stacked while being shifted by 90 degrees to obtain a heat exchanger 109.

前記コルゲート構造の熱交換器105の間隔板103は波形であるためにその板厚によって、伝熱板102にて形成される通風路の有効面積が小さくなり通風抵抗が大きくなるが、熱交換器109の断面矩形板状の間隔板106は前記コルゲート構造の熱交換器105の間隔板103より広い間隔で伝熱板106上に配することができるので、伝熱板106に対する間隔板107の面積比率を小さくすることができるために通風路の有効面積が大きくなり、熱交換効率を変えずに通風抵抗を低減することができる。   Since the interval plate 103 of the corrugated heat exchanger 105 is corrugated, the effective thickness of the ventilation path formed by the heat transfer plate 102 is reduced and the ventilation resistance is increased depending on the plate thickness. The interval plate 106 having a rectangular cross-sectional shape 109 can be arranged on the heat transfer plate 106 at a wider interval than the interval plate 103 of the heat exchanger 105 having the corrugated structure, so that the area of the interval plate 107 with respect to the heat transfer plate 106 is increased. Since the ratio can be reduced, the effective area of the ventilation path is increased, and the ventilation resistance can be reduced without changing the heat exchange efficiency.

また、この種の熱交換器には伝熱板を熱プレス加工することにより、伝熱板の間隔を保持する間隔板を中空状に成形することによって軽量化を図っているものもある(例えば、特許文献3参照)。   In addition, some heat exchangers of this type are designed to reduce the weight by hot-pressing the heat transfer plate to form a space plate that maintains the space between the heat transfer plates into a hollow shape (for example, And Patent Document 3).

以下、その熱交換器について図20を参照しながら説明する。   Hereinafter, the heat exchanger will be described with reference to FIG.

図に示すように、紙、または樹脂を含む紙等からなるシート状の伝熱板110を熱プレスすることにより、熱交換する伝熱面111と中空の間隔板112を一体成形で熱交換ブロック113を形成し、この熱交換ブロック113を交互に90度ずらしながら複数枚積層して熱交換器114を得る。   As shown in the figure, by heat-pressing a sheet-like heat transfer plate 110 made of paper or paper containing resin, the heat transfer surface 111 for heat exchange and the hollow space plate 112 are integrally formed to form a heat exchange block. 113 is formed, and the heat exchanger 114 is obtained by laminating a plurality of the heat exchange blocks 113 while being alternately shifted by 90 degrees.

前記熱交換器109の断面矩形板状の間隔板107は中実であるために重量が重くなるが、熱交換器114の間隔板112は伝熱板110を熱プレスすることにより中空凸状に成形するため、間隔板112は中空であり軽量化を図ることができる。また間隔板112の構成は前記熱交換器109の間隔板107とほぼ同様に、伝熱面111に対する間隔板112の面積比率を小さくすることができるために通風路の有効面積が大きくなり、通風抵抗を低減することができる。   The interval plate 107 having a rectangular cross section of the heat exchanger 109 is solid and heavy, but the interval plate 112 of the heat exchanger 114 is formed into a hollow convex shape by hot pressing the heat transfer plate 110. Since it forms, the space | interval board 112 is hollow and can achieve weight reduction. Further, the configuration of the spacing plate 112 is almost the same as that of the spacing plate 107 of the heat exchanger 109, so that the area ratio of the spacing plate 112 to the heat transfer surface 111 can be reduced. Resistance can be reduced.

また、この種の熱交換器には寒冷地や浴室、温水プールなどの結露しやすい環境においても使用できるように、伝熱板の材質を耐湿化しているものもある(例えば、特許文献4参照)。   In addition, some heat exchangers of this type have moisture-proof materials used for heat transfer plates so that they can be used in environments where condensation is likely to occur, such as in cold regions, bathrooms, and hot water pools (see, for example, Patent Document 4). ).

以下、その熱交換器の伝熱板について図21を参照しながら説明する。   Hereinafter, the heat transfer plate of the heat exchanger will be described with reference to FIG.

図に示すように、熱交換器115(図示せず)の伝熱板116は特定透気度を有するように緻密性に形成した不織布などの多孔質基材117の上に非水溶性の親水性高分子118を塗布して複合透湿膜119を成形する。   As shown in the figure, a heat transfer plate 116 of a heat exchanger 115 (not shown) has a water-insoluble hydrophilic property on a porous base material 117 such as a non-woven fabric that is densely formed to have a specific air permeability. A composite moisture permeable membrane 119 is formed by applying a functional polymer 118.

前記伝熱板の材質は多孔質基材を不織布とし、水蒸気透過膜を非水溶性の親水性高分子にすることで耐湿化を図ることにより、結露を繰り返す環境においても熱交換器の形状変化を少なくすることができる。
特公昭47−19990号公報 特開平3−113292号公報 特開平8−178577号公報 特公平4−81115号公報
The material of the heat transfer plate is a non-woven fabric porous substrate, and water vapor permeable membrane is made of a water-insoluble hydrophilic polymer. Can be reduced.
Japanese Patent Publication No.47-19990 Japanese Patent Laid-Open No. 3-113292 JP-A-8-178777 Japanese Examined Patent Publication No. 4-81115

このような従来の熱交換器105では、間隔板103が波形であるためにその板厚によって、伝熱板102にて形成される通風路の有効面積が小さくなり通風抵抗が大きくなるという課題があり、通風抵抗を低減することが要求されている。   In such a conventional heat exchanger 105, since the interval plate 103 is corrugated, the effective area of the ventilation path formed by the heat transfer plate 102 is reduced and the ventilation resistance is increased due to the plate thickness. There is a need to reduce ventilation resistance.

また、熱交換器105の熱交換ブロック104は間隔板103を波形に成形加工し、さらに伝熱板102と貼り合わせる工程があり、部品点数が多く、加工工程が多いために、量産性が悪いという課題があり、量産性を向上することが要求されている。   Further, the heat exchanging block 104 of the heat exchanger 105 has a process of forming the interval plate 103 into a corrugated shape and further bonding the heat transfer plate 102 to the heat transfer plate 102. Therefore, it is required to improve mass productivity.

また、熱交換器109は断面矩形板状の間隔板107が中実であるために重量が重くなるという課題があり、軽量化が要求されている。   In addition, the heat exchanger 109 has a problem that the weight increases because the interval plate 107 having a rectangular cross section is solid, and the weight reduction is required.

また、熱交換器114は樹脂を含む紙からなる伝熱板110を熱プレスすることにより、熱交換する伝熱面111と中空の間隔板112を一体成形で熱交換ブロック113を形成している。紙の中に含まれる樹脂は伝熱板110を熱プレスして得られる中空の間隔板112の剛性強度を高める目的で混入されているが、紙の中に樹脂が均一に混入しているために熱交換する伝熱面111にも樹脂が介在し、紙単一の伝熱板に比べ透湿性能が低下することにより潜熱交換効率が低下するという課題があり、潜熱交換効率の向上が要求されている。   Further, the heat exchanger 114 heat-presses a heat transfer plate 110 made of paper containing resin, thereby forming a heat exchange block 113 by integrally forming a heat transfer surface 111 for heat exchange and a hollow space plate 112. . The resin contained in the paper is mixed for the purpose of increasing the rigidity strength of the hollow space plate 112 obtained by hot pressing the heat transfer plate 110, but the resin is mixed uniformly in the paper. Resin is also present on the heat transfer surface 111 for heat exchange, and there is a problem that the latent heat exchange efficiency is reduced due to a decrease in moisture permeability compared to a single heat transfer plate of paper, which requires improvement of the latent heat exchange efficiency. Has been.

また、紙製の伝熱板110を熱プレスして得られる熱交換ブロック113は成形加工時に伝熱板110の破れを防ぐために、伝熱板110の厚みは前記熱交換器105および前記熱交換器109の伝熱板より厚くするために、伝熱面111の熱伝達は前記熱交換器105および前記熱交換器109の伝熱面より悪くなり顕熱交換効率が低下するという課題があり、且つ伝熱面111では水蒸気の透過抵抗が大きくなり潜熱交換効率が低下するという課題があり、顕熱交換効率および潜熱交換効率を向上することが要求されている。   In addition, the heat exchange block 113 obtained by hot pressing the paper heat transfer plate 110 prevents the heat transfer plate 110 from being broken during the molding process, so that the thickness of the heat transfer plate 110 is the same as that of the heat exchanger 105 and the heat exchange. In order to make it thicker than the heat transfer plate of the heat exchanger 109, the heat transfer of the heat transfer surface 111 is worse than the heat transfer surface of the heat exchanger 105 and the heat exchanger 109, and there is a problem that the sensible heat exchange efficiency is lowered. Moreover, the heat transfer surface 111 has a problem that the permeation resistance of water vapor increases and the latent heat exchange efficiency decreases, and it is required to improve the sensible heat exchange efficiency and the latent heat exchange efficiency.

また、熱交換器114の顕熱交換効率および潜熱交換効率を向上するために伝熱板110の厚みを薄くすると、熱プレスなどの成形加工時に伝熱板110が破れ、気流の漏れが起こるという課題があり、気流の漏れを防止することが要求されている。   Further, if the thickness of the heat transfer plate 110 is reduced in order to improve the sensible heat exchange efficiency and the latent heat exchange efficiency of the heat exchanger 114, the heat transfer plate 110 is torn during molding processing such as hot press, and airflow leakage occurs. There is a problem, and it is required to prevent airflow leakage.

また、熱交換器114の紙製の伝熱板110は熱プレス等の成形加工時に伝熱板110に破れが起こり、成形加工性が低下するという課題があり、成形加工性の向上が要求されている。   Further, the paper heat transfer plate 110 of the heat exchanger 114 has a problem that the heat transfer plate 110 is torn during the molding process such as a hot press and the molding processability is lowered, and the improvement of the molding processability is required. ing.

また、熱交換器115の伝熱板116は透気度の高い不織布などの多孔質基材117に非水溶性の親水性高分子118の複合透湿膜119を形成しているために、非水溶性の親水性高分子118の膜厚は厚くなり透湿性能が低下する。逆に膜厚を薄くすると、多孔質基材117と非水溶性の親水性高分子118の複合透湿膜119の結合力が低下して、複合透湿膜119は剥離して基本性能が劣化するという課題があり、結露を繰り返すような環境においても、基本性能を保持することが要求されている。   Further, since the heat transfer plate 116 of the heat exchanger 115 is formed with the composite moisture permeable film 119 of the water-insoluble hydrophilic polymer 118 on the porous base material 117 such as a non-woven fabric having high air permeability, The film thickness of the water-soluble hydrophilic polymer 118 is increased, and the moisture permeability is lowered. Conversely, when the film thickness is reduced, the bonding force between the porous substrate 117 and the composite moisture permeable membrane 119 of the water-insoluble hydrophilic polymer 118 is reduced, and the composite moisture permeable membrane 119 is peeled off to deteriorate the basic performance. Therefore, it is required to maintain basic performance even in an environment where condensation is repeated.

本発明は、このような従来の課題を解決するものであり、軽量化することができ、また通風抵抗、顕熱交換効率、潜熱交換効率等の熱交換器の基本的性能を向上することができ、また気流の漏れを防止することができ、また成形加工性や量産性等を向上することができ、また結露を繰り返すような環境においても、基本性能を保持することのできる熱交換器を提供することを目的としている。   The present invention solves such a conventional problem, can be reduced in weight, and can improve the basic performance of the heat exchanger such as ventilation resistance, sensible heat exchange efficiency, and latent heat exchange efficiency. A heat exchanger that can prevent leakage of airflow, improve processability and mass productivity, and maintain basic performance even in environments where condensation is repeated. It is intended to provide.

本発明の熱交換器は上記目的を達成するために、伝熱板は多孔質樹脂膜の片面に気体遮蔽性と伸縮性を有する非水溶性の親水性透湿樹脂膜を前記親水性透湿樹脂膜が前記多孔質樹脂膜の細孔に入り込むように重合した2層構造の透湿樹脂膜で構成し、前記伝熱板を成形して、伝熱面とこの伝熱面の間隔を保持する中空間隔リブと気流の漏れを遮蔽する中空遮蔽リブと気流の通風路と流入口と吐出口を有する成形品を一体形成し、前記成形品を前記中空間隔リブが交差するように複数積層することにより、一次気流Aと二次気流Bとが前記通風路を流通して前記伝熱面を介して熱交換する構成としたものである。 The heat exchanger of the present invention in order to achieve the above object, the heat transfer plate is water-insoluble hydrophilic moisture permeable resin film said hydrophilic moisture permeable having stretchability and gas shielding property on one surface of the porous resin film It is composed of a moisture-permeable resin film with a two-layer structure that is polymerized so that the resin film enters the pores of the porous resin film, and the heat transfer plate is molded to maintain the distance between the heat transfer surface and the heat transfer surface. A hollow gap rib, a hollow shielding rib that shields airflow leakage, a molded article having an airflow passage, an inlet, and a discharge port are integrally formed, and a plurality of the molded articles are stacked so that the hollow gap ribs intersect. Thus, the primary air flow A and the secondary air flow B are configured to exchange heat through the heat transfer surface through the ventilation path.

この手段により、伝熱板は多孔質樹脂膜の片面に気体遮蔽性と伸縮性を有する非水溶性の親水性透湿樹脂膜を前記親水性透湿樹脂膜が前記多孔質樹脂膜の細孔に入り込むように重合した2層構造の透湿樹脂膜で構成されており、多孔質樹脂膜は細孔を多数有するために、親水性樹脂膜が多孔質樹脂膜の細孔に入り込むように重合することができるので、2層構造の透湿樹脂膜はアンカー効果により重合強度を向上することができ、剥離がなくなることで基本性能を長期に保持することができる。また、軽量化することができ、また気流の漏れを防止することができ、また成形加工性や量産性等を向上することができ、また結露を繰り返すような環境においても、基本性能を保持することができる熱交換器が得られる。 By this means , the heat transfer plate is provided with a water-insoluble hydrophilic moisture-permeable resin film having gas shielding properties and stretchability on one surface of the porous resin film, and the hydrophilic moisture-permeable resin film has pores of the porous resin film. It is composed of a moisture-permeable resin film with a two-layer structure polymerized so as to penetrate into the porous resin film. Since the porous resin film has many pores, the hydrophilic resin film is polymerized so as to enter into the pores of the porous resin film. Therefore, the moisture-permeable resin film having a two-layer structure can improve the polymerization strength due to the anchor effect, and can maintain the basic performance for a long time by eliminating peeling. In addition, the weight can be reduced, the leakage of airflow can be prevented, the moldability and mass productivity can be improved, and the basic performance is maintained even in an environment where condensation is repeated. A heat exchanger is obtained.

また他の手段は、成形手段として、熱プレス成形を用いたものである。   Another means uses hot press molding as the molding means.

この手段により量産性等を向上することのできる熱交換器が得られる。   By this means, a heat exchanger capable of improving mass productivity and the like can be obtained.

また他の手段は、成形品は密封性向上手段を有し、この密封性向上手段は上面に重ねられた前記成形品の中空遮蔽リブの凸状内面に当接することにより、気流の流入口および吐出口近傍の前記成形品同士の勘合を向上させるものである。   According to another means, the molded article has a sealing performance improving means, and the sealing performance improving means is in contact with the convex inner surface of the hollow shielding rib of the molded article superimposed on the upper surface, so that the air flow inlet and The fitting between the molded products in the vicinity of the discharge port is improved.

この手段により気流の漏れを防止することができ、また量産性等を向上することのできる熱交換器が得られる。   By this means, a heat exchanger can be obtained in which airflow leakage can be prevented and mass productivity can be improved.

また他の手段は、密封性向上手段として、中空間隔リブの両端に中空突起部Aを設け、前記中空突起部Aは上面に重ねられた成形品の中空遮蔽リブの凸状内面に当接するように構成したものである。   Another means is to provide a hollow protrusion A at both ends of the hollow spacing rib as a means for improving the sealing performance, and the hollow protrusion A is in contact with the convex inner surface of the hollow shielding rib of the molded product overlaid on the upper surface. It is configured.

この手段により気流の漏れを防止することができ、また量産性等を向上することのできる熱交換器が得られる。   By this means, a heat exchanger can be obtained in which airflow leakage can be prevented and mass productivity can be improved.

また他の手段は、密封性向上手段として、中空遮蔽リブの両端または一方の端面に中空突起Bを設け、前記中空突起Bは上面に重ねられた成形品の前記中空遮蔽リブの凸状内面に当接するように構成したものである。   Further, as another means for improving the sealing performance, the hollow projection ribs are provided on both ends or one end face of the hollow shielding rib, and the hollow projection B is formed on the convex inner surface of the hollow shielding rib of the molded product superimposed on the upper surface. It is comprised so that it may contact | abut.

この手段により気流の漏れを防止することができ、また量産性等を向上することのできる熱交換器が得られる。   By this means, a heat exchanger can be obtained in which airflow leakage can be prevented and mass productivity can be improved.

また他の手段は、非水溶性の親水性透湿樹脂膜をエーテル系のポリウレタン系樹脂あるいはエーテル系のポリエステル系樹脂とし、多孔質樹脂膜をPTFEで構成したものである。 Another means is that the water-insoluble hydrophilic moisture-permeable resin film is an ether polyurethane resin or ether polyester resin, and the porous resin film is made of PTFE .

この手段により、多孔質樹脂膜は細孔を多数有するために、親水性樹脂膜が多孔質樹脂膜の細孔に入り込むように重合することができるので、2層構造の透湿樹脂膜はアンカー効果により重合強度を向上することができ、剥離がなくなることで基本性能を長期に保持することができる。また、伝熱板は多孔質樹脂膜をPTFEで構成したものであり、PTFEは多孔質樹脂膜の孔径を小さく、多数にすることができるため空隙率を大きくすることができるので、多孔質樹脂膜と重合した親水性透湿樹脂膜の有効透湿面積は広くなり潜熱交換効率を向上することができる。またPTFEは多孔質樹脂膜の膜厚を薄くすることができるので、温度と湿度を熱交換する機能を果たす透湿樹脂膜を薄膜化することができ、水蒸気の透過抵抗が小さくなり潜熱交換効率を向上することができる。 By this means, since the porous resin film has a large number of pores, the hydrophilic resin film can be polymerized so as to enter the pores of the porous resin film. The polymerization strength can be improved by the effect, and the basic performance can be maintained for a long time by eliminating peeling. In addition, the heat transfer plate is a porous resin film made of PTFE. Since PTFE can reduce the pore diameter of the porous resin film and increase the porosity, the porosity can be increased. The effective moisture permeable area of the hydrophilic moisture permeable resin film polymerized with the film is increased, and the latent heat exchange efficiency can be improved. PTFE can also reduce the thickness of the porous resin film, so it can reduce the moisture-permeable resin film that functions to exchange heat between temperature and humidity. Can be improved.

また他の手段は、伝熱板は透湿樹脂膜の多孔質樹脂膜の面に、通気性の多孔質樹脂基材を重合した3層構造の複合透湿樹脂膜としたものである。   In another means, the heat transfer plate is a three-layer composite moisture-permeable resin film obtained by polymerizing a breathable porous resin substrate on the surface of the porous resin film of the moisture-permeable resin film.

この手段により熱交換器の基本的性能となる潜熱交換効率を向上することができ、また成形加工性や量産性等を向上することができる熱交換器が得られる。   By this means, it is possible to improve the latent heat exchange efficiency, which is the basic performance of the heat exchanger, and to obtain a heat exchanger that can improve the molding processability, mass productivity, and the like.

また他の手段は、伝熱板は透湿樹脂膜の親水性透湿樹脂膜の面に、通気性の多孔質樹脂基材を重合した3層構造の複合透湿樹脂膜としたものである。   In another means, the heat transfer plate is a three-layer composite moisture-permeable resin film obtained by polymerizing a breathable porous resin substrate on the surface of the hydrophilic moisture-permeable resin film of the moisture-permeable resin film. .

この手段により熱交換器の基本的性能となる潜熱交換効率を向上することができ、また成形加工性や量産性等を向上することができる熱交換器が得られる。   By this means, it is possible to improve the latent heat exchange efficiency, which is the basic performance of the heat exchanger, and to obtain a heat exchanger that can improve the molding processability, mass productivity, and the like.

また他の手段は、伝熱板は透湿樹脂膜と多孔質樹脂基材をヒートシールにより重合したものである。   As another means, the heat transfer plate is obtained by polymerizing a moisture permeable resin film and a porous resin base material by heat sealing.

この手段により結露を繰り返すような環境においても、基本性能を保持することができる熱交換器が得られる。   Even in an environment where dew condensation is repeated by this means, a heat exchanger capable of maintaining basic performance can be obtained.

また他の手段は、伝熱板は多孔質樹脂基材を不織布で構成したものである。   Another means is that the heat transfer plate is made of a nonwoven fabric made of a porous resin base material.

この手段により成形加工性や量産性等を向上することができる熱交換器が得られる。   By this means, a heat exchanger that can improve molding processability, mass productivity and the like is obtained.

また他の手段は、伝熱板は多孔質樹脂基材を熱可塑性樹脂で構成したものである。   As another means, the heat transfer plate is a porous resin base material made of a thermoplastic resin.

この手段により成形加工性や量産性等を向上することができる熱交換器が得られる。   By this means, a heat exchanger that can improve molding processability, mass productivity and the like is obtained.

また他の手段は、伝熱板は多孔質樹脂基材をPETなどのポリエステル系樹脂で構成したものである。   Another means is that the heat transfer plate comprises a porous resin substrate made of polyester resin such as PET.

この手段により成形加工性や量産性等を向上することができる熱交換器が得られる。   By this means, a heat exchanger that can improve molding processability, mass productivity and the like is obtained.

また他の手段は、伝熱板は多孔質樹脂基材をPP、PEなどのポリオレフィン系樹脂で構成したものである。   Another means is that the heat transfer plate is a porous resin substrate made of a polyolefin resin such as PP or PE.

この手段により成形加工性や量産性等を向上することができる熱交換器が得られる。   By this means, a heat exchanger that can improve molding processability, mass productivity and the like is obtained.

また他の手段は、伝熱板は多孔質樹脂基材をPETなどのポリエステル系樹脂を芯とし、PP、PEなどのポリオレフィン系樹脂を鞘とした2重構造の不織布で構成したものである。   Another means is that the heat transfer plate is made of a non-woven fabric having a double structure in which a porous resin base material is a polyester resin such as PET as a core and a polyolefin resin such as PP or PE is used as a sheath.

この手段により量産性等を向上することができる熱交換器が得られる。   By this means, a heat exchanger capable of improving mass productivity and the like can be obtained.

また他の手段は、一次気流Aと二次気流Bとが前記伝熱面を介して直交また斜交するように流通したものである。   Another means is that the primary air stream A and the secondary air stream B are circulated so as to be orthogonal or oblique to each other through the heat transfer surface.

この手段により熱交換器の基本的性能となる通風抵抗を低減することができる熱交換器が得られる。   By this means, it is possible to obtain a heat exchanger that can reduce the ventilation resistance that is the basic performance of the heat exchanger.

また他の手段は、熱交換器は気流の流入口および吐出口を有し、一次気流Aと二次気流Bとが前記伝熱面を介して流入口および吐出口近傍では直交また斜交するように流通し、中央部では対向するように流通したものである。   Another means is that the heat exchanger has an airflow inlet and outlet, and the primary airflow A and the secondary airflow B cross at right angles or obliquely in the vicinity of the inlet and outlet via the heat transfer surface. It distribute | circulates so that it may distribute | circulate so that it may oppose in a center part.

この手段により顕熱交換効率、潜熱交換効率等の熱交換器の基本的性能を向上することができる熱交換器が得られる。   By this means, a heat exchanger capable of improving the basic performance of the heat exchanger such as sensible heat exchange efficiency and latent heat exchange efficiency can be obtained.

本発明によれば、伝熱板は多孔質樹脂膜の片面に気体遮蔽性と伸縮性を有する非水溶性の親水性透湿樹脂膜を前記親水性透湿樹脂膜が前記多孔質樹脂膜の細孔に入り込むように重合した2層構造の透湿樹脂膜で構成されており、多孔質樹脂膜は細孔を多数有するために、親水性樹脂膜が多孔質樹脂膜の細孔に入り込むように重合することができるので、2層構造の透湿樹脂膜はアンカー効果により重合強度を向上することができ、剥離がなくなることで基本性能を長期に保持することができ、また、軽量化することができるという効果のある熱交換器を提供できる。 According to the present invention , the heat transfer plate has a water-insoluble hydrophilic moisture-permeable resin film having gas shielding properties and stretchability on one side of the porous resin film, and the hydrophilic moisture-permeable resin film is formed of the porous resin film. It is composed of a moisture-permeable resin film having a two-layer structure that is polymerized so as to enter the pores. Since the porous resin film has a large number of pores, the hydrophilic resin film enters the pores of the porous resin film. Since the moisture-permeable resin film having a two-layer structure can improve the polymerization strength by the anchor effect, the basic performance can be maintained for a long time by eliminating peeling, and the weight is reduced. It is possible to provide a heat exchanger that has an effect of being able to.

また、通風抵抗、顕熱交換効率、潜熱交換効率等の熱交換器の基本的性能を向上することができるという効果のある熱交換器を提供できる。   Further, it is possible to provide a heat exchanger that has an effect of improving the basic performance of the heat exchanger such as ventilation resistance, sensible heat exchange efficiency, and latent heat exchange efficiency.

また、気流の漏れを防止することができるという効果のある熱交換器を提供できる。   Moreover, the heat exchanger with the effect that the leakage of an airflow can be prevented can be provided.

また、成形加工性や量産性等を向上することができるという効果のある熱交換器を提供できる。   In addition, it is possible to provide a heat exchanger that has an effect of improving moldability and mass productivity.

また、結露を繰り返すような環境においても、基本性能を保持することができるという効果のある熱交換器を提供できる。   Further, it is possible to provide a heat exchanger that has an effect of maintaining basic performance even in an environment where condensation is repeated.

本発明の請求項1記載の発明は、伝熱板は多孔質樹脂膜の片面に気体遮蔽性と伸縮性を有する非水溶性の親水性透湿樹脂膜を前記親水性透湿樹脂膜が前記多孔質樹脂膜の細孔に入り込むように重合した2層構造の透湿樹脂膜で構成し、前記伝熱板を成形して、伝熱面とこの伝熱面の間隔を保持する中空間隔リブと気流の漏れを遮蔽する中空遮蔽リブと気流の通風路と流入口と吐出口を有する成形品を一体形成し、前記成形品を前記中空間隔リブが交差するように複数積層することにより、一次気流Aと二次気流Bとが前記通風路を流通して前記伝熱面を介して熱交換する構成としたものであり、伝熱板は多孔質樹脂膜の片面に気体遮蔽性と伸縮性を有する非水溶性の親水性透湿樹脂膜を前記親水性透湿樹脂膜が前記多孔質樹脂膜の細孔に入り込むように重合した2層構造の透湿樹脂膜で構成されており、多孔質樹脂膜は細孔を多数有するために、親水性樹脂膜が多孔質樹脂膜の細孔に入り込むように重合することができるので、2層構造の透湿樹脂膜はアンカー効果により重合強度を向上することができ、剥離がなくなることで基本性能を長期に保持することができ、また、伝熱板は透湿樹脂膜の骨組みを多孔質樹脂膜が担い、この骨組みに気体遮蔽性と透湿性を有する非水溶性の親水性透湿樹脂膜を重合したことにより親水性透湿樹脂膜を薄くすることができ、気体移行が少なく水蒸気のみを選択的に、且つ透過抵抗を小さくすることができるので、気流の漏れを防止することができ、潜熱交換効率を向上することができる。伝熱板は透湿樹脂膜と多孔質樹脂基材を熱によって溶融し圧力によりお互いを接着重合したものである。また、透湿樹脂膜を親水性透湿樹脂膜のみで構成すると、結露を繰り返すような環境では吸湿による連続的な膨潤により、親水性透湿樹脂膜は加水分解が促進され、性能劣化が早まるが、多孔質樹脂膜の骨組みに親水性透湿樹脂膜を重合することにより、吸湿による膨潤を抑えることができ、結露を繰り返すような環境にもいても、基本性能を保持することができ、また、伝熱板は伸縮性を有する透湿樹脂膜で構成されているために、伝熱板を熱プレス成形、真空成形、その他の成形手段により成形することにより、透湿樹脂膜が伸びて熱交換器を構成する成形品の伝熱面と中空間隔リブと中空遮蔽リブを一体で形成できるので、部品点数の減少により量産性を向上することができる。また伝熱板は伸縮性を有するために、一体成形加工時の伝熱板の破れを防ぐことができるので気流の漏れを防ぐことができる。また伝熱面の間隔を保持する中空間隔リブと気流の漏れを遮蔽する中空遮蔽リブは、伝熱板を一体成形することにより中空形状に形成できるので、熱交換器を軽量化することができる。また熱交換器を構成する素材が非水溶性の樹脂のために、結露を繰り返すような環境にもいても、形状変化が少なく性能劣化も少ないので、多湿環境でも基本性能を保持することができるという作用を有する。 The invention of claim 1, wherein the present invention, the heat transfer plate is the water-insoluble hydrophilic moisture-permeable resin film having a stretchable and gas shielding property on one surface of the porous resin film is the hydrophilic moisture permeable resin film A hollow gap rib formed of a moisture-permeable resin film having a two-layer structure polymerized so as to enter the pores of the porous resin film , forming the heat transfer plate, and maintaining a distance between the heat transfer surface and the heat transfer surface And a hollow shielding rib that shields the leakage of airflow, a molded product having an airflow passage, an inlet and an outlet, and a plurality of the molded products are laminated so that the hollow interval ribs intersect each other. The air flow A and the secondary air flow B are configured to exchange heat through the air passage and through the heat transfer surface, and the heat transfer plate has gas shielding properties and stretchability on one side of the porous resin film. A water-insoluble hydrophilic moisture-permeable resin film having the hydrophilic moisture-permeable resin film enters the pores of the porous resin film. Since the porous resin film has a large number of pores, the hydrophilic resin film may be polymerized so as to enter the pores of the porous resin film. Therefore, the moisture-permeable resin film having a two-layer structure can improve the polymerization strength due to the anchor effect, and can keep the basic performance for a long time by eliminating the peeling, and the heat transfer plate is a moisture-permeable resin film. The porous resin film bears the framework of this, and the hydrophilic moisture-permeable resin film can be thinned by polymerizing this framework with a water-insoluble hydrophilic moisture-permeable resin film having gas shielding properties and moisture permeability. Since only a small amount of water vapor is transferred and the permeation resistance can be reduced, airflow leakage can be prevented and the latent heat exchange efficiency can be improved. The heat transfer plate is obtained by melting a moisture-permeable resin film and a porous resin base material with heat and adhesively polymerizing each other with pressure. In addition, when the moisture-permeable resin film is composed only of the hydrophilic moisture-permeable resin film, the hydrophilic moisture-permeable resin film is accelerated by hydrolysis due to continuous swelling due to moisture absorption in an environment where dew condensation is repeated, and performance deterioration is accelerated. However, by polymerizing a hydrophilic moisture-permeable resin film on the framework of the porous resin film, swelling due to moisture absorption can be suppressed, and basic performance can be maintained even in environments where condensation is repeated, Further, since the heat transfer plate is composed of a stretchable moisture-permeable resin film, the moisture-permeable resin film is stretched by forming the heat transfer plate by hot press molding, vacuum forming, or other molding means. Since the heat transfer surface, the hollow gap rib, and the hollow shielding rib of the molded product constituting the heat exchanger can be integrally formed, mass productivity can be improved by reducing the number of parts. In addition, since the heat transfer plate has elasticity, it is possible to prevent the heat transfer plate from being torn during the integral molding process, thereby preventing airflow leakage. Moreover, since the hollow space | interval rib which hold | maintains the space | interval of a heat-transfer surface, and the hollow shielding rib which shields the leak of airflow can be formed in a hollow shape by integrally forming a heat-transfer board, a heat exchanger can be reduced in weight. . In addition, because the material that makes up the heat exchanger is a water-insoluble resin, the basic performance can be maintained even in humid environments because there is little shape change and little performance degradation even in environments where condensation is repeated. It has the action.

また、成形手段として、熱プレス成形を用いたものであり、透湿樹脂膜で構成された伝熱板は、熱プレス時の熱により溶融することと、素材の伸縮性が加わり、プレス時に伸びやすくなるので成形品の形状に加工しやすく、更に成形後は温度が下がって溶融した伝熱板が硬化し、成形品の形状を保持することができるので、成形性向上によって量産性を向上することができる。   In addition, heat press molding is used as a molding means, and the heat transfer plate composed of a moisture-permeable resin film is melted by the heat during hot pressing, and the stretchability of the material is added, so that it stretches during pressing. It becomes easy to process into the shape of the molded product, and after molding, the temperature is lowered and the molten heat transfer plate is cured and the shape of the molded product can be maintained, so the mass productivity is improved by improving the moldability be able to.

また、成形品は密封性向上手段を有し、この密封性向上手段は上面に重ねられた前記成形品の中空遮蔽リブの凸状内面に当接することにより、気流の流入口および吐出口近傍の前記成形品同士の勘合を向上させたものであり、密封性向上手段により気流の流入口および吐出口近傍の成形品同士の勘合が向上するために、気流の漏れを防止することができる。また互いの勘合が向上することにより、成形品を多数積層する量産工程において、位置ずれが発生しにくいので量産性を向上することができる。   Further, the molded product has a sealing performance improving means, and this sealing performance improving means is in contact with the convex inner surface of the hollow shielding rib of the molded product superimposed on the upper surface, so that the air flow inlet and the vicinity of the discharge port are in the vicinity. The fitting between the molded products is improved and the fitting between the molded products in the vicinity of the airflow inlet and the discharge port is improved by the sealing performance improving means, and thus airflow leakage can be prevented. Further, by improving the mutual fitting, it is possible to improve the mass productivity because misalignment hardly occurs in the mass production process in which many molded products are stacked.

また、密封性向上手段として、中空間隔リブの両端に中空突起部Aを設け、前記中空突起部Aは上面に重ねられた成形品の中空遮蔽リブの凸状内面に当接するように構成したものであり、中空凸状の中空突起部Aは上面に重ねられた中空遮蔽リブの凸状内面に当接することにより、中空凸状の中空遮蔽リブの剛性を高くすることができ、熱交換器の気流の流入口および吐出口の密封性を向上することができるので気流の漏れを防止することができる。また中空凸状の中空突起部Aは上面に重ねられた中空遮蔽リブの凸状内面に当接して重なり合うために、互いの勘合が向上することにより、成形品を多数積層する量産工程において、位置ずれが発生しにくいので量産性を向上することができる。   Further, as a means for improving the sealing performance, hollow protrusions A are provided at both ends of the hollow gap ribs, and the hollow protrusions A are configured to come into contact with the convex inner surfaces of the hollow shielding ribs of the molded product superimposed on the upper surface. The hollow convex hollow projection A can be brought into contact with the convex inner surface of the hollow shielding rib stacked on the upper surface, whereby the rigidity of the hollow convex hollow shielding rib can be increased. Since airtightness of the airflow inlet and outlet can be improved, airflow leakage can be prevented. Further, since the hollow convex hollow projection A is in contact with and overlapped with the convex inner surface of the hollow shielding rib superimposed on the upper surface, the mutual fitting improves, so that in the mass production process where a large number of molded products are stacked, Since deviation hardly occurs, mass productivity can be improved.

また、密封性向上手段として、中空遮蔽リブの両端または一方の端面に中空突起Bを設け、前記中空突起Bは上面に重ねられた成形品の前記中空遮蔽リブの凸状内面に当接するように構成したものであり、中空凸状の中空突起部Bは上面に重ねられた中空遮蔽リブの凸状内面に当接することにより、中空凸状の中空遮蔽リブの端面の剛性を高くすることができ、熱交換器のコーナー部の密封性を向上することができるので気流の漏れを防止することができる。また中空凸状の中空突起部Bは上面に重ねられた中空遮蔽リブの凸状内面に当接して重なり合うために、互いの勘合が向上することにより、成形品を多数積層する量産工程において、位置ずれが発生しにくいので量産性を向上することができる。   Further, as a means for improving the sealing performance, hollow projections B are provided at both ends or one end face of the hollow shielding rib, and the hollow projections B abut on the convex inner surface of the hollow shielding rib of the molded product overlaid on the upper surface. The hollow projecting hollow projection B is configured to abut on the projecting inner surface of the hollow shielding rib stacked on the upper surface, thereby increasing the rigidity of the end surface of the hollow projecting hollow shielding rib. Since the sealability of the corner portion of the heat exchanger can be improved, airflow leakage can be prevented. Further, since the hollow convex hollow projection B is in contact with and overlaps the convex inner surface of the hollow shielding rib superimposed on the upper surface, the mutual fitting is improved, so that in the mass production process where a large number of molded products are laminated, Since deviation hardly occurs, mass productivity can be improved.

また、非水溶性の親水性透湿樹脂膜をエーテル系のポリウレタン系樹脂あるいはエーテル系のポリエステル系樹脂とし、多孔質樹脂膜をPTFEで構成したものであり、多孔質樹脂膜は細孔を多数有するために、親水性樹脂膜が前記多孔質樹脂膜の細孔に入り込むように重合することができるので、2層構造の透湿樹脂膜はアンカー効果により重合強度を向上することができ、剥離がなくなることで基本性能を長期に保持することができる。また、伝熱板は多孔質樹脂膜をPTFEで構成したものであり、PTFEは多孔質樹脂膜の孔径を小さく、多数にすることができるため空隙率を大きくすることができるので、多孔質樹脂膜と重合した親水性透湿樹脂膜の有効透湿面積は広くなり潜熱交換効率を向上することができる。またPTFEは多孔質樹脂膜の膜厚を薄くすることができるので、温度と湿度を熱交換する機能を果たす透湿樹脂膜を薄膜化することができ、水蒸気の透過抵抗が小さくなり潜熱交換効率を向上することができる。 The water-insoluble hydrophilic moisture-permeable resin film is an ether polyurethane resin or ether polyester resin, and the porous resin film is made of PTFE . The porous resin film has many pores. Since the hydrophilic resin film can be polymerized so as to enter the pores of the porous resin film, the moisture-permeable resin film having a two-layer structure can improve the polymerization strength by the anchor effect and peel By eliminating this, basic performance can be maintained for a long time. In addition, the heat transfer plate is a porous resin film made of PTFE. Since PTFE can reduce the pore diameter of the porous resin film and increase the porosity, the porosity can be increased. The effective moisture permeable area of the hydrophilic moisture permeable resin film polymerized with the film is increased, and the latent heat exchange efficiency can be improved. Also, PTFE can reduce the thickness of the porous resin film, so it is possible to reduce the moisture permeable resin film that functions to exchange heat between temperature and humidity. Can be improved.

また、伝熱板は透湿樹脂膜の多孔質樹脂膜の面に、通気性の多孔質樹脂基材を重合した3層構造の複合透湿樹脂膜としたものであり、通気性の多孔質樹脂基材は伝熱板としての強度を保持する役目を担い、気体遮蔽および温度と湿度を熱交換する機能を果たす多孔質樹脂膜および親水性透湿樹脂膜で構成した透湿樹脂膜は更に薄膜化することができ、水蒸気の透過抵抗を小さくすることができるので、潜熱交換効率を向上することができる。また透湿樹脂膜および多孔質樹脂基材で構成された伝熱板は、熱プレス時の熱により溶融することと、透湿樹脂膜の伸縮性が加わり、プレス時に伸びやすくなるので成形品の形状に加工しやすく、更に成形後は温度が下がって溶融した伝熱板が硬化し、成形品の形状を保持することができるので、成形性向上によって量産性を向上することができる。   The heat transfer plate is a three-layer composite moisture-permeable resin film obtained by polymerizing a breathable porous resin substrate on the surface of the porous resin film of the moisture-permeable resin film. The resin base material plays the role of maintaining the strength as a heat transfer plate, and the moisture permeable resin film composed of a porous resin film and a hydrophilic moisture permeable resin film that perform the function of gas shielding and heat exchange between temperature and humidity is further provided. Since the film can be thinned and the water vapor permeation resistance can be reduced, the latent heat exchange efficiency can be improved. In addition, the heat transfer plate composed of a moisture permeable resin film and a porous resin base material is melted by the heat during hot pressing, and the elasticity of the moisture permeable resin film is added, making it easier to stretch during pressing, so It is easy to process into a shape, and after molding, the heat transfer plate that has been melted at a low temperature is cured and the shape of the molded product can be maintained, so that mass productivity can be improved by improving moldability.

また、伝熱板は透湿樹脂膜の親水性透湿樹脂膜の面に、通気性の多孔質樹脂基材を重合した3層構造の複合透湿樹脂膜としたものであり、通気性の多孔質樹脂基材は伝熱板としての強度を保持する役目を担い、気体遮蔽および温度と湿度を熱交換する機能を果たす多孔質樹脂膜および親水性透湿樹脂膜で構成した透湿樹脂膜は更に薄膜化することができ、水蒸気の透過抵抗を小さくすることができるので、潜熱交換効率を向上することができる。また透湿樹脂膜および多孔質樹脂基材で構成される伝熱板は、熱プレス時の熱により溶融することと、透湿樹脂膜の伸縮性が加わり、プレス時に伸びやすくなるので成形品の形状に加工しやすく、更に成形後は温度が下がって溶融した伝熱板が硬化し、成形品の形状を保持することができるので、成形性向上によって量産性を向上することができる。   The heat transfer plate is a three-layer composite moisture-permeable resin film obtained by polymerizing a breathable porous resin substrate on the surface of the hydrophilic moisture-permeable resin film of the moisture-permeable resin film. The porous resin base material plays the role of maintaining the strength as a heat transfer plate, and is a moisture permeable resin film composed of a porous resin film and a hydrophilic moisture permeable resin film that perform the function of gas shielding and heat exchange between temperature and humidity. Can be further thinned, and the water vapor transmission resistance can be reduced, so that the latent heat exchange efficiency can be improved. The heat transfer plate composed of a moisture permeable resin film and a porous resin substrate is melted by the heat during hot pressing and the elasticity of the moisture permeable resin film is added. It is easy to process into a shape, and after molding, the heat transfer plate that has been melted at a low temperature is cured and the shape of the molded product can be maintained, so that mass productivity can be improved by improving moldability.

また、伝熱板は透湿樹脂膜と多孔質樹脂基材をヒートシールにより重合したものであり、透湿樹脂膜および多孔質樹脂基材樹脂は樹脂で構成されているため、熱によって溶融し、圧力によりお互いが接着重合される強固な物理結合で複合透湿樹脂膜はシールされるため、水分よってそれぞれの膜が剥離することがないので、結露を繰り返すような環境にもいても、基本性能を保持することができる。   The heat transfer plate is obtained by polymerizing a moisture permeable resin film and a porous resin base material by heat sealing. Since the moisture permeable resin film and the porous resin base resin are made of resin, they are melted by heat. Since the composite moisture-permeable resin membranes are sealed with a strong physical bond where each other is adhesively polymerized by pressure, each membrane does not peel off due to moisture, so even in environments where condensation is repeated Performance can be maintained.

また、伝熱板は多孔質樹脂基材を不織布で構成したものであり、素材が樹脂の不織布は、熱プレス時の熱により、溶融して伸びやすくなるために成形品の形状に加工しやすく、更に成形後は温度が下がって溶融した不織布が硬化し、成形品の形状を保持することができるので、成形性向上によって量産性を向上することができる。   The heat transfer plate is made of a nonwoven fabric made of a porous resin base material. The nonwoven fabric made of resin is easily melted and stretched by the heat generated during hot pressing, so it can be easily processed into the shape of a molded product. Further, after molding, the melted non-woven fabric is cooled and the shape of the molded product can be maintained, so that mass productivity can be improved by improving moldability.

また、伝熱板は多孔質樹脂基材を熱可塑性樹脂で構成したものであり、熱可塑性樹脂の多孔質樹脂基材は、熱プレス時の熱により、溶融して伸びやすくなるために成形品の形状に加工しやすく、更に成形後は温度が下がって溶融した多孔質樹脂基材が硬化し、成形品の形状を保持することができるので、成形性向上によって量産性を向上することができる。   In addition, the heat transfer plate is a porous resin base material made of thermoplastic resin. The thermoplastic resin porous resin base material is a molded product because it is easily melted and stretched by the heat during hot pressing. The molded porous resin base material is hardened and the shape of the molded product can be maintained after molding, and the mass productivity can be improved by improving the moldability. .

また、伝熱板は多孔質樹脂基材をPETなどのポリエステル系樹脂で構成したものであり、PETなどのポリエステル系樹脂の多孔質樹脂基材は、熱プレス時の熱により、溶融して伸びやすくなるために成形品の形状に加工しやすく、更に成形後は温度が下がって溶融した多孔質樹脂基材が硬化し、成形品の形状を保持することができるので、成形性向上によって量産性を向上することができる。   The heat transfer plate is a porous resin base material made of polyester resin such as PET, and the porous resin base material of polyester resin such as PET is melted and stretched by heat during hot pressing. Since it becomes easy to process into the shape of the molded product, and after molding, the molten porous resin base material is cured and the shape of the molded product can be retained, so that it can maintain the shape of the molded product. Can be improved.

また、伝熱板は多孔質樹脂基材をPP、PEなどのポリオレフィン系樹脂で構成したものであり、PP、PEなどのポリオレフィン系樹脂の多孔質樹脂基材は、熱プレス時の熱により、溶融して伸びやすくなるために成形品の形状に加工しやすく、更に成形後は温度が下がって溶融した多孔質樹脂基材が硬化し、成形品の形状を保持することができるので、成形性向上によって量産性を向上することができる。   In addition, the heat transfer plate is a porous resin substrate made of a polyolefin resin such as PP or PE, and the porous resin substrate of a polyolefin resin such as PP or PE is heated by heat at the time of hot press. It is easy to process into the shape of the molded product because it is easily melted and stretched. Further, after molding, the molten porous resin base material is cured and the shape of the molded product can be maintained, so that the moldability is maintained. The productivity can be improved by the improvement.

また、伝熱板は多孔質樹脂基材をPETなどのポリエステル系樹脂を芯とし、PP、PEなどのポリオレフィン系樹脂を鞘とした2重構造の不織布で構成したものであり、不織布の芯となる部分を融点が高いPETなどのポリエステル系樹脂で構成し、鞘となる部分をPETなどのポリエステル系樹脂より融点の低いPP、PEなどのポリオレフィン系樹脂で構成することにより、透湿樹脂膜と2重構造の不織布をPETなどのポリエステル系樹脂の融点以下の温度で、且つPP、PEなどのポリオレフィン系樹脂の融点以上の温度でヒートシールして複合透湿樹脂膜を形成すると、PP、PEなどのポリオレフィン系樹脂は熱溶着する効果があり、PETなどのポリエステル系樹脂は芯として残るので、複合透湿樹脂膜で構成された伝熱板は強度を保持することができるため、伝熱板の腰が強くなり、取扱いと作業性が向上することで量産性が向上する。   The heat transfer plate is composed of a non-woven fabric having a double structure in which a porous resin base material is a polyester resin such as PET as a core and a polyolefin resin such as PP and PE as a sheath. The portion to be formed is made of a polyester resin such as PET having a high melting point, and the portion to be the sheath is made of a polyolefin resin such as PP or PE having a melting point lower than that of the polyester resin such as PET. When a double-layered nonwoven fabric is heat-sealed at a temperature not higher than the melting point of a polyester resin such as PET and at a temperature not lower than the melting point of a polyolefin resin such as PP and PE to form a composite moisture-permeable resin film, PP and PE Polyolefin resins such as PET have the effect of heat welding, and polyester resins such as PET remain as the core, so a heat transfer plate composed of a composite moisture-permeable resin film It is possible to retain the strength, stiffness of the heat transfer plate becomes strong, productivity can be improved by improving handling and workability.

また、一次気流Aと二次気流Bとが前記伝熱面を介して直交また斜交するように流通したものであり、二種の気流が伝熱面を介して直交また斜交するような構造の熱交換器は、通風路を真直ぐにすることができるので通風抵抗を低減することができ、また中空凸状に成形した中空間隔リブおよび中空遮蔽リブは伝熱面の間隔高さと中空間隔リブの間隔幅の比(アスペクト比)を大きくできることと、伝熱板に対する中空間隔リブおよび中空遮蔽リブの面積比率を小さくすることができるために通風路の有効面積を大きくできることが伴って通風抵抗を低減することができる。   Further, the primary airflow A and the secondary airflow B circulate so as to be orthogonal or oblique through the heat transfer surface, and the two kinds of airflow are orthogonally or obliquely intersected via the heat transfer surface. The heat exchanger of the structure can reduce the ventilation resistance because the ventilation path can be straightened, and the hollow spacing rib and the hollow shielding rib formed into a hollow convex shape have a clearance height and a hollow spacing of the heat transfer surface. Ventilation resistance along with the fact that the ratio of the rib spacing width (aspect ratio) can be increased and the area ratio of the hollow spacing rib and the hollow shielding rib to the heat transfer plate can be reduced, so that the effective area of the ventilation path can be increased. Can be reduced.

また、熱交換器は気流の流入口および吐出口を有し、一次気流Aと二次気流Bとが前記伝熱面を介して流入口および吐出口近傍では直交また斜交するように流通し、中央部では対向するように流通したものであり、このような二種の気流が流通する構造の熱交換器は流入口および吐出口近傍では通風路Aを流通する一次気流Aと通風路Bを流通する二次気流Bが直交また斜交するように熱交換し、中央部では通風路Aを流通する一次気流Aと通風路Bを流通する二次気流Bが対向するように熱交換する構造のために、同等伝熱面積を有する直交または斜交する通風路のみで構成される熱交換器よりも熱交換効率を向上することができるという作用を有する。   The heat exchanger also has an air flow inlet and outlet, and the primary air flow A and the secondary air flow B circulate through the heat transfer surface so as to be orthogonal or oblique in the vicinity of the inlet and outlet. The heat exchanger having such a structure that the two kinds of airflows circulate in the central part has the primary airflow A and the airflow path B that circulates in the airflow path A in the vicinity of the inlet and the outlet. Heat exchange so that the secondary airflow B flowing through the airflow passes orthogonally or obliquely, so that the primary airflow A flowing through the airflow path A and the secondary airflow B flowing through the airflow path B face each other in the center. Due to the structure, the heat exchange efficiency can be improved as compared with a heat exchanger constituted only by orthogonal or oblique ventilation paths having an equivalent heat transfer area.

(実施の形態1)
図1は熱交換器1aの概略分解斜視図、図2は熱交換器1aの概略斜視図、図3は伝熱板2aの概略平面図、図4は成形品の概略断面図である。
(Embodiment 1)
1 is a schematic exploded perspective view of the heat exchanger 1a, FIG. 2 is a schematic perspective view of the heat exchanger 1a, FIG. 3 is a schematic plan view of the heat transfer plate 2a, and FIG. 4 is a schematic cross-sectional view of the molded product.

図1および図2に示すように熱交換器1aは、成形品3aと成形品3bを交互に積層することにより構成され、それぞれの成形品の表裏に通風路4aと通風路4bとが構成され、通風路4aを流通する一次気流Aおよび通風路4bを流通する二次気流Bはそれぞれの成形品の伝熱面5a、5bを介して熱交換を行う。実際の熱交換器1aは多数の成形品3aおよび成形品3bが交互に積層されているが、図1および図2は簡略のため4枚の成形品を示している。   As shown in FIGS. 1 and 2, the heat exchanger 1a is configured by alternately stacking molded products 3a and molded products 3b, and ventilation paths 4a and 4b are formed on the front and back of each molded product. The primary airflow A flowing through the ventilation path 4a and the secondary airflow B flowing through the ventilation path 4b exchange heat through the heat transfer surfaces 5a and 5b of the respective molded products. In the actual heat exchanger 1a, a large number of molded products 3a and molded products 3b are alternately stacked, but FIGS. 1 and 2 show four molded products for simplicity.

伝熱板2aは実施の形態4の伝熱板2bと同じ構成である。伝熱板2aを成形加工することにより、成形品3a、3bを一体成形で形成するために、透湿樹脂膜6aの素材は熱可塑性樹脂が好ましい。伝熱板2aが熱可塑性樹脂で構成されていると、熱プレス時の熱により、溶融して伸びやすくなるために成形品3a、3bの形状に加工しやすく、更に成形後は温度が下がって溶融した伝熱板2aが硬化し、成形品3a、3bの形状を保持することができるので、成形性向上によって量産性を向上することができる。 The heat transfer plate 2a has the same configuration as the heat transfer plate 2b of the fourth embodiment. In order to form the molded products 3a and 3b by integral molding by molding the heat transfer plate 2a, the material of the moisture permeable resin film 6a is preferably a thermoplastic resin. If the heat transfer plate 2a is made of a thermoplastic resin, it is easy to be melted and stretched by the heat during hot pressing, so that it can be easily processed into the shape of the molded products 3a and 3b. Since the melted heat transfer plate 2a is cured and the shapes of the molded products 3a and 3b can be maintained, mass productivity can be improved by improving the moldability.

図3に示した透湿樹脂膜6aの伝熱板2aは、平面形状が略方形をなし、厚さが0.2mmの伝熱性と透湿性を有する熱可塑性の微多孔型透湿樹脂シートである。この伝熱板2aは熱プレス成形、真空成形、その他の成形手段を用いて、図1に示したような成形品3aおよび成形品3bを形成する。伝熱板2aは熱可塑性樹脂で構成されているために、特に成形方法としては熱プレス成形が好ましい。伝熱板2aは熱プレス時の熱により、溶融して伸びやすくなるために成形品3a、3bの形状に加工しやすく、更に成形後は温度が下がって溶融した伝熱板2aが硬化し、成形品3a、3bの形状を保持することができるので、成形性向上によって量産性を向上することができる。また伝熱板2aは伸縮性を有する透湿樹脂膜6aで構成されているために、伝熱板2aを熱プレス成形などの成形手段を用いて成形することにより、透湿樹脂膜6aが伸びて熱交換器1aを構成する成形品3a、3bの通風路4a、4bと伝熱面5a、5bと中空遮蔽リブ7a、7bと中空間隔リブ8a、8bと気流の流入口9a、9bと吐出口10a、10bを一体で形成できるので、部品点数の減少により量産性を向上することができる。また伝熱板2aは非水溶性に処理した透湿樹脂膜6aで構成されているために、結露を繰り返すような環境にもいても、性能劣化が少ないので、多湿環境でも基本性能を保持することができる。 Heat transfer plate 2a of the moisture-permeable resin film 6a as shown in FIG. 3 has a substantially rectangular spur-sectional shape, a thermoplastic microporous type moisture-permeable resin sheet having the 0.2mm heat conductivity and moisture permeability of the thickness It is. The heat transfer plate 2a forms a molded product 3a and a molded product 3b as shown in FIG. 1 by using hot press molding, vacuum molding, or other molding means. Since the heat transfer plate 2a is made of a thermoplastic resin, hot press molding is particularly preferable as a molding method. Since the heat transfer plate 2a is easily melted and stretched by heat during hot pressing, the heat transfer plate 2a is easily processed into the shape of the molded products 3a and 3b. Since the shapes of the molded products 3a and 3b can be maintained, mass productivity can be improved by improving moldability. Further, since the heat transfer plate 2a is composed of a stretchable moisture permeable resin film 6a, the moisture permeable resin film 6a is stretched by forming the heat transfer plate 2a using a molding means such as hot press molding. The ventilation passages 4a and 4b, the heat transfer surfaces 5a and 5b, the hollow shielding ribs 7a and 7b, the hollow interval ribs 8a and 8b, the airflow inlets 9a and 9b, and the discharge of the molded products 3a and 3b constituting the heat exchanger 1a. Since the outlets 10a and 10b can be integrally formed, mass productivity can be improved by reducing the number of parts. Further, since the heat transfer plate 2a is composed of the moisture-permeable resin film 6a processed to be water-insoluble, the performance is hardly deteriorated even in an environment where condensation is repeated, so that the basic performance is maintained even in a humid environment. be able to.

図1の成形品3aは中空凸状に、例えば凸高さ1.5mm、幅5mmに形成された中空遮蔽リブ7aを略方形の対向する一対の外周縁部に備え、中空遮蔽リブ7aと等しい凸高さで幅1mmの中空凸状に形成された中空間隔リブ8aを中空遮蔽リブ7aと略平行、略等間隔に複数、たとえば5本備え、中空遮蔽リブ7aと中空間隔リブ8aにより通風路4aおよび伝熱面5aが形成され、通風路4a、伝熱面5a、中空遮蔽リブ7a、中空間隔リブ8a、流入口9aおよび吐出口10aが伝熱板2aを一体成形することにより形成される。   The molded product 3a shown in FIG. 1 is provided with hollow shielding ribs 7a formed in a hollow convex shape, for example, having a convex height of 1.5 mm and a width of 5 mm, on a pair of opposed outer peripheral edges of a substantially square shape, and is equal to the hollow shielding ribs 7a. A plurality of (for example, five) hollow spacing ribs 8a formed in a hollow convex shape having a convex height and a width of 1 mm are provided substantially parallel to the hollow shielding ribs 7a at substantially equal intervals, and the ventilation path is formed by the hollow shielding ribs 7a and the hollow spacing ribs 8a. 4a and the heat transfer surface 5a are formed, and the ventilation path 4a, the heat transfer surface 5a, the hollow shielding rib 7a, the hollow interval rib 8a, the inflow port 9a, and the discharge port 10a are formed by integrally forming the heat transfer plate 2a. .

一方、成形品3bは成形品3aと交互に積層した際、通風路4aと通風路4bが直交するように形成し、中空遮蔽リブ7aと同形状の中空遮蔽リブ7bを略方形の対向する他方の一対の外周縁部に備え、中空間隔リブ8aと同形状の中空間隔リブ8bを中空遮蔽リブ7bと略平行、略等間隔に複数、たとえば5本備え、中空遮蔽リブ7bと中空間隔リブ8bにより通風路4bおよび伝熱面5bが形成され、通風路4b、伝熱面5b、中空遮蔽リブ7b、中空間隔リブ8b、流入口9bおよび吐出口10bが伝熱板2aを一体成形することにより形成される。   On the other hand, when the molded product 3b is alternately laminated with the molded product 3a, the ventilation path 4a and the ventilation path 4b are formed so as to be orthogonal to each other, and the hollow shielding rib 7b having the same shape as the hollow shielding rib 7a is formed on the other side facing the substantially square shape. A plurality of, for example, five hollow spacing ribs 8b having the same shape as the hollow spacing ribs 8a are provided in parallel with the hollow shielding ribs 7b at substantially equal intervals. For example, five hollow shielding ribs 7b and hollow spacing ribs 8b are provided. As a result, the ventilation path 4b and the heat transfer surface 5b are formed, and the ventilation path 4b, the heat transfer surface 5b, the hollow shielding rib 7b, the hollow interval rib 8b, the inlet 9b and the discharge port 10b are integrally formed with the heat transfer plate 2a. It is formed.

中空遮蔽リブ7a、7bは熱交換器1aの通風路4aを流通する一次気流Aおよび通風路4bを流通する二次気流Bが熱交換器1aの端面から気流が漏れないように遮蔽する働きと、成形品3aと成形品3bを交互に積層した時に通風路4aおよび通風路4bの気流の流入口9a、9bおよび吐出口10a、10bを形成する。例えば成形品3aの中空遮蔽リブ7aの上面に成形品3bの通風路4bの流入口9bおよび吐出口10bの下面が重なり、更にその上面に成形品3aの中空遮蔽リブ7aの下面が重なり合うことで、二次気流Bは成形品3bの通風路4bを流通することができる。   The hollow shielding ribs 7a and 7b serve to shield the primary airflow A flowing through the ventilation path 4a of the heat exchanger 1a and the secondary airflow B flowing through the ventilation path 4b so that the airflow does not leak from the end face of the heat exchanger 1a. When the molded product 3a and the molded product 3b are alternately laminated, the air flow paths 4a and the air flow inlets 9a and 9b and the discharge ports 10a and 10b of the ventilation path 4b are formed. For example, the lower surface of the inlet 9b and the discharge port 10b of the ventilation path 4b of the molded product 3b overlaps the upper surface of the hollow shielding rib 7a of the molded product 3a, and further the lower surface of the hollow shielding rib 7a of the molded product 3a overlaps the upper surface thereof. The secondary air flow B can flow through the ventilation path 4b of the molded product 3b.

なお中空遮蔽リブ7a、7bは熱交換器1aの伝熱面5a、5bを一定容積内で広く取るために、略方形の対向する一対の外周縁部に備える構成としたが、成形加工や成形後の切断性などの量産性を配慮して適宜決定する。   The hollow shielding ribs 7a and 7b are provided on a pair of opposing outer peripheral edge portions of a substantially square shape so that the heat transfer surfaces 5a and 5b of the heat exchanger 1a are wide within a certain volume. It is determined as appropriate in consideration of mass productivity such as cutting ability later.

また中空間隔リブ8a、8bは成形品3aの伝熱面5aと成形品3bの伝熱面5bの間隔を保持する働きと、中空遮蔽リブ7a、7bと伝熱面5a、5bとで通風路4aおよび通風路4bを形成する働きがある。   The hollow spacing ribs 8a and 8b serve to maintain the distance between the heat transfer surface 5a of the molded product 3a and the heat transfer surface 5b of the molded product 3b, and the ventilation path is formed by the hollow shielding ribs 7a and 7b and the heat transfer surfaces 5a and 5b. 4a and the ventilation path 4b are formed.

上記構成により、伝熱板2aは伸縮性を有する透湿樹脂膜6aで構成されているために、伝熱板2aを熱プレス成形などの成形手段を用いて成形することにより、透湿樹脂膜6aが伸びて熱交換器1aを構成する成形品3a、3bの通風路4a、4bと伝熱面5a、5bと中空遮蔽リブ7a、7bと中空間隔リブ8a、8bと気流の流入口9a、9bと吐出口10a、10bを一体で形成できるので、部品点数の減少により量産性を向上することができる。   With the above configuration, since the heat transfer plate 2a is composed of the stretchable moisture permeable resin film 6a, the moisture permeable resin film is formed by molding the heat transfer plate 2a using a molding means such as hot press molding. 6a extends to form the heat exchanger 1a, the ventilation passages 4a and 4b of the molded products 3a and 3b, the heat transfer surfaces 5a and 5b, the hollow shielding ribs 7a and 7b, the hollow interval ribs 8a and 8b, and the airflow inlet 9a, Since 9b and the discharge ports 10a and 10b can be integrally formed, mass productivity can be improved by reducing the number of parts.

また伝熱板2aは熱可塑性樹脂で構成されているために、熱プレス時の熱により、溶融して伸びやすくなるために成形品3a、3bの形状に加工しやすく、更に成形後は温度が下がって溶融した伝熱板2aが硬化し、成形品3a、3bの形状を保持することができるので、成形性向上によって量産性を向上することができる。   Further, since the heat transfer plate 2a is made of a thermoplastic resin, the heat transfer plate 2a is easily melted and stretched by heat at the time of hot pressing, so that it can be easily processed into the shape of the molded products 3a and 3b. Since the heat transfer plate 2a that has been melted down is cured and the shapes of the molded products 3a and 3b can be maintained, the productivity can be improved by improving the moldability.

また伝熱板2aは伸縮性を有するために、一体成形加工時の伝熱板2aの破れを防ぐことができるので気流の漏れを防ぐことができる。   In addition, since the heat transfer plate 2a has elasticity, it is possible to prevent the heat transfer plate 2a from being broken during the integral molding process, and thus it is possible to prevent airflow leakage.

また伝熱面5a、5bの間隔を保持する中空間隔リブ8a、8bと気流の漏れを遮蔽する中空遮蔽リブ7a、7bは、伝熱板2aを一体成形することにより中空形状に形成できるので、熱交換器1aを軽量化することができる。   Moreover, since the hollow space | interval ribs 8a and 8b which hold | maintain the space | interval of the heat-transfer surfaces 5a and 5b, and the hollow shielding ribs 7a and 7b which shield the leakage of an airflow can be formed in a hollow shape by integrally forming the heat-transfer plate 2a, The heat exchanger 1a can be reduced in weight.

また熱交換器1aを構成する素材が非水溶性に処理した透湿樹脂膜6aで構成されているために、結露を繰り返すような環境にもいても、形状変化が少なく性能劣化も少ないので、多湿環境でも基本性能を保持することができる。   In addition, since the material constituting the heat exchanger 1a is composed of the moisture-permeable resin film 6a processed to be water-insoluble, even in an environment where dew condensation is repeated, there is little change in shape and little performance degradation. Basic performance can be maintained even in humid environments.

また、直交流型の熱交換器1aは通風路4aおよび通風路4bを真直ぐにすることができるので通風抵抗を低減することができ、また中空凸状に成形した中空遮蔽リブ7a、7bおよび中空間隔リブ8a、8bは伝熱面5a、5bの間隔高さと中空間隔リブ8a、8bの間隔幅の比(アスペクト比)を大きくできることと、伝熱面5a、5bに対する中空遮蔽リブ7a、7bおよび中空間隔リブ8a、8bの面積比率を小さくすることができるために通風路4aおよび通風路4bの有効面積を大きくできることが伴って通風抵抗を低減することができる。   Further, since the cross-flow type heat exchanger 1a can straighten the ventilation path 4a and the ventilation path 4b, the ventilation resistance can be reduced, and the hollow shielding ribs 7a, 7b and the hollow formed into a hollow convex shape can be reduced. The spacing ribs 8a and 8b can increase the ratio (aspect ratio) between the spacing height of the heat transfer surfaces 5a and 5b and the spacing width of the hollow spacing ribs 8a and 8b, and the hollow shielding ribs 7a and 7b with respect to the heat transfer surfaces 5a and 5b. Since the area ratio of the hollow space ribs 8a and 8b can be reduced, the effective area of the ventilation path 4a and the ventilation path 4b can be increased, and the ventilation resistance can be reduced.

なお、本実施の形態では 伝熱板2aを熱プレスの成形加工により一体成形で得られた成形品3aおよび成形品3bを交互に積層して略直方体の熱交換器1aを用いて説明したが、シート材を一体成形して中空状の遮蔽リブ、中空状の間隔リブおよび伝熱面を有する成形品を交互に積層して、2つの気流がそれぞれ独立した通風路を流れ、伝熱面で熱交換が行えるものであれば、その他の工法および形状の熱交換器を用いても同様の作用効果を得ることができる。   In the present embodiment, the heat transfer plate 2a has been described using the heat exchanger 1a having a substantially rectangular parallelepiped shape by alternately stacking the molded product 3a and the molded product 3b obtained by integral molding by hot press molding. The sheet material is integrally molded, and the hollow shielding ribs, the hollow spacing ribs, and the molded product having the heat transfer surface are alternately laminated, and the two airflows respectively flow through independent ventilation paths, As long as heat exchange can be performed, the same effects can be obtained even if heat exchangers having other construction methods and shapes are used.

(実施の形態2)
図5は熱交換器1aの概略分解斜視図、図6は熱交換器1aの中空突起部A近傍の概略断面図である。
(Embodiment 2)
FIG. 5 is a schematic exploded perspective view of the heat exchanger 1a, and FIG. 6 is a schematic cross-sectional view of the vicinity of the hollow protrusion A of the heat exchanger 1a.

なお、実施の形態1と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。   Note that the same parts as those in the first embodiment are denoted by the same reference numerals and have the same operational effects, and detailed description thereof is omitted.

図5および図6に示すように、伝熱板2aを一体成形して得られる成形品3a、3bは密封性向上手段として、気流の流入口9a、9bおよび吐出口10a、10b近傍の中空間隔リブ8a、8bの両端に中空凸状に例えば凸高さ3.0mmの中空突起部A11aを備え、成形品3aおよび成形品3bを交互に積層した熱交換器1aにおいて、中空突起部A11aは上面に重ねられた中空遮蔽リブ7a、7bの凸状内面に当接する構成とする。
成形品3aおよび成形品3bを交互に積層した際、熱交換器1aの中空突起部A11a近傍は図6に示すように、成形品3bの中空突起部A11aは上面に重ねられた成形品3aの中空遮蔽リブ7aの凸状内面に当接するように構成されているため、中空凸状の中空遮蔽リブ7a、7bの密着性と剛性を高くすることができ、熱交換器1aの気流の流入口9a、9bおよび吐出口10a、10bの密封性を向上することができるので気流の漏れを防止することができる。
As shown in FIGS. 5 and 6, molded products 3 a and 3 b obtained by integrally molding the heat transfer plate 2 a are used as sealing means for improving the air gaps 9 a and 9 b and the air gaps in the vicinity of the discharge ports 10 a and 10 b. In the heat exchanger 1a in which the hollow projections A11a having a convex height of, for example, 3.0 mm are provided at both ends of the ribs 8a and 8b, and the molded product 3a and the molded product 3b are alternately laminated, the hollow projection A11a has an upper surface. It is set as the structure contact | abutted to the convex-shaped inner surface of the hollow shielding ribs 7a and 7b piled up.
When the molded product 3a and the molded product 3b are alternately laminated, the vicinity of the hollow projection A11a of the heat exchanger 1a is shown in FIG. 6, and the hollow projection A11a of the molded product 3b is overlapped with the upper surface of the molded product 3a. Since it is comprised so that it may contact | abut to the convex inner surface of the hollow shielding rib 7a, the adhesiveness and rigidity of the hollow convex hollow shielding rib 7a, 7b can be made high, and the airflow inflow port of the heat exchanger 1a Since the sealing performance of 9a, 9b and the discharge ports 10a, 10b can be improved, airflow leakage can be prevented.

上記構成により、中空凸状の中空突起部A11aは上面に重ねられた中空遮蔽リブ7a、7bの凸状内面に当接することにより、中空凸状の中空遮蔽リブ7a、7bの剛性を高くすることができ、熱交換器1aの気流の流入口9a、9bおよび吐出口10a、10bの密封性を向上することができるので気流の漏れを防止することができる。   With the above configuration, the hollow convex hollow projection A11a abuts the convex inner surface of the hollow shielding ribs 7a and 7b stacked on the upper surface, thereby increasing the rigidity of the hollow convex hollow shielding ribs 7a and 7b. The airtightness of the airflow inlets 9a, 9b and the discharge ports 10a, 10b of the heat exchanger 1a can be improved, so that airflow leakage can be prevented.

また中空凸状の中空突起部A11aは上面に重ねられた中空遮蔽リブ7a、7bの凸状内面に当接して重なり合うために、互いの勘合が向上することにより、成形品3a、3bを多数積層する量産工程において、位置ずれが発生しにくいので量産性を向上することができる。   Moreover, since the hollow convex hollow projection A11a abuts and overlaps the convex inner surfaces of the hollow shielding ribs 7a and 7b stacked on the upper surface, the mutual fitting is improved, so that a large number of molded products 3a and 3b are laminated. In the mass production process to be performed, misalignment hardly occurs, so that the mass productivity can be improved.

(実施の形態3)
図7は熱交換器1aの概略分解斜視図、図8は熱交換器1aの気流の流入口または吐出口近傍の概略断面図である。
(Embodiment 3)
FIG. 7 is a schematic exploded perspective view of the heat exchanger 1a, and FIG. 8 is a schematic cross-sectional view of the vicinity of the air flow inlet or outlet of the heat exchanger 1a.

なお、実施の形態1および2と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。   The same parts as those in the first and second embodiments are denoted by the same reference numerals and have the same operational effects, and detailed description thereof is omitted.

図7および図8に示すように、伝熱板2aを一体成形して得られる成形品3a、3bは密封性向上手段として、気流の流入口9a、9bおよび吐出口10a、10b近傍の中空遮蔽リブ7a、7bの両端に中空凸状に例えば凸高さ3.0mmの中空突起部B12aを備え、成形品3aおよび成形品3bを交互に積層した熱交換器1aにおいて、中空突起部B12aは上面に重ねられた中空遮蔽リブ7a、7bの凸状内面に当接する構成とする。   As shown in FIGS. 7 and 8, the molded products 3a and 3b obtained by integrally molding the heat transfer plate 2a are used as a means for improving the sealing performance, as a hollow shield in the vicinity of the airflow inlets 9a and 9b and the discharge ports 10a and 10b. In the heat exchanger 1a in which hollow projections B12a having a convex height of, for example, 3.0 mm are provided at both ends of the ribs 7a and 7b, and the molded product 3a and the molded product 3b are alternately stacked, the hollow projection B12a It is set as the structure contact | abutted to the convex-shaped inner surface of the hollow shielding ribs 7a and 7b piled up.

成形品3aおよび成形品3bを交互に積層した際、熱交換器1aのコーナー部は図8に示すように、成形品3bの中空突起部B12aは上面に重ねられた成形品3aの中空遮蔽リブ7aの凸状内面に当接するように構成されているため、中空凸状の中空遮蔽リブ7a、7bの端面の密着性と剛性を高くすることができ、熱交換器1aのコーナー部の密封性を向上することができるので気流の漏れを防止することができる。   When the molded product 3a and the molded product 3b are alternately stacked, the corner portion of the heat exchanger 1a is as shown in FIG. 8, and the hollow projection B12a of the molded product 3b is overlapped with the hollow shielding rib of the molded product 3a. Since it is configured to come into contact with the convex inner surface of 7a, the adhesion and rigidity of the end surfaces of the hollow convex hollow shielding ribs 7a and 7b can be increased, and the sealing performance of the corner portion of the heat exchanger 1a is improved. As a result, airflow leakage can be prevented.

上記構成により、中空凸状の中空突起部B12aは上面に重ねられた中空遮蔽リブ7a、7bの凸状内面に当接することにより、中空凸状の中空遮蔽リブ7a、7bの端面の剛性を高くすることができ、熱交換器1aのコーナー部の密封性を向上することができるので気流の漏れを防止することができる。   With the above configuration, the hollow convex hollow projection B12a is in contact with the convex inner surfaces of the hollow shielding ribs 7a and 7b superimposed on the upper surface, thereby increasing the rigidity of the end surfaces of the hollow convex rib shielding ribs 7a and 7b. Since the sealing performance of the corner portion of the heat exchanger 1a can be improved, airflow leakage can be prevented.

また中空凸状の中空突起部B12aは上面に重ねられた中空遮蔽リブ7a、7bの凸状内面に当接して重なり合うために、互いの勘合が向上することにより、成形品3a、3bを多数積層する量産工程において、位置ずれが発生しにくいので量産性を向上することができる。   Further, since the hollow convex hollow projection B12a is in contact with and overlapped with the convex inner surfaces of the hollow shielding ribs 7a and 7b stacked on the upper surface, the mutual fitting is improved, so that a large number of molded products 3a and 3b are laminated. In the mass production process to be performed, misalignment hardly occurs, so that the mass productivity can be improved.

(実施の形態4)
図9は伝熱板2bの概略断面図である。
(Embodiment 4)
FIG. 9 is a schematic cross-sectional view of the heat transfer plate 2b.

なお、実施の形態1、2および3と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。   The same parts as those in Embodiments 1, 2, and 3 have the same numbers and have the same operational effects, and detailed description thereof will be omitted.

伝熱板2bは多孔質樹脂膜13の片面に、気体遮蔽性を有する非水溶性の親水性透湿樹脂膜14を重合した2層構造の透湿樹脂膜6bで構成される。多孔質樹脂膜13としては、PP、PE、PET、PTFEなどを素材とした多孔質樹脂シートである。特に多孔質樹脂膜13として、孔径が小さく、非常に空隙率を大きくでき、膜厚を薄くできるPTFEが好ましい。気体遮蔽性を有する非水溶性の親水性透湿樹脂膜14としては、エーテル系のポリウレタン系樹脂、エーテル系のポリエステル系樹脂などを素材とする。   The heat transfer plate 2b is composed of a two-layer moisture-permeable resin film 6b obtained by polymerizing a water-insoluble hydrophilic moisture-permeable resin film 14 having gas shielding properties on one surface of the porous resin film 13. The porous resin film 13 is a porous resin sheet made of PP, PE, PET, PTFE or the like. In particular, the porous resin film 13 is preferably PTFE having a small pore diameter, a very large porosity, and a thin film thickness. The water-insoluble hydrophilic moisture-permeable resin film 14 having gas shielding properties is made of an ether-based polyurethane resin, an ether-based polyester resin, or the like.

図9に示した伝熱板2bは、PTFEを素材とした厚さ0.02mmの多孔質樹脂膜13の片面に、エーテル系のポリウレタン系樹脂を厚さ0.01mmに薄く形成した親水性透湿樹脂膜14を重合した2層構造の透湿樹脂膜6bである。この明細書における重合とは、膜と膜をつなぎ合わせること。すなわち多孔質樹脂膜13と親水性透湿樹脂膜14をヒートシールやラミネートなどの加工による構造的な密着状態のことであり、伝熱板は透湿樹脂膜と多孔質樹脂基材を熱によって溶融し圧力によりお互いを接着重合したものである。 The heat transfer plate 2b shown in FIG. 9 is a hydrophilic transparent plate in which an ether polyurethane resin is thinly formed to a thickness of 0.01 mm on one side of a 0.02 mm thick porous resin film 13 made of PTFE. This is a moisture-permeable resin film 6 b having a two-layer structure obtained by polymerizing the wet resin film 14. Polymerization in this specification refers to the joining of membranes. That der that structural close contact of the porous resin film 13 and a hydrophilic moisture permeable resin film 14 by processing such as heat sealing or laminating is, the heat transfer plate is heat moisture-permeable resin film and the porous resin substrate And melted by pressure and bonded to each other by pressure.

上記構成により、伝熱板2bは透湿樹脂膜6bの骨組みを多孔質樹脂膜13が担い、この骨組みに気体遮蔽性と透湿性を有する非水溶性の親水性透湿樹脂膜14を重合したことにより親水性透湿樹脂膜14を薄くすることができ、気体移行が少なく水蒸気のみを選択的に、且つ透過抵抗を小さくすることができるので、気流の漏れを防止することができ、潜熱交換効率を向上することができる。   With the above configuration, the heat transfer plate 2b has the porous resin film 13 as a framework of the moisture-permeable resin film 6b, and the water-insoluble hydrophilic moisture-permeable resin film 14 having gas shielding properties and moisture permeability is polymerized on the framework. As a result, the hydrophilic moisture-permeable resin film 14 can be thinned, gas transfer is small and only water vapor can be selectively selected, and the permeation resistance can be reduced, thereby preventing airflow leakage and latent heat exchange. Efficiency can be improved.

また多孔質樹脂膜13は細孔を多数有するために、親水性樹脂膜14が細孔に入り込むように重合することができるので、2層構造の透湿樹脂膜6bはアンカー効果により重合強度を向上することができ、剥離がなくなることで基本性能を長期に保持することができる。   Since the porous resin film 13 has a large number of pores, it can be polymerized so that the hydrophilic resin film 14 enters the pores. Therefore, the moisture-permeable resin film 6b having a two-layer structure has a polymerization strength due to the anchor effect. It can be improved, and the basic performance can be maintained for a long time by eliminating peeling.

また透湿樹脂膜6bを親水性透湿樹脂膜14のみで構成すると、結露を繰り返すような環境では吸湿による連続的な膨潤により、親水性透湿樹脂膜14は加水分解が促進され、性能劣化が早まるが、多孔質樹脂膜13の骨組みに親水性透湿樹脂膜14を重合することにより、吸湿による膨潤を抑えることができ、結露を繰り返すような環境にもいても、基本性能を保持することができる。   Further, when the moisture permeable resin film 6b is composed only of the hydrophilic moisture permeable resin film 14, in an environment where condensation is repeated, the hydrophilic moisture permeable resin film 14 is promoted to hydrolyze due to continuous swelling due to moisture absorption, resulting in performance deterioration. However, by polymerizing the hydrophilic moisture-permeable resin film 14 on the framework of the porous resin film 13, swelling due to moisture absorption can be suppressed, and the basic performance is maintained even in an environment where condensation is repeated. be able to.

またPTFEは多孔質樹脂膜13の孔径を小さく、多数にすることができるため空隙率を大きくすることができるので、多孔質樹脂膜13と重合した親水性透湿樹脂膜14の有効透湿面積は広くなり潜熱交換効率を向上することができる。   Since PTFE can reduce the pore diameter of the porous resin film 13 and increase the porosity, the porosity can be increased. Therefore, the effective moisture permeable area of the hydrophilic moisture permeable resin film 14 polymerized with the porous resin film 13 is increased. Becomes wider and the latent heat exchange efficiency can be improved.

またPTFEは多孔質樹脂膜13の膜厚を薄くすることができるので、温度と湿度を熱交換する機能を果たす透湿樹脂膜6bを薄膜化することができ、水蒸気の透過抵抗が小さくなり潜熱交換効率を向上することができる。   Further, since PTFE can reduce the thickness of the porous resin film 13, the moisture-permeable resin film 6b that performs the function of exchanging heat between temperature and humidity can be thinned, and the permeation resistance of water vapor is reduced and the latent heat is reduced. Exchange efficiency can be improved.

(実施の形態5)
図10は伝熱板2cの概略断面図、図11は伝熱板2dの概略断面図である。
(Embodiment 5)
10 is a schematic cross-sectional view of the heat transfer plate 2c, and FIG. 11 is a schematic cross-sectional view of the heat transfer plate 2d.

実施の形態1、2、3および4と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。   The same parts as those of the first, second, third and fourth embodiments are denoted by the same reference numerals and have the same operational effects, and detailed description thereof will be omitted.

通気性の多孔質樹脂基材15としては、PETなどのポリエステル系樹脂、PP、PEなどのポリオレフィン系樹脂などを素材とした可塑性樹脂の不織布が用いられる。またPETなどのポリエステル系樹脂を芯とし、PP、PEなどのポリオレフィン系樹脂を鞘とした2重構造の可塑性樹脂の不織布も用いられる。不織布の坪量は10〜100g/m2
、好ましくは15〜40g/m2である。不織布の厚みは基材としての強度を満たす程度に極力薄いことが好ましい。
As the breathable porous resin base material 15, a nonwoven fabric of a plastic resin made of a polyester resin such as PET or a polyolefin resin such as PP or PE is used. In addition, a non-woven fabric of a double structure plastic resin having a polyester resin such as PET as a core and a polyolefin resin such as PP or PE as a sheath is also used. The basis weight of the nonwoven fabric is 10 to 100 g / m 2
, Preferably 15 to 40 g / m 2 . The thickness of the nonwoven fabric is preferably as thin as possible to satisfy the strength as a substrate.

図10に示した伝熱板2cは、透湿樹脂膜6bの多孔質樹脂膜13の面に、通気性の多孔質樹脂基材15を重合した3層構造の複合透湿樹脂膜16aである。多孔質樹脂基材15は、坪量30g/m2、厚さ0.1mmのPETとPEを素材とした芯鞘2重構造の不織布を用い、透湿樹脂膜6bと多孔質樹脂基材15の重合はヒートシール加工を用いて成形する。芯鞘2重構造の不織布はPETより低融点のPEが熱により溶融し、多孔質樹脂基材15のPTFEの細孔に入り込むように重合することができるので、アンカー効果により重合強度を向上することができ、剥離がなくなることで基本性能を長期に保持することができる。 The heat transfer plate 2c shown in FIG. 10 is a composite moisture permeable resin film 16a having a three-layer structure in which a breathable porous resin substrate 15 is polymerized on the surface of the porous resin film 13 of the moisture permeable resin film 6b. . The porous resin base material 15 uses a nonwoven fabric having a core-sheath double structure made of PET and PE having a basis weight of 30 g / m 2 and a thickness of 0.1 mm, and the moisture-permeable resin film 6b and the porous resin base material 15 are used. The polymerization of is molded using heat sealing. The non-woven fabric with a core-sheath double structure can be polymerized so that PE having a melting point lower than that of PET melts by heat and enters the pores of PTFE of the porous resin base material 15, so that the polymerization effect is improved by the anchor effect. The basic performance can be maintained for a long time by eliminating peeling.

図11に示した伝熱板2dは、透湿樹脂膜6bの親水性透湿樹脂膜14の面に、通気性の多孔質樹脂基材15を重合した3層構造の複合透湿樹脂膜16bである。多孔質樹脂基材15は、坪量30g/m2、厚さ0.1mmのPETを素材とした不織布を用い、透湿樹脂膜6bと多孔質樹脂基材15の重合はウレタン系接着剤を用いたドライラミネート加工を用いて成形する。 The heat transfer plate 2d shown in FIG. 11 has a three-layer composite moisture permeable resin film 16b obtained by polymerizing a breathable porous resin substrate 15 on the surface of the hydrophilic moisture permeable resin film 14 of the moisture permeable resin film 6b. It is. The porous resin substrate 15 is a non-woven fabric made of PET having a basis weight of 30 g / m 2 and a thickness of 0.1 mm, and the moisture-permeable resin film 6b and the porous resin substrate 15 are polymerized with a urethane adhesive. Mold using the dry laminating process used.

不織布で構成される通気性の多孔質樹脂基材15は目が荒いため、温度と湿度を熱交換する影響はほとんどなく、伝熱板2c、2dとしての強度を保つことが目的である。従って、3層構造の複合透湿樹脂膜16a、16bとした伝熱板2c、2dは、熱交換する機能を果たす透湿樹脂膜6bを薄膜化することができ、熱交換効率を向上することができる。また多孔質樹脂基材15のもう一つの目的は、伝熱板熱2c、2dを熱プレス成形する時、熱可塑性の多孔質樹脂基材15が熱により溶融して、伸びやすくなるために成形品3a、3bの形状に加工しやすく、更に成形後は温度が下がって溶融した多孔質樹脂基材15が硬化し、成形品の形状を保持することができるので、成形性向上によって量産性を向上することができる。   Since the breathable porous resin base material 15 made of a nonwoven fabric is rough, there is almost no influence of heat exchange between temperature and humidity, and the purpose is to maintain the strength as the heat transfer plates 2c and 2d. Therefore, the heat transfer plates 2c and 2d having the three-layer composite moisture-permeable resin films 16a and 16b can reduce the thickness of the moisture-permeable resin film 6b that performs the function of heat exchange, thereby improving the heat exchange efficiency. Can do. Another purpose of the porous resin base material 15 is that when the heat transfer plate heat 2c, 2d is hot press-molded, the thermoplastic porous resin base material 15 is melted by heat and easily stretched. It is easy to process into the shape of the products 3a and 3b, and after molding, the molten porous resin base material 15 is cured and the shape of the molded product can be retained. Can be improved.

上記構成により、通気性の多孔質樹脂基材15は伝熱板2c、2dとしての強度を保持する役目を担い、気体遮蔽および温度と湿度を熱交換する機能を果たす多孔質樹脂膜13および親水性透湿樹脂膜14で構成した透湿樹脂膜6bを更に薄膜化することができ、水蒸気の透過抵抗を小さくすることができるので、潜熱交換効率を向上することができる。   With the above-described configuration, the air-permeable porous resin base material 15 plays a role of maintaining the strength as the heat transfer plates 2c and 2d, and serves to shield the gas and to exchange heat between temperature and humidity. The moisture-permeable resin film 6b formed of the moisture-permeable moisture-permeable resin film 14 can be further thinned and the water vapor transmission resistance can be reduced, so that the latent heat exchange efficiency can be improved.

また透湿樹脂膜6bおよび多孔質樹脂基材15で構成された伝熱板2c、2dは、熱プレス時の熱により溶融することと、透湿樹脂膜の伸縮性が加わり、プレス時に伸びやすくなるので成形品3a、3bの形状に加工しやすく、更に成形後は温度が下がって溶融した伝熱板2c、2dが硬化し、成形品3a、3bの形状を保持することができるので、成形性向上によって量産性を向上することができる。   Further, the heat transfer plates 2c and 2d composed of the moisture permeable resin film 6b and the porous resin base material 15 are melted by heat at the time of hot pressing, and the elasticity of the moisture permeable resin film is added, so that they are easily stretched at the time of pressing. Therefore, it is easy to process into the shape of the molded products 3a and 3b. Further, after the molding, the heat transfer plates 2c and 2d which are melted at a lower temperature are cured, and the shape of the molded products 3a and 3b can be maintained. Increased productivity can improve mass productivity.

また伝熱板2cは樹脂で構成された透湿樹脂膜6bおよび多孔質樹脂基材樹脂15をヒートシール加工により重合しているために、熱によって溶融し、圧力によりお互いが接着重合される強固な物理結合で複合透湿樹脂膜16aがシールされ、水分よってそれぞれの膜が剥離することがないので、結露を繰り返すような環境にもいても、基本性能を保持することができる。   Further, since the heat transfer plate 2c polymerizes the moisture permeable resin film 6b made of resin and the porous resin base resin 15 by heat sealing, the heat transfer plate 2c is melted by heat and is strongly bonded and polymerized by pressure. Since the composite moisture-permeable resin film 16a is sealed by such a physical bond, and each film does not peel off due to moisture, the basic performance can be maintained even in an environment where condensation is repeated.

また伝熱板2c、2dは、多孔質樹脂基材15をPETなどのポリエステル系樹脂、PP、PEなどのポリオレフィン系樹脂などを素材とした可塑性樹脂の不織布で構成されている。不織布は、熱プレス時の熱により、溶融して伸びやすくなるために成形品3a、3bの形状に加工しやすく、更に成形後は温度が下がって溶融した不織布が硬化し、成形品3a、3bの形状を保持することができるので、成形性向上によって量産性を向上することができる。   The heat transfer plates 2c and 2d are made of a non-woven fabric made of a plastic resin in which the porous resin base material 15 is made of a polyester resin such as PET or a polyolefin resin such as PP or PE. Since the nonwoven fabric is easily melted and stretched by heat during hot pressing, it is easy to process into the shape of the molded products 3a and 3b. Further, after molding, the melted nonwoven fabric is cured by lowering the temperature, and the molded products 3a and 3b. Therefore, mass productivity can be improved by improving moldability.

また伝熱板は2c、2dは、多孔質樹脂基材15をPETなどのポリエステル系樹脂を芯とし、PP、PEなどのポリオレフィン系樹脂を鞘とした2重構造の可塑性樹脂の不織布で構成されている。不織布の芯となる部分を融点が高いPETなどのポリエステル系樹脂で構成し、鞘となる部分をPETなどのポリエステル系樹脂より融点の低いPP、PEなどのポリオレフィン系樹脂で構成することにより、透湿樹脂膜6bと2重構造の不織布をPETなどのポリエステル系樹脂の融点以下の温度で、且つPP、PEなどのポリオレフィン系樹脂の融点以上の温度でヒートシールして複合透湿樹脂膜16aを形成すると、PP、PEなどのポリオレフィン系樹脂は熱溶着する効果があり、PETなどのポリエステル系樹脂は芯として残るので、複合透湿樹脂膜16aで構成された伝熱板2cは強度を保持することができるため、伝熱板2cの腰が強くなり、取扱いと作業性が向上することで量産性が向上する。   The heat transfer plates 2c and 2d are composed of a nonwoven fabric of a double-structured plastic resin in which the porous resin substrate 15 is made of polyester resin such as PET as a core and polyolefin resin such as PP or PE as a sheath. ing. By forming the core part of the nonwoven fabric with a polyester resin such as PET having a high melting point, and forming the sheath part with a polyolefin resin such as PP or PE having a lower melting point than the polyester resin such as PET, The wet resin film 6b and the double-layered nonwoven fabric are heat-sealed at a temperature lower than the melting point of the polyester resin such as PET and at a temperature higher than the melting point of the polyolefin resin such as PP and PE to form the composite moisture permeable resin film 16a. When formed, polyolefin resin such as PP and PE has an effect of heat welding, and polyester resin such as PET remains as a core. Therefore, the heat transfer plate 2c formed of the composite moisture-permeable resin film 16a maintains strength. Therefore, the heat transfer plate 2c becomes firm and the mass productivity is improved by improving the handling and workability.

(実施の形態6)
実施の形態1、2、3、4および5と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。
(Embodiment 6)
The same parts as those in the first, second, third, fourth and fifth embodiments are denoted by the same reference numerals and have the same operational effects, and detailed description thereof is omitted.

図12は熱交換器1bの概略分解斜視図、図13は熱交換器1bの概略斜視図、図14は伝熱板の概略平面図、図15は熱交換器1bの中央部側面の概略断面図、図16は熱交換器1bの中空突起部A近傍の概略断面図、図17は熱交換器1bの気流の流入口または吐出口の概略断面図である。   12 is a schematic exploded perspective view of the heat exchanger 1b, FIG. 13 is a schematic perspective view of the heat exchanger 1b, FIG. 14 is a schematic plan view of a heat transfer plate, and FIG. 15 is a schematic cross-sectional view of the side surface of the central portion of the heat exchanger 1b. FIG. 16 is a schematic cross-sectional view of the vicinity of the hollow protrusion A of the heat exchanger 1b, and FIG. 17 is a schematic cross-sectional view of the air flow inlet or outlet of the heat exchanger 1b.

なお、実施の形態1、2、3、4および5と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。   The same parts as those in Embodiments 1, 2, 3, 4 and 5 have the same numbers and have the same operational effects, and detailed description thereof will be omitted.

図12、13、14、15、16および図17に示すように、熱交換器1bは成形品3cと成形品3dを交互に積層することにより構成され、それぞれの成形品の表裏に通風路4cと通風路4dとが構成され、通風路4cを流通する一次気流Aおよび通風路4dを流通する二次気流Bはそれぞれの成形品の伝熱面を介して熱交換を行い、それぞれの通風路の流入口および吐出口部分ではお互いが直交または斜交して流れ、中央部分ではお互いが対向する方向に流れる対向流型である。実際の熱交換器1bは多数の成形品3cおよび成形品3dが交互に積層されているが、図12は簡略のため2枚の成形品を示し、図13は簡略のため4枚の成形品を示している。   As shown in FIGS. 12, 13, 14, 15, 16 and 17, the heat exchanger 1b is formed by alternately stacking a molded product 3c and a molded product 3d, and an air passage 4c is formed on the front and back of each molded product. And the air flow path 4d, the primary air flow A flowing through the air flow path 4c and the secondary air flow B flowing through the air flow path 4d exchange heat through the heat transfer surfaces of the respective molded products, and each air flow path In the inflow and discharge port portions, the flow is orthogonal or oblique to each other, and in the central portion is a counter flow type in which they flow in opposite directions. In the actual heat exchanger 1b, a large number of molded products 3c and molded products 3d are alternately laminated. FIG. 12 shows two molded products for simplicity, and FIG. 13 shows four molded products for simplicity. Is shown.

図14に示すように伝熱板2cは平面形状が略六角形をなし、この伝熱板2cは熱プレスの成形加工を用いて、図12に示したような成形品3cおよび成形品3dを形成する。   As shown in FIG. 14, the heat transfer plate 2c has a substantially hexagonal planar shape, and this heat transfer plate 2c is formed by molding a molded product 3c and a molded product 3d as shown in FIG. Form.

図12および図13の成形品3cは中空凸状に、例えば凸高さ1.5mm、幅1mmに形成された略S字状の中空間隔リブ8cを略平行、略等間隔に3本備え、中空間隔リブ8cにより略S字状の通風路4cおよび伝熱面5cが形成される。成形品3cは密封性向上手段として、気流の流入口9cおよび吐出口10c近傍の中空間隔リブ8cの両端に中空凸状に例えば凸高さ3.0mmの中空突起部A11bを有し、成形品3cおよび成形品3dを交互に積層した熱交換器1bにおいて、中空突起部A11bは上面に重ねられた中空遮蔽リブ7dの凸状内面に当接する構成とする。また成形品3cは密封性向上手段として、気流の流入口9cおよび吐出口10c近傍の中空遮蔽リブ7cの片端に中空凸状に例えば凸高さ3.0mmの中空突起部B12bを有し、成形品3cおよび成形品3dを交互に積層した熱交換器1bにおいて、中空突起部B12bは上面に重ねられた中空遮蔽リブ7dの凸状内面に当接する構成とする。   The molded product 3c shown in FIGS. 12 and 13 is provided with three hollow S-shaped ribs 8c formed in a hollow convex shape, for example, having a convex height of 1.5 mm and a width of 1 mm, substantially parallel and substantially equidistant, A substantially S-shaped ventilation path 4c and a heat transfer surface 5c are formed by the hollow spacing ribs 8c. The molded product 3c has a hollow protrusion A11b having a convex height of, for example, 3.0 mm at both ends of the air gap inlet 9c and the hollow gap rib 8c in the vicinity of the discharge port 10c as means for improving the sealing performance. In the heat exchanger 1b in which the 3c and the molded product 3d are alternately stacked, the hollow protrusion A11b is configured to abut on the convex inner surface of the hollow shielding rib 7d stacked on the upper surface. Further, the molded product 3c has a hollow protrusion B12b having a convex height of 3.0 mm, for example, at one end of the hollow shielding rib 7c in the vicinity of the airflow inlet 9c and the discharge port 10c as means for improving sealing performance. In the heat exchanger 1b in which the product 3c and the molded product 3d are alternately stacked, the hollow protrusion B12b is configured to abut on the convex inner surface of the hollow shielding rib 7d stacked on the upper surface.

成形品3cの外周縁部のうち対向流となる通風路部分と略平行をなす一対の外周縁部に中空凸状であり中空間隔リブ8cと等しい高さに形成した中空遮蔽リブ7eを例えばその幅が5mmとなるように備え、成形品3cの外周縁部のうち直交流または斜交流となる通風路部分と略平行をなす一対の外周縁部に中空凸状であり中空間隔リブ8cと等しい高さに形成した中空遮蔽リブ7cを例えばその幅が5mmとなるように備える。   A hollow shielding rib 7e formed on the pair of outer peripheral edge portions that are substantially parallel to the airflow passage portion that is the opposite flow in the outer peripheral edge portion of the molded product 3c and having a height that is the same as the hollow interval rib 8c is, for example, A pair of outer peripheral edge portions that are provided so as to have a width of 5 mm and that are substantially parallel to the air flow path portion that is cross-flow or oblique AC among the outer peripheral edge portions of the molded product 3c are hollow and convex, and are equal to the hollow spacing ribs 8c. The hollow shielding rib 7c formed at a height is provided so that the width thereof is, for example, 5 mm.

成形品3cの通風路4c、伝熱面5c、中空遮蔽リブ7c、7e、中空間隔リブ8c、流入口9c、吐出口10c、中空突起部A11bおよびは中空突起部B12bは伝熱板2cを一体成形することにより形成される。   The ventilation path 4c, the heat transfer surface 5c, the hollow shielding ribs 7c and 7e, the hollow gap rib 8c, the inlet 9c, the discharge port 10c, the hollow protrusion A11b, and the hollow protrusion B12b of the molded product 3c are integrated with the heat transfer plate 2c. It is formed by molding.

また、成形品3dは成形品3cと鏡像関係をなしており、成形品3dの形状のうち対向流となる通風路部分の中空遮蔽リブ7fの高さを中空突起部A11bの高さと等しい高さとし、さらに中空遮蔽リブ7fの幅を成形品3cの中空遮蔽リブ7eの幅よりも狭い形状に例えば2.5mmとなるように形成されている。   Further, the molded product 3d has a mirror image relationship with the molded product 3c, and the height of the hollow shielding rib 7f in the airflow path portion that is the opposite flow in the shape of the molded product 3d is equal to the height of the hollow projection A11b. Further, the hollow shielding rib 7f is formed to have a width narrower than the width of the hollow shielding rib 7e of the molded product 3c, for example, 2.5 mm.

成形品3dの通風路4d、伝熱面5d、中空遮蔽リブ7d、7f、中空間隔リブ8d、流入口9d、吐出口10d、中空突起部A11bおよび中空突起部B12bは伝熱板2cを一体成形することにより形成される。   The ventilation path 4d, the heat transfer surface 5d, the hollow shielding ribs 7d and 7f, the hollow gap rib 8d, the inlet 9d, the discharge port 10d, the hollow protrusion A11b, and the hollow protrusion B12b of the molded product 3d are integrally formed with the heat transfer plate 2c. It is formed by doing.

成形品3cおよび成形品3dを交互に積層した際、熱交換器1bの中央部は図15に示すように、成形品3cの中空遮蔽リブ7eの上面と上方に積層された成形品3dの伝熱面5dの下面とが密接し、成形品3cの中空遮蔽リブ7eの外側側面の外面と上方に積層された成形品3dの中空遮蔽リブ7fの外側側面の内面とが密接し、更に成形品3dの中空遮蔽リブ7fの上面と上方に積層された成形品3cの中空遮蔽リブ7eの下面とが密接し、成形品3dの中空遮蔽リブ7fの外側側面の外面と上方に積層された成形品3cの中空遮蔽リブ7eの外側側面の内面とが密接するように構成されているため、中空凸状の中空遮蔽リブ7eおよび中空遮蔽リブ7fの密封性を向上することができるので気流の漏れを防止することができる。   When the molded product 3c and the molded product 3d are alternately laminated, as shown in FIG. 15, the center portion of the heat exchanger 1b is transferred from the upper surface of the hollow shielding rib 7e of the molded product 3c to the upper side of the molded product 3d. The lower surface of the hot surface 5d is in close contact with the outer surface of the outer side surface of the hollow shielding rib 7e of the molded product 3c and the inner surface of the outer side surface of the hollow shielding rib 7f of the molded product 3d laminated above. The upper surface of the 3d hollow shielding rib 7f and the lower surface of the hollow shielding rib 7e of the molded product 3c laminated above are in close contact with each other, and the molded product laminated on the outer surface of the outer side surface of the hollow shielding rib 7f of the molded product 3d. Since the inner surface of the outer side surface of the hollow shielding rib 7e of 3c is in close contact with each other, the sealing performance of the hollow convex hollow shielding rib 7e and the hollow shielding rib 7f can be improved. Can be prevented.

熱交換器1bの中空突起部A11b近傍は図16に示すように、成形品3dの中空突起部A11bは上面に重ねられた成形品3cの中空遮蔽リブ7cの凸状内面に当接するように構成されているため、中空凸状の中空遮蔽リブ7c、7dの密着性と剛性を高くすることができ、熱交換器1bの気流の流入口9c、9dおよび吐出口10c、10dの密封性を向上することができるので気流の漏れを防止することができる。   In the vicinity of the hollow protrusion A11b of the heat exchanger 1b, as shown in FIG. 16, the hollow protrusion A11b of the molded product 3d is configured to come into contact with the convex inner surface of the hollow shielding rib 7c of the molded product 3c superimposed on the upper surface. Therefore, the adhesion and rigidity of the hollow convex hollow shielding ribs 7c and 7d can be increased, and the airtightness of the air flow inlets 9c and 9d and the discharge ports 10c and 10d of the heat exchanger 1b is improved. As a result, airflow leakage can be prevented.

熱交換器1bのコーナー部は図17に示すように、成形品3dの中空突起部B12bは上面に重ねられた成形品3cの中空遮蔽リブ7cの凸状内面に当接するように構成されているため、中空凸状の中空遮蔽リブ7c、7dの端面の密着性と剛性を高くすることができ、熱交換器1bのコーナー部の密封性を向上することができるので気流の漏れを防止することができる。   As shown in FIG. 17, the corner portion of the heat exchanger 1b is configured such that the hollow projection B12b of the molded product 3d is in contact with the convex inner surface of the hollow shielding rib 7c of the molded product 3c superimposed on the upper surface. Therefore, the adhesion and rigidity of the end surfaces of the hollow convex hollow shielding ribs 7c and 7d can be increased, and the sealing performance of the corner portion of the heat exchanger 1b can be improved, thereby preventing airflow leakage. Can do.

上記構成により、熱交換器1bは流入口9c、9dおよび吐出口10c、10d近傍では通風路4cを流通する一次気流Aと通風路4dを流通する二次気流Bが直交また斜交するように熱交換し、中央部では通風路4cを流通する一次気流Aと通風路4dを流通する二次気流Bが対向するように熱交換する構造のために、同等伝熱面積を有する直交または斜交する通風路のみで構成される熱交換器よりも熱交換効率を向上することができる。   With the above configuration, in the heat exchanger 1b, in the vicinity of the inlets 9c and 9d and the discharge ports 10c and 10d, the primary airflow A flowing through the ventilation path 4c and the secondary airflow B flowing through the ventilation path 4d are orthogonal or obliquely crossed. Orthogonal or oblique cross-section with equivalent heat transfer area due to heat exchange and heat exchange so that the primary airflow A flowing through the ventilation path 4c and the secondary airflow B flowing through the ventilation path 4d face each other at the center. Thus, the heat exchange efficiency can be improved as compared with the heat exchanger constituted only by the ventilation path.

なお、伝熱板2cを熱プレスの成形加工により一体成形で得られた成形品3cおよび成形品3dを交互に積層して略八面体の熱交換器1bを用いて説明したが、シート材を一体成形して中空状の遮蔽リブ、中空状の間隔リブおよび伝熱面を有する成形品を交互に積層して、2つの気流がそれぞれ独立して通風路を流れ、流入口および吐出口近傍では直交または斜交するように流れ、中央部では対向するように流れ、伝熱面を介して熱交換が行える対向流型熱交換器であれば、その他の工法および形状の熱交換器を用いても同様の作用効果を得ることができる。   The heat transfer plate 2c has been described by using the substantially octahedral heat exchanger 1b by alternately laminating the molded product 3c and the molded product 3d obtained by integral molding by hot pressing molding process. A molded product having a hollow shielding rib, a hollow spacing rib, and a heat transfer surface is alternately laminated so that the two air flows independently flow through the ventilation path, and in the vicinity of the inlet and the outlet. If it is a counter flow type heat exchanger that flows orthogonally or obliquely, flows in the center to face each other, and can exchange heat via the heat transfer surface, use a heat exchanger of another construction method and shape. The same effect can be obtained.

また、伝熱板は伝熱板2cを用いて説明したが、伝熱板2a、2b、2dを用いても同様の作用効果を得ることができる。   Moreover, although the heat transfer plate was demonstrated using the heat transfer plate 2c, the same effect can be obtained even if it uses the heat transfer plates 2a, 2b, and 2d.

本発明は、家庭用の熱交換型換気扇やビル等の全熱交換型換気装置に使用する積層構造の熱交換器に関し、結露を繰り返すような環境でも使用できる熱交換器に関するものである。   The present invention relates to a heat exchanger having a laminated structure for use in a total heat exchange type ventilator such as a heat exchange type ventilation fan or a building for home use, and relates to a heat exchanger that can be used even in an environment where condensation is repeated.

本発明の実施の形態1による熱交換器の概略分解斜視図1 is a schematic exploded perspective view of a heat exchanger according to Embodiment 1 of the present invention. 同成形品を積層した熱交換器の概略斜視図Schematic perspective view of heat exchanger with the same molded product laminated 同伝熱板の概略平面図Schematic plan view of the heat transfer plate 同成形品の概略断面図Schematic sectional view of the molded product 本発明の実施の形態2による熱交換器の概略分解斜視図Schematic exploded perspective view of a heat exchanger according to Embodiment 2 of the present invention 同熱交換器の中空突起部A近傍の概略断面図Schematic sectional view of the vicinity of the hollow protrusion A of the heat exchanger 本発明の実施の形態3による熱交換器の概略分解斜視図Schematic exploded perspective view of a heat exchanger according to Embodiment 3 of the present invention 同熱交換器の気流の流入口または吐出口近傍の概略断面図Schematic cross section near the air flow inlet or outlet of the heat exchanger 本発明の実施の形態4による伝熱板の概略断面図Schematic sectional view of a heat transfer plate according to Embodiment 4 of the present invention 本発明の実施の形態5による伝熱板の概略断面図Schematic sectional view of a heat transfer plate according to Embodiment 5 of the present invention 同伝熱板の概略断面図Schematic sectional view of the heat transfer plate 本発明の実施の形態5による熱交換器の概略分解斜視図Schematic exploded perspective view of a heat exchanger according to Embodiment 5 of the present invention 同熱交換器の概略斜視図Schematic perspective view of the heat exchanger 同伝熱板の概略平面図Schematic plan view of the heat transfer plate 同熱交換器の中央部側面の概略断面図Schematic sectional view of the side of the center of the heat exchanger 同熱交換器の中空突起部A近傍の概略断面図Schematic sectional view of the vicinity of the hollow protrusion A of the heat exchanger 同熱交換器の気流の流入口または吐出口の概略断面図Schematic cross-sectional view of the air flow inlet or outlet of the heat exchanger 従来の熱交換器105を示す概略斜視図Schematic perspective view showing a conventional heat exchanger 105 従来の熱交換器109を示す概略斜視図Schematic perspective view showing a conventional heat exchanger 109 従来の熱交換器114を示す概略斜視図Schematic perspective view showing a conventional heat exchanger 114 従来の熱交換器115の伝熱板を示す概略断面図Schematic sectional view showing a heat transfer plate of a conventional heat exchanger 115

符号の説明Explanation of symbols

1a 熱交換器
1b 熱交換器
2a 伝熱板
2b 伝熱板
2c 伝熱板
2d 伝熱板
3a 成形品
3b 成形品
3c 成形品
3d 成形品
4a 通風路
4b 通風路
4c 通風路
4d 通風路
5a 伝熱面
5b 伝熱面
5c 伝熱面
5d 伝熱面
6a 透湿樹脂膜
6b 透湿樹脂膜
7a 中空遮蔽リブ
7b 中空遮蔽リブ
7c 中空遮蔽リブ
7d 中空遮蔽リブ
7e 中空遮蔽リブ
7f 中空遮蔽リブ
8a 中空間隔リブ
8b 中空間隔リブ
8c 中空間隔リブ
8d 中空間隔リブ
9a 流入口
9b 流入口
9c 流入口
9d 流入口
10a 吐出口
10b 吐出口
10c 吐出口
10d 吐出口
11a 中空突起部A
11b 中空突起部A
12a 中空突起部B
12b 中空突起部B
13 多孔質樹脂膜
14 親水性透湿樹脂膜
15 多孔質樹脂基材
16a 複合透湿樹脂膜
16b 複合透湿樹脂膜
1a Heat exchanger 1b Heat exchanger 2a Heat transfer plate 2b Heat transfer plate 2c Heat transfer plate 2d Heat transfer plate 3a Molded product 3b Molded product 3c Molded product 3d Molded product 4a Ventilation path 4b Ventilation path 4c Ventilation path 4d Ventilation path 5a Heat surface 5b Heat transfer surface 5c Heat transfer surface 5d Heat transfer surface 6a Moisture permeable resin film 6b Moisture permeable resin film 7a Hollow shielding rib 7b Hollow shielding rib 7c Hollow shielding rib 7d Hollow shielding rib 7e Hollow shielding rib 7f Hollow shielding rib 8a Hollow Space rib 8b Hollow space rib 8c Hollow space rib 8d Hollow space rib 9a Inlet 9b Inlet 9c Inlet 9d Inlet 10a Discharge port 10b Discharge port 10c Discharge port 10d Discharge port 11a Hollow protrusion A
11b Hollow protrusion A
12a Hollow protrusion B
12b Hollow protrusion B
DESCRIPTION OF SYMBOLS 13 Porous resin film 14 Hydrophilic moisture-permeable resin film 15 Porous resin base material 16a Composite moisture-permeable resin film 16b Composite moisture-permeable resin film

Claims (16)

伝熱板は多孔質樹脂膜の片面に気体遮蔽性と伸縮性を有する非水溶性の親水性透湿樹脂膜を前記親水性透湿樹脂膜が前記多孔質樹脂膜の細孔に入り込むように重合した2層構造の透湿樹脂膜で構成し、前記伝熱板を成形して、伝熱面とこの伝熱面の間隔を保持する中空間隔リブと気流の漏れを遮蔽する中空遮蔽リブと気流の通風路と流入口と吐出口を有する成形品を一体形成し、前記成形品を前記中空間隔リブが交差するように複数積層することにより、一次気流Aと二次気流Bとが前記通風路を流通して前記伝熱面を介して熱交換するようにしたことを特徴とする熱交換器。 The heat transfer plate has a water-insoluble hydrophilic moisture-permeable resin film having gas shielding properties and stretchability on one surface of the porous resin film so that the hydrophilic moisture-permeable resin film enters the pores of the porous resin film. It is composed of a polymerized moisture-permeable resin film having a two-layer structure , the heat transfer plate is formed, a hollow gap rib that holds the gap between the heat transfer face and the heat transfer face, and a hollow shielding rib that shields the leakage of airflow A molded product having an airflow passage, an inlet, and a discharge port is integrally formed, and a plurality of the molded products are stacked so that the hollow gap ribs intersect, whereby the primary airflow A and the secondary airflow B are A heat exchanger characterized in that heat is exchanged through the heat transfer surface through a path. 成形手段として、熱プレス成形を用いたことを特徴とする請求項1記載の熱交換器。 2. The heat exchanger according to claim 1, wherein hot press molding is used as the molding means. 成形品は密封性向上手段を有し、この密封性向上手段は上面に重ねられた前記成形品の中空遮蔽リブの凸状内面に当接することにより、気流の流入口および吐出口近傍の前記成形品同士の勘合を向上させることを特徴とする請求項1または2記載の熱交換器。 The molded product has a sealing performance improving means, and the sealing performance improving device is in contact with the convex inner surface of the hollow shielding rib of the molded product overlaid on the upper surface, so that the molding in the vicinity of the air flow inlet and the discharge port. The heat exchanger according to claim 1, wherein the fitting between the products is improved. 密封性向上手段として、中空間隔リブの両端に中空突起部Aを設け、前記中空突起部Aは上面に重ねられた成形品の中空遮蔽リブの凸状内面に当接するように構成したことを特徴とする請求項1、2または3記載の熱交換器。 As a means for improving the sealing performance, hollow protrusions A are provided at both ends of the hollow gap ribs, and the hollow protrusions A are configured to abut on the convex inner surfaces of the hollow shielding ribs of the molded product overlaid on the upper surface. The heat exchanger according to claim 1, 2, or 3. 密封性向上手段として、中空遮蔽リブの両端または一方の端面に中空突起Bを設け、前記中空突起Bは上面に重ねられた成形品の前記中空遮蔽リブの凸状内面に当接するように構成したことを特徴とする請求項1、2、3または4記載の熱交換器。 As a means for improving sealing performance, hollow projections B are provided on both ends or one end face of the hollow shielding rib, and the hollow projection B is configured to abut on the convex inner surface of the hollow shielding rib of the molded product overlaid on the upper surface. The heat exchanger according to claim 1, 2, 3 or 4. 非水溶性の親水性透湿樹脂膜をエーテル系のポリウレタン系樹脂あるいはエーテル系のポリエステル系樹脂とし、多孔質樹脂膜をPTFEで構成したことを特徴とする請求項1、2、3、4または5記載の熱交換器。 The water-insoluble hydrophilic moisture-permeable resin film is an ether-based polyurethane resin or an ether-based polyester resin, and the porous resin film is made of PTFE. 5. The heat exchanger according to 5. 伝熱板は透湿樹脂膜の多孔質樹脂膜の面に、通気性の多孔質樹脂基材を重合した3層構造の複合透湿樹脂膜としたことを特徴とする請求項1乃至6のいずれかに記載の熱交換器。 The heat transfer plate is a composite moisture-permeable resin film having a three-layer structure in which a breathable porous resin base material is polymerized on the surface of the porous resin film of the moisture-permeable resin film . The heat exchanger in any one . 伝熱板は透湿樹脂膜の親水性透湿樹脂膜の面に、通気性の多孔質樹脂基材を重合した3層構造の複合透湿樹脂膜としたことを特徴とする請求項1乃至6のいずれかに記載の熱交換器。 Heat transfer plate on the surface of the hydrophilic moisture-permeable resin film of moisture-permeable resin film, 1 to claim, characterized in that a composite moisture permeable resin film of three-layer structure obtained by polymerizing a breathable porous resin substrate The heat exchanger according to any one of 6 . 伝熱板は透湿樹脂膜と多孔質樹脂基材をヒートシールにより重合したことを特徴とする請求項7または8記載の熱交換器。 The heat exchanger according to claim 7 or 8, wherein the heat transfer plate is obtained by polymerizing a moisture permeable resin film and a porous resin base material by heat sealing. 伝熱板は多孔質樹脂基材を不織布で構成したことを特徴とする請求項7、8または9記載の熱交換器。 The heat exchanger according to claim 7, 8 or 9, wherein the heat transfer plate comprises a porous resin base material made of a nonwoven fabric. 伝熱板は多孔質樹脂基材を熱可塑性樹脂で構成したことを特徴とする請求項7、8、9または10記載の熱交換器。 The heat exchanger according to claim 7, 8, 9 or 10, wherein the heat transfer plate comprises a porous resin base material made of a thermoplastic resin. 伝熱板は多孔質樹脂基材をPETなどのポリエステル系樹脂で構成したことを特徴とする請求項7、8、9、10または11記載の熱交換器。 The heat exchanger according to claim 7, 8, 9, 10 or 11, wherein the heat transfer plate comprises a porous resin substrate made of polyester resin such as PET. 伝熱板は多孔質樹脂基材をPP、PEなどのポリオレフィン系樹脂で構成したことを特徴とする請求項7、8、9、10または11記載の熱交換器。 The heat exchanger according to claim 7, 8, 9, 10 or 11, wherein the heat transfer plate comprises a porous resin substrate made of a polyolefin resin such as PP or PE. 伝熱板は多孔質樹脂基材をPETなどのポリエステル系樹脂を芯とし、PP、PEなどのポリオレフィン系樹脂を鞘とした2重構造の不織布で構成したことを特徴とする請求項7、8、9、10または11記載の熱交換器。 9. The heat transfer plate is composed of a non-woven fabric having a double structure in which a porous resin base material has a polyester resin such as PET as a core and a polyolefin resin such as PP or PE as a sheath. , 9, 10 or 11. 一次気流Aと二次気流Bとが前記伝熱面を介して直交また斜交するように流通したことを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12、13または14記載の熱交換器。 Claim, characterized in that the primary air flow A and the secondary air flow B is distributed in orthogonal also obliquely intersect through the heat transfer surface 1,2,3,4,5,6,7,8,9 The heat exchanger according to 10, 11, 12, 13 or 14 . 熱交換器は気流の流入口および吐出口を有し、一次気流Aと二次気流Bとが前記伝熱面を介して流入口および吐出口近傍では直交また斜交するように流通し、中央部では対向するように流通したことを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12、13または14記載の熱交換器。 The heat exchanger has an airflow inlet and an outlet, and the primary airflow A and the secondary airflow B circulate through the heat transfer surface so as to be orthogonal or oblique in the vicinity of the inlet and the outlet. The heat exchanger according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 , wherein the heat exchanger circulates to face each other.
JP2004095171A 2004-03-29 2004-03-29 Heat exchanger Expired - Fee Related JP4449529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095171A JP4449529B2 (en) 2004-03-29 2004-03-29 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095171A JP4449529B2 (en) 2004-03-29 2004-03-29 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2005282904A JP2005282904A (en) 2005-10-13
JP4449529B2 true JP4449529B2 (en) 2010-04-14

Family

ID=35181502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095171A Expired - Fee Related JP4449529B2 (en) 2004-03-29 2004-03-29 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4449529B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664457B2 (en) 2011-10-26 2017-05-30 Mitsubishi Electric Corporation Total heat exchange element and manufacturing method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070070A (en) * 2006-09-15 2008-03-27 Techno Frontier:Kk Total heat exchanger
JP4816517B2 (en) * 2006-09-28 2011-11-16 パナソニック株式会社 Heat exchange element
JP4877016B2 (en) * 2007-03-30 2012-02-15 パナソニック株式会社 Heat exchange element
JP6078775B2 (en) * 2012-03-16 2017-02-15 パナソニックIpマネジメント株式会社 Method for manufacturing material of partition plate for total heat exchange element
JP6364618B2 (en) * 2013-09-17 2018-08-01 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
CN104911878B (en) * 2014-03-14 2018-12-25 青岛海尔滚筒洗衣机有限公司 A kind of superposing type heat exchanger
US10967333B2 (en) * 2015-01-23 2021-04-06 Zehnder Group International Ag Enthalpy exchanger element, enthalpy exchanger comprising such elements and method for their production
EP3276292A1 (en) * 2016-07-25 2018-01-31 Zehnder Group International AG Enthalpy exchanger element, enthalpy exchanger comprising such elements and method for their production
WO2021152839A1 (en) * 2020-01-31 2021-08-05 三菱電機株式会社 Partitioning plate, total heat exchange element, total heat exchanger, and method for manufacturing partitioning plate
US20240003641A1 (en) * 2020-12-24 2024-01-04 Mitsubishi Electric Corporation Total heat exchange element-purpose flow channel plate, total heat exchange element, total heat exchange ventilator, and total heat exchange element-purpose flow channel plate manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3414012B2 (en) * 1994-12-26 2003-06-09 ダイキン工業株式会社 Heat exchange element
JP3460358B2 (en) * 1995-02-15 2003-10-27 三菱電機株式会社 Heat exchangers, heat exchanger spacing plates and heat exchanger partition plates
JP4094318B2 (en) * 2002-03-28 2008-06-04 松下エコシステムズ株式会社 Heat exchange membrane and heat exchange element
JP4279021B2 (en) * 2002-03-28 2009-06-17 パナソニックエコシステムズ株式会社 Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664457B2 (en) 2011-10-26 2017-05-30 Mitsubishi Electric Corporation Total heat exchange element and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005282904A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
WO2013157045A1 (en) Heat exchange element
US8550151B2 (en) Heat exchanger
CA2664832C (en) Heat exchanging element
JPH1054691A (en) Shim of heat exchanger, and member for heat exchanger, and heat exchanger, and its manufacture
JP4449529B2 (en) Heat exchanger
JP5506441B2 (en) Total heat exchange element and total heat exchanger
WO2013157040A1 (en) Heat-exchange element and air conditioner
JP2005121264A (en) Total heat exchanging element
JP5817652B2 (en) Total heat exchange element
JP2006329499A (en) Heat exchanger
JP2008089199A (en) Total enthalpy heat exchanger
JP4928295B2 (en) Sensible heat exchange element
JP5610777B2 (en) Total heat exchange element
JP4466156B2 (en) Heat exchanger
JP2738284B2 (en) Method of manufacturing heat exchanger, spacing plate thereof and partition plate of heat exchanger
JP2006097958A (en) Heat exchanger
JP6126875B2 (en) Heat exchange element
JP5797328B2 (en) Heat exchange element
JP2009210236A (en) Heat exchanger and manufacturing method of heat exchanger
KR100539429B1 (en) Heat exchanger and method of manufacturing the same
JP2008070070A (en) Total heat exchanger
JP3461697B2 (en) Heat exchange element
JP2005140362A (en) Heat exchanger
JP2012141121A (en) Total heat exchange element
JP2006064342A (en) Heat exchange element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees