JP4448471B2 - High time resolution imaging method and apparatus, and total reflection fluorescence microscope - Google Patents

High time resolution imaging method and apparatus, and total reflection fluorescence microscope Download PDF

Info

Publication number
JP4448471B2
JP4448471B2 JP2005101764A JP2005101764A JP4448471B2 JP 4448471 B2 JP4448471 B2 JP 4448471B2 JP 2005101764 A JP2005101764 A JP 2005101764A JP 2005101764 A JP2005101764 A JP 2005101764A JP 4448471 B2 JP4448471 B2 JP 4448471B2
Authority
JP
Japan
Prior art keywords
fluorescent dye
dye molecule
time resolution
bright spot
resolution imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005101764A
Other languages
Japanese (ja)
Other versions
JP2006284243A (en
Inventor
祟之 西坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2005101764A priority Critical patent/JP4448471B2/en
Publication of JP2006284243A publication Critical patent/JP2006284243A/en
Application granted granted Critical
Publication of JP4448471B2 publication Critical patent/JP4448471B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、蛍光色素分子1個の観察等が可能な高時間分解能の画像化方法及び装置、並びに、それを用いた全反射型蛍光顕微鏡に関する。   The present invention relates to a high time resolution imaging method and apparatus capable of observing one fluorescent dye molecule and the like, and a total reflection fluorescent microscope using the same.

近年の光学顕微鏡に関する技術の発展はめざましく、現在は水溶液中の1個の蛋白質を対象に研究ができる段階にまで到達している。この発展を可能にしたのは、全反射照明など光学系の新技術、様々なタイプの高感度カメラの開発、光学フィルターの特性の向上などである。数多くの実験的手法があみ出され、今や「1分子生理学」という新しい流れが生まれつつある。
例えば、分子モーターや蛋白質分解酵素は、基質の結合によりダイナミックな構造変化を伴い、それが機能に密接に関係すると考えられている。
このような1個の生体分子の中で起こる構造変化を、分子レベルで生きたまま顕微鏡下で可視化できるようにする技術が求められている。この大きな流れを、次の新たなステップに進ませるためには、新しい視点に基づいた革新的な手法が必要とされている。
The development of technology related to the optical microscope in recent years is remarkable, and it has now reached the stage where one protein in an aqueous solution can be studied. This development is made possible by new optical system technologies such as total reflection illumination, the development of various types of high-sensitivity cameras, and improved optical filter characteristics. Numerous experimental methods have emerged, and a new trend of “single molecule physiology” is now emerging.
For example, molecular motors and proteolytic enzymes are considered to be closely related to their functions, accompanied by dynamic structural changes due to substrate binding.
There is a need for a technique that makes it possible to visualize the structural change that occurs in such a single biomolecule under a microscope while remaining alive at the molecular level. In order to move this big flow to the next new step, an innovative method based on a new viewpoint is required.

1分子の蛋白質を観察する手法の1つとして、蛋白質を蛍光色素で特異的にラベルし、その1個の蛍光色素分子からの信号をとらえるという技術がある。
蛍光顕微鏡は、ある特定の波長の光が当たると、その光の波長より長い波長の光を出す色素を利用し、蛍光色素を光らせるための励起光を照射するための光学系と、それにより発生した蛍光を観察する光学顕微鏡とを組み合わせた構成を備える。
観察したい細胞内の構造に蛍光色素結合させた試薬を結合させ、所定波長の光をその蛍光色素分子に照射すると、目的の細胞内の構造が暗黒を背景にして蛍光を発する。
One technique for observing a single molecule of protein is to specifically label the protein with a fluorescent dye and capture the signal from that single fluorescent dye molecule.
A fluorescence microscope uses an optical system that emits excitation light to illuminate a fluorescent dye, using a dye that emits light of a wavelength longer than the wavelength of the light when it hits a specific wavelength. The structure which combined the optical microscope which observes the performed fluorescence is provided.
When a fluorescent dye-bonded reagent is bound to the intracellular structure to be observed and the fluorescent dye molecule is irradiated with light of a predetermined wavelength, the target intracellular structure emits fluorescence against a dark background.

一般の蛍光顕微鏡で観察可能な蛍光色素分子の数は数十個以上であり、蛍光色素分子1個を識別することはできない。
これは、蛍光色素分子1個から得られる光信号強度より、ノイズ、すなわち周囲からの光信号強度の方が大きいためである。
それに対し、性能向上のために改良がなされ、フィルターの性質、対物レンズの品質の向上等により、1個の蛍光色素分子を可視化できる蛍光顕微鏡が開発されている。
The number of fluorescent dye molecules observable with a general fluorescent microscope is several tens or more, and one fluorescent dye molecule cannot be identified.
This is because noise, that is, the optical signal intensity from the surroundings is larger than the optical signal intensity obtained from one fluorescent dye molecule.
In contrast, improvements have been made to improve performance, and a fluorescence microscope has been developed that can visualize one fluorescent dye molecule by improving the properties of the filter and the quality of the objective lens.

蛍光色素分子1個の観察のためには、エバネッセント場による照明により、蛍光色素分子が蛍光を発することを利用している。
具体的には、対象試料を含む水溶液とガラスとの境界面に対して、ガラス側から全反射角以上の角度でレーザー光を照射(全反射照明)し、境界面近傍に発生する非伝播光であるエバネッセント場によって対象試料を照明することで、蛍光色素分子に蛍光を発生させる。
In order to observe one fluorescent dye molecule, the fact that the fluorescent dye molecule emits fluorescence by illumination with an evanescent field is used.
Specifically, non-propagating light generated in the vicinity of the boundary surface by irradiating the boundary surface between the aqueous solution containing the target sample and the glass with laser light (total reflection illumination) at an angle greater than the total reflection angle from the glass side By illuminating the target sample with an evanescent field, the fluorescent dye molecules generate fluorescence.

エバネッセント場は、境界面に垂直な方向に対して指数関数的に減衰し、その減衰度合は屈折率とレーザー光の入射角に依存している。そのため、エバネッセント場は、境界面から水溶液中約150nmの深さの局所領域のみを照明することになるので、全反射照明は、通常光による照明と比較して、背景光が極端に少ない利点がある。  The evanescent field attenuates exponentially with respect to a direction perpendicular to the boundary surface, and the degree of attenuation depends on the refractive index and the incident angle of the laser beam. Therefore, since the evanescent field illuminates only a local region having a depth of about 150 nm in the aqueous solution from the boundary surface, the total reflection illumination has an advantage that the background light is extremely less than the illumination by the normal light. is there.

また、試料水溶液中に多数の蛍光色素分子(濃度〜50x10-9モル/リットル)が存在するような条件下でも、境界面近傍の水溶液側に蛍光色素分子が存在する確率は小さいので、境界面上に固定されている1個の標的蛍光色素分子以外から発せられる蛍光は少ない。そのため、背景光や他の蛍光色素分子の蛍光によるノイズが極端に少ないので、所望の標的蛍光色素分子1個からの蛍光を観察することが可能となる。 Further, even under conditions where a large number of fluorescent dye molecules (concentration ˜50 × 10 −9 mol / liter) are present in the sample aqueous solution, the probability that fluorescent dye molecules exist on the aqueous solution side near the boundary surface is small. There is little fluorescence emitted from other than one target fluorescent dye molecule immobilized on the top. Therefore, since the noise due to the fluorescence of the background light and other fluorescent dye molecules is extremely small, the fluorescence from one desired target fluorescent dye molecule can be observed.

全反射照明による1分子観察では、例えば、蛍光色素で標的した蛋白質や、DNA、基質であるATPなどの生体分子をガラス面に結合させ、1個1個の分子を独立した輝点として観察する。
蛍光色素分子を励起する場合、色素分子の振動面と励起光の偏光方向が一致していることが必要である。
In single-molecule observation with total reflection illumination, for example, a protein targeted by a fluorescent dye, DNA, or a biomolecule such as ATP as a substrate is bound to a glass surface, and each molecule is observed as an independent bright spot. .
When exciting a fluorescent dye molecule, it is necessary that the vibration plane of the dye molecule and the polarization direction of the excitation light match.

しかし、従来の全反射照明では、色素分子の振動面と励起光の偏光方向が一致した分子は明るくて観察できるが、一致しない分子は暗くて観察できないという問題点があった。
これに対し、本発明者は、1個の生体分子の特定部分の構造変化をリアルタイムで検出するために、全反射型蛍光顕微鏡を作製し観察を行っている。
However, conventional total reflection illumination has a problem that molecules whose vibration planes of dye molecules coincide with the polarization direction of excitation light are bright and can be observed, but molecules that do not match are dark and cannot be observed.
In contrast, the present inventor has produced and observed a total reflection fluorescence microscope in order to detect the structural change of a specific part of one biomolecule in real time.

本発明者による特許文献1の「全反射型蛍光顕微鏡」は、その技術の基本概念と光学系に関するものであり、振動面が任意の向きの色素分子を観察できる全反射型蛍光顕微鏡の構成を開示している。
特許3577514
The “total reflection fluorescence microscope” of Patent Document 1 by the present inventor relates to the basic concept and optical system of the technology, and has a configuration of a total reflection fluorescence microscope capable of observing a dye molecule whose vibration surface is in an arbitrary direction. Disclosure.
Patent 3577514

本発明者による特許文献2の「全反射型蛍光顕微鏡および照明光学系」は、蛍光色素分子と結合した試料の振動モーメントの方向によらず、その対象色素分子を観察できる全反射蛍光顕微鏡を開示している。
特開2004−138735
Patent Document 2 “Total Reflection Fluorescence Microscope and Illumination Optical System” by the present inventor discloses a total reflection fluorescence microscope capable of observing the target dye molecule regardless of the direction of the vibration moment of the sample bonded to the fluorescent dye molecule. is doing.
JP 2004-138735 A

1分子からの微弱な信号を、2次元の映像として画像化するためには、イメージインテンシファイアーやクールドCCDなどの高感度カメラが用いられる。
これらのカメラは、ビデオ信号、もしくはそれより遅いデジタルの信号を出力するため、データの時間分解能は、100〜30ミリ秒(ビデオの時間分解能)を超えることはできない。この時間分解能の上限が、1分子レベルでの研究を進めるうえで障害となっている。
In order to image a weak signal from one molecule as a two-dimensional image, a high-sensitivity camera such as an image intensifier or a cooled CCD is used.
Since these cameras output video signals or slower digital signals, the time resolution of the data cannot exceed 100 to 30 milliseconds (video time resolution). This upper limit of time resolution is an obstacle to the progress of single-molecule research.

そこで、本発明は、蛍光色素分子1個の観察を、例えば、ビデオの時間分解能以上のミリ秒オーダーなど、高時間分解能で可能にする画像化方法及び装置、並びに、それを用いた全反射型蛍光顕微鏡を提供することを課題とする。   Therefore, the present invention provides an imaging method and apparatus that enables observation of a single fluorescent dye molecule with high temporal resolution, such as a millisecond order greater than the temporal resolution of video, and a total reflection type using the imaging method and apparatus. It is an object to provide a fluorescence microscope.

上記課題を解決するために、本発明の高時間分解能画像化方法は、蛍光色素分子にレーザー光を照射し、その蛍光色素分子からの輝点信号を受光することで、蛍光色素分子またはそれに結合した組織を観察する装置において、偏光変換部材によって、照射レーザー光を直線偏光に変換し、偏向部材を回転させて、蛍光色素分子からの輝点信号の進行方向を変え、その偏向部材の回転により、蛍光色素分子からの輝点信号を受像面上で2次元的にスキャンすることで、1撮像フレームに受光される情報量を増加させることによって時間分解能を上げることを特徴とする。   In order to solve the above-described problems, the high time resolution imaging method of the present invention irradiates a fluorescent dye molecule with a laser beam and receives a bright spot signal from the fluorescent dye molecule, thereby binding to the fluorescent dye molecule or the fluorescent dye molecule. In the device for observing the tissue, the irradiation laser beam is converted into linearly polarized light by the polarization conversion member, the deflection member is rotated, the traveling direction of the bright spot signal from the fluorescent dye molecule is changed, and the rotation of the deflection member The time resolution is increased by increasing the amount of information received in one imaging frame by two-dimensionally scanning the bright spot signal from the fluorescent dye molecule on the image receiving surface.

また、本発明の高時間分解能画像化装置は、蛍光色素分子にレーザー光を照射し、その蛍光色素分子からの輝点信号を受光することで、蛍光色素分子またはそれに結合した組織を観察する装置において、照射するレーザー光を直線偏光に変換する偏光変換部材と、回転可能に設けられ、蛍光色素分子からの輝点信号の進行方向を変える偏向部材とを有し、その偏向部材の回転により、蛍光色素分子からの輝点信号を受像面上で2次元的にスキャンすることで、1撮像フレームに受光される情報量を増加させることによって時間分解能を上げることを特徴とする。   The high time resolution imaging apparatus of the present invention is an apparatus for observing a fluorescent dye molecule or a tissue bonded thereto by irradiating the fluorescent dye molecule with laser light and receiving a bright spot signal from the fluorescent dye molecule. , A polarization conversion member that converts the laser beam to be irradiated into linearly polarized light, and a deflecting member that is rotatably provided and changes a traveling direction of the bright spot signal from the fluorescent dye molecule, and by rotating the deflecting member, The time resolution is increased by increasing the amount of information received by one imaging frame by two-dimensionally scanning the bright spot signal from the fluorescent dye molecule on the image receiving surface.

ここで、偏光変換部材を、照射するレーザー光の光軸を回転軸として回転可能に設け、偏向部材と同期して回転されるように構成してもよい。   Here, the polarization conversion member may be provided so as to be rotatable about the optical axis of the laser beam to be irradiated and rotated in synchronization with the deflection member.

また、偏光変換部材を、1/4波長板で構成してもよい。   Moreover, you may comprise a polarization converting member with a quarter wavelength plate.

偏向部材を、プリズムで構成してもよい。  The deflecting member may be composed of a prism.

蛍光色素分子からの輝点信号を受ける受像面に、受光時に光電面で発生した電子を、素子の後方でシリコンに加速衝突させ、2次電子増倍するCCD撮像素子を設けてもよい。  A CCD image sensor for multiplying secondary electrons by causing electrons generated on the photocathode at the time of light reception to collide with silicon behind the element may be provided on the image receiving surface that receives the bright spot signal from the fluorescent dye molecule.

このような高時間分解能画像化装置に、蛍光色素分子をエバネッセント場による照明によって蛍光を発生させる手段を付設して、全反射型蛍光顕微鏡を構成してもよい。   A total reflection fluorescence microscope may be configured by attaching a fluorescent dye molecule to the high-resolution image forming apparatus of this kind so as to generate fluorescence by illumination with an evanescent field.

本発明によると、蛍光色素分子からの輝点信号の進行方向を変えて、受像面上で2次元的に撮像できる。これによって、1撮像フレームに受光される情報量が増加して時間分解能を上げられる。例えば、1分子観察をビデオの時間分解能を超えたミリ秒の時間分解能で達成でき、従来技術での〜100ミリ秒の時間分解能が一気に2ケタ上がる。
従って、蛋白質のより速い動的な特徴を画像化することができ、分子モーターや蛋白質分解酵素などの動作原理の解明に寄与する。
According to the present invention, it is possible to image two-dimensionally on the image receiving surface by changing the traveling direction of the bright spot signal from the fluorescent dye molecule. As a result, the amount of information received in one imaging frame is increased and the time resolution can be increased. For example, single molecule observation can be achieved with a time resolution of milliseconds exceeding the time resolution of video, and the time resolution of ˜100 milliseconds in the prior art is rapidly increased by two digits.
Therefore, faster dynamic features of proteins can be imaged, which contributes to the elucidation of operating principles such as molecular motors and proteolytic enzymes.

以下に、図面を基に本発明の実施形態を説明する。
なお、本発明は、本発明者による前記特許文献1及び2の延長上になされたものであり、特許文献1及び2で開示されている内容を適宜利用できる。
本発明は、通常の光学系や顕微鏡・カメラのシステムを生かしたまま、時間分解能を上げることに成功した。例えばミリ秒観察が可能な高感度カメラは、開発に数千万円程度のコストがかかることが予想されるが、本発明では、それを市販の安価な装置に代用させた。
Embodiments of the present invention will be described below with reference to the drawings.
In addition, this invention was made | formed on the extension of the said patent documents 1 and 2 by this inventor, and the content currently disclosed by patent documents 1 and 2 can be utilized suitably.
The present invention has succeeded in increasing the time resolution while taking advantage of a normal optical system and microscope / camera system. For example, a high-sensitivity camera capable of millisecond observation is expected to cost about tens of millions of yen for development. In the present invention, it is replaced with a commercially available inexpensive device.

蛍光色素1分子からの信号は1個の輝点であるが、カメラの受像面は2次元的に広がっている。そこで、本発明は、輝点信号を受像面上でスキャンし、その強度分布を画像解析することで、ビデオの1画面に速い時間の情報を記録することを基本原理とした。
これを実施するためには、直線偏光されたレーザー光を試料の蛍光色素分子に照射して得られる輝点信号を、回転する偏向部材によって進行方向を変えることによって、受像面上で2次元的にスキャンすることを基本とする。
The signal from one molecule of the fluorescent dye is one bright spot, but the image receiving surface of the camera spreads two-dimensionally. Therefore, the basic principle of the present invention is to record fast time information on one video screen by scanning a bright spot signal on the image receiving surface and analyzing the intensity distribution.
In order to implement this, the bright spot signal obtained by irradiating the fluorescent dye molecules of the sample with linearly polarized laser light is changed two-dimensionally on the image receiving surface by changing the traveling direction with a rotating deflection member. Basically, it will be scanned.

図1は、本発明の好適な一実施例である全反射型蛍光顕微鏡システムの要部を示す説明図であり、図2及び3は、その別実施例である。図では、要部を模式的に示しているので、集光レンズや対物レンズなどの附属部材は省かれている。
蛍光色素を有する対象試料(10)を含む水溶液とガラス(20)との境界面に対して、ガラス(20)の側から全反射角以上の角度でレーザー光を照射して、エバネッセント場を作るために、レーザー光源から円偏光のレーザー光(30)を出射する。
FIG. 1 is an explanatory view showing a main part of a total reflection fluorescence microscope system which is a preferred embodiment of the present invention, and FIGS. 2 and 3 are other embodiments. In the figure, the main part is schematically shown, and therefore, additional members such as a condenser lens and an objective lens are omitted.
An evanescent field is created by irradiating laser light at an angle greater than or equal to the total reflection angle from the glass (20) side to the boundary surface between the aqueous solution containing the target sample (10) having a fluorescent dye and the glass (20). For this purpose, circularly polarized laser light (30) is emitted from the laser light source.

その入射レーザー光(30)は、まず、偏光変換部材(21)によって直線偏光に変換される。偏光変換部材(21)には、1/4波長板などが利用される。
その後、入射レーザー光(30)は、集光レンズ(22)や対物レンズ(23)を介し、全反射面であるガラス(20)に入射する。
The incident laser beam (30) is first converted into linearly polarized light by the polarization conversion member (21). A quarter wave plate or the like is used for the polarization conversion member (21).
Thereafter, the incident laser light (30) is incident on the glass (20), which is a total reflection surface, via the condenser lens (22) and the objective lens (23).

試料(10)からの蛍光による輝点信号(31)は、ダイクロイックミラー(24)によって分岐される。
その後、集光レンズ(25)や偏向部材(26)を介して、受像面(27)に達する。
The bright spot signal (31) by fluorescence from the sample (10) is branched by the dichroic mirror (24).
Then, it reaches the image receiving surface (27) through the condenser lens (25) and the deflecting member (26).

偏向部材(26)は、輝点信号(31)の進行方向を変える作用を有するものであり、プリズムなどが利用される。プリズムの代わりに、ミラーや、光の方向を電気的に制御する素子も利用できる。
この偏向部材(26)は、輝点信号(31)の進行方向を回転軸として回転可能に設置され、ステッピングモーター等の駆動手段によって回転制御される。
The deflection member (26) has a function of changing the traveling direction of the bright spot signal (31), and a prism or the like is used. Instead of a prism, a mirror or an element that electrically controls the direction of light can also be used.
The deflecting member (26) is rotatably installed with the traveling direction of the bright spot signal (31) as a rotation axis, and is rotationally controlled by a driving means such as a stepping motor.

プリズム等の偏向部材(23)によって光路の変えられた輝点信号(32)は、カメラ等の2次元的に広がる受像面(27)に入力される。
ここで、偏向部材(26)が輝点信号(31)の進行方向を回転軸として回転するので、その回転に従って、信号像も受像面(27)の上で弧を描いて撮像される。
The bright spot signal (32) whose optical path is changed by the deflecting member (23) such as a prism is input to a two-dimensionally expanding image receiving surface (27) such as a camera.
Here, since the deflecting member (26) rotates with the traveling direction of the bright spot signal (31) as the rotation axis, the signal image is also imaged in an arc on the image receiving surface (27) according to the rotation.

図2及び3に示す別実施例では、入射レーザー光(30)の光路における偏光変換部材(21)と集光レンズ(22)との間に、偏向部材(26’)が付設されている。
この偏向部材(26’)も、偏向部材(26)と同様に、入射レーザー光(30)の進行方向を回転軸として回転可能に設置され、ステッピングモーター等の駆動手段によって回転制御される。この偏向部材(26’)の回転は、偏向部材(26)の回転と同期して制御される。
In another embodiment shown in FIGS. 2 and 3, a deflecting member (26 ′) is provided between the polarization conversion member (21) and the condenser lens (22) in the optical path of the incident laser beam (30).
Similarly to the deflection member (26), the deflection member (26 ′) is also installed so as to be rotatable about the traveling direction of the incident laser beam (30) as a rotation axis, and is rotationally controlled by a driving means such as a stepping motor. The rotation of the deflection member (26 ′) is controlled in synchronization with the rotation of the deflection member (26).

本実施例では、偏光変換部材(21)も、偏向部材(26’)と同様に、入射レーザー光(30)の進行方向を回転軸として回転可能に設置され、ステッピングモーター等の駆動手段によって回転制御される。この偏光変換部材(21)の回転も、偏向部材(26’)の回転と同期して制御される。
偏光変換部材(21)としては、1/4波長板を回転させて入射レーザー光(30)の偏光方向を変える代わりに、偏光子や、偏光方向を電気的に制御する素子も利用できる。
In the present embodiment, the polarization conversion member (21) is also installed so as to be rotatable about the traveling direction of the incident laser beam (30) as a rotation axis, and is rotated by a driving means such as a stepping motor, similarly to the deflection member (26 ′). Be controlled. The rotation of the polarization conversion member (21) is also controlled in synchronization with the rotation of the deflection member (26 ′).
As the polarization conversion member (21), instead of rotating the quarter wavelength plate to change the polarization direction of the incident laser beam (30), a polarizer or an element for electrically controlling the polarization direction can be used.

これによって、偏向部材(26’)の回転に応じて、それを透過する入射レーザー光(30)は、集光レンズ(22)の円環状部分を回転する。集光レンズ(22)の円環状部分を経た入射レーザー光(30)は、同様に対物レンズ(23)の円環状部分を経た後、ガラス(20)で全反射される。
なお、図2と3の実施例は、受像面(27)の直前において、偏向部材(26)が集光レンズ(25)の前に配置されるか後に配置されるかが異なっている。
Thereby, according to the rotation of the deflecting member (26 ′), the incident laser light (30) passing through the rotating member rotates the annular portion of the condenser lens (22). The incident laser beam (30) that has passed through the annular portion of the condenser lens (22) is similarly totally reflected by the glass (20) after passing through the annular portion of the objective lens (23).
2 and 3 is different in that the deflecting member (26) is disposed in front of or after the condenser lens (25) immediately before the image receiving surface (27).

図4は、受像面(27)で得られる撮像画像の例を示す説明図である。
本発明では、偏光を照射して、蛍光色素分子からの輝点信号を、2次元的に広がっている受像面(27)上でスキャンしながら撮像するので、オシロスコープのように輝点を線として記録することができる。
受像面(27)で得られる信号像(11)は、偏向部材(26)の回転(12)に呼応した円弧として撮像される。
FIG. 4 is an explanatory diagram showing an example of a captured image obtained on the image receiving surface (27).
In the present invention, since the bright spot signal from the fluorescent dye molecule is scanned on the image receiving surface (27) spreading in two dimensions by irradiating polarized light, the bright spot is used as a line like an oscilloscope. Can be recorded.
The signal image (11) obtained on the image receiving surface (27) is picked up as an arc corresponding to the rotation (12) of the deflection member (26).

このとき、試料(10)における蛍光色素分子の振動モーメントの方向(13)や入射レーザー光(30)の振動モーメントの方向が、信号像(11)に反映されるので、信号像(11)の形状や強度分布を解析することによって、蛍光色素分子の振動モーメントの方向(13)を求めることもできる。
すなわち、エバネッセント場内にある複数個の蛍光色素分子において、エバネッセント場の偏光方向と振動モーメントの方向が一致した時に蛍光色素分子が明るくなるので、蛍光色素分子1個づつの観察が可能であり、その振動モーメントの方向も決定することができる。
At this time, the direction (13) of the vibration moment of the fluorescent dye molecules in the sample (10) and the direction of the vibration moment of the incident laser beam (30) are reflected in the signal image (11). By analyzing the shape and intensity distribution, the direction (13) of the vibration moment of the fluorescent dye molecule can also be obtained.
That is, in a plurality of fluorescent dye molecules in the evanescent field, the fluorescent dye molecules become bright when the polarization direction of the evanescent field coincides with the direction of the vibration moment. The direction of the vibration moment can also be determined.

一般には、光の方向とシャッターの制御には数千万円という高価な装置が必要であるが、本発明では、プリズムといった安価な光学素子で光路を曲げ、そのプリズムを回転制御するのみの簡易な構成で、同様の効果を得ることができる。この方法によると、蛍光色素の寿命や明暗を、それぞれ信号像(11)の長さや強度として記録し、高時間分解能の情報を定量的に得ることができる。  Generally, an expensive device of tens of millions of yen is required to control the direction of light and the shutter. In the present invention, the optical path is bent by an inexpensive optical element such as a prism, and the rotation of the prism is simply controlled. With a simple configuration, the same effect can be obtained. According to this method, the life and brightness of the fluorescent dye can be recorded as the length and intensity of the signal image (11), respectively, and information with high time resolution can be obtained quantitatively.

これによって、例えば、回転分子モーターであるF1-ATPaseをはじめとし、ミオシンやダイニンやプロテアソームなどを蛍光色素結合させ、本発明による全反射型蛍光顕微鏡で観察することによって、多様な機能を持つ蛋白質の複合体である生体超分子が動作するメカニズムを明らかにすることが可能になる。  As a result, for example, F1-ATPase, which is a rotating molecular motor, and myosin, dynein, proteasome, etc. are bound to fluorescent dyes and observed with a total reflection fluorescence microscope according to the present invention. It becomes possible to clarify the mechanism by which biological supramolecules, which are composites, operate.

一般に、蛍光色素1分子からの輝点信号を高時間分解能でとらえるには、信号強度を高めるために励起光強度を増大する必要があるが、レンズ系に入射できるレーザー光の強度には上限がある。例えば、イメージインテンシファイアーを用いると光電面が急激に劣化する恐れがある。  In general, in order to capture a bright spot signal from one molecule of fluorescent dye with high time resolution, it is necessary to increase the intensity of excitation light in order to increase the signal intensity, but there is an upper limit to the intensity of laser light that can be incident on a lens system. is there. For example, when an image intensifier is used, the photocathode may be rapidly deteriorated.

これに対しては、蛍光色素分子からの輝点信号を受ける受像面(27)に、冷却CCDやEM−CCD撮像素子を設けることが好ましい。
EM−CCDでは、受光部で蓄積された電子は、水平転送部の後に電子増倍転送部を経て出力される。電子増倍転送部で多段階転送されることで、受光時の発生電荷に対して1000倍以上の電子を得ることができる反面、受け取った電荷を素子の後ろ側で増幅するため、ミリ秒オーダーで強い信号が加わっても受像面でのダメージが抑えられる。
また、受光画素面積を大きくすることなく電子数を増やせる構造なので、光学系を小型化できる利点がある。受光素子内部というS/Nに最も有利な位置で増幅するので、読出しアンプや後段の増幅アンプに起因するノイズの影響を回避し、低ノイズかつ高感度な撮像を実現できる。数kVの増倍電圧を要する光電子増倍管等とは異なり低電圧で駆動し、解像度劣化や、残像、焼きつきがない利点もある。
For this, it is preferable to provide a cooled CCD or EM-CCD image sensor on the image receiving surface (27) that receives the bright spot signal from the fluorescent dye molecule.
In the EM-CCD, the electrons accumulated in the light receiving unit are output through the electron multiplying transfer unit after the horizontal transfer unit. Multi-stage transfer by the electron multiplier transfer unit can obtain electrons more than 1000 times the charge generated at the time of light reception. On the other hand, the received charge is amplified on the back side of the device, so it is on the order of milliseconds. Even if a strong signal is applied, damage on the image receiving surface can be suppressed.
Further, since the number of electrons can be increased without increasing the light receiving pixel area, there is an advantage that the optical system can be downsized. Amplification is performed at the position that is most advantageous for S / N inside the light receiving element, so that the influence of noise caused by the readout amplifier and the subsequent amplification amplifier can be avoided, and imaging with low noise and high sensitivity can be realized. Unlike a photomultiplier tube that requires a multiplication voltage of several kV, it is driven at a low voltage, and there is an advantage that there is no resolution deterioration, afterimage, and image sticking.

本発明によると、通常の安価な光学系や顕微鏡やカメラ等のシステムを生かしたまま、時間分解能を2桁以上向上させることができる。これによって、蛋白質のより速い動的な性質を画像化することができ、生体分子の特定部分の構造変化をリアルタイムで検出することに寄与するので、1分子レベルでの蛋白質の研究を進める推進力になり、用途が広く産業上非常に有用である。   According to the present invention, it is possible to improve the time resolution by two digits or more while taking advantage of a normal inexpensive optical system, a system such as a microscope or a camera. This enables the imaging of faster dynamic properties of proteins and contributes to the real-time detection of structural changes in specific parts of biomolecules. It is widely used and very useful industrially.

本発明の一実施例である全反射型蛍光顕微鏡システムの要部を示す説明図Explanatory drawing which shows the principal part of the total reflection type fluorescence microscope system which is one Example of this invention 同、別実施例図Same example diagram 同、別実施例図Same example diagram 受像面で得られる撮像画像の例を示す説明図Explanatory drawing which shows the example of the captured image obtained on an image receiving surface

符号の説明Explanation of symbols

10 対象試料
11 信号像
12 偏光部材の回転方向
13 蛍光色素分子の振動モーメントの方向
20 ガラス
21 偏光変換部材
22 集光レンズ
23 対物レンズ
24 ダイクロイックミラー
25 集光レンズ
26、26’ 偏向部材
27 受像面
30 入射レーザー光
31 蛍光による輝点信号
32 光路の変えられた輝点信号

DESCRIPTION OF SYMBOLS 10 Target sample 11 Signal image 12 Direction of rotation of polarization member 13 Direction of vibration moment of fluorescent dye molecule 20 Glass 21 Polarization conversion member 22 Condensing lens 23 Objective lens 24 Dichroic mirror 25 Condensing lens 26, 26 ′ Deflection member 27 Image receiving surface 30 Incident laser beam 31 Bright spot signal due to fluorescence 32 Bright spot signal with changed optical path

Claims (7)

蛍光色素分子にレーザー光を照射し、その蛍光色素分子からの輝点信号を受光することで、蛍光色素分子またはそれに結合した組織を観察する装置において、
照射するレーザー光を直線偏光に変換する偏光変換部材と、
回転可能に設けられ、蛍光色素分子からの輝点信号の進行方向を変える偏向部材とを有し、
その偏向部材の回転により、蛍光色素分子からの輝点信号を受像面上で2次元的にスキャンすることで、1撮像フレームに受光される情報量を増加させることによって時間分解能を上げる
ことを特徴とする高時間分解能画像化装置。
By irradiating a fluorescent dye molecule with a laser beam and receiving a bright spot signal from the fluorescent dye molecule, an apparatus for observing the fluorescent dye molecule or a tissue bonded thereto,
A polarization conversion member that converts the irradiated laser light into linearly polarized light;
A deflecting member that is rotatably provided and changes a traveling direction of a bright spot signal from a fluorescent dye molecule;
The time resolution is increased by increasing the amount of information received by one imaging frame by scanning the bright spot signal from the fluorescent dye molecule two-dimensionally on the image receiving surface by rotating the deflecting member. A high time resolution imaging device.
偏光変換部材が、照射するレーザー光の光軸を回転軸として回転可能に設けられ、
偏向部材と同期して回転される
請求項1に記載の高時間分解能画像化方法装置。
A polarization conversion member is provided to be rotatable about the optical axis of the laser beam to be irradiated,
The high time resolution imaging method device according to claim 1, wherein the high time resolution imaging method device is rotated in synchronization with the deflection member.
偏光変換部材が、1/4波長板である
請求項1または2に記載の高時間分解能画像化装置。
The high time resolution imaging apparatus according to claim 1, wherein the polarization conversion member is a ¼ wavelength plate.
偏向部材が、プリズムである
請求項1ないし3に記載の高時間分解能画像化装置。
The high time resolution imaging apparatus according to claim 1, wherein the deflection member is a prism.
蛍光色素分子からの輝点信号を受ける受像面が、
受光時に光電面で発生した電子を、素子の後方でシリコンに加速衝突させ、2次電子増倍するCCD撮像素子を備える
請求項1ないし4に記載の高時間分解能画像化装置。
The image receiving surface that receives the bright spot signal from the fluorescent dye molecule
The high-time resolution imaging apparatus according to claim 1, further comprising a CCD image pickup device that causes electrons generated on the photocathode at the time of light reception to collide with silicon at the rear of the device, and to multiply secondary electrons.
蛍光色素分子が、エバネッセント場による照明によって蛍光を発生させられる
請求項1ないし5に記載の高時間分解能の画像化方法装置による全反射型蛍光顕微鏡。
The total reflection type fluorescence microscope by the high time resolution imaging method apparatus according to claim 1, wherein the fluorescent dye molecule generates fluorescence by illumination with an evanescent field.
蛍光色素分子にレーザー光を照射し、その蛍光色素分子からの輝点信号を受光することで、蛍光色素分子またはそれに結合した組織を観察する装置において、
偏光変換部材によって、照射レーザー光を直線偏光に変換し、
偏向部材を回転させて、蛍光色素分子からの輝点信号の進行方向を変え、
その偏向部材の回転により、蛍光色素分子からの輝点信号を受像面上で2次元的にスキャンすることで、1撮像フレームに受光される情報量を増加させることによって時間分解能を上げる
ことを特徴とする高時間分解能画像化方法。

By irradiating a fluorescent dye molecule with a laser beam and receiving a bright spot signal from the fluorescent dye molecule, an apparatus for observing the fluorescent dye molecule or a tissue bonded thereto,
By the polarization conversion member, the irradiation laser light is converted into linearly polarized light,
Rotate the deflecting member to change the direction of travel of the bright spot signal from the fluorescent dye molecule,
The time resolution is increased by increasing the amount of information received by one imaging frame by scanning the bright spot signal from the fluorescent dye molecule two-dimensionally on the image receiving surface by rotating the deflecting member. A high time resolution imaging method.

JP2005101764A 2005-03-31 2005-03-31 High time resolution imaging method and apparatus, and total reflection fluorescence microscope Expired - Fee Related JP4448471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101764A JP4448471B2 (en) 2005-03-31 2005-03-31 High time resolution imaging method and apparatus, and total reflection fluorescence microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101764A JP4448471B2 (en) 2005-03-31 2005-03-31 High time resolution imaging method and apparatus, and total reflection fluorescence microscope

Publications (2)

Publication Number Publication Date
JP2006284243A JP2006284243A (en) 2006-10-19
JP4448471B2 true JP4448471B2 (en) 2010-04-07

Family

ID=37406336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101764A Expired - Fee Related JP4448471B2 (en) 2005-03-31 2005-03-31 High time resolution imaging method and apparatus, and total reflection fluorescence microscope

Country Status (1)

Country Link
JP (1) JP4448471B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5734091B2 (en) * 2010-06-04 2015-06-10 富士フイルム株式会社 Biomolecule detection apparatus and biomolecule detection method
JP5900000B2 (en) * 2012-02-16 2016-04-06 富士通株式会社 Resin cure state monitoring device and resin cure state monitoring method
KR101356707B1 (en) 2012-05-02 2014-02-04 한국과학기술원 Spectral fluorescence lifetime imaging microscope with the use of tunable bandpass filters
JP6249406B2 (en) * 2014-03-31 2017-12-20 学校法人 学習院 Microscope observation method and apparatus
CN106950208B (en) * 2017-03-16 2019-06-18 浙江大学 A kind of wide field super-resolution micro imaging method and device based on total internal reflection Structured Illumination

Also Published As

Publication number Publication date
JP2006284243A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
US8704196B2 (en) Combination microscopy
JP4116622B2 (en) Scanning microscope for imaging an object with a confocal slit scanner
CN104597590B (en) A kind of super-resolution fluorescence light spectrum image-forming microscope
Egner et al. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters
US8610086B2 (en) Increased resolution microscopy
JP4315794B2 (en) Confocal microscope
US7999935B2 (en) Laser microscope with a physically separating beam splitter
JP2009532732A (en) Confocal microscope having a two-dimensional array of light emitting diodes
US20130087718A1 (en) Confocal fluorescence lifetime imaging system
JP2010503847A (en) Device for imaging single molecules
WO2004036284A1 (en) Cofocal microscope, fluorescence measuring method and polarized light measuring metod using cofocal microscope
JP2012507756A5 (en)
JP2010517056A (en) Time-resolved fluorescence imaging system
JP4448471B2 (en) High time resolution imaging method and apparatus, and total reflection fluorescence microscope
CN1731952A (en) Analysis apparatus and method
CN110146473B (en) Axial super-resolution two-photon fluorescence microscopy device and method
CN107238590A (en) Based on the micro- microscopy tomography device being imaged with single pixel of mating plate
US20140218794A1 (en) Confocal Fluorescence Microscope
CN111380848A (en) Hyperspectral living body fluorescence molecule imaging system and method
WO2002021109A1 (en) Imaging apparatus
CN101634747B (en) High-resolution confocal microscope
JP3950059B2 (en) Time-resolved two-dimensional faint light detection method and apparatus
JP2000193889A (en) Multi-photon microscope
JP2001194303A (en) Device for analyzing diffusion motion of fluorescent molecule
WO2007055082A1 (en) Cofocal microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4448471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees