JP4448235B2 - Method for producing medium chain length halogenated hydrocarbon or halogenated carbon - Google Patents

Method for producing medium chain length halogenated hydrocarbon or halogenated carbon Download PDF

Info

Publication number
JP4448235B2
JP4448235B2 JP2000168430A JP2000168430A JP4448235B2 JP 4448235 B2 JP4448235 B2 JP 4448235B2 JP 2000168430 A JP2000168430 A JP 2000168430A JP 2000168430 A JP2000168430 A JP 2000168430A JP 4448235 B2 JP4448235 B2 JP 4448235B2
Authority
JP
Japan
Prior art keywords
halogenated
carbon
reaction
hydrocarbon
chain length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000168430A
Other languages
Japanese (ja)
Other versions
JP2001348348A (en
Inventor
原 高
博至 荒川
冬彦 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kyogyo Co.,Ltd.
Original Assignee
Kanto Denka Kyogyo Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kyogyo Co.,Ltd. filed Critical Kanto Denka Kyogyo Co.,Ltd.
Priority to JP2000168430A priority Critical patent/JP4448235B2/en
Publication of JP2001348348A publication Critical patent/JP2001348348A/en
Application granted granted Critical
Publication of JP4448235B2 publication Critical patent/JP4448235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、界面活性剤をはじめとする各種化合物の中間体として利用可能な炭素数が3から20の中鎖長のハロゲン化炭化水素もしくはハロゲン化炭素の製造方法に関する。
【0002】
【従来の技術】
中鎖長のハロゲン化炭化水素もしくはハロゲン化炭素、特にポリフルオロカーボンハライドの合成方法としては、ハロゲンとしてヨウ素を用い、高温・高圧下でペルフルオロカーボンヨージドとオレフィンのテロメリゼーションを行うことが一般的である。例えば、Haszeldine[J.Chem.Soc.,3761(1953)]やBedfordとBaum[J.Org.Chem.,45,347(1980)]らは、CF3I、C25I、あるいはI(CF22Iなどを原料として用い、光照射下あるいは高温高圧下でテトラフルオロエチレン(C24)とのテロメリゼーションを行い、Cn2n+1I(n=4,6)の化合物を得ている。しかし、光反応では生成したテロマーが再びラジカルに解離し、さらにC24と反応し高分子量のペルフルオロカーボンハライドを生成し、目的物の選択率が低下してしまう。また、熱反応の場合には200℃の高温下で反応を行うために、高い反応圧力を維持できる高価な耐圧容器を使用する必要がある上、光反応と同様に、目的物のみならず、さらに高分子量のペルフルオロカーボンハライドを生成するために反応収率が低くなるという欠点がある。また、反応圧力が2MPaを越えるために危険性も伴う。従って、工業的な製造方法としては適していない。
【0003】
これらの不利益を解消するために光反応を応用した新しい方法が種々考案されている。例えば、Ashtonら[Trans.Far.Soc.,70,299(1974)]は50〜150℃、8〜25kPaで中圧水銀灯を光源としてBrCF2BrとC24との反応による長鎖化合物の合成を報告している。しかし、この反応においても生成物分布は広く、目的とする化合物を選択的に得ることは難しい。Fuβら[ドイツ特許4,025,154(1990)]は、KrFレーザー光や高圧Xe灯の248±10nm部分、又はメタノールフィルターの低圧水銀灯を用いて、BrC24BrとC24からBr(C242BrとBr(C243Brを合成する方法を記している。しかし、これらの方法も経済性の低さ、光エネルギーの低利用率あるいは長時間に渡る反応を行うことが不可能であることなどから工業的な方法とは言えない。Zhangら[J.Fluorine Chem.,88,153(1998)、中国公開特許公報1,103,638A]は、低圧水銀灯を光源とする光反応器により、ペルフルオロカーボンハライドとオレフィンを一定の量比で20〜150℃、10〜100kPaの条件下で反応を行い、中鎖長のペルフルオロカーボンハライドを得る方法を提案している。しかし、この方法では減圧下で反応を実施することが必須であり、例えば常圧でこの反応を行うと多量の固体状ポリマーが発生し、目的の中鎖長ペルフルオロカーボンハライドは極めて低収率でしか得ることが出来ない。また、減圧下では、しばしば、空気の混入に起因する酸素ラジカルによる反応阻害が引き起こされ、これを防止するために厳重に気密を保持するなど酸素混入を防ぐ手段を講じなくてはならない。このため、この方法を工業的に応用するためには高価な反応装置と多大の保守管理を必要とする。さらにこの反応方法では、原料にペルフルオロカーボンモノハライド(例えば、CF3BrあるいはHC24Br)を使用しても副生物としてペルフルオロカーボンジブロマイドを数%副生することが避けられない。そのため、基質によっては、目的物とペルフルオロカーボンジハライドの分離が困難な場合がある。これらのことからこの方法もまた、工業化に適した安価で簡便な方法とは言い難い。
【0004】
【発明が解決しようとする課題】
本発明の目的は、上記のような従来技術の諸欠点に鑑み、安価で簡便な中鎖長のハロゲン化炭化水素もしくはハロゲン化炭素、特にポリフルオロカーボンハライド類の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、工業的に入手が可能な、あるいは工業的に入手が容易な原料より容易に合成の出来る化合物とオレフィンとを、不活性ガス、好ましくはCF4、C26、C38、C410、c−C48、c−C510、c−C612、SF6などのペルフルオロ化合物の存在下、常圧又は加圧下で光反応を行い、中鎖長のハロゲン化炭化水素もしくはハロゲン化炭素、特にポリフルオロカーボンハライド類を得る方法である。この方法は常圧又は僅かな加圧下で反応を行うことが出来るために工業的に応用することが極めて容易である。また、従来の技術に比べ、ポリマーあるいは長鎖のペルフルオロカーボンハライド類の生成を防ぐことが出来るために効率良く目的物を得ることが出来る。
【0006】
即ち、本発明は、
一般式 X−R1−Y (1)
(式中、XはH、F、Br又はIを、YはBr又はIを示し、XとYは同一であっても異なっていても良く、また、R1は炭素数が1から18の炭化水素、ハロゲン化炭化水素、あるいはハロゲン化炭素を示す。)
で示される化合物と炭素数2から19のオレフィン化合物とを不活性ガスの存在下において、光照射下、気相で反応させることを特徴とする
一般式 X−R2−Y (2)
(式中、XとYは前記と同義であり、R2は炭素数が3から20の直鎖状又は分岐状の炭化水素、ハロゲン化炭化水素、あるいはハロゲン化炭素を示す。)
で示される中鎖長のハロゲン化炭化水素もしくはハロゲン化炭素の製造方法である。
【0007】
【発明の実施の形態】
上記の反応において、窒素、ヘリウム、アルゴン、ネオン、クリプトンなどの不活性ガスも使用できるが、特にCF4、C26、C38、C410などで示される直鎖又は分枝状の脂肪族ペルフルオロ化合物、c−C48、c−C510、c−C612などで示される環状脂肪族ペルフルオロ化合物、SF6などのペルフルオロ化合物を用いると効果が著しい。また、この不活性ガスの好ましい濃度は原料に対し、2〜95%、さらに好ましくは10〜50%である。これよりも不活性ガスの濃度が低いと効果が低減し、ポリマーの生成が見られるようになり、選択率、収率も低下する。また、不活性ガスの濃度を逆に高くすると反応速度が低下し、工業的に不適となる。
【0008】
上記の反応で、反応圧力は通常、常圧で行われるが、低沸点の原料を使用する場合、あるいは反応速度を上げるために加圧下(101.325kPa〜1013.25kPa)で反応を行うことも可能である。
【0009】
反応時の温度は、原料の種類によって適宜決めることができる。通常、常温程度で行うことができるが、これに限定されない。また、光源としては、ハロゲンランプまたは水銀灯なとが使用できる。
【0010】
本方法は、目的物が比較的高い選択率で得られるが、特に臭化アルキル等のモノハロゲン化物を原料とした場合、二臭化アルキル等のジハロゲン化物の生成が避けられ、純度の高い目的物を得ることが可能である。
【0011】
従って、本発明は中鎖長のハロゲン化炭化水素もしくはハロゲン化炭素を製造する方法として極めて優れた方法である。
【0012】
【実施例】
以下、実施例により本発明をより具体的に説明する。
【0013】
実施例1
図1に示す光反応器を使用した。反応器全体をCF4で充分に置換した後、分離塔の釜に原料のBrCF2CF2Brを入れた。同時に循環ポンプで系内のガスを循環し、C24を連続的に系内に加えた。系内のC24濃度を所定の濃度に上昇させた後、光反応器を所定の温度に昇温し、保持した。分離塔で発生した原料のBrCF2CF2Br蒸気を、混合器においてC24及び不活性ガスと混合した後、光反応器に導入し、光照射により反応を行った。反応器から出てきた反応混合物は、冷却装置にてC24及び不活性ガスの気体成分とBrCF2CF2Br及び生成物のテロマーの液体成分に分離し、凝縮した液体成分はサイフォンを通して分離塔の釜に入れ、分離塔にてBrCF2CF2Brと生成したテロマーに分離した。BrCF2CF2Brは再び混合器に送り、再びC24及び不活性ガスの気体成分と混合し、反応器に導き、反応に供した。
【0014】
分離塔の釜の温度は、BrCF2CF2Br蒸気の発生量を一定に保つように徐々に上げていった。釜の組成をガスクロマトグラフィーによってモニターし、所定の転化率になるまで反応を継続した。反応結果を表1に示した。
【0015】
実施例2〜7
不活性ガスの種類、濃度、原料、光源等の条件を変えた以外は、実施例1と同様の方法で実施例2〜7を行った。その条件及び結果を表1〜4に示した。
【0016】
比較例1
実施例1と同様の装置及び方法にて不活性ガスを用いずに反応を行った。その条件と結果を表1に示した。
【0017】
【表1】

Figure 0004448235
【0018】
【表2】
Figure 0004448235
【0019】
【表3】
Figure 0004448235
【0020】
【表4】
Figure 0004448235

【図面の簡単な説明】
【図1】 本発明に用いる反応装置全体の概念図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a halogenated hydrocarbon or halogenated carbon having a medium chain length of 3 to 20 carbon atoms, which can be used as an intermediate for various compounds including a surfactant.
[0002]
[Prior art]
As a method for synthesizing medium chain length halogenated hydrocarbons or carbon halides, especially polyfluorocarbon halides, it is common to telomerize perfluorocarbon iodides and olefins at high temperatures and pressures using iodine as the halogen. It is. For example, Haszeldine [J. Chem. Soc., 3761 (1953)], Bedford and Baum [J. Org. Chem., 45 , 347 (1980)] et al. Have CF 3 I, C 2 F 5 I, or I. Using (CF 2 ) 2 I or the like as a raw material, telomerization with tetrafluoroethylene (C 2 F 4 ) is performed under light irradiation or high temperature and high pressure, and C n F 2n + 1 I (n = 4, 6 ) Is obtained. However, in the photoreaction, the generated telomer dissociates again into radicals, and further reacts with C 2 F 4 to produce a high molecular weight perfluorocarbon halide, thereby reducing the selectivity of the target product. Further, in the case of thermal reaction, in order to perform the reaction at a high temperature of 200 ° C., it is necessary to use an expensive pressure-resistant vessel capable of maintaining a high reaction pressure, and not only the target product, but also the photoreaction Furthermore, there is a disadvantage that the reaction yield is lowered because high molecular weight perfluorocarbon halide is produced. In addition, there is a danger because the reaction pressure exceeds 2 MPa. Therefore, it is not suitable as an industrial production method.
[0003]
In order to eliminate these disadvantages, various new methods using photoreaction have been devised. For example, Ashton et al. [Trans. Far. Soc., 70 , 299 (1974)] is a long-chain compound obtained by reaction of BrCF 2 Br and C 2 F 4 using a medium pressure mercury lamp as a light source at 50 to 150 ° C. and 8 to 25 kPa. The synthesis of However, even in this reaction, the product distribution is wide and it is difficult to selectively obtain the target compound. Fuβ et al [German Patent 4,025,154 (1990)] from BrC 2 F 4 Br and C 2 F 4 using a KrF laser beam, a 248 ± 10 nm portion of a high pressure Xe lamp, or a low pressure mercury lamp of a methanol filter. A method of synthesizing Br (C 2 F 4 ) 2 Br and Br (C 2 F 4 ) 3 Br is described. However, these methods are not industrial methods because they are not economical, have a low utilization rate of light energy, or cannot react for a long time. Zhang et al. [J. Fluorine Chem., 88 , 153 (1998), Chinese Patent Publication No. 1,103, 638A] uses a photoreactor with a low-pressure mercury lamp as a light source, and uses a constant quantity ratio of perfluorocarbon halide and olefin. A method is proposed in which the reaction is carried out at 20 to 150 ° C. and 10 to 100 kPa to obtain a medium chain length perfluorocarbon halide. However, in this method, it is essential to carry out the reaction under reduced pressure. For example, when this reaction is carried out at normal pressure, a large amount of solid polymer is generated, and the desired medium chain length perfluorocarbon halide is produced in a very low yield. Can only get. Further, under reduced pressure, reaction inhibition due to oxygen radicals caused by air contamination is often caused, and in order to prevent this, it is necessary to take measures to prevent oxygen contamination such as maintaining tight airtightness. For this reason, in order to apply this method industrially, an expensive reactor and a great deal of maintenance management are required. Furthermore, in this reaction method, even if perfluorocarbon monohalide (for example, CF 3 Br or HC 2 F 4 Br) is used as a raw material, it is inevitable that several percent of perfluorocarbon dibromide is produced as a byproduct. Therefore, depending on the substrate, it may be difficult to separate the target product from the perfluorocarbon dihalide. For these reasons, this method is also difficult to say as an inexpensive and simple method suitable for industrialization.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an inexpensive and simple method for producing a medium-chain-length halogenated hydrocarbon or halogenated carbon, particularly polyfluorocarbon halides, in view of the above-mentioned disadvantages of the prior art.
[0005]
[Means for Solving the Problems]
In the present invention, an olefin and a compound that can be synthesized industrially or easily synthesized from industrially available raw materials and an olefin are converted into an inert gas, preferably CF 4 , C 2 F 6 , C 3 F. 8 , C 4 F 10 , c-C 4 F 8 , c-C 5 F 10 , c-C 6 F 12 , SF 6, etc. in the presence of a perfluoro compound under normal pressure or pressure, This is a method for obtaining a halogenated hydrocarbon or halogenated carbon of chain length, particularly polyfluorocarbon halides. Since this method can carry out the reaction under normal pressure or slight pressure, it is very easy to apply industrially. In addition, since the production of polymers or long-chain perfluorocarbon halides can be prevented as compared with conventional techniques, the target product can be obtained efficiently.
[0006]
That is, the present invention
General formula X—R 1 —Y (1)
(In the formula, X represents H, F, Br or I, Y represents Br or I, X and Y may be the same or different, and R 1 has 1 to 18 carbon atoms. (Indicates hydrocarbon, halogenated hydrocarbon, or halogenated carbon.)
And an olefin compound having 2 to 19 carbon atoms in the presence of an inert gas in the gas phase under light irradiation. X—R 2 —Y (2)
(Wherein X and Y are as defined above, and R 2 represents a linear or branched hydrocarbon, halogenated hydrocarbon, or halogenated carbon having 3 to 20 carbon atoms.)
A process for producing a medium-chain-length halogenated hydrocarbon or halogenated carbon represented by the formula:
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the above reaction, an inert gas such as nitrogen, helium, argon, neon, or krypton can be used. In particular, a straight chain or a fraction represented by CF 4 , C 2 F 6 , C 3 F 8 , C 4 F 10, etc. branched aliphatic perfluoro compound, c-C 4 F 8, c-C 5 F 10, c-C 6 F 12 cycloaliphatic perfluorinated compounds represented by like, significant effects with perfluoro compound such as SF 6 . Moreover, the preferable density | concentration of this inert gas is 2-95% with respect to a raw material, More preferably, it is 10-50%. If the concentration of the inert gas is lower than this, the effect is reduced, the production of a polymer can be seen, and the selectivity and yield are also reduced. On the other hand, when the concentration of the inert gas is increased, the reaction rate is lowered, which is industrially unsuitable.
[0008]
In the above reaction, the reaction pressure is usually carried out at normal pressure, but when a low-boiling-point raw material is used, or in order to increase the reaction rate, the reaction may be carried out under pressure (101.325 kPa to 101.25 kPa). Is possible.
[0009]
The temperature during the reaction can be appropriately determined depending on the type of raw material. Usually, although it can carry out at about normal temperature, it is not limited to this. As the light source, a halogen lamp or a mercury lamp can be used.
[0010]
In this method, the target product can be obtained with a relatively high selectivity. However, particularly when a monohalide such as alkyl bromide is used as a raw material, the formation of dihalides such as alkyl dibromide is avoided, and a high purity target is obtained. It is possible to obtain things.
[0011]
Therefore, the present invention is an extremely excellent method for producing a medium chain length halogenated hydrocarbon or halogenated carbon.
[0012]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0013]
Example 1
The photoreactor shown in FIG. 1 was used. After fully replacing the entire reactor with CF 4 , the raw material BrCF 2 CF 2 Br was placed in the kettle of the separation column. At the same time, the gas in the system was circulated with a circulation pump, and C 2 F 4 was continuously added to the system. After increasing the C 2 F 4 concentration in the system to a predetermined concentration, the photoreactor was heated to a predetermined temperature and maintained. The raw material BrCF 2 CF 2 Br vapor generated in the separation tower was mixed with C 2 F 4 and an inert gas in a mixer, then introduced into the photoreactor and reacted by light irradiation. The reaction mixture leaving the reactor is separated into C 2 F 4 and inert gas gaseous components and BrCF 2 CF 2 Br and product telomer liquid components in a cooling device, and the condensed liquid components are passed through a siphon. put the kettle of the separation column, was separated into telomer that generated the BrCF 2 CF 2 Br in the separation column. BrCF 2 CF 2 Br was again sent to the mixer, mixed again with C 2 F 4 and the gaseous components of the inert gas, led to the reactor, and subjected to the reaction.
[0014]
The temperature of the kettle of the separation tower was gradually increased so as to keep the generation amount of BrCF 2 CF 2 Br vapor constant. The composition of the kettle was monitored by gas chromatography, and the reaction was continued until a predetermined conversion rate was reached. The reaction results are shown in Table 1.
[0015]
Examples 2-7
Examples 2 to 7 were performed in the same manner as in Example 1 except that the conditions such as the type, concentration, raw material, and light source of the inert gas were changed. The conditions and results are shown in Tables 1-4.
[0016]
Comparative Example 1
The reaction was performed using the same apparatus and method as in Example 1 without using an inert gas. The conditions and results are shown in Table 1.
[0017]
[Table 1]
Figure 0004448235
[0018]
[Table 2]
Figure 0004448235
[0019]
[Table 3]
Figure 0004448235
[0020]
[Table 4]
Figure 0004448235

[Brief description of the drawings]
FIG. 1 is a conceptual diagram of an entire reaction apparatus used in the present invention.

Claims (3)

一般式 X−R1−Y (1)
(式中、XはH、F、Br又はIを、YはBr又はIを示し、XとYは同一であっても異なっていても良く、また、R1は炭素数が1から18の炭化水素、ハロゲン化炭化水素、あるいはハロゲン化炭素を示す。)
で示される化合物と炭素数2から19のオレフィン化合物とを不活性ガスの存在下において、光照射下、気相で反応させることを特徴とする
一般式 X−R2−Y (2)
(式中、XとYは前記と同義であり、R2は炭素数が3から20の直鎖状又は分岐状の炭化水素、ハロゲン化炭化水素、あるいはハロゲン化炭素を示す。)
で示される中鎖長のハロゲン化炭化水素もしくはハロゲン化炭素の製造方法。
General formula X—R 1 —Y (1)
(In the formula, X represents H, F, Br or I, Y represents Br or I, X and Y may be the same or different, and R 1 has 1 to 18 carbon atoms. (Indicates hydrocarbon, halogenated hydrocarbon, or halogenated carbon.)
And an olefin compound having 2 to 19 carbon atoms in the presence of an inert gas in the gas phase under light irradiation. X—R 2 —Y (2)
(Wherein X and Y are as defined above, and R 2 represents a linear or branched hydrocarbon, halogenated hydrocarbon, or halogenated carbon having 3 to 20 carbon atoms.)
A process for producing a halogenated hydrocarbon or halogenated carbon having a medium chain length represented by
不活性ガスがペルフルオロ化合物であり、その濃度が2〜95%である請求項1に記載の方法。The method according to claim 1, wherein the inert gas is a perfluoro compound and the concentration thereof is 2 to 95%. 反応圧力が101.325kPa〜1013.25kPaである請求項1又は2に記載の方法。The method according to claim 1 or 2, wherein the reaction pressure is 101.325 kPa to 1013.125 kPa.
JP2000168430A 2000-06-06 2000-06-06 Method for producing medium chain length halogenated hydrocarbon or halogenated carbon Expired - Lifetime JP4448235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000168430A JP4448235B2 (en) 2000-06-06 2000-06-06 Method for producing medium chain length halogenated hydrocarbon or halogenated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000168430A JP4448235B2 (en) 2000-06-06 2000-06-06 Method for producing medium chain length halogenated hydrocarbon or halogenated carbon

Publications (2)

Publication Number Publication Date
JP2001348348A JP2001348348A (en) 2001-12-18
JP4448235B2 true JP4448235B2 (en) 2010-04-07

Family

ID=18671436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000168430A Expired - Lifetime JP4448235B2 (en) 2000-06-06 2000-06-06 Method for producing medium chain length halogenated hydrocarbon or halogenated carbon

Country Status (1)

Country Link
JP (1) JP4448235B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814573B2 (en) * 2004-08-09 2011-11-16 関東電化工業株式会社 Process for producing substituted or unsubstituted saturated hydrocarbons
CN105924375B (en) * 2016-04-19 2018-04-20 巨化集团技术中心 A kind of preparation method of fluorine-containing emulsifier
CN112645794B (en) * 2020-12-28 2022-12-27 山东东岳化工有限公司 Preparation method of hexafluoro-1,3-butadiene

Also Published As

Publication number Publication date
JP2001348348A (en) 2001-12-18

Similar Documents

Publication Publication Date Title
Johri et al. Comparison of the reactivity of CF3OX (X= Cl, F) with some simple alkenes
Lerman et al. Acetyl hypofluorite, a new moderating carrier of elemental fluorine and its use in fluorination of 1, 3-dicarbonyl derivatives
JPWO2007125975A1 (en) Process for producing 1,2,3,4-tetrachlorohexafluorobutane
JP2018533607A (en) Process for producing 2,3,3,3-tetrafluoropropene and / or vinylidene fluoride
JP2007320874A (en) Method for producing perfluoroalkyne compound
JPH04273839A (en) Synthesis of fluorinated ether
WO2020137824A1 (en) Cyclobutene production method
JP4448235B2 (en) Method for producing medium chain length halogenated hydrocarbon or halogenated carbon
ATE400539T1 (en) METHOD FOR CONTINUOUSLY PRODUCING A PERFLUORALKYLIODIDE TELOMER
JP3360689B2 (en) Method for producing fluorinated vinyl ether
KR20100075868A (en) Terminally iodized polyfluoroalkane and method for producing the same
TWI828924B (en) How to make alkanes
TWI295987B (en)
JP2595080B2 (en) New perfluoroalkenes and their fluorinated products
JP4854203B2 (en) Method for producing fluorohalogen ether
JP4814573B2 (en) Process for producing substituted or unsubstituted saturated hydrocarbons
JP2005213255A (en) Method for producing fluorohalogen ether
JP6941035B2 (en) Acetic acid (2,2,2-trifluoroethyl) and its production method
US5543055A (en) Purifications of flourinated dimethyl ethers
EP1175380A1 (en) Preparation of selected fluoroolefins
KR20210113300A (en) Process for the preparation of cyclobutane
WO2016002632A1 (en) Method for producing tetrafluoroethylene and/or hexafluoropropylene
MXPA97009463A (en) Purification of eteres dimetilicos fluora
JP2792983B2 (en) Preparation of .ALPHA.-bromo-acyl-fluoride
JP2005306800A (en) Method for producing fluorine-containing ether compound

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4448235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term