JP4447445B2 - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
JP4447445B2
JP4447445B2 JP2004360371A JP2004360371A JP4447445B2 JP 4447445 B2 JP4447445 B2 JP 4447445B2 JP 2004360371 A JP2004360371 A JP 2004360371A JP 2004360371 A JP2004360371 A JP 2004360371A JP 4447445 B2 JP4447445 B2 JP 4447445B2
Authority
JP
Japan
Prior art keywords
bis
tris
hole transport
aluminum
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004360371A
Other languages
Japanese (ja)
Other versions
JP2005101002A (en
JP2005101002A5 (en
Inventor
寛子 安部
篤史 徳田
哲夫 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2004360371A priority Critical patent/JP4447445B2/en
Publication of JP2005101002A publication Critical patent/JP2005101002A/en
Publication of JP2005101002A5 publication Critical patent/JP2005101002A5/ja
Application granted granted Critical
Publication of JP4447445B2 publication Critical patent/JP4447445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、陽極と、電界を加えると発光が得られる有機化合物膜と、陰極と、から構成される有機発光素子に関する。特に、三重項励起状態から発光を呈する発光材料が使用された有機発光素子に関する。 The present invention relates to an organic light-emitting device including an anode, an organic compound film that can emit light when an electric field is applied, and a cathode. In particular, the present invention relates to an organic light emitting device using a light emitting material that emits light from a triplet excited state.

有機発光素子は、電圧の印加によって有機化合物膜に両電極から電子と正孔が注入され、それらの再結合によって形成された励起状態の分子(励起分子)からの発光を利用する発光素子である。   An organic light emitting device is a light emitting device that utilizes light emitted from excited molecules (excited molecules) formed by recombination of electrons and holes injected from both electrodes into an organic compound film by applying a voltage. .

有機化合物膜からの発光は、励起分子が形成され基底状態に失活する際に放出されるエネルギーが光となったものである。この失活過程には大きく別けて2種類あり、一重項励起分子を経由して失活する場合(この際蛍光を発する)と、三重項励起分子を経由して失活する場合がある。三重項励起分子経由の失活過程には、燐光としての光放出過程と、三重項―三重項消滅過程とがあるが、基本的に室温で燐光経由の失活過程をふむ有機材料は少ない(熱失活するものが殆どで光放出による失活は行わない)。このため有機発光素子に使用される有機化合物の大半が一重項励起分子経由の蛍光を発する材料であり、多くの有機発光素子の発光は蛍光を利用している。   The light emitted from the organic compound film is light that is emitted when excited molecules are formed and deactivated to the ground state. There are two main types of deactivation processes. There are cases of deactivation via singlet excited molecules (fluorescence occurs at this time) and cases of deactivation via triplet excited molecules. The deactivation process via triplet excited molecules includes a phosphorescent light emission process and a triplet-triplet annihilation process, but basically few organic materials contain a deactivation process via phosphorescence at room temperature ( Most of them are heat-inactivated and are not deactivated by light emission). For this reason, most organic compounds used in organic light-emitting elements are materials that emit fluorescence via singlet excited molecules, and many organic light-emitting elements use fluorescence.

この蛍光を発する有機化合物を利用した有機発光素子は、1987年にC.W.Tang等が報告した、二種類の有機化合物を積層させた合計約100 nm程度の有機化合物膜を電極で挟んだ二層型構造が基本となっている(非特許文献1参照)。その後1988年に安達等によって三層型構造が提案され(非特許文献2参照)、現在ではこれらの積層型構造を応用した多層型の素子構造がとられている。   The organic light-emitting device using this fluorescent organic compound was reported by CWTang et al. In 1987. A two-layer type in which two organic compounds are stacked and an organic compound film of about 100 nm in total is sandwiched between electrodes. The structure is fundamental (see Non-Patent Document 1). Thereafter, in 1988, a three-layer structure was proposed by Adachi et al. (See Non-Patent Document 2), and at present, a multi-layer element structure using these stacked structures is adopted.

C.W.Tang and S.A.Vanslyke, "Organic electroluminescent diodes" , Applied Physics Letters,Vol.51, No.12, 913-915 (1987)C.W.Tang and S.A.Vanslyke, "Organic electroluminescent diodes", Applied Physics Letters, Vol.51, No.12, 913-915 (1987) Chihaya ADACHI, Shozuo TOKITO, Tetsuo TSUTSUI and Shogo SAITO, "Electroluminescence in Organic Films with Three-Layered Structure", Japanese Journal of Applied Physics, Vol. 27, No.2, L269-L271(1988)Chihaya ADACHI, Shozuo TOKITO, Tetsuo TSUTSUI and Shogo SAITO, "Electroluminescence in Organic Films with Three-Layered Structure", Japanese Journal of Applied Physics, Vol. 27, No. 2, L269-L271 (1988)

このような多層型構造の素子は「層の機能分離」といった特徴をもつ。層の機能分離とは、一種類の有機化合物に様々な機能を同時に持たせるのではなく、一つの層ごとに機能を分担させるというものである。たとえば二層型構造の素子では、正孔の輸送の役割を担う正孔輸送層、および電子の輸送と発光の役割を担う発光性電子輸送層を用いており、また三層型構造の素子では、正孔輸送のみの役割を担う正孔輸送層、電子輸送のみの役割を担う電子輸送層、そしてその二層の間に発光する発光層を用いている。このように、各層を機能分離させることによって、有機発光素子に用いる有機化合物の分子設計に自由度が増えるという利点がある。   Such an element having a multilayer structure has a feature of “functional separation of layers”. The functional separation of layers is not to give various functions to one kind of organic compound at the same time but to share the functions for each layer. For example, a device with a two-layer structure uses a hole transport layer that plays a role of hole transport and a light-emitting electron transport layer that plays a role of electron transport and light emission. A hole transport layer that plays a role only in hole transport, an electron transport layer that plays a role only in electron transport, and a light emitting layer that emits light between the two layers. Thus, by separating the functions of each layer, there is an advantage that the degree of freedom increases in the molecular design of the organic compound used in the organic light emitting device.

例えば単層型構造の素子では、一つの層に電子も正孔も注入しやすく、両キャリヤを輸送する機能をもち、かつ蛍光量子収率も高いという多くの特性が求められる。しかしながら、二層型構造の素子のように電子輸送性発光層を用いた場合、正孔輸送層には正孔を注入しやすい有機化合物を、電子輸送性発光層には電子が注入されやすく高い蛍光量子収率を得る有機化合物をそれぞれ適用すればよく、一つの層に対しての要求が減り、材料を選択しやすくなる。   For example, an element having a single-layer structure is required to have many characteristics that it is easy to inject electrons and holes into one layer, has a function of transporting both carriers, and has a high fluorescence quantum yield. However, when an electron transporting light emitting layer is used as in a two-layer structure element, an organic compound that easily injects holes into the hole transporting layer is high, and electrons are easily injected into the electron transporting light emitting layer. Each organic compound that obtains a fluorescence quantum yield may be applied, reducing the requirement for one layer and facilitating selection of materials.

また三層型構造の素子では、さらに「発光層」を導入することで電子輸送性と発光性の機能を分離できる。しかも発光層にレーザー色素などの高量子収率の蛍光色素(ゲスト)を固体媒体(ホスト)材料に分散したものを用いることによって、発光層の蛍光量子収率を向上させることができ、有機発光素子の量子効率が大きく向上するばかりでなく、使用する蛍光色素の選択によって発光波長を自由に制御できる(非特許文献3参照)。このように色素(ゲスト)をホスト材料に分散した素子はドープ型素子と呼ばれる。   In addition, in an element having a three-layer structure, the function of electron transport and light emission can be separated by introducing a “light emission layer”. In addition, by using a fluorescent material (guest) with a high quantum yield such as a laser dye dispersed in a solid medium (host) material in the light emitting layer, the fluorescent quantum yield of the light emitting layer can be improved, and organic light emission Not only the quantum efficiency of the device is greatly improved, but also the emission wavelength can be freely controlled by selecting the fluorescent dye to be used (see Non-Patent Document 3). An element in which a pigment (guest) is dispersed in a host material in this way is called a doped element.

C.W.Tang , S.A.Vanslyke and C.H.Chen, "Electroluminescence of doped organic thin films", Journal of Applied Physics, Vol.65, 3610-3616 (1989)C.W.Tang, S.A.Vanslyke and C.H.Chen, "Electroluminescence of doped organic thin films", Journal of Applied Physics, Vol.65, 3610-3616 (1989)

多層型構造の素子のもう一つの有効な点は「キャリヤ閉じ込め効果」である。たとえば非特許文献1の二層型構造の場合、陽極から正孔輸送層へ正孔が、陰極から電子輸送層へ電子が注入され、正孔輸送層と電子輸送層の界面へと移動する。その後正孔は、正孔輸送層と電子輸送層とのイオン化ポテンシャルの差が小さいため電子輸送層へ注入されるのに対し、電子は、正孔輸送層の電気親和力が小さい上に電子輸送層との電子親和力の差が大きすぎるため、正孔輸送層には注入されず、正孔輸送層にブロックされて電子輸送層内へ閉じ込められる。したがって、電子輸送層内で正孔、電子両方の密度が高くなり、キャリヤの再結合が効率よく行われるようになる。   Another effective point of the multilayer structure element is a “carrier confinement effect”. For example, in the case of the two-layer structure of Non-Patent Document 1, holes are injected from the anode to the hole transport layer, and electrons are injected from the cathode to the electron transport layer, and move to the interface between the hole transport layer and the electron transport layer. Then, holes are injected into the electron transport layer because the difference in ionization potential between the hole transport layer and the electron transport layer is small, whereas electrons have a low electric affinity for the hole transport layer and the electron transport layer. Is too large to be injected into the hole transport layer, blocked by the hole transport layer, and confined in the electron transport layer. Accordingly, the density of both holes and electrons is increased in the electron transport layer, and carrier recombination is efficiently performed.

このようなキャリヤ閉じ込め効果を発揮させるのに有効な材料の一例として、イオン化ポテンシャルの非常に大きい材料が挙げられる。イオン化ポテンシャルが大きい材料に正孔を注入することは難しく、このような材料は正孔をブロックできる材料(正孔ブロッキング材料)として幅広く使用されている。例えば非特許文献1で報告された芳香族ジアミン化合物からなる正孔輸送層とトリス(8-キノリノラト)-アルミニウム(以下「Alq」と記す)からなる電子輸送層を積層させた場合、これに電圧を印加すると電子輸送層のAlqが発光する。しかし、この素子の二層の間に正孔ブロッキング材料を挿入することで正孔は正孔輸送層に閉じ込められ、正孔輸送層側を発光させることもできる。   An example of a material effective for exhibiting such a carrier confinement effect is a material having a very high ionization potential. It is difficult to inject holes into a material having a high ionization potential, and such materials are widely used as materials capable of blocking holes (hole blocking materials). For example, when a hole transport layer composed of an aromatic diamine compound reported in Non-Patent Document 1 and an electron transport layer composed of tris (8-quinolinolato) -aluminum (hereinafter referred to as “Alq”) are laminated, a voltage is applied thereto. When is applied, Alq of the electron transport layer emits light. However, by inserting a hole blocking material between the two layers of this element, holes are confined in the hole transport layer, and the hole transport layer side can also emit light.

このように、様々な機能をもった層(正孔輸送層、正孔ブロッキング層、電子輸送層、電子注入層など)を導入することで、高効率化、発光色の制御などが可能となり、現在の有機発光素子においては多層型構造が基本構造として確立した。   In this way, by introducing layers with various functions (hole transport layer, hole blocking layer, electron transport layer, electron injection layer, etc.), it becomes possible to achieve high efficiency, control the emission color, In the present organic light emitting device, a multilayer structure has been established as a basic structure.

このような中、1998年、S.R.Forrestらによって室温で三重項励起状態からの発光(燐光)を得ることができる三重項発光材料(文献では、白金を中心金属とする金属錯体)をゲストとして利用したドープ型素子(以下「三重項発光素子」と記す)が発表された(非特許文献4参照)。なお、以下では、この三重項発光素子と区別するため、一重項励起状態からの発光を利用する素子は「一重項発光素子」と記す。   Under such circumstances, in 1998, SRForrest et al. Used a triplet light emitting material (in the literature, a metal complex having platinum as the central metal) that can emit light (phosphorescence) from a triplet excited state at room temperature as a guest. A doped type element (hereinafter referred to as “triplet light emitting element”) has been announced (see Non-Patent Document 4). Hereinafter, in order to distinguish from this triplet light emitting element, an element that utilizes light emission from a singlet excited state is referred to as a “singlet light emitting element”.

M.A.Baldo, D.F.O'Brien, Y.You, A.Shoustilkov, S.Silbley, M.A.Thomoson and S.R.Forrest, "Highly efficient phosphorescent emission from organic electroluminescent devices", Nature, Vol.395, 151-154 (1998)M.A.Baldo, D.F.O'Brien, Y.You, A.Shoustilkov, S.Silbley, M.A.Thomoson and S.R.Forrest, "Highly efficient phosphorescent emission from organic electroluminescent devices", Nature, Vol.395, 151-154 (1998)

上でも述べたが、有機化合物に注入された正孔および電子の再結合によって生成される励起分子には、一重項励起分子と三重項励起分子とがある。この場合、スピンの多重度の違いに由来して一重項励起分子と三重項励起分子とが1:3の割合で生成する。これまでの材料では基本的に、室温において三重項励起分子は熱失活をしてしまうため、一重項励起分子だけを発光に利用してきた。このため生成された励起分子の4分の1しか発光に利用されていない。ここで三重項励起分子が発光に利用できるようになれば、今までの約3〜4倍は効率の高い発光を得られる。   As described above, excited molecules generated by recombination of holes and electrons injected into an organic compound include singlet excited molecules and triplet excited molecules. In this case, singlet excited molecules and triplet excited molecules are generated at a ratio of 1: 3 due to the difference in spin multiplicity. Conventionally, triplet excited molecules have basically been thermally deactivated at room temperature, so that only singlet excited molecules have been used for light emission. For this reason, only one quarter of the generated excited molecules are used for light emission. If triplet excited molecules can be used for light emission here, light emission with high efficiency can be obtained about 3 to 4 times.

非特許文献4では、先に述べた多層型構造を使用している。すなわち、正孔輸送層として芳香族アミン系の化合物4,4'-ビス[N-(1-ナフチル)-N-フェニル-アミノ]-ビフェニル(以下「α-NPD」と記す)を用い、発光層としてAlqに2,3,7,8,12,13,17,18-オクタエチル−21H,23H-ポルフィリン-白金(以下「PtOEP」と記す)を6%分散させたものを用い、電子輸送層としてAlqを用いた素子構造で、外部量子効率の最大値が4%、100 cd/m2で1.3 %という値を示した。 Non-Patent Document 4 uses the multilayer structure described above. In other words, an aromatic amine compound 4,4′-bis [N- (1-naphthyl) -N-phenyl-amino] -biphenyl (hereinafter referred to as “α-NPD”) is used as a hole transport layer to emit light. Electron transport layer using 6% dispersion of 2,3,7,8,12,13,17,18-octaethyl-21H, 23H-porphyrin-platinum (hereinafter referred to as “PtOEP”) in Alq In the device structure using Alq, the maximum value of the external quantum efficiency was 4%, and the value was 1.3% at 100 cd / m 2 .

その後、正孔ブロッキング層を利用した素子構造で、正孔輸送層としてα-NPDを、発光層として4,4' -N,N' -ジカルバゾール-ビフェニル(以下「CBP」と記す)にPtOEPを6%分散させたものを、正孔ブロッキング層として2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(以下「BCP」と記す)を、電子輸送層としてAlqを使用し、100cd/m2で 外部量子効率2.2 %、最大で5.6 %と、素子の発光効率を向上させている(非特許文献5参照)。 After that, in the device structure using the hole blocking layer, α-NPD is used as the hole transport layer, and PtOEP is used as 4,4 '-N, N' -dicarbazole-biphenyl (hereinafter referred to as “CBP”) as the light emitting layer. 6% dispersed using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (hereinafter referred to as “BCP”) as a hole blocking layer, and Alq as an electron transport layer, The light emission efficiency of the device is improved at 100 cd / m 2 with an external quantum efficiency of 2.2% and a maximum of 5.6% (see Non-Patent Document 5).

D.F.O'Brien, M.A.Baldo, M.E.Thompson and S.R.Forrest, "Improved energy transfer in electrophosphorescent devices", Applied Physics Letters, Vol.74, No.3, 442-444 (1999)D.F.O'Brien, M.A.Baldo, M.E.Thompson and S.R.Forrest, "Improved energy transfer in electrophosphorescent devices", Applied Physics Letters, Vol.74, No.3, 442-444 (1999)

さらに三重項発光材料としてトリス(2−フェニルピリジン)イリジウム(以下「Ir(ppy)3」と記す)を使用した三重項発光素子が報告され(非特許文献6参照)、その後非特許文献6と同じ素子構造で有機化合物膜の膜厚を最適化することで、100cd/m2で外部量子効率14.9 %という非常に効率のよい有機発光素子も報告されている(非特許文献7参照)。これで事実上、従来の一重項発光素子の3倍近い発光効率を得る素子が作製されるようになった。 Furthermore, a triplet light-emitting device using tris (2-phenylpyridine) iridium (hereinafter referred to as “Ir (ppy) 3 ”) as a triplet light-emitting material has been reported (see Non-Patent Document 6). A highly efficient organic light-emitting device having an external quantum efficiency of 14.9% at 100 cd / m 2 by optimizing the thickness of the organic compound film with the same device structure has also been reported (see Non-Patent Document 7). As a result, an element having a luminous efficiency nearly three times that of a conventional singlet light emitting element has been manufactured.

M.A.Baldo, S.Lamansky, P.E.Burrows, M.E.Thompson and S.R.Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence", Applied Physics Letters,Vol.75, No.1, 4-6 (1999)M.A.Baldo, S.Lamansky, P.E.Burrows, M.E.Thompson and S.R.Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence", Applied Physics Letters, Vol. 75, No. 1, 4-6 (1999) Teruichi Watanabe, Kenji Nakamura, Shin Kawami, Yoshinori Fukuda, Taishi Tsuji, Takeo Wakimoto, Satoshi Miyaguchi, Masayuki Yahiro, Moon-Jae Yang, Tetsuo Tsutsui, "Optimization of emittimg efficiency in organic LED cells using Ir complex", Synthetic Metals, Vol.122, 203-207 (2001)Teruichi Watanabe, Kenji Nakamura, Shin Kawami, Yoshinori Fukuda, Taishi Tsuji, Takeo Wakimoto, Satoshi Miyaguchi, Masayuki Yahiro, Moon-Jae Yang, Tetsuo Tsutsui, "Optimization of emittimg efficiency in organic LED cells using Ir complex", Synthetic Metals, Vol .122, 203-207 (2001)

現在、中心金属にイリジウムや白金を使用した三重項発光材料が探索され、一重項発光素子に比べて非常に効率の良い三重項発光素子が注目をあびており、精力的に研究がおこなわれている。   Currently, triplet light-emitting materials using iridium or platinum as the central metal are being searched, and triplet light-emitting elements that are very efficient compared to singlet light-emitting elements are attracting attention, and research is being conducted energetically. .

三重項発光素子は一重項発光素子に比べてはるかに高い発光効率であるが、しかし一重項発光素子に比べて桁違いに寿命が短く、安定性に欠けている。また効率をあげるために多層構造をとっているが、そのため素子構造が最低でも四層構造となっており、素子作製に対して手間がかかる、といった単純なデメリットもある。   A triplet light emitting device has a much higher light emission efficiency than a singlet light emitting device, but has a life much shorter than a singlet light emitting device and lacks stability. In addition, a multi-layer structure is adopted to increase the efficiency. Therefore, there is a simple demerit that the element structure is at least a four-layer structure, and it takes time to manufacture the element.

素子の寿命に関しては、α-NPDを使用した正孔輸送層と、ホスト材料であるCBPおよびゲスト(ドーパント)材料であるIr(ppy)3を使用した発光層と、BCPを使用した正孔ブロッキング層と、Alqを使用した電子輸送層と、を積層した素子において、初期輝度500 cd/m2の条件で半減期がたった170時間という報告(非特許文献8参照)があり、この寿命では実用化には程遠い。 Regarding the lifetime of the device, a hole transport layer using α-NPD, a light emitting layer using CBP as the host material and Ir (ppy) 3 as the guest (dopant) material, and hole blocking using BCP In a device in which a layer and an electron transport layer using Alq are laminated, there is a report that the half-life is only 170 hours under the condition of an initial luminance of 500 cd / m 2 (see Non-Patent Document 8). It's far from being

Tetsuo TSUTSUI, Moon-Jae YANG, Masayuki YAHIRO, Kenji NAKAMURA, Teruichi WATANABE, Taishi TSUJI, Yoshinori FUKUDA, Takeo WAKIMOTO and Satoshi MIYAGUCHI, "High Quantum Efficiency inorganic Light-Emitting Devices with Iridium-Complex as a Triplet Emissive Center", Japanese Journal of Applied Physics, Vol.38, No.12B, L1502-L1504 (1999)Tetsuo TSUTSUI, Moon-Jae YANG, Masayuki YAHIRO, Kenji NAKAMURA, Teruichi WATANABE, Taishi TSUJI, Yoshinori FUKUDA, Takeo WAKIMOTO and Satoshi MIYAGUCHI, "High Quantum Efficiency inorganic Light-Emitting Devices with Iridium-Complex as a Japanese Japanese Journal of Applied Physics, Vol.38, No.12B, L1502-L1504 (1999)

この原因として非特許文献8では、正孔ブロッキング材料で使用しているBCPの安定性が低いことが挙げられている。三重項発光素子においては、非特許文献5で示された素子構造が基本構造となっており、正孔ブロッキング層は不可欠なものとして使用されている。図12に従来の三重項発光素子の構造を示す。基板1101の上に陽極1102、その上に有機化合物膜として正孔輸送層1103、発光層1104、正孔ブロッキング層1105、電子輸送層1106、そして陰極1107を積層させた素子構造となっている。正孔ブロッキング層によるキャリヤの閉じ込め効果によって、キャリヤの再結合は効率よく行われるようになるが、しかし一方では、一般的に使用されている正孔ブロッキング材料は安定性が低いという欠点を持っているため寿命が延びない。またホスト材料として使用されているCBPも安定性の低い材料であるため、これも寿命が延びない原因の一つと考えられる。   Non-patent document 8 mentions that the stability of BCP used in the hole blocking material is low. In the triplet light emitting device, the device structure shown in Non-Patent Document 5 is a basic structure, and the hole blocking layer is used as an indispensable one. FIG. 12 shows a structure of a conventional triplet light emitting device. An element structure is formed in which an anode 1102 is formed over a substrate 1101, and a hole transport layer 1103, a light emitting layer 1104, a hole blocking layer 1105, an electron transport layer 1106, and a cathode 1107 are stacked thereon as an organic compound film. The confinement effect of the carrier by the hole blocking layer allows the carrier recombination to be performed efficiently, but on the other hand, the commonly used hole blocking material has the disadvantage of being less stable As a result, the service life is not extended. In addition, CBP used as a host material is also a low-stability material, which is considered to be one of the reasons that the lifetime is not extended.

正孔ブロッキング層を使用しない三層型構造の素子も作製されている(非特許文献9参照)。ここではホスト材料として、両キャリヤ輸送性であると言われているCBPの代わりに、電子輸送材料用いることを特徴としている。しかしホスト材料に使用された電子輸送材料は、正孔ブロッキング材料として使用されるBCP、1,3−ビス(N,N−t−ブチル−フェニル)−1,3,4−オキサゾール(以下「OXD7」と記す)、3−フェニル−4−(1’−ナフチル)−5−フェニル−1,2,4−トリアゾール(以下「TAZ」と記す)であり、正孔ブロッキング層は導入しないものの、結局は正孔ブロッキング材料としてよく用いられるものを素子内に使用している。BCPはもちろんその他のどの材料も安定性の低い材料であり、高い効率は出るものの、安定性の低い素子となっている。 An element having a three-layer structure that does not use a hole blocking layer has also been produced (see Non-Patent Document 9). Here, as a host material, an electron transport material is used instead of CBP which is said to be capable of transporting both carriers. However, the electron transport material used as the host material is BCP, 1,3-bis (N, Nt-butyl-phenyl) -1,3,4-oxazole (hereinafter referred to as “OXD7”) used as a hole blocking material. 3) -phenyl-4- (1′-naphthyl) -5-phenyl-1,2,4-triazole (hereinafter referred to as “TAZ”), and although no hole blocking layer is introduced, Are used in the device as those often used as hole blocking materials. Of course, BCP and other materials are low stability materials, and although high efficiency is obtained, they are low stability elements.

Chihaya ADACHI, Marc A. Baldo, Stephen R. Forrest and Mark E. Thompson, "High-efficiency organic electrophosphorescent devices with tris(2-phinylpyridine)iridium doped into electron-transporting materials", Applied Physics Letters, Vol.77,No.6, 904-906 (2000)Chihaya ADACHI, Marc A. Baldo, Stephen R. Forrest and Mark E. Thompson, "High-efficiency organic electrophosphorescent devices with tris (2-phinylpyridine) iridium doped into electron-transporting materials", Applied Physics Letters, Vol. 77, No .6, 904-906 (2000)

また、正孔ブロッキング材料を使用しない単純な二層型の素子構造も報告されている(非特許文献10参照)が、ホスト材料にCBPを使用しており、高い発光効率を得ているものの安定性に欠ける。   In addition, a simple two-layer device structure that does not use a hole blocking material has been reported (see Non-Patent Document 10). However, although CBP is used as the host material and high luminous efficiency is obtained, it is stable. Lack of sex.

Chihaya ADACHI, Raymond KWONG, Stephen R. Forrest, "Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film", Organic Electronics, Vol.2, 37-43 (2001)Chihaya ADACHI, Raymond KWONG, Stephen R. Forrest, "Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film", Organic Electronics, Vol. 2, 37-43 (2001)

このように、三重項発光素子において発光効率は高い素子は報告されているが、効率もよく、安定性もある、といった三重項発光素子の報告は未だなく、その原因として使用されているホスト材料、正孔ブロッキング材料の不安定性が原因となっている。   Thus, although a device having high emission efficiency in a triplet light emitting device has been reported, there has not yet been reported a triplet light emitting device that is efficient and stable, and the host material used as the cause thereof is not yet reported. This is due to the instability of the hole blocking material.

そこで本発明では、このように不安定な材料を使用することなく、また素子構造を単純化することで、高効率でかつ安定性のある、また従来の素子に比べ素子作製において手間が省ける三重項発光素子を提供することを課題とする。   Therefore, in the present invention, the use of such an unstable material and the simplification of the device structure make the device structure highly efficient and stable, and can save time and effort in device fabrication compared to conventional devices. It is an object to provide a term light emitting element.

本発明は、三重項発光素子において、従来の三重項発光素子で導入している正孔ブロッキング層を使用せず、有機化合物膜は、正孔輸送層と、三重項発光するドーパント材料を安定性のある電子輸送材料に分散した層と、を積層させた単純な素子構造(図1)にすることで達成される。すなわち、基板101の上に陽極102、その上に正孔輸送材料からなる正孔輸送層103、電子輸送材料および三重項発光するドーパント材料からなる電子輸送性発光層104、そして陰極105を積層させた素子構造で達成される。ここでは、陽極102と陰極105に挟まれた領域(すなわち正孔輸送層103および電子輸送性発光層104)が有機化合物膜に相当する。   In the triplet light emitting device, the hole blocking layer introduced in the conventional triplet light emitting device is not used, and the organic compound film has a stability of the hole transport layer and the triplet light emitting dopant material. This is achieved by forming a simple device structure (FIG. 1) in which a layer dispersed in a certain electron transport material is laminated. That is, an anode 102 is formed on a substrate 101, a hole transport layer 103 made of a hole transport material, an electron transporting light emitting layer 104 made of an electron transport material and a triplet light emitting dopant material, and a cathode 105 are laminated thereon. This is achieved with an element structure. Here, a region sandwiched between the anode 102 and the cathode 105 (that is, the hole transport layer 103 and the electron transport light-emitting layer 104) corresponds to the organic compound film.

したがって本発明では、陽極と、有機化合物膜と、陰極と、から構成される有機発光素子において、前記有機化合物膜は、正孔輸送材料からなる正孔輸送層と、前記正孔輸送層に接して設けられた電子輸送材料からなる電子輸送層と、を含み、かつ、前記電子輸送層内に、三重項励起状態からの発光を呈する発光材料が添加されていることを特徴とする。   Therefore, in the present invention, in the organic light emitting device composed of an anode, an organic compound film, and a cathode, the organic compound film is in contact with a hole transport layer made of a hole transport material and the hole transport layer. And an electron transport layer made of an electron transport material, and a light emitting material that emits light from a triplet excited state is added to the electron transport layer.

なお、陽極102と正孔輸送層103との間には、正孔注入層を挿入してもよい。また、陰極105と電子輸送性発光層104との間には、電子注入層を挿入してもよい。さらに、これら正孔注入層および電子注入層の両方を挿入してもよい。   Note that a hole injection layer may be inserted between the anode 102 and the hole transport layer 103. Further, an electron injection layer may be inserted between the cathode 105 and the electron transporting light emitting layer 104. Further, both of these hole injection layer and electron injection layer may be inserted.

ところで、上記のような素子において、正孔輸送層103が発光してしまうのを防ぐため、正孔輸送材料と電子輸送材料の組み合わせを考慮することも、課題を解決するための手段として重要である。   By the way, in the element as described above, in order to prevent the hole transport layer 103 from emitting light, it is also important as a means for solving the problem to consider the combination of the hole transport material and the electron transport material. is there.

そこで本発明では、前記正孔輸送材料における最高被占分子軌道準位と最低空分子軌道準位とのエネルギー差が、前記電子輸送材料における最高被占分子軌道準位と最低空分子軌道準位とのエネルギー差よりも大きいことを特徴とする。   Therefore, in the present invention, the energy difference between the highest occupied molecular orbital level and the lowest unoccupied molecular orbital level in the hole transport material is the highest occupied molecular orbital level and the lowest unoccupied molecular orbital level in the electron transport material. It is characterized by being larger than the energy difference.

また、他の手段として、前記正孔輸送材料の吸収スペクトルと前記電子輸送材料の発光スペクトルが重ならないことを特徴とする。この場合、ただ単にスペクトルが重ならないだけでなく、スペクトルの位置関係として、前記正孔輸送材料の吸収スペクトルが前記電子輸送材料の発光スペクトルよりも短波長側に位置することが好ましい。   As another means, the absorption spectrum of the hole transport material and the emission spectrum of the electron transport material do not overlap. In this case, it is preferable that not only the spectra do not overlap, but also that the absorption spectrum of the hole transport material is located on the shorter wavelength side than the emission spectrum of the electron transport material as a positional relationship of the spectra.

ここで、上記で述べたような本発明の三重項発光素子の発光効率を向上させるために、三重項発光するドーパントがキャリアをトラップしやすい素子構成にすることも、課題を解決するための手段として重要である。   Here, in order to improve the light emission efficiency of the triplet light emitting device of the present invention as described above, the device configuration in which the triplet light emitting dopant easily traps carriers can also be achieved. As important.

そこで本発明では、三重項励起状態からの発光を呈する発光材料の最高被占分子軌道準位および最低空分子軌道準位が共に、前記電子輸送材料における最高被占分子軌道準位と最低空分子軌道準位とのエネルギーギャップ内に位置することを特徴とする。   Therefore, in the present invention, the highest occupied molecular orbital level and the lowest unoccupied molecular orbital level of the light emitting material exhibiting light emission from the triplet excited state are both the highest occupied molecular orbital level and the lowest unoccupied molecular molecule in the electron transport material. It is located in the energy gap with the orbital level.

また、他の手段として、前記正孔輸送材料のイオン化ポテンシャルの値が、三重項励起状態からの発光を呈する発光材料のイオン化ポテンシャルの値と比べて同じかまたは大きいことを特徴とする。   As another means, the value of the ionization potential of the hole transport material is equal to or larger than the value of the ionization potential of the light emitting material exhibiting light emission from a triplet excited state.

さらに他の手段として、前記正孔輸送材料の最低空分子軌道準位を示す値の絶対値が、前記電子輸送材料の最低空分子軌道準位を示す値の絶対値よりも0.2 eV以上小さいことを特徴とする。   Further, as another means, the absolute value of the value indicating the lowest unoccupied molecular orbital level of the hole transport material is 0.2 eV or more smaller than the absolute value of the value indicating the lowest unoccupied molecular orbital level of the electron transporting material. It is characterized by.

なお、これらを組み合わせた素子構成、すなわち、前記正孔輸送材料のイオン化ポテンシャルの値が三重項励起状態からの発光を呈する発光材料のイオン化ポテンシャルの値と比べて同じかまたは大きく、かつ、前記正孔輸送材料の最低空分子軌道準位を示す値の絶対値が前記電子輸送材料の最低空分子軌道準位を示す値の絶対値よりも0.2 eV以上小さい場合が、より好ましいと言える。   It should be noted that the element configuration combining these, that is, the value of the ionization potential of the hole transport material is the same as or larger than the value of the ionization potential of the light emitting material that emits light from the triplet excited state, and is positive. It is more preferable that the absolute value of the value indicating the lowest unoccupied molecular orbital level of the hole transport material is 0.2 eV or more smaller than the absolute value of the value indicating the lowest unoccupied molecular orbital level of the electron transporting material.

上記のことを考慮し、本発明に好適な正孔輸送材料として、4,4',4"-トリス(N−カルバゾール)トリフェニルアミン、4,4'-ビス[N,N-ビス(3-メチルフェニル)-アミノ]-ジフェニルメタン、1,3,5-トリス[N,N-ビス(2-メチルフェニル)-アミノ]-ベンゼン、1,3,5-トリス[N,N-ビス(3-メチルフェニル)-アミノ]-ベンゼン 、1,3,5-トリス[N,N-ビス(4-メチルフェニル)-アミノ]-ベンゼンのいずれかを使用することを特徴とする。   In view of the above, 4,4 ', 4 "-tris (N-carbazole) triphenylamine, 4,4'-bis [N, N-bis (3 -Methylphenyl) -amino] -diphenylmethane, 1,3,5-tris [N, N-bis (2-methylphenyl) -amino] -benzene, 1,3,5-tris [N, N-bis (3 -Methylphenyl) -amino] -benzene or 1,3,5-tris [N, N-bis (4-methylphenyl) -amino] -benzene is used.

また、前記電子輸送材料に2,2’,2”−(1,3,5−ベンゼントリル)トリス−[1−フェニル−1H−ベンゾイミダゾ−ル]、リチウムテトラ(2−(2−ヒドロキシフェニル)ベンゾオキサゾラトボロン、ビス(2−(2−ヒドロキシフェニル)ベンゾオキサゾラト)(トリフェニルシラノラト)アルミニウム、ビス(2−(2−ヒドロキシフェニル)ベンゾチアゾラト)(トリフェニルシラノラト)アルミニウム、2−(2−ヒドロキシフェニル)ベンゾオキサゾラトリチウム、(2−(2−ヒドロキシフェニル)ベンゾオキサゾラト)−ジフェニルボロン、トリス(8−キノリノラト)−アルミニウム、ビス(2−メチル−8−キノリノラト)(トリフェニルシラノラト)アルミニウム、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム、リチウムテトラ(2−メチル−8−ヒドロキシ−キノリナト)ボロン、(2−メチル−8−キノリノラト)−ジフェニルボロン、ビス(2−メチル−8−キノリノラト)アルミニウムヒドロキシドのいずれかを使用することを特徴とする。 Further, 2,2 'in the electron transporting material, 2 "- (1,3,5-benzene-tolyl) tris - [1-phenyl--1H- benzoimidazol - le], lithium tetra (2- (2-hydroxyphenyl ) Benzoxazolatoboron, bis (2- (2-hydroxyphenyl) benzoxazolate) (triphenylsilanolato) aluminum, bis (2- (2-hydroxyphenyl) benzothiazolate) (triphenylsilanolato) aluminum, 2- (2-hydroxyphenyl) benzoxazolate lithium, (2- (2-hydroxyphenyl) benzoxazolate) -diphenylboron, tris (8-quinolinolato) -aluminum, bis (2-methyl-8-quinolinolato) (Triphenylsilanolato) aluminum, bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum, lithium tetra (2-methyl-8-hydroxy-quinolinato) boron, (2-methyl-8-quinolinolato) -diphenylboron, bis (2-methyl-8-quinolinolato) aluminum hydroxide Any of the above is used.

さらに本発明の素子においては、これらの正孔輸送材料および電子輸送材料を組み合わせて使用することが有効である。   Furthermore, in the device of the present invention, it is effective to use a combination of these hole transport materials and electron transport materials.

本発明を実施する事で、従来の三重項発光素子と同じ程度の高効率な三重項発光素子を、簡略な素子構成で得る事ができる。また、不安定な材料を使用する層を省く事で、安定性のある有機発光素子を提供することができる。   By implementing the present invention, it is possible to obtain a triplet light-emitting element that is as highly efficient as a conventional triplet light-emitting element with a simple element configuration. Moreover, a stable organic light emitting element can be provided by omitting a layer using an unstable material.

以下、本発明の実施形態について詳細に説明する。なお、有機発光素子は、発光を取り出すために少なくとも陽極、または陰極の一方が透明であれば良いが、本実施例の形態では、基板上に透明な陽極を形成し、陽極側から光を取り出す素子構造を記述する。実際は陰極を基板上に形成して陰極から光を取りだす構造や、基板とは逆側から光を取り出す構造、電極の両側から光を取り出す構造にも適用可能である。   Hereinafter, embodiments of the present invention will be described in detail. Note that the organic light-emitting element may be transparent so that at least one of the anode and the cathode is transparent in order to extract light emission. In this embodiment, a transparent anode is formed on the substrate and light is extracted from the anode side. Describe the device structure. Actually, the present invention can also be applied to a structure in which a cathode is formed on a substrate to extract light from the cathode, a structure in which light is extracted from the side opposite to the substrate, and a structure in which light is extracted from both sides of the electrode.

上記のように、本発明では、三重項発光素子において正孔ブロッキング層を使用しないことを特徴としている(図1)。しかし、ただ単純に従来の素子構造(図12)から正孔ブロッキング層を除いた素子を作製すればよい、ということにはならない。   As described above, the present invention is characterized in that no hole blocking layer is used in the triplet light emitting device (FIG. 1). However, it does not simply mean that an element in which the hole blocking layer is removed from the conventional element structure (FIG. 12) is produced.

まず、従来の三重項発光素子と本発明の二層型の素子では、再結合領域に違いがある。従来の三重項発光素子においては正孔ブロッキング層を用いることより、キャリヤの再結合領域は発光層と正孔ブロッキング層の界面であった。これに対して本発明で提案する素子構造では、キャリヤの再結合領域は正孔輸送層とホストである電子輸送材料との界面になる。   First, there is a difference in the recombination region between the conventional triplet light emitting device and the two-layer device of the present invention. In the conventional triplet light emitting device, the hole recombination region is the interface between the light emitting layer and the hole blocking layer because the hole blocking layer is used. On the other hand, in the device structure proposed in the present invention, the carrier recombination region is an interface between the hole transport layer and the electron transport material as a host.

このため、三重項発光素子の発光機構が重要である。一般にドーパント(ゲスト)を使用したホスト―ゲスト系の発光層を使用した素子の発光機構として、2種類の発光機構が考えられる。   For this reason, the light emission mechanism of a triplet light emitting element is important. In general, two types of light emission mechanisms are conceivable as the light emission mechanism of an element using a host-guest light emitting layer using a dopant (guest).

第一の発光機構は、ホストからのエネルギー移動によるドーパントの発光である。この場合まず、ホストに両キャリヤが注入されホストの励起分子が形成される。この励起分子のエネルギーがドーパントに移動し、そのエネルギーによってドーパントは励起され、失活する際に光を放出する。三重項発光素子の場合、ドーパントは三重項励起分子経由で燐光を放出する材料であるため、発光した光は燐光である。   The first light emission mechanism is light emission of the dopant by energy transfer from the host. In this case, first, both carriers are injected into the host to form excited molecules of the host. The energy of this excited molecule is transferred to the dopant, and the dopant is excited by the energy and emits light when deactivated. In the case of a triplet light-emitting element, since the dopant is a material that emits phosphorescence via a triplet excited molecule, the emitted light is phosphorescence.

エネルギー移動による発光機構で重要となってくるのは、ホスト材料の発光スペクトルとドーパント材料の吸収スペクトルの重なり合いが大きいことである。ホスト材料およびドーパント材料における最高被占分子軌道(HOMO)と最低空分子軌道(LUMO)の位置関係は重要ではない。   What is important in the light emission mechanism by energy transfer is that there is a large overlap between the emission spectrum of the host material and the absorption spectrum of the dopant material. The positional relationship between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in the host material and dopant material is not important.

なお、本明細書において、HOMOの値は大気中における光電子分光測定により観測したイオン化ポテンシャルの値を使用する。また、吸収スペクトルの吸収端をHOMOとLUMOとのエネルギー差(以下、このエネルギー差を「エネルギーギャップ値」と記す)としている。従って、LUMOの値は、光電子分光測定によって測定されたイオン化ポテンシャルの値から、吸収スペクトルの吸収端によって見積もられたエネルギーギャップ値を引いたものを使用している。ここで、実際にはこれらの値(HOMO(イオン化ポテンシャル)、LUMO、エネルギーギャップ値)は真空準位を基準としているため負の値をとるが、本明細書中ではすべて絶対値で表すこととする。HOMO、LUMO、エネルギーギャップ値の概念図を表すと、図2のようになる。   In this specification, the value of the ionization potential observed by photoelectron spectroscopy in the atmosphere is used as the value of HOMO. The absorption edge of the absorption spectrum is the energy difference between HOMO and LUMO (hereinafter, this energy difference is referred to as “energy gap value”). Therefore, the LUMO value is obtained by subtracting the energy gap value estimated by the absorption edge of the absorption spectrum from the ionization potential value measured by photoelectron spectroscopy. Here, these values (HOMO (ionization potential), LUMO, energy gap value) are actually negative values because they are based on the vacuum level, but in this specification, all values are expressed as absolute values. To do. A conceptual diagram of HOMO, LUMO, and energy gap values is shown in FIG.

ところで、もしドーパント材料のHOMOおよびLUMOのエネルギーレベルが共に、ホスト材料におけるHOMOとLUMOとのエネルギーギャップ内に位置する場合、先程述べたホストからドーパントへのエネルギー移動の発光機構に加え、ドーパント上でキャリヤがトラップされてドーパント上で直接キャリヤが再結合される、という直接再結合の発光機構も生じる。これが第二の発光機構である。   By the way, if the HOMO and LUMO energy levels of the dopant material are both within the energy gap between the HOMO and LUMO in the host material, in addition to the emission mechanism of energy transfer from the host to the dopant described above, There is also a direct recombination emission mechanism where the carriers are trapped and the carriers are recombined directly on the dopant. This is the second light emitting mechanism.

しかし、ドーパント材料とホスト材料がこのようなエネルギーレベルの位置関係にある場合、エネルギー移動もおこる条件となっているため、発光機構がどちらの機構からの寄与であるのか分離することは通常難しく、両方の発光機構が関与している可能性も考えられる。   However, when the dopant material and the host material are in such an energy level positional relationship, energy transfer is also a condition, so it is usually difficult to separate which mechanism contributes from the light emission mechanism, It is also possible that both light emission mechanisms are involved.

まず、三重項発光素子がエネルギー移動の機構(第一の発光機構)で発光している場合を考える。従来の素子構造ではキャリヤの再結合領域が発光層と正孔ブロッキング層との界面であることから、ホスト材料からドーパント材料へのエネルギー移動以外にも、正孔ブロッキング材料へのエネルギー移動も考えられる。しかし正孔ブロッキング材料の吸収スペクトルが非常に短波長側にあるため、従来の三重項発光素子で報告されてきたホスト材料の発光スペクトルと正孔ブロッキング材料の吸収スペクトルは重なりあう部分はなく、ホスト材料−正孔ブロッキング材料間でのエネルギー移動は起こりえない。つまり、従来型の三重項発光素子では、ホスト材料から正孔ブロッキング材料へはエネルギー移動が起こらないような素子構造になっているといえる。   First, consider a case where the triplet light emitting element emits light by an energy transfer mechanism (first light emission mechanism). In the conventional device structure, since the carrier recombination region is the interface between the light emitting layer and the hole blocking layer, in addition to the energy transfer from the host material to the dopant material, energy transfer to the hole blocking material is also conceivable. . However, since the absorption spectrum of the hole blocking material is on the very short wavelength side, the emission spectrum of the host material and the absorption spectrum of the hole blocking material reported in the conventional triplet light emitting device do not overlap each other. Energy transfer between the material and the hole blocking material cannot occur. That is, it can be said that the conventional triplet light emitting device has an element structure in which energy transfer does not occur from the host material to the hole blocking material.

これに対して本発明での素子構造では、キャリヤの再結合領域は、正孔輸送材料を含む正孔輸送層とホスト材料を含む電子輸送性発光層との界面である。このため、本発明の素子ではホスト材料から正孔輸送材料へのエネルギー移動が考えられる。ホスト材料から正孔輸送材料へエネルギー移動がおこってしまっては、効率よい発光を得ることができない。   On the other hand, in the device structure of the present invention, the carrier recombination region is an interface between the hole transport layer containing the hole transport material and the electron transporting light emitting layer containing the host material. For this reason, in the element of the present invention, energy transfer from the host material to the hole transport material can be considered. If energy transfer occurs from the host material to the hole transport material, efficient light emission cannot be obtained.

そこで、エネルギー移動に関してホスト材料のエネルギーギャップ値と正孔輸送材料のエネルギーギャップ値の大小関係が大まかな目安となる。ホスト材料のエネルギーギャップ値が正孔輸送材料のエネルギーギャップ値より小さければ、ホスト材料からのエネルギー移動で正孔輸送材料を励起させることは難しい。このことから、ホスト材料から正孔輸送材料へエネルギー移動が起こらないようにするために、正孔輸送材料はホスト材料よりも大きいエネルギーギャップ値を持つものが好ましい。   Therefore, the magnitude relationship between the energy gap value of the host material and the energy gap value of the hole transport material is a rough guide for energy transfer. If the energy gap value of the host material is smaller than the energy gap value of the hole transport material, it is difficult to excite the hole transport material by energy transfer from the host material. Therefore, in order to prevent energy transfer from the host material to the hole transport material, the hole transport material preferably has an energy gap value larger than that of the host material.

図3は、この場合のエネルギーダイヤグラムである。図3に示すように、正孔輸送材料のエネルギーギャップ値Aはホスト材料のエネルギーギャップ値Bより大きくなるよう、材料を選択すればよい。   FIG. 3 is an energy diagram in this case. As shown in FIG. 3, the material may be selected so that the energy gap value A of the hole transport material is larger than the energy gap value B of the host material.

また、ホスト材料−正孔輸送材料間でエネルギー移動が起こらない条件として、ホスト材料の発光スペクトルと正孔輸送材料の吸収スペクトルに重なり合いを持たないような材料の組み合わせを選択する手法もある。この際、正孔輸送材料の吸収スペクトルは電子輸送材料の発光スペクトルよりも短波長側に位置することが好ましい。   There is also a method of selecting a combination of materials that does not overlap the emission spectrum of the host material and the absorption spectrum of the hole transport material as a condition for preventing energy transfer between the host material and the hole transport material. At this time, the absorption spectrum of the hole transport material is preferably located on the shorter wavelength side than the emission spectrum of the electron transport material.

図4にこの条件を図示する。(a)はホスト材料−正孔輸送材料間でエネルギー移動が起こってしまう場合のスペクトルの位置関係を、(b)はホスト材料−正孔輸送材料間でエネルギー移動を起こさない場合のスペクトルの位置関係を、それぞれ示している。本発明では(b)の位置関係にあることが好ましい。   FIG. 4 illustrates this condition. (A) shows the positional relationship of the spectrum when energy transfer occurs between the host material and the hole transport material, and (b) shows the spectral position when energy transfer does not occur between the host material and the hole transport material. Each relationship is shown. In the present invention, the positional relationship (b) is preferable.

これらの条件以外に、ドーパント材料のHOMOおよびLUMOのエネルギーレベルが共に、ホスト材料のHOMOとLUMOのエネルギーギャップ内に位置するようなホスト材料を選んだ場合、直接再結合の発光機構(第二の発光機構)も考慮されるため、さらなる条件を考慮することが重要である。   In addition to these conditions, if the host material is selected so that both the HOMO and LUMO energy levels of the dopant material are within the energy gap between the HOMO and LUMO of the host material, the direct recombination emission mechanism (second It is important to consider further conditions since the light emission mechanism) is also considered.

この場合、正孔輸送材料からドーパント材料へ正孔キャリヤが注入されやすいよう、正孔輸送材料のHOMOを示すイオン化ポテンシャルの値が大きいものが適している。すなわち、ドーパント材料のイオン化ポテンシャルより正孔輸送材料のイオン化ポテンシャルが大きくなるように組み合わせる。正孔輸送材料のイオン化ポテンシャルが大きすぎると陽極から正孔輸送材料に正孔が注入されにくくなるが、この場合は陽極と正孔輸送層との間に正孔注入層を導入することで改善される。   In this case, a material having a large ionization potential value indicating HOMO of the hole transport material is suitable so that hole carriers are easily injected from the hole transport material into the dopant material. That is, the hole transport material is combined so that the ionization potential of the hole transport material becomes larger than the ionization potential of the dopant material. If the ionization potential of the hole transport material is too large, it will be difficult to inject holes from the anode into the hole transport material. In this case, it is improved by introducing a hole injection layer between the anode and the hole transport layer. Is done.

また、電子キャリヤに対しては、電子輸送性のホストを介してドーパントが電子キャリヤをトラップすると考えられる。ドーパントにトラップされなかった電子が電子輸送層内を移動し、正孔輸送層との界面までたどり着いた場合、もし正孔輸送材料のLUMO準位がホスト材料のLUMO準位と大差がなければ、界面にたどり着いた電子は正孔輸送層へ入り込んでしまう。このため電子は電子輸送層へ閉じ込められず、効率よい再結合が行われない。このような状況を避けるため、正孔輸送材料とホスト材料である電子輸送材料とのLUMO準位の差は、電子をブロッキングするのに十分大きいものであることが望まれる。この差は0.2 eV以上あることが望ましい。   In addition, for the electron carrier, it is considered that the dopant traps the electron carrier through the electron transporting host. If electrons not trapped by the dopant move through the electron transport layer and reach the interface with the hole transport layer, if the LUMO level of the hole transport material is not significantly different from the LUMO level of the host material, Electrons that arrive at the interface enter the hole transport layer. For this reason, electrons are not confined in the electron transport layer, and efficient recombination is not performed. In order to avoid such a situation, it is desirable that the difference in LUMO level between the hole transport material and the electron transport material that is the host material is sufficiently large to block electrons. This difference is desirably 0.2 eV or more.

次に、本発明の三重項発光素子の作製法および用いる材料について、より具体的に例示する。   Next, a method for manufacturing the triplet light-emitting element of the present invention and a material to be used will be described more specifically.

図1に示す本発明の素子作製方法は、まず、陽極(ITO)を有する基板に正孔輸送材料を蒸着し、次に電子輸送材料(ホスト材料)と三重項発光材料(ドーパント材料)を共蒸着し、最後に陰極を蒸着で形成する。ホスト材料とドーパント材料を共蒸着する際のドーパント濃度は、約8wt%程度になるようにあわせる。最後に封止を行い、有機発光素子を得る。   In the element manufacturing method of the present invention shown in FIG. 1, a hole transport material is first deposited on a substrate having an anode (ITO), and then an electron transport material (host material) and a triplet light-emitting material (dopant material) are used together. Vapor deposition is performed, and finally a cathode is formed by vapor deposition. The dopant concentration when co-evaporating the host material and the dopant material is adjusted to about 8 wt%. Finally, sealing is performed to obtain an organic light emitting device.

次に、本発明の素子で使用できる正孔注入材料、正孔輸送材料、電子輸送材(ホスト材料)、三重項発光材料(ドーパント材料)に好適な材料を以下に列挙する。ただし、本発明の素子に用いる材料は、これらに限定されない。   Next, materials suitable for the hole injection material, hole transport material, electron transport material (host material), and triplet light emitting material (dopant material) that can be used in the device of the present invention are listed below. However, the material used for the element of the present invention is not limited to these.

正孔注入材料としては、有機化合物でればポルフィリン系の化合物や、フタロシアニン(以下「H2Pc」と記す)、銅フタロシアニン(以下「CuPc」と記す)などが有効である。また、使用する正孔輸送材料よりもイオン化ポテンシャルの値が小さく、かつ、正孔輸送機能をもつ材料であれば、これも正孔注入材料として使用できる。導電性高分子化合物に化学ドーピングを施した材料もあり、ポリスチレンスルホン酸(以下「PSS」と記す)をドープしたポリエチレンジオキシチオフェン(以下「PEDOT」と記す)や、ポリアニリンなどが挙げられる。また、絶縁体の高分子化合物も陽極の平坦化の点で有効であり、ポリイミド(以下「PI」と記す)がよく用いられる。さらに、無機化合物も用いられ、金や白金などの金属薄膜の他、酸化アルミニウム(以下「アルミナ」と記す)の超薄膜などがある。 As the hole injecting material, if Re Oh organic compound and a porphyrin-based compound, phthalocyanine (hereinafter referred to as "H2Pc"), copper phthalocyanine (hereinafter referred to as "CuPc"), or the like is effective. In addition, any material that has a smaller ionization potential than the hole transport material used and has a hole transport function can also be used as the hole injection material. There is also a material obtained by chemically doping a conductive polymer compound, and examples thereof include polyethylenedioxythiophene (hereinafter referred to as “PEDOT”) doped with polystyrene sulfonic acid (hereinafter referred to as “PSS”), polyaniline, and the like. An insulating polymer compound is also effective in terms of planarization of the anode, and polyimide (hereinafter referred to as “PI”) is often used. In addition, inorganic compounds are also used. In addition to metal thin films such as gold and platinum, there are ultra thin films of aluminum oxide (hereinafter referred to as “alumina”).

正孔輸送材料としては、そのエネルギーギャップ値が、ホスト材料として使用する電子輸送材料のエネルギーギャップ値よりも大きいものが有効である。また、発光材料よりもイオン化ポテンシャルが大きい、あるいは電子輸送材料よりもLUMOの絶対値が0.2 eV以上小さいことが好ましい。   As the hole transport material, those having an energy gap value larger than the energy gap value of the electron transport material used as the host material are effective. Further, it is preferable that the ionization potential is larger than that of the light emitting material, or that the LUMO absolute value is 0.2 eV or more smaller than that of the electron transporting material.

本発明の素子に好適なエネルギーギャップ値の大きい正孔輸送材料としては、下記構造式(1)で表される4,4',4"-トリス(N−カルバゾール)トリフェニルアミン(以下「TCTA」と記す)、下記構造式(2)で表される1,3,5-トリス[N,N-ビス(2-メチルフェニル)-アミノ]-ベンゼン(以下「o-MTDAB」と記す)、下記構造式(3)で表される1,3,5-トリス[N,N-ビス(3-メチルフェニル)-アミノ]-ベンゼン (以下「m-MTDAB」と記す) 、下記構造式(4)で表される1,3,5-トリス[N,N-ビス(4-メチルフェニル)-アミノ]-ベンゼン(以下「p-MTDAB」と記す)、下記構造式(5)で表される4,4'-ビス[N,N-ビス(3-メチルフェニル)-アミノ]-ジフェニルメタン(以下「BPPM」と記す)などが挙げられる。   As a hole transport material having a large energy gap value suitable for the device of the present invention, 4,4 ′, 4 ”-tris (N-carbazole) triphenylamine (hereinafter referred to as“ TCTA ”) represented by the following structural formula (1): ), 1,3,5-tris [N, N-bis (2-methylphenyl) -amino] -benzene (hereinafter referred to as “o-MTDAB”) represented by the following structural formula (2), 1,3,5-tris [N, N-bis (3-methylphenyl) -amino] -benzene (hereinafter referred to as “m-MTDAB”) represented by the following structural formula (3), 1,3,5-tris [N, N-bis (4-methylphenyl) -amino] -benzene (hereinafter referred to as “p-MTDAB”), represented by the following structural formula (5) 4,4′-bis [N, N-bis (3-methylphenyl) -amino] -diphenylmethane (hereinafter referred to as “BPPM”).

Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445

一方、もっとも広く用いられている芳香族アミン系の化合物である4-4'-ビス[N-(3-メチルフェニル)-N-フェニル-アミノ]-ビフェニル(以下「TPD」と記す)や、その誘導体であるα-NPDなどは、構造式(1)〜(5)の化合物に比べてエネルギーギャップ値が小さく、本発明の素子に対する使用が困難である。構造式(1)〜(5)の化合物、α-NPD、TPDのエネルギーギャップ値(実測値)をまとめると、表1のようになる。   On the other hand, 4-4′-bis [N- (3-methylphenyl) -N-phenyl-amino] -biphenyl (hereinafter referred to as “TPD”), which is the most widely used aromatic amine compound, Α-NPD, which is a derivative thereof, has a smaller energy gap value than the compounds of structural formulas (1) to (5), and is difficult to use for the device of the present invention. Table 1 summarizes the energy gap values (measured values) of the compounds of structural formulas (1) to (5), α-NPD, and TPD.

Figure 0004447445
Figure 0004447445

次に、ホストとなる電子輸送材料としては、安定性の高いものが好ましく、安定性の高い金属錯体が多くあげられる。ホスト材料はドーパントである三重項発光材料よりもエネルギーギャップ値の大きい材料でなくてはならない。このようなホスト材料は、使用する発光材料によって異なってくる。本発明の素子において、ホストとして使用可能である電子輸送材料の例を以下に示す。   Next, as the electron transport material serving as a host, a material having high stability is preferable, and many metal complexes having high stability can be mentioned. The host material must be a material having a larger energy gap value than the triplet light emitting material which is a dopant. Such a host material varies depending on a light emitting material to be used. Examples of the electron transport material that can be used as a host in the device of the present invention are shown below.

本発明において、青色発光材料に対するホスト材料として使用できる物質は、下記構造式(6)で表される2,2',2"-(1,3,5-ベンゼントリル)トリス-[1-フェニル-1H -ベンゾイミダゾ−ル](以下「TPBI」と記す)といった、紫外領域ほどの非常に短波長に発光スペクトルが見られるような物質が挙げられる。   In the present invention, a substance that can be used as a host material for a blue light-emitting material is 2,2 ', 2 "-(1,3,5-benzenetolyl) tris- [1-phenyl] represented by the following structural formula (6). -1H-benzimidazole ”(hereinafter referred to as“ TPBI ”), and the like whose emission spectrum is observed at a very short wavelength in the ultraviolet region.

Figure 0004447445
Figure 0004447445

本発明において、緑色発光材料に対するホスト材料としては、下記構造式(7)で表されるリチウムテトラ(2-(2-ヒドロキシフェニル)ベンゾオキサゾラトボロン(以下「LiB(PBO)4」と記す)、下記構造式(8)で表されるビス(2-(2-ヒドロキシフェニル)ベンゾオキサゾラト)(トリフェニルシラノラト)アルミニウム(以下「SAlo」と記す)、下記構造式(9)で表されるビス(2-(2-ヒドロキシフェニル)ベンゾチアゾラト)(トリフェニルシラノラト)アルミニウム(以下「SAlt」と記す)、下記構造式(10)で表される2-(2-ヒドロキシフェニル)ベンゾオキサゾラトリチウム(以下「Li(PBO)」と記す)、下記構造式(11)で表される(2-(2-ヒドロキシフェニル)ベンゾオキサゾラト)-ジフェニルボロン(以下「B(PBO)Ph2」と記す)などが挙げられる。これらに加え、青色発光できる材料の使用も可能である。 In the present invention, as a host material for the green light emitting material, lithium tetra (2- (2-hydroxyphenyl) benzoxazolatoboron (hereinafter referred to as “LiB (PBO) 4 ”) represented by the following structural formula (7) ), Bis (2- (2-hydroxyphenyl) benzoxazolate) (triphenylsilanolato) aluminum (hereinafter referred to as “SAlo”) represented by the following structural formula (8), and the following structural formula (9) Bis (2- (2-hydroxyphenyl) benzothiazolate) (triphenylsilanolato) aluminum (hereinafter referred to as “SAlt”), 2- (2-hydroxyphenyl) benzo represented by the following structural formula (10) Oxazolate lithium (hereinafter referred to as “Li (PBO)”), (2- (2-hydroxyphenyl) benzoxazolate) -diphenylboron (hereinafter referred to as “B (PBO) Ph” represented by the following structural formula (11) 2 ”). It is also possible to use a material that can emit blue light.

Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445

本発明において、赤色発光材料に対するホスト材料としては、下記構造式(12)で表されるAlq、下記構造式(13)で表されるビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム(以下「SAlq」と記す)、下記構造式(14)で表されるビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(以下「BAlq」と記す)、下記構造式(15)で表されるリチウムテトラ(2-メチル-8-ヒドロキシ-キノリナト)ボロン(以下「LiB(mq)4」と記す)、下記構造式(16)で表される(2-メチル-8-キノリノラト)-ジフェニルボロン(以下「BmqPh」と記す)、下記構造式(17)で表されるビス(2-メチル-8-キノリノラト)アルミニウムヒドロキシド(以下「Almq2(OH)」と記す)などが挙げられる。これらに加え、青色発光できる材料、緑色発光できる材料もホスト材料として使用可能である。 In the present invention, Alq represented by the following structural formula (12), bis (2-methyl-8-quinolinolato) (triphenylsilanolato) represented by the following structural formula (13) are used as host materials for the red light emitting material. ) Aluminum (hereinafter referred to as “SAlq”), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (hereinafter referred to as “BAlq”) represented by the following structural formula (14), and the following structure Lithium tetra (2-methyl-8-hydroxy-quinolinato) boron (hereinafter referred to as “LiB (mq) 4 ”) represented by the formula (15), represented by the following structural formula (16) (2-methyl- 8-quinolinolato) -diphenylboron (hereinafter referred to as “BmqPh”), bis (2-methyl-8-quinolinolato) aluminum hydroxide represented by the following structural formula (17) (hereinafter referred to as “Almq 2 (OH)”) ) And the like. In addition to these, materials that can emit blue light and materials that can emit green light can also be used as host materials.

Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445
Figure 0004447445

なお、ここで述べたホスト材料のうちのいくつかに関するエネルギーギャップ値(実測値)は、表2のようになる。   Table 2 shows energy gap values (actually measured values) for some of the host materials described here.

Figure 0004447445
Figure 0004447445

ドーパントである三重項発光材料としては、イリジウムまたは白金を中心金属とする錯体が多くあげられるが、室温で燐光を発する材料であればよい。PtOEP 、Ir(ppy)3やビス(2-フェニルピリジナト-N,C2')アセチルアセトナトイリジウム(以下「acacIr(ppy)2」と記す)、ビス(2-(4'-トリル)ピリジナト-N,C2')アセチルアセトナトイリジウム(以下「acacIr(tpy)2」と記す)、ビス(2-(2'-ベンゾチエニル)-ピリジナト-N,C3')アセチルアセトナトイリジウム(以下「acacIr(btp)2」と記す)などが挙げられる。 Examples of the triplet light-emitting material that is a dopant include many complexes having iridium or platinum as a central metal, but any material that emits phosphorescence at room temperature may be used. PtOEP, Ir (ppy) 3 , bis (2-phenylpyridinato-N, C 2 ' ) acetylacetonatoiridium (hereinafter referred to as "acacIr (ppy) 2 "), bis (2- (4'-tolyl) Pyridinato-N, C 2 ′ ) acetylacetonatoiridium (hereinafter referred to as “acacIr (tpy) 2 ”), bis (2- (2′-benzothienyl) -pyridinato-N, C 3 ′ ) acetylacetonatoiridium ( (Hereinafter referred to as “acacIr (btp) 2 ”).

なお、ここで述べたドーパント材料のエネルギーギャップ値(実測値)は、表3のようになる。   The energy gap values (actual measurement values) of the dopant materials described here are as shown in Table 3.

Figure 0004447445
Figure 0004447445

電子注入材料としては、上で述べた電子輸送材料を用いることができる。しかし、正孔ブロッキング材料として使用されるような電子輸送材料(BCPやOXD7など)は、安定性が低いため不適である。その他にフッ化リチウムなどのアルカリ金属ハロゲン化物や酸化リチウムなどのアルカリ金属酸化物のような、絶縁体の超薄膜がよく用いられる。また、リチウムアセチルアセトネート(以下「Li(acac)」と記す)や、8-キノリノラト-リチウム(以下「Liq」と記す)などのアルカリ金属錯体も有効である。   The electron transport material described above can be used as the electron injection material. However, electron transport materials (such as BCP and OXD7) that are used as hole blocking materials are not suitable because of their low stability. In addition, an insulating ultrathin film such as an alkali metal halide such as lithium fluoride or an alkali metal oxide such as lithium oxide is often used. Alkali metal complexes such as lithium acetylacetonate (hereinafter referred to as “Li (acac)”) and 8-quinolinolato-lithium (hereinafter referred to as “Liq”) are also effective.

以上で述べたような各機能を有する材料を、各々組み合わせ、本発明の有機発光素子に適用することにより、従来の三重項発光素子よりも作製過程において手間が省ける上に、安定性が高く、効率的には従来の三重項発光素子と同じ程度の高効率有機発光素子を作製することができる。   By combining the materials having the functions as described above, and applying them to the organic light emitting device of the present invention, it is possible to save time and effort in the manufacturing process compared to the conventional triplet light emitting device, and the stability is high. Efficiently, an organic light-emitting element having the same efficiency as a conventional triplet light-emitting element can be produced.

本実施例では、本発明の図に示した有機発光素子を具体的に例示する。 In this example, the organic light emitting device shown in FIG. 1 of the present invention is specifically exemplified.

まず、陽極102であるITOが100 nm程度成膜されたガラス基板101に、正孔輸送材料であるBPPMを40 nm蒸着する。これが正孔輸送層103である。   First, BPPM, which is a hole transport material, is deposited to 40 nm on a glass substrate 101 on which ITO, which is the anode 102, is formed to a thickness of about 100 nm. This is the hole transport layer 103.

正孔輸送層が作製された後、三重項発光材料であるacacIr(tpy)2と電子輸送材料(ホスト材料)であるTPBIをおよそ2:23の比率(重量比)になるように共蒸着を行う。つまりTPBIに約8 wt%の濃度でacacIr(tpy)2が分散されていることになる。この共蒸着膜を50 nm成膜する。これが電子輸送性発光層104である。 After the hole transport layer is formed, co-evaporation of acacIr (tpy) 2 that is a triplet light emitting material and TPBI that is an electron transport material (host material) to a ratio (weight ratio) of about 2:23. Do. That is, acacIr (tpy) 2 is dispersed in TPBI at a concentration of about 8 wt%. This co-deposited film is deposited to 50 nm. This is the electron transporting light emitting layer 104.

最後に陰極105としてMgとAgを原子比が10:1になるように共蒸着を行い、陰極を150 nm成膜する。これによりacacIr(tpy)2に由来する緑色発光の三重項発光素子を得る。 Finally, Mg and Ag are co-deposited as the cathode 105 so that the atomic ratio is 10: 1, and the cathode is deposited to a thickness of 150 nm. Thus, a green light emitting triplet light emitting element derived from acacIr (tpy) 2 is obtained.

図5はこの素子における初期特性のグラフ、及び発光スペクトルである。単純な二層型の素子構造でも最大外部量子効率が約10 %と高い効率の素子特性を示した。   FIG. 5 is a graph of initial characteristics and an emission spectrum of this device. Even with a simple two-layer device structure, the maximum external quantum efficiency was about 10%, which showed high efficiency device characteristics.

実施例1とは異なった正孔輸送材料(但し本発明の条件を満たす材料)を使用し、本発明の素子を作製した。   A device of the present invention was fabricated using a hole transport material different from that in Example 1 (however, a material satisfying the conditions of the present invention).

まず、陽極102であるITOが100 nm程度成膜されたガラス基板101に、正孔輸送材料であるo-MTDABを40 nm蒸着する。これが正孔輸送層103である。   First, o-MTDAB, which is a hole transport material, is deposited to 40 nm on a glass substrate 101 on which ITO, which is the anode 102, is formed to a thickness of about 100 nm. This is the hole transport layer 103.

正孔輸送層が作製された後、三重項発光材料であるacacIr(tpy)2と電子輸送材料(ホスト材料)であるTPBIをおよそ2:23の比率(重量比)になるように共蒸着を行う。つまりTPBIに約8wt%の濃度でacacIr(tpy)2が分散されていることになる。この共蒸着膜を50 nm成膜する。これが電子輸送性発光層104である。 After the hole transport layer is formed, co-evaporation of acacIr (tpy) 2 that is a triplet light emitting material and TPBI that is an electron transport material (host material) to a ratio (weight ratio) of about 2:23. Do. That is, acacIr (tpy) 2 is dispersed in TPBI at a concentration of about 8 wt%. This co-deposited film is deposited to 50 nm. This is the electron transporting light emitting layer 104.

最後に陰極105としてMgとAgを原子比が10:1になるように共蒸着を行い、陰極を150 nm成膜する。これによりacacIr(tpy)2に由来する緑色発光の三重項発光素子を得る。 Finally, Mg and Ag are co-deposited as the cathode 105 so that the atomic ratio is 10: 1, and the cathode is deposited to a thickness of 150 nm. Thus, a green light emitting triplet light emitting element derived from acacIr (tpy) 2 is obtained.

図6はこの発光素子の初期特性及び発光スペクトルのグラフである。実施例1同様、高効率の素子が作製できる。   FIG. 6 is a graph of the initial characteristics and emission spectrum of this light emitting device. As in Example 1, a highly efficient element can be manufactured.

実施例1とは異なった電子輸送材料(但し本発明の条件を満たす材料)をホスト材料として使用し、本発明の示す有機発光素子を作製した。作製方法は実施例1、2と同様の方法であり、正孔輸送材料にBPPM、ホストである電子輸送材料にSAlt、ドーパントはacacIr(tpy)2を使用している。acacIr(tpy)2に由来する緑色発光の三重項発光素子を得ることができる。 An organic light-emitting device according to the present invention was fabricated using an electron transport material different from that in Example 1 (provided that the material satisfies the conditions of the present invention) as a host material. The production method is the same as in Examples 1 and 2, using BPPM as the hole transport material, SAlt as the electron transport material as the host, and acacIr (tpy) 2 as the dopant. A green light-emitting triplet light-emitting element derived from acacIr (tpy) 2 can be obtained.

図7にこの素子の初期特性及び発光スペクトルを示す。実施例1、2と同様従来の三重項発光素子と同当の高効率素子となる。   FIG. 7 shows the initial characteristics and emission spectrum of this device. As in the first and second embodiments, a highly efficient element equivalent to the conventional triplet light emitting element is obtained.

実施例1、2、3とは異なった三重項発光材料をドーパントとして使用し、実施例1、
2、3とは発光色の異なる有機発光素子を作製した。作製方法は実施例1、2、3と同様の方法であり、正孔輸送材料にBPPM、ホストである電子輸送材料にTPBI、ドーパントはビス2−(2’,4’−ジフルオロフェニル)ピリジナト]ピコリナトイリジウムを使用している。ドーパント材料に由来する青色発光の三重項発光素子を得ることができる。
A triplet light emitting material different from that in Examples 1, 2, and 3 was used as a dopant.
Organic light-emitting elements having different emission colors from those of 2 and 3 were produced. The production method is the same as in Examples 1, 2, and 3. The hole transport material is BPPM, the host electron transport material is TPBI, and the dopant is bis [ 2- (2 ′, 4′-difluorophenyl) pyridina. We are using the door] pico Rina door iridium. A triplet light emitting element emitting blue light derived from the dopant material can be obtained.

図8にこの素子の初期特性及び発光スペクトルを示す。実施例1、2、3と同様従来の三重項発光素子と同当の高効率素子となる。   FIG. 8 shows the initial characteristics and emission spectrum of this device. As in Examples 1, 2, and 3, a highly efficient element equivalent to a conventional triplet light emitting element is obtained.

[比較例1]
本比較例は、図12に示すような、従来の三重項発光素子と同様な構造の素子を作製し、その際の特性を本発明の素子と比較した。
[Comparative Example 1]
In this comparative example, an element having a structure similar to that of a conventional triplet light emitting element as shown in FIG. 12 was manufactured, and the characteristics at that time were compared with those of the element of the present invention.

まず、陽極1102であるITOが100 nm程度成膜されたガラス基板1101に、正孔輸送材料であるα-NPDを40 nm蒸着する。これが正孔輸送層1103である。   First, α-NPD, which is a hole transport material, is vapor-deposited to 40 nm on a glass substrate 1101 on which ITO, which is the anode 1102, is formed with a thickness of about 100 nm. This is the hole transport layer 1103.

正孔輸送層が作製された後、三重項発光材料であるacacIr(tpy)2とホスト材料であるCBPをおよそ2:23の比率(重量比)になるように共蒸着を行う。つまりCBPに約8wt%の濃度でacacIr(tpy)2が分散されていることになる。この共蒸着膜を50 nm成膜する。これが発光層1104である。 After the hole transport layer is formed, co-evaporation of acacIr (tpy) 2 that is a triplet light-emitting material and CBP that is a host material is performed at a ratio (weight ratio) of approximately 2:23. That is, acacIr (tpy) 2 is dispersed in CBP at a concentration of about 8 wt%. This co-deposited film is deposited to 50 nm. This is the light emitting layer 1104.

発光層を形成した後、正孔ブロッキング材料であるBCPを20 nm蒸着し正孔ブロッキング層1105を形成する。その後電子輸送材料であるAlqを30 nm蒸着し電子輸送層1106を形成する。   After forming the light emitting layer, 20 nm of BCP, which is a hole blocking material, is deposited to form the hole blocking layer 1105. Thereafter, Alq, which is an electron transport material, is deposited by 30 nm to form an electron transport layer 1106.

最後に陰極1107としてMgとAgを原子比が10:1になるように共蒸着を行い、陰極を150 nm成膜する。これによりacacIr(tpy)2に由来する緑色発光の三重項発光素子を得る。 Finally, Mg and Ag are co-deposited as the cathode 1107 so that the atomic ratio is 10: 1, and the cathode is formed to a thickness of 150 nm. Thus, a green light emitting triplet light emitting element derived from acacIr (tpy) 2 is obtained.

図9にこの素子の初期特性、及び発光スペクトルを示す。実施例1、2、3と比べてみると、実施例で示した本発明の素子は従来型の素子と同じ程度の高効率の素子であることがわかる。正孔ブロッキング層を使用しなくとも十分な素子特性を示す事が確認できた。   FIG. 9 shows the initial characteristics and emission spectrum of this device. When compared with Examples 1, 2, and 3, it can be seen that the elements of the present invention shown in the Examples are as highly efficient as the conventional elements. It was confirmed that sufficient device characteristics were exhibited without using a hole blocking layer.

[比較例2]
本比較例では、本発明の素子の条件に当てはまらないような正孔輸送材料を使用した、二層型構造の三重項発光素子の特性を例示する。
[Comparative Example 2]
In this comparative example, the characteristics of a triplet light-emitting element having a two-layer structure using a hole transport material that does not satisfy the conditions of the element of the present invention are illustrated.

作製方法は実施例と同様であるが、使用する正孔輸送材料のエネルギーギャップ値がホスト材料に比べて小さくなるような、正孔輸送材料−ホスト材料の組み合わせを使用する。正孔輸送材料にはTPD、ホスト材料には電子輸送材料であるTPBI、ドーパントにはacacIr(tpy)2を使用する。 The manufacturing method is the same as in the example, but a hole transport material-host material combination is used so that the energy gap value of the hole transport material to be used is smaller than that of the host material. TPD is used as the hole transport material, TPBI as the electron transport material is used as the host material, and acacIr (tpy) 2 is used as the dopant.

図10にこの素子の初期特性、発光スペクトルを示す。正孔輸送材料にTPDを使用すると、三重項発光素子にしては非常に効率の低い素子となった。発光スペクトルをみるとわかるが、acacIr(tpy)2からの発光以外にもTPDからの発光であるスペクトル(400nm付近)が観測される。これが原因で効率が低くなってしまう。このように、条件に当てはまらない材料を使用すると素子の初期特性は悪い。 FIG. 10 shows the initial characteristics and emission spectrum of this device. When TPD was used as the hole transport material, the device was very inefficient for a triplet light emitting device. As can be seen from the emission spectrum, in addition to the emission from acacIr (tpy) 2 , a spectrum (near 400 nm) that is emission from TPD is observed. This reduces efficiency. As described above, when a material not satisfying the conditions is used, the initial characteristics of the element are poor.

[比較例3]
本比較例では、比較例2と同様、本発明の素子の条件に当てはまらないような正孔輸送材料を使用した、二層型構造の三重項発光素子の特性を例示する。
[Comparative Example 3]
In this comparative example, as in comparative example 2, the characteristics of a triplet light emitting device having a two-layer structure using a hole transport material that does not meet the conditions of the device of the present invention are illustrated.

作製方法は実施例と同様であるが、使用する正孔輸送材料のエネルギーギャップ値がホスト材料に比べて小さくなるような正孔輸送材料−ホスト材料の組み合わせを使用する。正孔輸送材料にはα-NPD、ホスト材料には電子輸送材料であるTPBI、ドーパントにはacacIr(tpy)2を使用する。 The manufacturing method is the same as in the example, but a combination of a hole transport material and a host material is used so that the energy gap value of the hole transport material to be used is smaller than that of the host material. Α-NPD is used as the hole transport material, TPBI as the electron transport material is used as the host material, and acacIr (tpy) 2 is used as the dopant.

図11にこの素子の初期特性、発光スペクトルを示す。正孔輸送材料にα-NPDを使用すると、比較例2同様、三重項発光素子にしては非常に効率の低い素子となった。発光スペクトルも比較例2同様、正孔輸送材料であるα-NPDからの発光であるスペクトル(440nm付近)も観測される。これが原因で効率が低くなってしまう。このように、条件に当てはまらない材料を使用すると素子の初期特性は悪くなる。   FIG. 11 shows the initial characteristics and emission spectrum of this device. When α-NPD was used as the hole transport material, as in Comparative Example 2, the device was very inefficient for a triplet light emitting device. Similarly to Comparative Example 2, the emission spectrum is also a spectrum (near 440 nm) which is emission from α-NPD which is a hole transport material. This reduces efficiency. As described above, when a material that does not satisfy the conditions is used, the initial characteristics of the element are deteriorated.

本発明における二層型三重項発光素子の素子構造を示す図。The figure which shows the element structure of the double layer type triplet light emitting element in this invention. HOMO−LUMOのエネルギー準位を示す図。The figure which shows the energy level of HOMO-LUMO. 素子のエネルギーギャップダイヤグラム。Device energy gap diagram. ホスト材料の発光スペクトルと正孔輸送材料の吸収スペクトルの位置関係を示す図。The figure which shows the positional relationship of the emission spectrum of host material, and the absorption spectrum of hole transport material. 実施例1の初期特性及び発光スペクトル。The initial characteristic and emission spectrum of Example 1. 実施例2の初期特性及び発光スペクトル。The initial characteristic and emission spectrum of Example 2. 実施例3の初期特性及び発光スペクトル。The initial characteristic and emission spectrum of Example 3. 実施例4の初期特性及び発光スペクトル。The initial characteristic and emission spectrum of Example 4. 比較例1の初期特性及び発光スペクトル。The initial characteristic and emission spectrum of Comparative Example 1. 比較例2の初期特性及び発光スペクトル。The initial characteristic and emission spectrum of the comparative example 2. 比較例3の初期特性及び発光スペクトル。The initial characteristic and emission spectrum of the comparative example 3. 従来の三重項発光素子の素子構造を示す図。The figure which shows the element structure of the conventional triplet light emitting element.

Claims (9)

陽極と、有機化合物膜と、陰極とを有し、
前記有機化合物膜は、正孔輸送層と、前記正孔輸送層に接して設けられた電子輸送層とを有し、
前記正孔輸送層は正孔輸送材料を有し、
前記電子輸送層は、電子輸送材料及び三重項励起状態からの発光を呈する発光材料を有し、
前記発光材料はイリジウム錯体を含み、
前記正孔輸送材料における最高被占分子軌道準位と最低空分子軌道準位とのエネルギー差が、前記電子輸送材料における最高被占分子軌道準位と最低空分子軌道準位とのエネルギー差よりも大きく、且つ、
前記正孔輸送材料は、4,4’,4”−トリス(N−カルバゾール)トリフェニルアミン、4,4’−ビス[N,N−ビス(3−メチルフェニル)−アミノ]−ジフェニルメタン、1,3,5−トリス[N,N−ビス(2−メチルフェニル)−アミノ]−ベンゼン、1,3,5−トリス[N,N−ビス(3−メチルフェニル)−アミノ]−ベンゼン、1,3,5−トリス[N,N−ビス(4−メチルフェニル)−アミノ]−ベンゼンのいずれかであり、
前記電子輸送材料は、2,2’,2”−(1,3,5−ベンゼントリル)トリス−[1−フェニル−1H−ベンゾイミダゾ−ル]、リチウムテトラ(2−(2−ヒドロキシフェニル)ベンゾオキサゾラトボロン、ビス(2−(2−ヒドロキシフェニル)ベンゾオキサゾラト)(トリフェニルシラノラト)アルミニウム、ビス(2−(2−ヒドロキシフェニル)ベンゾチアゾラト)(トリフェニルシラノラト)アルミニウム、2−(2−ヒドロキシフェニル)ベンゾオキサゾラトリチウム、(2−(2−ヒドロキシフェニル)ベンゾオキサゾラト)−ジフェニルボロン、トリス(8−キノリノラト)−アルミニウム、ビス(2−メチル−8−キノリノラト)(トリフェニルシラノラト)アルミニウム、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム、リチウムテトラ(2−メチル−8−ヒドロキシ−キノリナト)ボロン、(2−メチル−8−キノリノラト)−ジフェニルボロン、ビス(2−メチル−8−キノリノラト)アルミニウムヒドロキシドのいずれかであることを特徴とする発光素子。
An anode, an organic compound film, and a cathode;
The organic compound film has a hole transport layer and an electron transport layer provided in contact with the hole transport layer,
The hole transport layer comprises a hole transport material;
The electron transport layer has an electron transport material and a light emitting material that emits light from a triplet excited state,
The light emitting material includes an iridium complex,
The energy difference between the highest occupied molecular orbital level and the lowest unoccupied molecular orbital level in the hole transporting material is based on the energy difference between the highest occupied molecular orbital level and the lowest unoccupied molecular orbital level in the electron transporting material. also rather large, and,
The hole transport material is 4,4 ′, 4 ″ -tris (N-carbazole) triphenylamine, 4,4′-bis [N, N-bis (3-methylphenyl) -amino] -diphenylmethane, , 3,5-tris [N, N-bis (2-methylphenyl) -amino] -benzene, 1,3,5-tris [N, N-bis (3-methylphenyl) -amino] -benzene, , 3,5-tris [N, N-bis (4-methylphenyl) -amino] -benzene,
The electron transport material is 2,2 ′, 2 ″-(1,3,5-benzenetolyl) tris- [1-phenyl-1H-benzimidazole], lithium tetra (2- (2-hydroxyphenyl) Benzoxazolatoboron, bis (2- (2-hydroxyphenyl) benzoxazolate) (triphenylsilanolato) aluminum, bis (2- (2-hydroxyphenyl) benzothiazolate) (triphenylsilanolato) aluminum, 2 -(2-hydroxyphenyl) benzoxazolate lithium, (2- (2-hydroxyphenyl) benzoxazolate) -diphenylboron, tris (8-quinolinolato) -aluminum, bis (2-methyl-8-quinolinolato) ( Triphenylsilanolato) aluminum, bis (2-methyl-8-quinolinolato) (4 -Phenylphenolato) aluminum, lithium tetra (2-methyl-8-hydroxy-quinolinato) boron, (2-methyl-8-quinolinolato) -diphenylboron, bis (2-methyl-8-quinolinolato) aluminum hydroxide emitting element, characterized in that the or.
請求項1に記載の発光素子において、
金薄膜、白金薄膜または酸化アルミニウム薄膜を有する正孔注入層をさらに有し、
前記正孔注入層は、前記陽極と前記正孔輸送層との間に設けられていることを特徴とする発光素子。
The light emitting device according to claim 1,
A hole injection layer having a gold thin film, a platinum thin film or an aluminum oxide thin film;
The light-emitting element, wherein the hole injection layer is provided between the anode and the hole transport layer.
請求項1に記載の発光素子において、
アルカリ金属ハロゲン化物またはアルカリ金属酸化物の薄膜を有する電子注入層をさらに有し、
前記電子注入層は、前記陰極と前記電子輸送層との間に設けられていることを特徴とする発光素子。
The light emitting device according to claim 1,
An electron injection layer having a thin film of alkali metal halide or alkali metal oxide;
The light-emitting element, wherein the electron injection layer is provided between the cathode and the electron transport layer.
請求項1に記載の発光素子において、
フッ化リチウムまたは酸化リチウムの薄膜を有する電子注入層をさらに有し、
前記電子注入層は、前記陰極と前記電子輸送層との間に設けられていることを特徴とする発光素子。
The light emitting device according to claim 1,
An electron injection layer having a thin film of lithium fluoride or lithium oxide;
The light-emitting element, wherein the electron injection layer is provided between the cathode and the electron transport layer.
請求項1に記載の発光素子において、
アルカリ金属錯体を有する電子注入層をさらに有し、
前記電子注入層は、前記陰極と前記電子輸送層との間に設けられていることを特徴とする発光素子。
The light emitting device according to claim 1,
An electron injection layer having an alkali metal complex;
The light-emitting element, wherein the electron injection layer is provided between the cathode and the electron transport layer.
請求項1に記載の発光素子において、
リチウムアセチルアセトネートまたは8−キノリノラト−リチウムを有する電子注入層をさらに有し、
前記電子注入層は、前記陰極と前記電子輸送層との間に設けられていることを特徴とする発光素子。
The light emitting device according to claim 1,
An electron injection layer having lithium acetylacetonate or 8-quinolinolato-lithium;
The light-emitting element, wherein the electron injection layer is provided between the cathode and the electron transport layer.
陽極と、有機化合物膜と、陰極とを有し、
前記有機化合物膜は、前記陽極に接して設けられた正孔注入層と、正孔輸送層と、前記正孔輸送層に接して設けられた電子輸送層とを有し、
前記正孔輸送層は正孔輸送材料を有し、
前記電子輸送層は、電子輸送材料及び三重項励起状態からの発光を呈する発光材料を有し、
前記発光材料はイリジウム錯体を含み、
前記正孔輸送材料における最高被占分子軌道準位と最低空分子軌道準位とのエネルギー差が、前記電子輸送材料における最高被占分子軌道準位と最低空分子軌道準位とのエネルギー差よりも大きく、且つ、
前記正孔輸送材料は、4,4’,4”−トリス(N−カルバゾール)トリフェニルアミン、4,4’−ビス[N,N−ビス(3−メチルフェニル)−アミノ]−ジフェニルメタン、1,3,5−トリス[N,N−ビス(2−メチルフェニル)−アミノ]−ベンゼン、1,3,5−トリス[N,N−ビス(3−メチルフェニル)−アミノ]−ベンゼン、1,3,5−トリス[N,N−ビス(4−メチルフェニル)−アミノ]−ベンゼンのいずれかであり、
前記電子輸送材料は、2,2’,2”−(1,3,5−ベンゼントリル)トリス−[1−フェニル−1H−ベンゾイミダゾ−ル]、リチウムテトラ(2−(2−ヒドロキシフェニル)ベンゾオキサゾラトボロン、ビス(2−(2−ヒドロキシフェニル)ベンゾオキサゾラト)(トリフェニルシラノラト)アルミニウム、ビス(2−(2−ヒドロキシフェニル)ベンゾチアゾラト)(トリフェニルシラノラト)アルミニウム、2−(2−ヒドロキシフェニル)ベンゾオキサゾラトリチウム、(2−(2−ヒドロキシフェニル)ベンゾオキサゾラト)−ジフェニルボロン、トリス(8−キノリノラト)−アルミニウム、ビス(2−メチル−8−キノリノラト)(トリフェニルシラノラト)アルミニウム、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム、リチウムテトラ(2−メチル−8−ヒドロキシ−キノリナト)ボロン、(2−メチル−8−キノリノラト)−ジフェニルボロン、ビス(2−メチル−8−キノリノラト)アルミニウムヒドロキシドのいずれかであることを特徴とする発光素子。
An anode, an organic compound film, and a cathode;
The organic compound film has a hole injection layer provided in contact with the anode, a hole transport layer, and an electron transport layer provided in contact with the hole transport layer,
The hole transport layer comprises a hole transport material;
The electron transport layer has an electron transport material and a light emitting material that emits light from a triplet excited state,
The light emitting material includes an iridium complex,
The energy difference between the highest occupied molecular orbital level and the lowest unoccupied molecular orbital level in the hole transporting material is based on the energy difference between the highest occupied molecular orbital level and the lowest unoccupied molecular orbital level in the electron transporting material. also rather large, and,
The hole transport material is 4,4 ′, 4 ″ -tris (N-carbazole) triphenylamine, 4,4′-bis [N, N-bis (3-methylphenyl) -amino] -diphenylmethane, , 3,5-tris [N, N-bis (2-methylphenyl) -amino] -benzene, 1,3,5-tris [N, N-bis (3-methylphenyl) -amino] -benzene, , 3,5-tris [N, N-bis (4-methylphenyl) -amino] -benzene,
The electron transport material is 2,2 ′, 2 ″-(1,3,5-benzenetolyl) tris- [1-phenyl-1H-benzimidazole], lithium tetra (2- (2-hydroxyphenyl) Benzoxazolatoboron, bis (2- (2-hydroxyphenyl) benzoxazolate) (triphenylsilanolato) aluminum, bis (2- (2-hydroxyphenyl) benzothiazolate) (triphenylsilanolato) aluminum, 2 -(2-hydroxyphenyl) benzoxazolate lithium, (2- (2-hydroxyphenyl) benzoxazolate) -diphenylboron, tris (8-quinolinolato) -aluminum, bis (2-methyl-8-quinolinolato) ( Triphenylsilanolato) aluminum, bis (2-methyl-8-quinolinolato) (4 -Phenylphenolato) aluminum, lithium tetra (2-methyl-8-hydroxy-quinolinato) boron, (2-methyl-8-quinolinolato) -diphenylboron, bis (2-methyl-8-quinolinolato) aluminum hydroxide emitting element, characterized in that the or.
陽極と、有機化合物膜と、陰極とを有し、
前記有機化合物膜は、正孔輸送層と、前記正孔輸送層に接して設けられた電子輸送層と、前記陰極に接して設けられた電子注入層とを有し、
前記正孔輸送層は正孔輸送材料を有し、
前記電子輸送層は、電子輸送材料及び三重項励起状態からの発光を呈する発光材料を有し、
前記発光材料はイリジウム錯体を含み、
前記正孔輸送材料における最高被占分子軌道準位と最低空分子軌道準位とのエネルギー差が、前記電子輸送材料における最高被占分子軌道準位と最低空分子軌道準位とのエネルギー差よりも大きく、且つ、
前記正孔輸送材料は、4,4’,4”−トリス(N−カルバゾール)トリフェニルアミン、4,4’−ビス[N,N−ビス(3−メチルフェニル)−アミノ]−ジフェニルメタン、1,3,5−トリス[N,N−ビス(2−メチルフェニル)−アミノ]−ベンゼン、1,3,5−トリス[N,N−ビス(3−メチルフェニル)−アミノ]−ベンゼン、1,3,5−トリス[N,N−ビス(4−メチルフェニル)−アミノ]−ベンゼンのいずれかであり、
前記電子輸送材料は、2,2’,2”−(1,3,5−ベンゼントリル)トリス−[1−フェニル−1H−ベンゾイミダゾ−ル]、リチウムテトラ(2−(2−ヒドロキシフェニル)ベンゾオキサゾラトボロン、ビス(2−(2−ヒドロキシフェニル)ベンゾオキサゾラト)(トリフェニルシラノラト)アルミニウム、ビス(2−(2−ヒドロキシフェニル)ベンゾチアゾラト)(トリフェニルシラノラト)アルミニウム、2−(2−ヒドロキシフェニル)ベンゾオキサゾラトリチウム、(2−(2−ヒドロキシフェニル)ベンゾオキサゾラト)−ジフェニルボロン、トリス(8−キノリノラト)−アルミニウム、ビス(2−メチル−8−キノリノラト)(トリフェニルシラノラト)アルミニウム、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム、リチウムテトラ(2−メチル−8−ヒドロキシ−キノリナト)ボロン、(2−メチル−8−キノリノラト)−ジフェニルボロン、ビス(2−メチル−8−キノリノラト)アルミニウムヒドロキシドのいずれかであることを特徴とする発光素子。
An anode, an organic compound film, and a cathode;
The organic compound film has a hole transport layer, an electron transport layer provided in contact with the hole transport layer, and an electron injection layer provided in contact with the cathode.
The hole transport layer comprises a hole transport material;
The electron transport layer has an electron transport material and a light emitting material that emits light from a triplet excited state,
The light emitting material includes an iridium complex,
The energy difference between the highest occupied molecular orbital level and the lowest unoccupied molecular orbital level in the hole transporting material is based on the energy difference between the highest occupied molecular orbital level and the lowest unoccupied molecular orbital level in the electron transporting material. also rather large, and,
The hole transport material is 4,4 ′, 4 ″ -tris (N-carbazole) triphenylamine, 4,4′-bis [N, N-bis (3-methylphenyl) -amino] -diphenylmethane, , 3,5-tris [N, N-bis (2-methylphenyl) -amino] -benzene, 1,3,5-tris [N, N-bis (3-methylphenyl) -amino] -benzene, , 3,5-tris [N, N-bis (4-methylphenyl) -amino] -benzene,
The electron transport material is 2,2 ′, 2 ″-(1,3,5-benzenetolyl) tris- [1-phenyl-1H-benzimidazole], lithium tetra (2- (2-hydroxyphenyl) Benzoxazolatoboron, bis (2- (2-hydroxyphenyl) benzoxazolate) (triphenylsilanolato) aluminum, bis (2- (2-hydroxyphenyl) benzothiazolate) (triphenylsilanolato) aluminum, 2 -(2-hydroxyphenyl) benzoxazolate lithium, (2- (2-hydroxyphenyl) benzoxazolate) -diphenylboron, tris (8-quinolinolato) -aluminum, bis (2-methyl-8-quinolinolato) ( Triphenylsilanolato) aluminum, bis (2-methyl-8-quinolinolato) (4 -Phenylphenolato) aluminum, lithium tetra (2-methyl-8-hydroxy-quinolinato) boron, (2-methyl-8-quinolinolato) -diphenylboron, bis (2-methyl-8-quinolinolato) aluminum hydroxide emitting element, characterized in that the or.
陽極と、有機化合物膜と、陰極とを有し、
前記有機化合物膜は、前記陽極に接して設けられた正孔注入層と、正孔輸送層と、前記正孔輸送層に接して設けられた電子輸送層と、前記陰極に接して設けられた電子注入層とを有し、
前記正孔輸送層は正孔輸送材料を有し、
前記電子輸送層は、電子輸送材料及び三重項励起状態からの発光を呈する発光材料を有し、
前記発光材料はイリジウム錯体を含み、
前記正孔輸送材料における最高被占分子軌道準位と最低空分子軌道準位とのエネルギー差が、前記電子輸送材料における最高被占分子軌道準位と最低空分子軌道準位とのエネルギー差よりも大きく、且つ、
前記正孔輸送材料は、4,4’,4”−トリス(N−カルバゾール)トリフェニルアミン、4,4’−ビス[N,N−ビス(3−メチルフェニル)−アミノ]−ジフェニルメタン、1,3,5−トリス[N,N−ビス(2−メチルフェニル)−アミノ]−ベンゼン、1,3,5−トリス[N,N−ビス(3−メチルフェニル)−アミノ]−ベンゼン、1,3,5−トリス[N,N−ビス(4−メチルフェニル)−アミノ]−ベンゼンのいずれかであり、
前記電子輸送材料は、2,2’,2”−(1,3,5−ベンゼントリル)トリス−[1−フェニル−1H−ベンゾイミダゾ−ル]、リチウムテトラ(2−(2−ヒドロキシフェニル)ベンゾオキサゾラトボロン、ビス(2−(2−ヒドロキシフェニル)ベンゾオキサゾラト)(トリフェニルシラノラト)アルミニウム、ビス(2−(2−ヒドロキシフェニル)ベンゾチアゾラト)(トリフェニルシラノラト)アルミニウム、2−(2−ヒドロキシフェニル)ベンゾオキサゾラトリチウム、(2−(2−ヒドロキシフェニル)ベンゾオキサゾラト)−ジフェニルボロン、トリス(8−キノリノラト)−アルミニウム、ビス(2−メチル−8−キノリノラト)(トリフェニルシラノラト)アルミニウム、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム、リチウムテトラ(2−メチル−8−ヒドロキシ−キノリナト)ボロン、(2−メチル−8−キノリノラト)−ジフェニルボロン、ビス(2−メチル−8−キノリノラト)アルミニウムヒドロキシドのいずれかであることを特徴とする発光素子。
An anode, an organic compound film, and a cathode;
The organic compound film is provided in contact with the cathode, a hole injection layer provided in contact with the anode, a hole transport layer, an electron transport layer provided in contact with the hole transport layer, and the cathode. An electron injection layer,
The hole transport layer comprises a hole transport material;
The electron transport layer has an electron transport material and a light emitting material that emits light from a triplet excited state,
The light emitting material includes an iridium complex,
The energy difference between the highest occupied molecular orbital level and the lowest unoccupied molecular orbital level in the hole transporting material is based on the energy difference between the highest occupied molecular orbital level and the lowest unoccupied molecular orbital level in the electron transporting material. also rather large, and,
The hole transport material is 4,4 ′, 4 ″ -tris (N-carbazole) triphenylamine, 4,4′-bis [N, N-bis (3-methylphenyl) -amino] -diphenylmethane, , 3,5-tris [N, N-bis (2-methylphenyl) -amino] -benzene, 1,3,5-tris [N, N-bis (3-methylphenyl) -amino] -benzene, 1, , 3,5-tris [N, N-bis (4-methylphenyl) -amino] -benzene,
The electron transport material is 2,2 ′, 2 ″-(1,3,5-benzenetolyl) tris- [1-phenyl-1H-benzimidazole], lithium tetra (2- (2-hydroxyphenyl) Benzoxazolatoboron, bis (2- (2-hydroxyphenyl) benzoxazolate) (triphenylsilanolato) aluminum, bis (2- (2-hydroxyphenyl) benzothiazolate) (triphenylsilanolato) aluminum, 2 -(2-hydroxyphenyl) benzoxazolate lithium, (2- (2-hydroxyphenyl) benzoxazolate) -diphenylboron, tris (8-quinolinolato) -aluminum, bis (2-methyl-8-quinolinolato) ( Triphenylsilanolato) aluminum, bis (2-methyl-8-quinolinolato) (4 -Phenylphenolato) aluminum, lithium tetra (2-methyl-8-hydroxy-quinolinato) boron, (2-methyl-8-quinolinolato) -diphenylboron, bis (2-methyl-8-quinolinolato) aluminum hydroxide emitting element, characterized in that the or.
JP2004360371A 2001-11-27 2004-12-13 Light emitting element Expired - Fee Related JP4447445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360371A JP4447445B2 (en) 2001-11-27 2004-12-13 Light emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001360500 2001-11-27
JP2004360371A JP4447445B2 (en) 2001-11-27 2004-12-13 Light emitting element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002341774A Division JP3759925B2 (en) 2001-11-27 2002-11-26 Light emitting element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009279334A Division JP2010056581A (en) 2001-11-27 2009-12-09 Light emitting element

Publications (3)

Publication Number Publication Date
JP2005101002A JP2005101002A (en) 2005-04-14
JP2005101002A5 JP2005101002A5 (en) 2007-01-18
JP4447445B2 true JP4447445B2 (en) 2010-04-07

Family

ID=34466587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360371A Expired - Fee Related JP4447445B2 (en) 2001-11-27 2004-12-13 Light emitting element

Country Status (1)

Country Link
JP (1) JP4447445B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101330672B1 (en) 2005-06-10 2013-11-18 톰슨 라이센싱 Light-emitting organic diode comprising not more than two layers of different organic materials
JP4839717B2 (en) * 2005-08-01 2011-12-21 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
JP5530608B2 (en) * 2007-09-13 2014-06-25 株式会社半導体エネルギー研究所 Light emitting element and light emitting device
JP5624275B2 (en) * 2008-12-22 2014-11-12 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
CN102201541B (en) * 2010-03-23 2015-11-25 株式会社半导体能源研究所 Light-emitting component, light-emitting device, electronic equipment and lighting device
TWI506121B (en) 2010-03-31 2015-11-01 Semiconductor Energy Lab Light-emitting element, light-emitting device, electronic device, and lighting device

Also Published As

Publication number Publication date
JP2005101002A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP5779605B2 (en) Light emitting element
JP3759925B2 (en) Light emitting element
KR100733749B1 (en) Organic el devices
US7807275B2 (en) Non-blocked phosphorescent OLEDs
KR100733750B1 (en) Organic el device
JP4011325B2 (en) Organic electroluminescence device
JP4478101B2 (en) Organic EL device and manufacturing method thereof
US20060134461A1 (en) Organometallic materials and electroluminescent devices
JP2008524848A (en) Phosphorescent OLED with exciton blocking layer
Tsuji et al. 23.3: Distinguished Paper: Red‐Phosphorescent OLEDs Employing Bis (8‐Quinolinolato)‐Phenolato‐Aluminum (III) Complexes as Emission‐Layer Hosts
JP4447445B2 (en) Light emitting element
EP1809077A2 (en) Organic electroluminescent element
Tsuji et al. Red‐phosphorescent OLEDs employing bis (8‐quinolinolato) phenolato‐aluminum (III) complexes as emission‐layer hosts
KR20070016298A (en) Organin Host Materials And Organic Electroluminescent Device using this material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4447445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees