JP4447120B2 - Manufacturing method of laminated structure and laminated structure - Google Patents

Manufacturing method of laminated structure and laminated structure Download PDF

Info

Publication number
JP4447120B2
JP4447120B2 JP2000178283A JP2000178283A JP4447120B2 JP 4447120 B2 JP4447120 B2 JP 4447120B2 JP 2000178283 A JP2000178283 A JP 2000178283A JP 2000178283 A JP2000178283 A JP 2000178283A JP 4447120 B2 JP4447120 B2 JP 4447120B2
Authority
JP
Japan
Prior art keywords
core material
thermoplastic resin
layer
laminated structure
adhesive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000178283A
Other languages
Japanese (ja)
Other versions
JP2001353834A (en
Inventor
敏幸 小林
哲夫 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Howa Co Ltd
Original Assignee
Howa Textile Industry Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howa Textile Industry Co Ltd, Toyota Motor Corp filed Critical Howa Textile Industry Co Ltd
Priority to JP2000178283A priority Critical patent/JP4447120B2/en
Publication of JP2001353834A publication Critical patent/JP2001353834A/en
Application granted granted Critical
Publication of JP4447120B2 publication Critical patent/JP4447120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車の内装材の基材として有用な積層構造体とその製造方法に関する。
【0002】
【従来の技術】
自動車のサンシェードあるいはムーンルーフドアなどの内装材として、紙製のハニカム体あるいはウレタン発泡体などの多孔質体を芯材とし、その両表面に繊維補強層を接合したサンドイッチ構造の基材が知られている。そして、この基材の表面にPVCなどから形成された表皮をさらに積層して、自動車用内装材が形成されている。
【0003】
この内装材の基材のような積層構造体は、多孔質体を用いているため軽量である。また熱プレスにより容易に所定形状に賦形できるので、大量生産が可能であり安価とすることができる。
【0004】
つまりこのような積層構造体を製造するには、予め形成された板状のコア材を用意し、コア材の両表面にフェノール樹脂あるいはエポキシ樹脂などの熱硬化性樹脂板を積層し、さらに熱硬化性樹脂板の表面にガラス繊維などから形成された板状の繊維集積体を積層する。そして熱プレスすると、熱硬化性樹脂板は液状となって繊維集積体とコア材の両方に含浸し、その状態で熱硬化して繊維集積体とコア材を一体的に接合する。すると積層体は熱プレスによって所定形状に賦形され、サンドイッチ状の積層構造体が形成される。
【0005】
得られた積層構造体では、繊維集積体とコア材との間に熱硬化性樹脂層が形成され、熱硬化性樹脂層が繊維集積体及びコア材に含浸して硬化することで両者を一体的に接合している。また熱硬化性樹脂層により、所定形状に賦形された形状が保持されるとともに、積層構造体の剛性が確保されている。
【0006】
そして、別工程において真空成形などで所定形状にされた表皮材を、上記で得られた積層構造体の表面に接合すれば、所定形状の内装材を製造することができる。
【0007】
なお特開昭63−312136号公報にも、同様の積層構造体が開示されている。
【0008】
【発明が解決しようとする課題】
ところが熱硬化性樹脂は、加熱により一旦液状となり、その後反応が進行して硬化する。そのため上記した積層構造体の製造方法においては、熱プレス時に液状となった熱硬化性樹脂がコア材の内部深くまで含浸してしまう。このようにコア材の内部深くまで含浸した熱硬化性樹脂は、繊維集積体とコア材との接合には全く寄与しない。かといって熱硬化性樹脂の量を少なくすると、繊維集積体とコア材との接合強度が不足してしまうため、必要以上に過剰の熱硬化性樹脂が必要となり、その分内装材基材のコストが高いものとなっていた。また過剰の熱硬化性樹脂の分だけ重量も増大してしまう。
【0009】
本発明はこのような事情に鑑みてなされたものであり、接合強度を高く維持するとともに熱硬化性樹脂量を低減し、安価でより軽量の積層構造体とすることを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決する本発明の積層構造体の製造方法の特徴は、多孔質体よりなる板状のコア材の表面に、熱可塑性樹脂フィルムと、熱可塑性樹脂フィルムの融点より高い所定温度で硬化又は軟化する接着樹脂と、繊維集積体とをこの順で積層し、次いで所定温度以上で加熱加圧することで熱可塑性樹脂フィルムを溶融するとともに接着樹脂で繊維集積体とコア材とを一体的に接合することにある。
【0011】
また上記製造方法によって製造される本発明の積層構造体の特徴は、多孔質体よりなる板状のコア層と、コア層の少なくとも一方の表面に形成された接着樹脂層と、接着樹脂層によりコア層と一体的に接合された繊維補強層とよりなる積層構造体において、コア層と接着樹脂層の間には熱可塑性樹脂層をもつことにある。
【0012】
【発明の実施の形態】
本発明の積層構造体の製造方法では、板状のコア材の表面に、熱可塑性樹脂フィルムと、接着樹脂と、繊維集積体とをこの順で積層し、次いで熱可塑性樹脂フィルムの融点より高い所定温度以上で加熱加圧して、熱可塑性樹脂フィルムを溶融するとともに接着樹脂で繊維集積体とコア材とを一体的に接合している。
【0013】
加熱加圧時には、先ず熱可塑性樹脂フィルムが溶融してコア材に含浸するため、コア材に含浸している熱可塑性樹脂によって、液状となった接着樹脂のコア材への含浸が抑制される。また加熱加圧時間を従来と同様とすれば、熱可塑性樹脂の介在によって接着樹脂がコア材に含浸する時間が遅れ、含浸に要する時間が実質的に短縮されるため、この場合も接着樹脂のコア材への含浸が抑制される。
【0014】
したがってコア材に含浸せず繊維集積体とコア材との間に介在する接着樹脂の量が多くなり、接着樹脂の使用量を低減しても従来と同等の接合強度を確保することが可能となる。そして熱硬化性樹脂などの接着樹脂より熱可塑性樹脂の方が格段に安価であるので、熱可塑性樹脂フィルムの分だけ原料コストが増大しても、全体としては大幅に安価とすることができる。また用いる熱可塑性樹脂フィルムの重量に比べて低減される接着樹脂の重量の方が多いので、その分軽量化を図ることができる。
【0015】
コア材としては、紙製のハニカム体、ウレタン発泡体、高分子発泡体などから形成された板状の多孔質体が用いられ、従来と同様のものを用いることができる。ハニカム体の場合には、ハニカム通路が厚さ方向に延びるようにコア材が形成される。
【0016】
熱可塑性樹脂フィルムとしては、ポリエチレン、ポリプロピレン、ポリスチレン、ナイロン、PVC、酢酸ビニル、AS樹脂、ポリエステル樹脂、アクリル樹脂、熱可塑性エラストマーなどの熱可塑性樹脂から形成されたものを用いることができる。この熱可塑性樹脂フィルムは、コア材の表面に対して20〜100g/m2 となる厚さで用いることが好ましい。熱可塑性樹脂フィルムの量がこの範囲より少ないと介在させた効果が得られず、この範囲より多くしても効果が飽和するとともにコスト及び重量が増大し、また接合強度が低下する場合もある。なお、この熱可塑性樹脂フィルムは、接着樹脂が硬化又は軟化する温度より融点が低いものを用いる必要がある。
【0017】
接着樹脂としては、フェノール樹脂あるいはエポキシ樹脂などの熱硬化性樹脂、ホットメルト接着剤など、加熱加圧によって繊維集積体とコア材とを接合可能であり、かつ積層構造体を所定形状に賦形した状態で保持できるものが用いられる。硬化後又は固化後にある程度の剛性を付与できる熱硬化性樹脂が望ましい。また発泡して硬化する熱硬化性発泡樹脂を用いることもできる。
【0018】
接合前の接着樹脂の形状は熱可塑性樹脂フィルム上に配置可能であればよく、シート状、板状、粉末状、場合によっては液状などとすることができる。なお熱硬化性樹脂の場合には、加熱により硬化させるための硬化剤が含まれることはいうまでもない。熱硬化性樹脂の場合には、その硬化温度が熱可塑性樹脂フィルムの融点より高いことが必要である。またホットメルト接着剤の場合には、その融点が熱可塑性樹脂フィルムの融点より低いことが必要である。そしてホットメルト接着剤が十分に溶融した後に熱可塑性樹脂フィルムが溶融し、コア材側へホットメルト接着剤が少し流れるように構成することが望ましい。
【0019】
いずれの場合も、接着樹脂の硬化温度又は融点が熱可塑性樹脂フィルムの融点より約50℃以上高いことが望ましい。この温度差が約50℃より小さいと、熱可塑性樹脂フィルムの溶融と接着樹脂のコア材への含浸との時間差が小さくなり、接着樹脂がコア材の深くまで含浸されてしまうようになる。
【0020】
接着樹脂の使用量は、樹脂種によっても異なるが、一般にコア材の表面に対して50〜500g/m2 となるように用いることが好ましい。接着樹脂の量がこの範囲より少ないと繊維集積体とコア材との接合強度あるいは形状保持性が低下し、この範囲より多くなっても接合強度が飽和するとともにコスト及び重量が増大する。
【0021】
繊維集積体としては、有機繊維、無機繊維あるいは金属繊維など各種繊維の短繊維あるいは長繊維からなる織布、不織布、編布、マット、紙などが例示される。この繊維集積体の使用量は、繊維種あるいはみかけ密度などによっても異なるが、一般にコア材の表面に対して50〜500g/m2 となるように用いることが好ましい。
【0022】
そして本発明の製造方法では、コア材表面に熱可塑性樹脂フィルムを配置し、その上に接着樹脂を配置し、さらにその上に繊維集積体を配置する。コア材の片側表面のみにこのように積層してもよいし、両側表面にそれぞれこのように積層してもよい。そして所定の金型で挟持し、所定の温度で加熱加圧する。所定の温度とは、熱可塑性樹脂フィルムが溶融するとともに、接着樹脂が硬化又は溶融する温度である。また加圧の圧力は、場合に応じて種々選択できる。
【0023】
加熱加圧により熱可塑性樹脂フィルムが溶融してコア材の細孔が表出し、そこへ液状となった接着樹脂が含浸する。また液状となった接着樹脂は繊維集積体にも含浸する。熱可塑性樹脂フィルムの溶融・含浸により接着樹脂のコア材への含浸が遅れ、またコア材への含浸量も低減される。金型温度と熱プレス時間を制御することで、接着樹脂の含浸量を制御することができる。そして接着樹脂が固化することで、繊維集積体とコア材とが一体的に接合され、所定形状に賦形された積層構造体が形成される。
【0024】
したがって本発明の製造方法によれば、従来より少量の接着樹脂量で従来と同様の接合強度を確保でき、かつ安価で軽量な積層構造体を製造することができる。
【0025】
【実施例】
以下、実施例により本発明を具体的に説明する。
【0026】
図1に本実施例の製造方法により製造された自動車内装材の基材の概略断面図を示す。この基材は、紙製のハニカム形状のコア材1と、コア材1の両表面に積層され一部がコア材1の細孔に含浸した熱可塑性樹脂層2と、熱可塑性樹脂層2の表面に積層され一部がコア材1の細孔に含浸して硬化したエポキシ樹脂層3と、エポキシ樹脂層3の表面に積層されエポキシ樹脂層3の一部が含浸して硬化したガラス繊維マットからなる繊維補強層4とから構成されている。
【0027】
なお、実際の断面では、熱可塑性樹脂層2はコア材のハニカム通路に対応する複数の開口をもち、一部はコア材1内部に含浸している。またエポキシ樹脂層3も大部分がコア材1と繊維補強層4に含浸しているので、図1のように境界がはっきりしているわけではない。
【0028】
以下、図2〜図4を参照しながらこの基材の製造方法を説明し、構成の詳細な説明に代える。
【0029】
先ず、別に予め形成された紙製のハニカム形状のコア材1を用意する。このコア材1は断面正方形状で一辺が約5mmのハニカム通路が格子状に列設されてなり、ハニカム通路の延びる方向を厚さ方向とする厚さ約5mmの板状をなしている。
【0030】
次に厚さ約50μmのポリエチレン(PE)フィルム2’を用意し、コア材1の両表面にそれぞれ配置する。PE量は、コア材1の表面に対して50g/m2 である。
【0031】
さらにPEフィルム2’の表面に、それぞれフェノールエポキシ樹脂3’とガラス繊維マット4’をこの順に積層する。フェノールエポキシ樹脂3’は粉末状をなし、予めガラス短繊維からなるガラス繊維マット4’の表面に層状に付着されている。図2では模式的にガラス繊維マット4’と分離して記載している。このフェノールエポキシ樹脂3’は、コア材1の表面に対して両側で500g/m2 の量とされている。またガラス繊維マット4’は、コア材1の表面に対して両側で500g/m2 の量となる厚さとされている。
【0032】
この積層体10は、図3に示すように、オイルにて温度調節されている所定形状の金型5内に配置され、図4に示すように、190〜210℃の温度、20kg/cm2 の圧力にて60秒間熱プレス成形を行った。その後型開きし、図1に示す断面構造の基材が得られた。
【0033】
得られた内装材用の基材は、金型5の型面形状に賦形され、コア材1及び繊維補強層4にエポキシ樹脂層3の一部が含浸して硬化することでその形状が保持されるとともに、コア材1と繊維補強層4とは一体的に強固に接合されている。また主としてエポキシ樹脂層3によって剛性が確保されている。
【0034】
そして、熱可塑性樹脂フィルム2’が介在しない従来の製造方法の場合には、フェノールエポキシ樹脂3’の量はコア材1の表面に対して両側で600g/m2 以上としなければ所定の接合強度が確保できなかったが、本実施例ではコア材1の表面に対して両側で500g/m2 の量で所定の接着強度が確保でき、フェノールエポキシ樹脂3’の量をコア材1の表面に対して100g/m2 低減することができた。したがって本実施例の製造方法によれば、従来の製造方法に比べて安価かつ軽量の基材を製造することができた。
【0035】
【発明の効果】
すなわち本発明の製造方法によれば、従来より少量の接着樹脂量で従来と同様の接合強度を確保でき、かつ安価で軽量な積層構造体を製造することができる。
【図面の簡単な説明】
【図1】本発明の一実施例の製造方法により得られた積層構造体の概略断面図である。
【図2】本発明の一実施例の製造方法において各層の積層構成を示す断面図である。
【図3】本発明の一実施例の製造方法において積層体を金型内に配置する様子を示す説明断面図である。
【図4】本発明の一実施例の製造方法において積層体を金型内で熱プレスしている様子を示す説明断面図である。
【符号の説明】
1:コア材 2:熱可塑性樹脂樹脂層 2’:PEフィルム
3:エポキシ樹脂層 3’:フェノールエポキシ樹脂 4:繊維補強層
4’:ガラス繊維マット 5:金型
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated structure useful as a base material for automobile interior materials and a method for producing the same.
[0002]
[Prior art]
Known as interior materials for automobile sunshades or moon roof doors, sandwich-type base materials with a porous body such as a paper honeycomb body or urethane foam as the core, and a fiber reinforcement layer bonded to both surfaces are known. ing. And the surface material formed from PVC etc. is further laminated | stacked on the surface of this base material, and the interior material for motor vehicles is formed.
[0003]
A laminated structure such as a base material of the interior material is lightweight because a porous body is used. Moreover, since it can be easily shaped into a predetermined shape by hot pressing, mass production is possible and the cost can be reduced.
[0004]
In other words, in order to manufacture such a laminated structure, a pre-formed plate-like core material is prepared, thermosetting resin plates such as phenol resin or epoxy resin are laminated on both surfaces of the core material, and further, A plate-like fiber aggregate formed from glass fibers or the like is laminated on the surface of the curable resin plate. When hot pressing is performed, the thermosetting resin plate becomes liquid and is impregnated into both the fiber aggregate and the core material, and is thermally cured in this state to integrally bond the fiber aggregate and the core material. Then, the laminated body is shaped into a predetermined shape by hot pressing, and a sandwich-like laminated structure is formed.
[0005]
In the obtained laminated structure, a thermosetting resin layer is formed between the fiber assembly and the core material, and the thermosetting resin layer is impregnated into the fiber assembly and the core material and cured to integrate the two. Are joined together. In addition, the thermosetting resin layer maintains the shape shaped into a predetermined shape and ensures the rigidity of the laminated structure.
[0006]
And if the skin material made into the predetermined shape by vacuum forming etc. in another process is joined to the surface of the laminated structure obtained above, the interior material of the predetermined shape can be manufactured.
[0007]
JP-A-63-312136 also discloses a similar laminated structure.
[0008]
[Problems to be solved by the invention]
However, the thermosetting resin once becomes liquid by heating, and then the reaction proceeds to cure. Therefore, in the manufacturing method of the laminated structure described above, the thermosetting resin that has become liquid during hot pressing is impregnated deep inside the core material. Thus, the thermosetting resin impregnated deep inside the core material does not contribute at all to the joining of the fiber assembly and the core material. However, if the amount of the thermosetting resin is reduced, the bonding strength between the fiber assembly and the core material will be insufficient, so an excessive amount of thermosetting resin will be required. The cost was high. Further, the weight is increased by the amount of excess thermosetting resin.
[0009]
The present invention has been made in view of such circumstances, and an object of the present invention is to reduce the amount of the thermosetting resin while maintaining a high bonding strength, and to provide a cheap and lightweight laminated structure.
[0010]
[Means for Solving the Problems]
The feature of the manufacturing method of the laminated structure of the present invention that solves the above problems is that the surface of the plate-like core material made of a porous body is cured at a predetermined temperature higher than the melting point of the thermoplastic resin film and the thermoplastic resin film. Alternatively, the adhesive resin to be softened and the fiber assembly are laminated in this order, and then the thermoplastic resin film is melted by heating and pressurizing at a predetermined temperature or higher, and the fiber assembly and the core material are integrally formed with the adhesive resin. It is to join.
[0011]
The laminated structure of the present invention manufactured by the above manufacturing method is characterized by a plate-like core layer made of a porous body, an adhesive resin layer formed on at least one surface of the core layer, and an adhesive resin layer. In a laminated structure including a fiber reinforcing layer integrally bonded to a core layer, a thermoplastic resin layer is provided between the core layer and the adhesive resin layer.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing a laminated structure of the present invention, a thermoplastic resin film, an adhesive resin, and a fiber assembly are laminated in this order on the surface of the plate-shaped core material, and then higher than the melting point of the thermoplastic resin film. The thermoplastic resin film is melted by heating and pressurizing at a predetermined temperature or higher, and the fiber assembly and the core material are integrally bonded with an adhesive resin.
[0013]
At the time of heating and pressing, since the thermoplastic resin film is first melted and impregnated in the core material, the thermoplastic resin impregnated in the core material suppresses the impregnation of the liquid adhesive resin into the core material. If the heating and pressing time is the same as before, the time for the adhesive resin to impregnate the core material is delayed due to the intervention of the thermoplastic resin, and the time required for the impregnation is substantially reduced. Impregnation into the core material is suppressed.
[0014]
Therefore, the amount of adhesive resin that is not impregnated in the core material and intervenes between the fiber assembly and the core material increases, and it is possible to ensure the same bonding strength as before even if the amount of adhesive resin used is reduced. Become. Since the thermoplastic resin is much cheaper than the adhesive resin such as a thermosetting resin, even if the raw material cost increases by the amount of the thermoplastic resin film, the overall cost can be significantly reduced. Further, since the weight of the adhesive resin that is reduced is larger than the weight of the thermoplastic resin film to be used, the weight can be reduced correspondingly.
[0015]
As the core material, a plate-like porous body formed from a paper honeycomb body, a urethane foam, a polymer foam, or the like is used, and the same material as the conventional one can be used. In the case of a honeycomb body, the core material is formed so that the honeycomb passage extends in the thickness direction.
[0016]
As the thermoplastic resin film, a film formed from a thermoplastic resin such as polyethylene, polypropylene, polystyrene, nylon, PVC, vinyl acetate, AS resin, polyester resin, acrylic resin, and thermoplastic elastomer can be used. This thermoplastic resin film is preferably used at a thickness of 20 to 100 g / m 2 with respect to the surface of the core material. If the amount of the thermoplastic resin film is less than this range, the intervening effect cannot be obtained, and if it exceeds this range, the effect is saturated, the cost and weight increase, and the bonding strength may be lowered. In addition, it is necessary to use this thermoplastic resin film having a melting point lower than the temperature at which the adhesive resin is cured or softened.
[0017]
The adhesive resin can be bonded to the fiber assembly and the core material by heat and pressure, such as a thermosetting resin such as phenol resin or epoxy resin, or hot melt adhesive, and the laminated structure is shaped into a predetermined shape. Those that can be held in the state are used. A thermosetting resin that can give a certain degree of rigidity after curing or solidification is desirable. A thermosetting foamed resin that foams and hardens can also be used.
[0018]
The shape of the adhesive resin before joining is not particularly limited as long as it can be disposed on the thermoplastic resin film, and can be a sheet, plate, powder, or liquid in some cases. In the case of a thermosetting resin, it goes without saying that a curing agent for curing by heating is included. In the case of a thermosetting resin, the curing temperature needs to be higher than the melting point of the thermoplastic resin film. In the case of a hot melt adhesive, the melting point thereof needs to be lower than the melting point of the thermoplastic resin film. It is desirable that the thermoplastic resin film is melted after the hot melt adhesive is sufficiently melted, and the hot melt adhesive slightly flows to the core material side.
[0019]
In any case, it is desirable that the curing temperature or melting point of the adhesive resin be higher by about 50 ° C. than the melting point of the thermoplastic resin film. If this temperature difference is smaller than about 50 ° C., the time difference between the melting of the thermoplastic resin film and the impregnation of the adhesive resin into the core material becomes small, and the adhesive resin is impregnated deep into the core material.
[0020]
Although the usage-amount of adhesive resin changes also with resin seed | species, generally it is preferable to use so that it may become 50-500 g / m < 2 > with respect to the surface of a core material. If the amount of the adhesive resin is less than this range, the bonding strength or shape retention between the fiber assembly and the core material is lowered, and if it exceeds this range, the bonding strength is saturated and the cost and weight are increased.
[0021]
Examples of the fiber assembly include woven fabrics, nonwoven fabrics, knitted fabrics, mats, papers, and the like made of short fibers or long fibers of various fibers such as organic fibers, inorganic fibers, and metal fibers. The amount of the fiber aggregate used varies depending on the fiber type or the apparent density, but generally it is preferably used so as to be 50 to 500 g / m 2 with respect to the surface of the core material.
[0022]
And in the manufacturing method of this invention, a thermoplastic resin film is arrange | positioned on the core material surface, adhesive resin is arrange | positioned on it, and also a fiber assembly is arrange | positioned on it. Such lamination may be performed only on one side surface of the core material, or may be laminated on both side surfaces in this way. And it clamps with a predetermined metal mold | die, and heat-presses at predetermined temperature. The predetermined temperature is a temperature at which the thermoplastic resin film is melted and the adhesive resin is cured or melted. The pressurizing pressure can be variously selected depending on the case.
[0023]
The thermoplastic resin film is melted by heating and pressing to expose the pores of the core material and impregnated with the liquid adhesive resin. The liquid adhesive resin also impregnates the fiber assembly. The melting and impregnation of the thermoplastic resin film delays the impregnation of the adhesive resin into the core material, and also reduces the amount of impregnation into the core material. By controlling the mold temperature and the hot press time, the amount of the adhesive resin impregnated can be controlled. As the adhesive resin solidifies, the fiber assembly and the core material are integrally joined to form a laminated structure shaped into a predetermined shape.
[0024]
Therefore, according to the manufacturing method of the present invention, it is possible to manufacture a laminated structure that can secure the same bonding strength as the conventional one with a smaller amount of adhesive resin than the conventional one, and is inexpensive and light.
[0025]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
[0026]
FIG. 1 shows a schematic cross-sectional view of a base material for automobile interior material manufactured by the manufacturing method of this embodiment. The base material includes a paper-made honeycomb core material 1, a thermoplastic resin layer 2 laminated on both surfaces of the core material 1, and a portion of the core material 1 impregnated in the pores, and a thermoplastic resin layer 2. Epoxy resin layer 3 laminated on the surface and partially impregnated into the pores of core material 1 and cured, and glass fiber mat laminated on the surface of epoxy resin layer 3 and partially impregnated and cured The fiber reinforcement layer 4 which consists of these.
[0027]
In the actual cross section, the thermoplastic resin layer 2 has a plurality of openings corresponding to the honeycomb passages of the core material, and a part thereof is impregnated inside the core material 1. Moreover, since most of the epoxy resin layer 3 is impregnated in the core material 1 and the fiber reinforcing layer 4, the boundary is not clear as shown in FIG.
[0028]
Hereinafter, the manufacturing method of this base material is demonstrated, referring FIGS. 2-4, and it replaces with the detailed description of a structure.
[0029]
First, a paper-made honeycomb-shaped core material 1 separately prepared in advance is prepared. The core material 1 has a square cross section and honeycomb passages each having a side of about 5 mm arranged in a grid, and has a plate shape having a thickness of about 5 mm with the extending direction of the honeycomb passage as a thickness direction.
[0030]
Next, a polyethylene (PE) film 2 ′ having a thickness of about 50 μm is prepared and disposed on both surfaces of the core material 1. The PE amount is 50 g / m 2 with respect to the surface of the core material 1.
[0031]
Further, a phenol epoxy resin 3 ′ and a glass fiber mat 4 ′ are laminated in this order on the surface of the PE film 2 ′. The phenol epoxy resin 3 ′ is in the form of a powder and is preliminarily attached to the surface of the glass fiber mat 4 ′ made of short glass fibers. In FIG. 2, it is schematically shown separated from the glass fiber mat 4 ′. The phenol epoxy resin 3 ′ has an amount of 500 g / m 2 on both sides with respect to the surface of the core material 1. The glass fiber mat 4 ′ has a thickness of 500 g / m 2 on both sides with respect to the surface of the core material 1.
[0032]
As shown in FIG. 3, this laminated body 10 is disposed in a mold 5 having a predetermined shape whose temperature is controlled by oil, and as shown in FIG. 4, a temperature of 190 to 210 ° C., 20 kg / cm 2. Was subjected to hot press molding at a pressure of 60 seconds. Thereafter, the mold was opened, and a substrate having a cross-sectional structure shown in FIG. 1 was obtained.
[0033]
The obtained base material for the interior material is shaped into the mold surface shape of the mold 5, and the core material 1 and the fiber reinforcing layer 4 are impregnated with a part of the epoxy resin layer 3 and cured to form the shape. While being held, the core material 1 and the fiber reinforcing layer 4 are integrally and firmly joined. Further, rigidity is ensured mainly by the epoxy resin layer 3.
[0034]
In the case of the conventional manufacturing method in which the thermoplastic resin film 2 ′ is not interposed, the predetermined bonding strength is required unless the amount of the phenol epoxy resin 3 ′ is 600 g / m 2 or more on both sides with respect to the surface of the core material 1. However, in this embodiment, a predetermined adhesive strength can be secured at an amount of 500 g / m 2 on both sides with respect to the surface of the core material 1, and the amount of the phenol epoxy resin 3 ′ can be secured on the surface of the core material 1. On the other hand, it was possible to reduce 100 g / m 2 . Therefore, according to the manufacturing method of the present example, it was possible to manufacture a base material that is cheaper and lighter than the conventional manufacturing method.
[0035]
【The invention's effect】
That is, according to the manufacturing method of the present invention, it is possible to manufacture a laminated structure that can secure the same bonding strength as the conventional one with a smaller amount of adhesive resin than the conventional one, and is inexpensive and light.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a laminated structure obtained by a manufacturing method according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a laminated structure of each layer in the manufacturing method of one embodiment of the present invention.
FIG. 3 is an explanatory cross-sectional view showing a state in which a laminated body is placed in a mold in the manufacturing method of one embodiment of the present invention.
FIG. 4 is an explanatory cross-sectional view showing a state in which a laminated body is hot-pressed in a mold in the manufacturing method of one embodiment of the present invention.
[Explanation of symbols]
1: Core material 2: Thermoplastic resin layer 2 ′: PE film 3: Epoxy resin layer 3 ′: Phenol epoxy resin 4: Fiber reinforcing layer 4 ′: Glass fiber mat 5: Mold

Claims (2)

多孔質体よりなる板状のコア材の表面に、熱可塑性樹脂フィルムと、該熱可塑性樹脂フィルムの融点より高い所定温度で硬化又は軟化する接着樹脂と、繊維集積体とをこの順で積層し、次いで該所定温度以上で加熱加圧することで該熱可塑性樹脂フィルムを溶融するとともに該接着樹脂で該繊維集積体と該コア材とを一体的に接合することを特徴とする積層構造体の製造方法。A thermoplastic resin film, an adhesive resin that cures or softens at a predetermined temperature higher than the melting point of the thermoplastic resin film, and a fiber assembly are laminated in this order on the surface of a plate-like core material made of a porous material. Then, the thermoplastic resin film is melted by heating and pressing at the predetermined temperature or higher, and the fiber assembly and the core material are integrally joined with the adhesive resin. Method. 多孔質体よりなる板状のコア層と、該コア層の少なくとも一方の表面に形成された接着樹脂層と、該接着樹脂層により該コア層と一体的に接合された繊維補強層とよりなる積層構造体において、該コア層と該接着樹脂層の間には熱可塑性樹脂層をもつことを特徴とする積層構造体。A plate-like core layer made of a porous body, an adhesive resin layer formed on at least one surface of the core layer, and a fiber reinforcement layer integrally joined to the core layer by the adhesive resin layer A laminated structure comprising a thermoplastic resin layer between the core layer and the adhesive resin layer.
JP2000178283A 2000-06-14 2000-06-14 Manufacturing method of laminated structure and laminated structure Expired - Fee Related JP4447120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000178283A JP4447120B2 (en) 2000-06-14 2000-06-14 Manufacturing method of laminated structure and laminated structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000178283A JP4447120B2 (en) 2000-06-14 2000-06-14 Manufacturing method of laminated structure and laminated structure

Publications (2)

Publication Number Publication Date
JP2001353834A JP2001353834A (en) 2001-12-25
JP4447120B2 true JP4447120B2 (en) 2010-04-07

Family

ID=18679737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000178283A Expired - Fee Related JP4447120B2 (en) 2000-06-14 2000-06-14 Manufacturing method of laminated structure and laminated structure

Country Status (1)

Country Link
JP (1) JP4447120B2 (en)

Also Published As

Publication number Publication date
JP2001353834A (en) 2001-12-25

Similar Documents

Publication Publication Date Title
US11241867B2 (en) Multicomponent polymer resin, methods for applying the same, and composite laminate structure including the same
JP2788958B2 (en) Noise reduction structural member and method of manufacturing the same
EP0758577B1 (en) Stampable sheet made by papermaking technique and method for manufacturing lightweight molded stampable sheet
CN109803858B (en) Sound insulation panel for covering a wall of a motor vehicle
KR20060134097A (en) Composite part
WO2015181870A1 (en) Composite material molded article and method for producing same
SE512422C2 (en) Load-bearing vehicle roof and procedure for its manufacture
JPH0322297B2 (en)
US20040234744A1 (en) Vehicle interior trim component of basalt fibers and thermoplastic binder and method of manufacturing the same
EP0765737A1 (en) Sound absorbing component
US20040235376A1 (en) Vehicle interior trim component containing carbon fibers and method of manufacturing the same
US7772143B2 (en) Multilayer, composite, fleece material and a method for manufacturing a multilayer, composite, fleece material
CN113382848A (en) Composite laminated resin and fiberglass structure
US20040235377A1 (en) Vehicle interior trim component of basalt fibers and polypropylene binder and method of manufacturing the same
JP4447120B2 (en) Manufacturing method of laminated structure and laminated structure
JP2632297B2 (en) Laminated body and method for producing the same
JP2004155193A (en) Method for producing decorative board for lining
JP7322630B2 (en) Method for manufacturing vehicle interior material
JP2004122545A (en) Thermoformable core material and interior finish material for car using the core material
JP2894668B2 (en) Manufacturing method for automotive interior parts
JP7322631B2 (en) Method for manufacturing vehicle interior material
JP2001121630A (en) Lightweight panel material
JPH0342217A (en) Preparation of plate-shaped press molded product
JP4963169B2 (en) Hot-melt adhesive sheet, interior product for vehicle and method for producing interior product for vehicle
JPH0156905B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees