JP4446150B2 - Gas turbine purge air blowing method and blowing structure - Google Patents

Gas turbine purge air blowing method and blowing structure Download PDF

Info

Publication number
JP4446150B2
JP4446150B2 JP2003276900A JP2003276900A JP4446150B2 JP 4446150 B2 JP4446150 B2 JP 4446150B2 JP 2003276900 A JP2003276900 A JP 2003276900A JP 2003276900 A JP2003276900 A JP 2003276900A JP 4446150 B2 JP4446150 B2 JP 4446150B2
Authority
JP
Japan
Prior art keywords
purge air
hole
platform
radially
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003276900A
Other languages
Japanese (ja)
Other versions
JP2005036772A (en
Inventor
玄行 谷光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003276900A priority Critical patent/JP4446150B2/en
Publication of JP2005036772A publication Critical patent/JP2005036772A/en
Application granted granted Critical
Publication of JP4446150B2 publication Critical patent/JP4446150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、ガスタービンパージエアの吹き出し方法及び吹き出し構造に関する。   The present invention relates to a gas turbine purge air blowing method and a blowing structure.

図3はターボジェットエンジンの模式的構成図であり、空気取入口101、圧縮機102、燃焼器103、ガスタービン104、アフターバーナ105、ジェットノズル106、等を備えている。かかるターボジェットエンジンでは、空気を空気取入口101から導入し、圧縮機102でこの空気を圧縮し、燃焼器103内で燃料を燃焼させて高温の燃焼ガスを発生させ、発生した燃焼ガスでガスタービン104を駆動し、このガスタービン104で圧縮機102を駆動し、アフターバーナ105でタービンを出た排ガスにより燃料を再度燃焼させ、高温の燃焼排ガスをジェットノズル106で膨張させて後方に噴き出し、推力を発生するようになっている。この構成は、ターボジェットエンジン以外のジェットエンジンでも同様である。   FIG. 3 is a schematic configuration diagram of a turbojet engine, which includes an air intake 101, a compressor 102, a combustor 103, a gas turbine 104, an afterburner 105, a jet nozzle 106, and the like. In such a turbojet engine, air is introduced from the air intake port 101, this air is compressed by the compressor 102, fuel is combusted in the combustor 103, and high-temperature combustion gas is generated. The turbine 104 is driven, the compressor 102 is driven by the gas turbine 104, the fuel is again combusted by the exhaust gas discharged from the turbine by the afterburner 105, the high-temperature combustion exhaust gas is expanded by the jet nozzle 106, and is ejected backward. It is designed to generate thrust. This configuration is the same for jet engines other than turbojet engines.

図4は、図3のガスタービン104の部分拡大図である。この図に示すように、ジェットエンジンのガスタービンは、静翼1を周方向に複数配置してなる静翼列と、軸107と共に回転する動翼3を周方向に複数配置してなる動翼列とからなる。静翼1と動翼3の径方向内方端には、それぞれ静翼インナーバンド2、動翼インナーバンド4が接続されており、この静翼インナーバンド2と動翼インナーバンド4との間には、パージエアを吹き出すための隙間10が全周にわたり形成されている。また、動翼インナーバンド4は、燃焼ガス流路に面するプラットフォーム4aと、該プラットフォーム4a先端部の径方向内側に位置し軸方向に延びる突出部4cと、前記プラットフォーム4a先端部と前記突出部4cの後端部とを連結する連結部4bと有している。   FIG. 4 is a partially enlarged view of the gas turbine 104 of FIG. As shown in this figure, a gas turbine of a jet engine includes a stationary blade row in which a plurality of stationary blades 1 are arranged in the circumferential direction, and a moving blade in which a plurality of moving blades 3 that rotate together with a shaft 107 are arranged in the circumferential direction. It consists of columns. A stationary blade inner band 2 and a moving blade inner band 4 are connected to the radially inner ends of the stationary blade 1 and the moving blade 3, and between the stationary blade inner band 2 and the moving blade inner band 4, respectively. The gap 10 for blowing out purge air is formed over the entire circumference. Further, the rotor blade inner band 4 includes a platform 4a facing the combustion gas flow path, a protruding portion 4c positioned radially inward of the tip end portion of the platform 4a and extending in the axial direction, the tip end portion of the platform 4a, and the protruding portion. It has the connection part 4b which connects the rear-end part of 4c.

このように構成されたガスタービンでは、燃焼器103で発生した燃焼ガスの流れ方向を静翼1で動翼3に適した方向に向け、この燃焼ガスで動翼3を回転駆動する。また、燃焼ガスの主流9aに対して、タービンディスクフロント等を冷却する冷却空気9b(パージエア)が径方向内方から供給され流路21を通過して隙間10から吹き出し、主流9aと混合して下流側の動翼3に流入する。なお、この図では、静翼1と動翼3を一列ずつ示しているが、通常最上段を含めて2列以上の静翼と動翼を備える。なお、上述したようなガスタービンパージエアの吹き出し技術については、例えば下記特許文献1に開示されている。   In the gas turbine configured as described above, the flow direction of the combustion gas generated in the combustor 103 is directed to the direction suitable for the moving blade 3 by the stationary blade 1, and the moving blade 3 is rotationally driven by this combustion gas. In addition, the cooling air 9b (purge air) for cooling the turbine disk front and the like is supplied from the radially inner side to the combustion gas main flow 9a, blows out from the gap 10 through the flow path 21, and mixes with the main flow 9a. It flows into the moving blade 3 on the downstream side. In this figure, the stationary blades 1 and the moving blades 3 are shown one by one, but usually two or more rows of stationary blades and moving blades including the uppermost stage are provided. The gas turbine purge air blowing technique as described above is disclosed in, for example, Patent Document 1 below.

特開2002−221001JP 2002-221001

近年、タービン入口の高温化・高負荷化に伴い、冷却空気量(パージエア9b)が増大する傾向にある。しかし、パージエア9bは図4に示すように軸方向に対して比較的大きな角度φをもって主流と混合するため、この混合によりミキシングロスと呼ばれるエネルギー損失が生じ、タービンの空力性能が低下する。   In recent years, the amount of cooling air (purge air 9b) tends to increase as the temperature at the turbine inlet increases and the load increases. However, since the purge air 9b is mixed with the main flow at a relatively large angle φ with respect to the axial direction as shown in FIG. 4, this mixing causes an energy loss called a mixing loss, which lowers the aerodynamic performance of the turbine.

すなわち、冷却空気の一部であるタービンディスクフロントのパージエア9bは、主流9aの流れが超音速(マッハ数1以上)であるタービン静翼出口に主流9aの流れ方向に対して比較的大きな角度で吹き出しているため、他の部分の冷却空気と比べて流量あたりのミキシングロスが大きく、タービンの空力性能への悪影響も大きい問題点があった。このような問題を解決する手段として、パージエア9bの供給量を少なくすることにより、ミキシングロスを低減させることが可能となるが、上述したようにパージエア9bの必要性は大きいため、その供給量を少なくすることは困難である。   That is, the purge air 9b at the turbine disk front, which is a part of the cooling air, has a relatively large angle with respect to the flow direction of the main flow 9a at the turbine stationary blade outlet where the flow of the main flow 9a is supersonic (Mach number 1 or more). Since the air is blown out, the mixing loss per flow rate is large compared to the cooling air in other parts, and there is a problem that the aerodynamic performance of the turbine is also adversely affected. As a means for solving such a problem, it is possible to reduce the mixing loss by reducing the supply amount of the purge air 9b. However, since the necessity of the purge air 9b is large as described above, the supply amount is reduced. It is difficult to reduce it.

本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、静翼インナーバンドと動翼インナーバンドの間(タービンディスクフロント)から吹き出し、主流と混合するパージエアによるミキシングロスをパージエアの供給量を少なくすることなく低減し、タービンの空力性能を向上させることができるガスタービンパージエアの吹き出し方法及び吹き出し構造を提供することにある。   The present invention has been developed to solve such problems. That is, an object of the present invention is to reduce mixing loss caused by purge air blown out from between the stationary blade inner band and the moving blade inner band (turbine disk front) and mixed with the main flow without reducing the supply amount of the purge air. An object of the present invention is to provide a gas turbine purge air blowing method and a blowing structure capable of improving aerodynamic performance.

上記目的を達成するため、本発明によれば、静翼インナーバンドと動翼インナーバンドの間からパージエアを吹き出して燃焼ガス流路の主流と混合させるガスタービンパージエアの吹き出し方法であって、前記動翼インナーバンドは、燃焼ガス流路に面するプラットフォームと、該プラットフォームの先端から半径方向内側に延びるフロント部と、前記プラットフォーム先端部の径方向内側であって前記フロント部の半径方向内側端よりも径方向外側に位置し前記フロント部から軸方向前方に突出する突出部とを有し、前記フロント部は、前記プラットフォームの先端から前記突出部の付け根部までの部分を構成する連結部と、前記突出部の付け根部から当該フロント部の径方向内側端部までの部分を構成する内方形成部とからなり、前記プラットフォームと前記連結部との接続部表面を曲面形状とし、前記突出部の付け根部に径方向内方から供給されるパージエアを通過させる貫通孔を設け、該貫通孔の全体が前記突出部の付け根部に位置するとともに、該貫通孔を区画する該貫通孔の外周面が閉じており、かつ、該貫通孔は、前記付け根部において、径方向内方側から径方向外方側へ、前記内方形成部の表面および前記連結部の表面に沿う方向に前記付け根部を貫通しており、前記内方形成部の表面に沿って径方向内方から流れてくるパージエアを前記貫通孔を通して半径方向外方に吹き出させて前記連結部の表面に沿って流し、吹き出したパージエアをコアンダ効果により前記接続部表面に沿って燃焼ガス流路の主流と混合させる、ことを特徴とするガスタービンパージエアの吹き出し方法が提供される。 In order to achieve the above object, according to the present invention, there is provided a gas turbine purge air blowing method in which purge air is blown from between a stationary blade inner band and a moving blade inner band and mixed with a main flow of a combustion gas flow path. The blade inner band includes a platform facing the combustion gas flow path, a front portion extending radially inward from the tip of the platform, and a radially inner side of the platform tip than the radially inner end of the front portion. A projecting portion that is located radially outward and projects forward in the axial direction from the front portion, and the front portion includes a connecting portion that forms a portion from a tip of the platform to a base portion of the projecting portion, and An inward forming portion that constitutes a portion from the base portion of the projecting portion to the radially inner end portion of the front portion. -Platform and the connection portion surface between the connecting portion and a curved shape, a through hole for passing the purge air supplied from the radially inward root portion of the protruding portion is provided, the base entirety of the projecting portion of the through hole And the outer peripheral surface of the through hole that defines the through hole is closed, and the through hole extends from the radially inner side to the radially outer side in the root portion. A purge air that passes through the base portion in a direction along the surface of the rectangular forming portion and the surface of the connecting portion, and that flows radially inward along the surface of the inner forming portion, passes through the through hole in the radial direction. A gas turbine purge air characterized in that it is blown outward and flows along the surface of the connecting portion, and the blown purge air is mixed with the main flow of the combustion gas flow path along the connection portion surface by the Coanda effect. Balloon method is provided.

また、本発明によれば、静翼インナーバンドと動翼インナーバンドの間からパージエアを吹き出して燃焼ガス流路の主流と混合させるガスタービンパージエアの吹き出し構造であって、前記動翼インナーバンドは、燃焼ガス流路に面するプラットフォームと、該プラットフォームの先端から半径方向内側に延びるフロント部と、前記プラットフォーム先端部の径方向内側であって前記フロント部の半径方向内側端よりも径方向外側に位置し前記フロント部から軸方向前方に突出する突出部とを有し、前記フロント部は、前記プラットフォームの先端から前記突出部の付け根部までの部分を構成する連結部と、前記突出部の付け根部から当該フロント部の径方向内側端部までの部分を構成する内方形成部とからなり、前記プラットフォームと前記連結部との接続部表面は曲面形状をなし、前記突出部の付け根部は、前記内方形成部の表面に沿って径方向内方から供給されるパージエアを通過させ前記連結部の表面に沿って流す貫通孔を有し、該貫通孔の全体が前記突出部の付け根部に位置するとともに、該貫通孔を区画する該貫通孔の外周面が閉じており、かつ、該貫通孔は、前記付け根部において、径方向内方側から径方向外方側へ、前記内方形成部の表面および前記連結部の表面に沿う方向に前記付け根部を貫通している、ことを特徴とするガスタービンパージエアの吹き出し構造が提供される。 Further, according to the present invention, there is a gas turbine purge air blowing structure in which purge air is blown out from between the stationary blade inner band and the moving blade inner band and mixed with the main flow of the combustion gas flow path, and the moving blade inner band includes: A platform facing the combustion gas flow path, a front portion extending radially inward from the tip of the platform, and positioned radially inward of the platform tip and radially outward of the radially inner end of the front portion And a projecting portion projecting forward in the axial direction from the front portion, wherein the front portion comprises a connecting portion constituting a portion from a tip of the platform to a base portion of the projecting portion, and a base portion of the projecting portion And an inwardly forming portion constituting a portion from the front portion to the radially inner end of the front portion. The surface of the connecting portion with the connecting portion has a curved surface shape, and the base portion of the protruding portion passes along the surface of the inner forming portion and allows the purge air supplied from radially inward to pass along the surface of the connecting portion. And the entire through hole is located at the base of the protruding portion, the outer peripheral surface of the through hole defining the through hole is closed, and the through hole is A gas turbine characterized in that, at the base portion, the base portion is penetrated from the radially inward side to the radially outward side in a direction along the surface of the inner forming portion and the surface of the connecting portion. A purge air blowing structure is provided.

このような本発明によれば、プラットフォームと連結部との接続部表面を曲面形状とし、突出部の付け根部に径方向内方から供給されるパージエアを通過させる貫通孔を設け、貫通孔から連結部の表面に沿ってパージエアを吹き出すようにしたので、吹き出したパージエアは、コアンダ効果により接続部表面に沿って燃焼ガス流路の主流と混合される。すなわち、パージエアはプラットフォームに沿う方向に吹き出され、パージエアと主流の混合角度を小さくすることができる。したがって、主流と混合するパージエアによるミキシングロスを低減し、タービン空力性能を改善することができる。   According to the present invention, the surface of the connecting portion between the platform and the connecting portion has a curved surface shape, and the through hole through which purge air supplied from the radially inner side passes is provided at the base portion of the protruding portion, and the connecting portion is connected to the through hole. Since the purge air is blown out along the surface of the part, the blown out purge air is mixed with the main flow of the combustion gas flow path along the surface of the connecting part by the Coanda effect. That is, the purge air is blown out in the direction along the platform, and the mixing angle of the purge air and the main flow can be reduced. Therefore, mixing loss due to purge air mixed with the main stream can be reduced, and turbine aerodynamic performance can be improved.

以下、本発明の好適な実施の形態を添付図面に基づいて詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings.

主流9aとパージエア9bとが混合する際に生じるミキシングロスは、(数1)で表わすことができる。この式で添字gは主流、添字cは冷却空気(パージエア)、添字tはミキシングロスであり、P,M,W,T,Vは、それぞれ圧力、マッハ数、質量流量、絶対温度、流速である。また、κは比熱比、φは吹き出し角度を示している。吹き出し角度φは、図4に示すようにガスタービンの回転軸とパージエア吹き出し方向とのなす角である。   The mixing loss that occurs when the main flow 9a and the purge air 9b are mixed can be expressed by (Equation 1). In this equation, the subscript g is the main flow, the subscript c is the cooling air (purge air), the subscript t is the mixing loss, and P, M, W, T, and V are the pressure, Mach number, mass flow rate, absolute temperature, and flow velocity, respectively. is there. Further, κ represents a specific heat ratio, and φ represents a blowing angle. The blowing angle φ is an angle formed by the rotation axis of the gas turbine and the purge air blowing direction as shown in FIG.

Figure 0004446150
Figure 0004446150

(数1)から吹き出し角度φが0度に近いほど、ミキシングロスΔPtは小さくなり、吹き出し角度φが大きい(90度に近い)ほど、ミキシングロスΔPtは大きくなることが分かる。すなわち、パージエア全体の質量流量Wc、絶対温度Tc、流速Vcが同一である限り、吹き出し角度φを小さくすることができればミキシングロスを低減することができる。   From (Equation 1), it can be seen that the mixing loss ΔPt decreases as the blowing angle φ approaches 0 degrees, and the mixing loss ΔPt increases as the blowing angle φ increases (closer to 90 degrees). That is, as long as the mass flow rate Wc, the absolute temperature Tc, and the flow velocity Vc of the entire purge air are the same, the mixing loss can be reduced if the blowing angle φ can be reduced.

一方、図4に示した従来のガスタービンパージエアの吹き出し手段では、バージエアを主流に対して大きな角度で吹き出していたため、大きなミキシングロスが発生することが(数1)からも明らかである。   On the other hand, in the conventional gas turbine purge air blowing means shown in FIG. 4, since the barge air is blown at a large angle with respect to the main flow, it is clear from (Equation 1) that a large mixing loss occurs.

図1及び図2は、本発明によるガスタービンパージエアの吹き出し方法およびその構造の実施形態を説明する図である。図1に示すように、燃焼ガス(主流9a)の流れ方向に静翼1と動翼3が配置され、静翼1と動翼3の径方向内方端にそれぞれ接続される静翼インナーバンド2と動翼インナーバンド4との間には、パージエアを吹き出すための隙間10が全周にわたり形成されている。   FIG. 1 and FIG. 2 are diagrams for explaining an embodiment of a gas turbine purge air blowing method and its structure according to the present invention. As shown in FIG. 1, a stationary blade inner band in which the stationary blade 1 and the moving blade 3 are arranged in the flow direction of the combustion gas (main flow 9 a) and connected to the radially inner ends of the stationary blade 1 and the moving blade 3, respectively. A gap 10 for blowing out purge air is formed between 2 and the rotor blade inner band 4 over the entire circumference.

図2は動翼3及び動翼インナーバンド4の斜視図であり、以下、図1と併せて図2も参照して説明する。動翼インナーバンド4は、燃焼ガス流路に面するプラットフォーム4aと、該プラットフォーム4a先端部の径方向内側に位置し軸方向に延びる突出部4cと、前記プラットフォーム4a先端部と前記突出部4cの後端部とを連結する連結部4bとを備えている。この点については、図4と同様である。   FIG. 2 is a perspective view of the rotor blade 3 and the rotor blade inner band 4, and will be described below with reference to FIG. 2 in conjunction with FIG. The rotor blade inner band 4 includes a platform 4a facing the combustion gas flow path, a projecting portion 4c extending radially inward of the tip end portion of the platform 4a and extending in the axial direction, and a tip end portion of the platform 4a and the projecting portion 4c. And a connecting portion 4b for connecting the rear end portion. This is the same as in FIG.

また、図1及び図2に示すように、プラットフォーム4aと連結部4bとの接続部表面は曲面形状をなしており、この曲面形状の部分は少なくともその表面上を流体が流れたときにコアンダ効果を生じさせるに足る曲率を有している。また、突出部4cの付け根部(後端部)には径方向内方から供給されるパージエア9bを通過させる貫通孔11が2つ設けられており、この貫通孔11は、その通過したパージエア9bが連結部4bの表面を沿って流れるように形成される。なお、本実施形態では貫通孔11は2つ設けられているが、特に2つに限定されるものではない。   Further, as shown in FIGS. 1 and 2, the surface of the connecting portion between the platform 4a and the connecting portion 4b has a curved surface shape, and at least the curved surface portion has a Coanda effect when a fluid flows on the surface. Has sufficient curvature to cause Further, two through holes 11 through which the purge air 9b supplied from the inside in the radial direction is passed are provided at the base portion (rear end portion) of the protruding portion 4c. The through holes 11 pass through the purge air 9b that has passed therethrough. Is formed so as to flow along the surface of the connecting portion 4b. In the present embodiment, two through holes 11 are provided, but the number is not particularly limited to two.

ガスタービン運転時には、図1に示すように、径方向内方からパージエアが供給される。供給されたパージエアは、貫通孔11を通過するものと流路21を通過するものとに分かれる。このうち、貫通孔11を通過したパージエア9bは、連結部9bの表面に沿って流れ、プラットフォーム9aと連結部9bとの接続部まで到達すると、コアンダ効果により接続部の表面に沿って曲げられる。すなわち、パージエア9bはプラットフォーム4aに沿う方向に吹き出される。したがって、本発明によれば、燃焼ガス流路20を流れる主流9aとバージエア9bの混合角度が小さくなり、主流と混合するパージエアによるミキシングロスを低減し、タービン空力性能を改善することができる。なお、貫通孔11を通過せず流路21を通過したパージエア9bは、図4における吹き出し角度と同じ角度で隙間10から吹き出されることになるが、貫通孔11の大きさや数、及び流路21の流路面積を調整して貫通孔11を通過するパージエアの流量をできるだけ多くするように設計することで、全体としてミキシングロスを低減させることができる。   During operation of the gas turbine, purge air is supplied from the inside in the radial direction as shown in FIG. The supplied purge air is divided into one that passes through the through hole 11 and one that passes through the flow path 21. Of these, the purge air 9b that has passed through the through-hole 11 flows along the surface of the connecting portion 9b, and when it reaches the connecting portion between the platform 9a and the connecting portion 9b, it is bent along the surface of the connecting portion due to the Coanda effect. That is, the purge air 9b is blown out in the direction along the platform 4a. Therefore, according to the present invention, the mixing angle between the main flow 9a flowing through the combustion gas passage 20 and the barge air 9b is reduced, mixing loss due to purge air mixed with the main flow can be reduced, and turbine aerodynamic performance can be improved. The purge air 9b that has passed through the flow path 21 without passing through the through hole 11 is blown out of the gap 10 at the same angle as the blowing angle in FIG. 4, but the size and number of the through holes 11, and the flow path Mixing loss can be reduced as a whole by adjusting the flow passage area of 21 and designing the flow rate of purge air passing through the through-hole 11 as much as possible.

なお、本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更し得ることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 動翼及び動翼インナーバンドの斜視図である。It is a perspective view of a moving blade and a moving blade inner band. ターボジェットエンジンの模式的構成図である。It is a typical block diagram of a turbojet engine. 図3のガスタービンの部分拡大図である。It is the elements on larger scale of the gas turbine of FIG.

符号の説明Explanation of symbols

1 静翼
2 静翼インナーバンド
3 動翼
4 動翼インナーバンド
4a プラットフォーム
4b 連結部
4c 突出部
9a 主流(燃焼ガス)
9b パージエア
11 貫通孔
20 燃焼ガス流路
21 流路
101 空気取入口
102 圧縮機
103 燃焼器
104 ガスタービン
105 アフターバーナ
107 軸
DESCRIPTION OF SYMBOLS 1 Stator blade 2 Stator blade inner band 3 Rotor blade 4 Rotor blade inner band 4a Platform 4b Connection part 4c Protrusion part 9a Mainstream (combustion gas)
9b Purge air 11 Through hole 20 Combustion gas flow path 21 Flow path 101 Air intake 102 Compressor 103 Combustor 104 Gas turbine 105 Afterburner 107 Shaft

Claims (2)

静翼インナーバンドと動翼インナーバンドの間からパージエアを吹き出して燃焼ガス流路の主流と混合させるガスタービンパージエアの吹き出し方法であって、
前記動翼インナーバンドは、燃焼ガス流路に面するプラットフォームと、該プラットフォームの先端から半径方向内側に延びるフロント部と、前記プラットフォーム先端部の径方向内側であって前記フロント部の半径方向内側端よりも径方向外側に位置し前記フロント部から軸方向前方に突出する突出部とを有し、前記フロント部は、前記プラットフォームの先端から前記突出部の付け根部までの部分を構成する連結部と、前記突出部の付け根部から当該フロント部の径方向内側端部までの部分を構成する内方形成部とからなり、
前記プラットフォームと前記連結部との接続部表面を曲面形状とし、前記突出部の付け根部に径方向内方から供給されるパージエアを通過させる貫通孔を設け、該貫通孔の全体が前記突出部の付け根部に位置するとともに、該貫通孔を区画する該貫通孔の外周面が閉じており、かつ、該貫通孔は、前記付け根部において、径方向内方側から径方向外方側へ、前記内方形成部の表面および前記連結部の表面に沿う方向に前記付け根部を貫通しており、
前記内方形成部の表面に沿って径方向内方から流れてくるパージエアを前記貫通孔を通して半径方向外方に吹き出させて前記連結部の表面に沿って流し、吹き出したパージエアをコアンダ効果により前記接続部表面に沿って燃焼ガス流路の主流と混合させる、ことを特徴とするガスタービンパージエアの吹き出し方法。
A gas turbine purge air blowing method in which purge air is blown out from between a stationary blade inner band and a moving blade inner band and mixed with the main flow of the combustion gas flow path,
The blade inner band includes a platform that faces the combustion gas flow path, a front portion that extends radially inward from a tip of the platform, a radially inner end of the front portion that is radially inward of the platform tip. A projecting portion that is located radially outside and projects axially forward from the front portion, and the front portion includes a connecting portion that forms a portion from the tip of the platform to the base of the projecting portion. The inner forming portion constituting a portion from the base portion of the projecting portion to the radially inner end portion of the front portion,
The surface of the connecting portion between the platform and the connecting portion is curved, and a through hole is provided at the base of the protruding portion to allow purge air supplied from the radially inner side to pass . The outer peripheral surface of the through hole that is located at the root portion and that defines the through hole is closed, and the through hole is formed in the root portion from the radially inward side to the radially outward side. Penetrating the root portion in a direction along the surface of the inner forming portion and the surface of the connecting portion,
Purge air that flows from the radially inner side along the surface of the inner forming portion is blown radially outward through the through hole and flows along the surface of the connecting portion. A gas turbine purge air blowing method, characterized in that the gas turbine purge air is mixed with a main flow of a combustion gas flow path along a connection portion surface.
静翼インナーバンドと動翼インナーバンドの間からパージエアを吹き出して燃焼ガス流路の主流と混合させるガスタービンパージエアの吹き出し構造であって、
前記動翼インナーバンドは、燃焼ガス流路に面するプラットフォームと、該プラットフォームの先端から半径方向内側に延びるフロント部と、前記プラットフォーム先端部の径方向内側であって前記フロント部の半径方向内側端よりも径方向外側に位置し前記フロント部から軸方向前方に突出する突出部とを有し、
前記フロント部は、前記プラットフォームの先端から前記突出部の付け根部までの部分を構成する連結部と、前記突出部の付け根部から当該フロント部の径方向内側端部までの部分を構成する内方形成部とからなり、
前記プラットフォームと前記連結部との接続部表面は曲面形状をなし、前記突出部の付け根部は、前記内方形成部の表面に沿って径方向内方から供給されるパージエアを通過させ前記連結部の表面に沿って流す貫通孔を有し、該貫通孔の全体が前記突出部の付け根部に位置するとともに、該貫通孔を区画する該貫通孔の外周面が閉じており、かつ、該貫通孔は、前記付け根部において、径方向内方側から径方向外方側へ、前記内方形成部の表面および前記連結部の表面に沿う方向に前記付け根部を貫通している、ことを特徴とするガスタービンパージエアの吹き出し構造。
A gas turbine purge air blowing structure for blowing purge air from between a stationary blade inner band and a moving blade inner band and mixing it with the main flow of the combustion gas flow path,
The blade inner band includes a platform that faces the combustion gas flow path, a front portion that extends radially inward from a tip of the platform, a radially inner end of the front portion that is radially inward of the platform tip. A projecting portion that is located on the radially outer side and projects forward in the axial direction from the front portion,
The front portion includes a connecting portion that forms a portion from a tip of the platform to a base portion of the protruding portion, and an inner portion that forms a portion from the base portion of the protruding portion to a radially inner end portion of the front portion. Consisting of a forming part,
The connecting portion surface of the platform and the connecting portion has a curved surface shape, and the base portion of the protruding portion allows purge air supplied from the radially inner side along the surface of the inner forming portion to pass through the connecting portion. A through hole that flows along the surface of the through hole, the entire through hole is located at the base of the protruding portion, and the outer peripheral surface of the through hole that defines the through hole is closed, and the through hole The hole penetrates the base portion in the direction along the surface of the inner forming portion and the surface of the connecting portion from the radially inner side to the radially outer side in the root portion. Gas turbine purge air blowing structure.
JP2003276900A 2003-07-18 2003-07-18 Gas turbine purge air blowing method and blowing structure Expired - Lifetime JP4446150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003276900A JP4446150B2 (en) 2003-07-18 2003-07-18 Gas turbine purge air blowing method and blowing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003276900A JP4446150B2 (en) 2003-07-18 2003-07-18 Gas turbine purge air blowing method and blowing structure

Publications (2)

Publication Number Publication Date
JP2005036772A JP2005036772A (en) 2005-02-10
JP4446150B2 true JP4446150B2 (en) 2010-04-07

Family

ID=34213080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276900A Expired - Lifetime JP4446150B2 (en) 2003-07-18 2003-07-18 Gas turbine purge air blowing method and blowing structure

Country Status (1)

Country Link
JP (1) JP4446150B2 (en)

Also Published As

Publication number Publication date
JP2005036772A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
US8186962B2 (en) Fan rotating blade for turbofan engine
US6609884B2 (en) Cooling of gas turbine engine aerofoils
JP5181114B2 (en) High pressure ratio rear fan assembly and gas turbine engine
JP4920228B2 (en) Method and apparatus for assembling a gas turbine engine
US8657576B2 (en) Rotor blade
EP1640563B1 (en) Heat transfer augmentation in a compact heat exchanger pedestral array
JP5507828B2 (en) Asymmetric flow extraction system
JP5264058B2 (en) Fixed turbine airfoil
CA2567940C (en) Methods and apparatuses for gas turbine engines
CN109668174B (en) Trapped vortex combustor for gas turbine engine and method of operating same
US10815789B2 (en) Impingement holes for a turbine engine component
JP2017072128A (en) Stator component
JP2007107516A (en) Turbine shroud section, turbine engine and method for cooling turbine shroud
JP2017141832A (en) Surface contouring
JP2014509710A (en) Cooling scoop for turbine combustion system
JP2017141828A (en) Component for cooling gas turbine engine
JP7237458B2 (en) rotor blade tip
JP2017141825A (en) Airfoil for gas turbine engine
EP2821622B1 (en) Gas turbine engine
JP2017141823A (en) Thermal stress relief of component
US20230243268A1 (en) Airfoils for gas turbine engines
JP2017150477A (en) Accelerator insert for gas turbine engine airfoil
JP4446150B2 (en) Gas turbine purge air blowing method and blowing structure
EP2946081B1 (en) Variable area vane arrangement for a turbine engine
JP4586276B2 (en) Gas turbine purge air mainstream blowing method and structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4446150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term