JP4445464B2 - Optical wavelength measuring device - Google Patents

Optical wavelength measuring device Download PDF

Info

Publication number
JP4445464B2
JP4445464B2 JP2005377530A JP2005377530A JP4445464B2 JP 4445464 B2 JP4445464 B2 JP 4445464B2 JP 2005377530 A JP2005377530 A JP 2005377530A JP 2005377530 A JP2005377530 A JP 2005377530A JP 4445464 B2 JP4445464 B2 JP 4445464B2
Authority
JP
Japan
Prior art keywords
wavelength
light
timing
optical filter
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005377530A
Other languages
Japanese (ja)
Other versions
JP2007178277A (en
Inventor
賢一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2005377530A priority Critical patent/JP4445464B2/en
Publication of JP2007178277A publication Critical patent/JP2007178277A/en
Application granted granted Critical
Publication of JP4445464B2 publication Critical patent/JP4445464B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Description

本発明は、波長が周期的に掃引変化する被測定光の時刻対波長の正確な情報を、容易に求めることができるようにするための技術に関する。   The present invention relates to a technique for easily obtaining accurate information on time versus wavelength of light to be measured whose wavelength periodically sweeps and changes.

光を用いた各種測定システムでは、被測定物に与える光の波長を所定範囲内で掃引して、波長に対する被測定物の特性を求めるものがあり、このような測定システムで一般的に用いられる可変波長光源の一つとして、外部共振器型のものが従来から用いられている。   Various measurement systems using light sweep the wavelength of light applied to the object to be measured within a predetermined range to obtain characteristics of the object to be measured with respect to the wavelength, and are generally used in such measurement systems. As one of the variable wavelength light sources, an external resonator type has been conventionally used.

外部共振器型の可変波長光源は、図11に示すように、半導体レーザ1の一方の端面から出射された光を回折格子2に入射させ、回折格子2から出射された回折光をミラー3で回折格子2に折り返し、その折り返し光に対する回折光を半導体レーザ1に戻す構成となっている。半導体レーザ1から回折格子2を経由してミラー3に至る光路長と、回折格子2に対するミラー3の角度とによって決まる波長で光は共振し、その共振波長の光Pを回折格子2の0次反射光として、あるいは半導体レーザ1の他方の端面からの出射光として取り出すことができる。   As shown in FIG. 11, the external resonator type variable wavelength light source makes the light emitted from one end face of the semiconductor laser 1 incident on the diffraction grating 2 and the diffracted light emitted from the diffraction grating 2 is reflected by the mirror 3. The diffraction grating 2 is folded back and the diffracted light corresponding to the folded light is returned to the semiconductor laser 1. The light resonates at a wavelength determined by the optical path length from the semiconductor laser 1 via the diffraction grating 2 to the mirror 3 and the angle of the mirror 3 with respect to the diffraction grating 2, and the light P having the resonance wavelength is converted to the zeroth order of the diffraction grating 2. It can be extracted as reflected light or as emitted light from the other end face of the semiconductor laser 1.

ここで、半導体レーザ1、回折格子2およびミラー3を所定の配置にするとともに、ミラー3の角度変化の中心位置を選ぶことにより、ミラー3の角度変化に対して出射光Pの波長を連続的に変化させることができる。   Here, the semiconductor laser 1, the diffraction grating 2, and the mirror 3 are arranged in a predetermined manner, and the center position of the angle change of the mirror 3 is selected, whereby the wavelength of the emitted light P is continuously changed with respect to the angle change of the mirror 3. Can be changed.

このような構造の可変波長光源に使用するミラー3として、近年では半導体基板に対するエッチング処理で小型軽量に構成した所謂MEMS構造のものが実現されており、数100Hz以上の高速波長掃引が可能となっている。   As a mirror 3 used for a variable wavelength light source having such a structure, a so-called MEMS structure having a small size and a light weight has been realized in recent years by etching processing on a semiconductor substrate, and high-speed wavelength sweeping of several hundred Hz or more is possible. ing.

ただし、上記のような高速波長掃引を行う可変波長光源では、ノイズやヒステリシスの影響を受けて波長の変化特性、特に波長掃引範囲が変動しやすいため、時間毎の正確な波長情報を検出する必要がある。   However, variable wavelength light sources that perform high-speed wavelength sweeps as described above are susceptible to fluctuations in wavelength, particularly the wavelength sweep range, due to the effects of noise and hysteresis, so accurate wavelength information must be detected at each time. There is.

所定範囲内で波長掃引される光の波長情報を正確に求めるための技術として、1つの素子で複数の透過波長帯域を有するエタロンと称するファブリペロー型の光フィルタを用いる方法がある。   As a technique for accurately obtaining wavelength information of light swept within a predetermined range, there is a method of using a Fabry-Perot type optical filter called an etalon having a plurality of transmission wavelength bands with one element.

エタロンは、図12の(a)に示すように、それぞれ中心波長λ0、λ1、……の透過波長帯域B0、B1、……が所定間隔(Δλとする)で並んだ波長選択特性を有している。   As shown in FIG. 12A, the etalon has wavelength selection characteristics in which transmission wavelength bands B0, B1,... Of center wavelengths λ0, λ1,. ing.

したがって、このエタロンに対して、例えば波長λaから波長λbに直線的に掃引される被測定光を入射し、その透過光を受光器に入射すると、図12の(b)のような受光信号が得られる。   Therefore, for example, when light to be measured that is swept linearly from wavelength λa to wavelength λb is incident on this etalon, and the transmitted light is incident on a light receiver, a light reception signal as shown in FIG. can get.

この受光信号のレベルがピークとなる各タイミングt1〜t6は、被測定光の波長がエタロンの各透過波長帯域B2〜B7の中心波長λ2〜λ7にそれぞれ一致したタイミングであるので、各タイミングt1〜t6と中心波長λ2〜λ7とから、任意の時刻における波長を求めることができる。   The timings t1 to t6 at which the level of the received light signal reaches a peak are timings at which the wavelengths of the light to be measured coincide with the center wavelengths λ2 to λ7 of the transmission wavelength bands B2 to B7 of the etalon, respectively. From t6 and the central wavelengths λ2 to λ7, the wavelength at an arbitrary time can be obtained.

ただし、被測定光の波長掃引範囲が、波長間隔Δλより大きな幅で変動すると、受光信号のレベルがピークとなる各タイミングとエタロンの透過波長帯域との関係が一義的に決まらず、各タイミングと波長との関係を正しく求めることができなくなる。   However, if the wavelength sweep range of the light to be measured fluctuates by a width larger than the wavelength interval Δλ, the relationship between each timing at which the level of the received light signal peaks and the transmission wavelength band of the etalon is not uniquely determined. The relationship with the wavelength cannot be obtained correctly.

これを解決する技術として、入射光に対する透過率が波長の変化に対して単調変化するスロープフィルタを用いて入射光の大凡の波長を求めることで、エタロンの透過光のレベルがピークとなるタイミングと透過波長帯域とを正しく対応付けして、被測定光の時刻対波長の情報を正確に求める方法が提案されている(例えば、特許文献1)。   As a technique for solving this, by obtaining an approximate wavelength of incident light using a slope filter whose transmittance for incident light changes monotonously with respect to the change in wavelength, the timing at which the level of transmitted light of the etalon peaks There has been proposed a method for accurately associating a transmission wavelength band with time-wavelength information of light to be measured (for example, Patent Document 1).

特開2004−132704号公報JP 2004-132704 A

しかしながら、上記したようにスロープフィルタとエタロンとを併用する光波長測定装置では、スロープフィルタの入射光のレベルと出射光のレベルを求める必要があり、そのためには、被測定光を少なくとも3分岐し、その一つの分岐光を第1受光器に入射し、別の分岐光をスロープフィルタを介して第2受光器に入射し、さらに別の分岐光をエタロンを介して第3受光器に入射する構造となり、光学系が複雑化する。   However, as described above, in the optical wavelength measurement device using both the slope filter and the etalon, it is necessary to obtain the level of the incident light and the level of the outgoing light of the slope filter. The one branched light is incident on the first light receiver, the other branched light is incident on the second light receiver via the slope filter, and the other branched light is incident on the third light receiver via the etalon. The structure becomes complicated and the optical system becomes complicated.

また、受光信号のレベル値は、光学素子や受光器の波長依存性の影響を大きく受けるので、そのレベル値の演算から得られた透過率の精度も低く、場合によってはエタロンの透過光のレベルがピークとなるタイミングと透過波長帯域とを正しく対応付けることができない場合も生じる。   In addition, the level value of the received light signal is greatly affected by the wavelength dependence of the optical element and the light receiver, so the accuracy of the transmittance obtained from the calculation of the level value is low, and in some cases the level of the transmitted light of the etalon In some cases, the timing at which the peak reaches cannot be correctly associated with the transmission wavelength band.

さらに、透過率の演算処理が必要となるので、高速掃引に対応できない場合がある。   Furthermore, since transmittance calculation processing is required, it may not be possible to cope with high-speed sweep.

本発明は、この問題を解決し、より簡素な構成で、波長掃引された被測定光の時刻対波長の正確な情報を高速に求めることができる光波長測定装置を提供することを目的としている。   An object of the present invention is to solve this problem and to provide an optical wavelength measuring device capable of obtaining, at a high speed, accurate information on time-to-wavelength of wavelength-swept measured light with a simpler configuration. .

前記目的を達成するために、本発明の請求項1の光波長測定装置は、
波長が周期的に掃引変化する被測定光を受けて分岐する分岐手段(21)と、
前記被測定光の波長掃引範囲内にそれぞれの中心波長がある透過波長帯域を複数有し、前記分岐手段により分岐された第1分岐光を受ける第1光フィルタ(22)と、
前記被測定光の波長掃引範囲内に中心波長があり、且つ該波長掃引範囲内において、前記第1光フィルタの透過波長帯域のいずれかに重複する少なくとも一つの透過波長帯域を有し、前記分岐手段により分岐された第2分岐光を受ける第2光フィルタ(23)と、
前記第1光フィルタを透過した第1透過光と、前記第2光フィルタを透過した第2透過光の強度を検出するための受光部(25)と、
前記受光部の出力信号と前記被測定光の波長の変化方向を示す方向信号とを受け、前記被測定光の波長が単調変化する期間内で、前記第1透過光の強度がピークになる各タイミングと、前記第2透過光の強度が所定値以上となるまたは該所定値を超えてピークとなるタイミングとを検出し、前記第2透過光について検出したタイミングに基づいて前記第1透過光について検出した各タイミングの波長を特定し、前記被測定光の時刻対波長の関係を求める処理部(30)とを備えた光波長測定装置であって、
前記受光部は、前記第1透過光と前記第2透過光とを共通の受光面で受け、前記第1透過光と第2透過光の強度の和に対応した和信号を出力する単一の受光器(25a)により構成され、
前記処理部は、前記和信号が所定のしきい値を越えたタイミングを検出し、該タイミングに基づいて前記第1透過光の強度がピークとなる各タイミングの波長を特定することを特徴としている。
In order to achieve the object, an optical wavelength measuring device according to claim 1 of the present invention comprises:
Branching means (21) for receiving and branching light to be measured whose wavelength is periodically swept;
A first optical filter (22) having a plurality of transmission wavelength bands each having a center wavelength within a wavelength sweep range of the light to be measured, and receiving a first branched light branched by the branching means;
A branch wavelength having a center wavelength within a wavelength sweep range of the light to be measured, and having at least one transmission wavelength band overlapping with any one of the transmission wavelength bands of the first optical filter within the wavelength sweep range; A second optical filter (23) for receiving the second branched light branched by the means;
A light receiving unit (25) for detecting the intensity of the first transmitted light transmitted through the first optical filter and the second transmitted light transmitted through the second optical filter;
Each of the intensity of the first transmitted light reaches a peak within a period in which the wavelength of the light to be measured monotonously changes in response to an output signal of the light receiving unit and a direction signal indicating a change direction of the wavelength of the light to be measured. The timing and the timing at which the intensity of the second transmitted light becomes equal to or higher than a predetermined value or reaches a peak after exceeding the predetermined value are detected, and the first transmitted light is detected based on the timing detected for the second transmitted light. An optical wavelength measuring device comprising: a processing unit (30) that specifies a wavelength of each detected timing and obtains a time-to-wavelength relationship of the measured light;
The light receiving unit receives the first transmitted light and the second transmitted light on a common light receiving surface, and outputs a single signal corresponding to the sum of the intensities of the first transmitted light and the second transmitted light. It is composed of a light receiver (25a),
The processing unit detects a timing at which the sum signal exceeds a predetermined threshold value, and specifies a wavelength at each timing at which the intensity of the first transmitted light reaches a peak based on the timing. .

また、本発明の請求項の光波長測定装置は、請求項記載の光波長測定装置において、
前記第2光フィルタの透過波長帯域の一つが前記被測定光の波長掃引範囲内で前記第1光フィルタの中心波長最長の透過波長帯域と重複し、前記第2光フィルタの透過波長帯域の別の一つが、前記被測定光の波長掃引範囲内で前記第1光フィルタの中心波長最短の透過波長帯域と重複しており、
前記処理部は、前記方向信号が変化した後に最初に前記和信号が前記しきい値を超えたタイミングから所定時間が経過するまでの期間における前記和信号の波形情報と前記方向信号情報とを取得し、該取得した情報に基づいて、前記第1透過光の強度がピークとなる各タイミングの波長を特定することを特徴としている。
Moreover, the optical wavelength measuring device of Claim 2 of this invention is the optical wavelength measuring device of Claim 1 ,
One of the transmission wavelength bands of the second optical filter overlaps the transmission wavelength band of the longest center wavelength of the first optical filter within the wavelength sweep range of the light to be measured. Is overlapped with the shortest transmission wavelength band of the center wavelength of the first optical filter within the wavelength sweep range of the light to be measured,
Wherein the processing unit obtains the first to the sum signal the direction signal information and waveform information of the Kazunobu No. in the period until a predetermined time elapses from a timing that exceeds the threshold value after the direction signal changes And based on this acquired information, the wavelength of each timing when the intensity | strength of said 1st transmitted light becomes a peak is specified, It is characterized by the above-mentioned.

上記したように、本発明の光波長測定装置では、波長が周期的に変化する被測定光を分岐し、その第1分岐光を、波長掃引範囲内にそれぞれの中心波長がある複数の透過波長帯域を有する第1光フィルタに入射し、第2分岐光を被測定光の波長掃引範囲内に中心波長がある透過波長帯域を有する第2光フィルタに入射し、第1光フィルタと第2光フィルタを透過した第1透過光と第2透過光とを受光部の受光器で受光し、その受光部の出力信号と被測定光の波長の変化方向を示す方向信号とに基づいて、被測定光の波長が単調変化する期間内で、第1透過光の強度がピークになる各タイミングと、第2光透過光の強度が所定値以上となるまたは所定値を超えてピークとなるタイミングとを検出し、第2光透過光について検出したタイミングに基づいて第1透過光について検出した各タイミングの波長を特定し、被測定光の時刻対波長の関係を求めている。   As described above, in the optical wavelength measurement device of the present invention, the light to be measured whose wavelength changes periodically is branched, and the first branched light is divided into a plurality of transmission wavelengths each having a central wavelength within the wavelength sweep range. The first optical filter having a band is incident, the second branched light is incident on a second optical filter having a transmission wavelength band having a central wavelength within the wavelength sweep range of the light to be measured, and the first optical filter and the second light The first transmitted light and the second transmitted light that have passed through the filter are received by the light receiver of the light receiving unit, and based on the output signal of the light receiving unit and the direction signal indicating the change direction of the wavelength of the measured light Each timing at which the intensity of the first transmitted light peaks during a period in which the wavelength of the light monotonously changes, and a timing at which the intensity of the second transmitted light reaches a peak or exceeds a predetermined value. At the timing of detecting and detecting the second light transmitted light Identifying a wavelength of the timings detected for the first transmitted light Zui, seeking the order of time versus wavelength of the light to be measured.

このため、スロープフィルタを併用する従来構造のものに比べ、光学系を簡易に構成でき、また、透過率などの演算処理をすることなく、検出されたタイミングの情報のみで被測定光の時刻対波長の情報を得ることができ、高速処理が可能となる。   For this reason, the optical system can be simply configured as compared with the conventional structure using the slope filter, and the time of the light to be measured can be measured only by the information of the detected timing without performing calculation processing such as transmittance. Wavelength information can be obtained, and high-speed processing is possible.

また、光学素子や受光器の波長依存性の影響を大きく受ける受光信号のレベル値から得られる透過率の絶対値を用いず、安定して得られる受光パワーのピーク波長とその時刻を演算に用いているため、高精度な波長測定が可能となる。   In addition, the absolute value of the transmittance obtained from the level value of the received light signal, which is greatly affected by the wavelength dependence of the optical element and the light receiver, is not used, but the peak wavelength of the received light power and its time are used for the calculation. Therefore, highly accurate wavelength measurement is possible.

また、第2光フィルタの透過波長帯域の一つが、第1光フィルタの透過波長帯域のいずれかに重複しているものでは、両光フィルタの透過光の合波あるいは両光フィルタの透過光の受光信号の加算により、被測定光の波長がその重複している透過波長帯域に入ったことを簡単なレベル比較処理で検出できる。   If one of the transmission wavelength bands of the second optical filter overlaps one of the transmission wavelength bands of the first optical filter, the combined transmission light of both optical filters or the transmission light of both optical filters By adding the received light signal, it can be detected by simple level comparison processing that the wavelength of the light under measurement has entered the overlapping transmission wavelength band.

また、受光部を、第1透過光と第2透過光とを共通の受光面で受ける単一の受光器で構成した場合には、光学系をさらに簡素化できる。   Further, when the light receiving unit is configured by a single light receiver that receives the first transmitted light and the second transmitted light on a common light receiving surface, the optical system can be further simplified.

また、第2光フィルタの透過波長帯域の一つが、波長掃引範囲内で第1光フィルタの中心波長最長の透過波長帯域と重複し、第2光フィルタの透過波長帯域の別の一つが、波長掃引範囲内で第1光フィルタの中心波長最短の透過波長帯域と重複しているものでは、被測定光の波長が、その波長掃引範囲内で第1光フィルタの中心波長最長の透過波長帯域に入ったタイミングと中心波長最短の透過波長帯域に入ったタイミングとを簡単なレベル比較処理で検出でき、被測定光の波長がその掃引範囲の両端近傍となるタイミングを容易に特定でき、演算に必要な情報を無駄なく取得できる。   In addition, one of the transmission wavelength bands of the second optical filter overlaps the transmission wavelength band of the longest center wavelength of the first optical filter within the wavelength sweep range, and another one of the transmission wavelength bands of the second optical filter is the wavelength. In the case where it overlaps the transmission wavelength band with the shortest center wavelength of the first optical filter within the sweep range, the wavelength of the light to be measured becomes the transmission wavelength band with the longest central wavelength of the first optical filter within the wavelength sweep range. The timing of entering and the timing of entering the transmission wavelength band with the shortest center wavelength can be detected with a simple level comparison process, and the timing at which the wavelength of the light to be measured is near both ends of the sweep range can be easily identified and required for computation Information can be obtained without waste.

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用した光波長測定装置20の構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of an optical wavelength measuring device 20 to which the present invention is applied.

図1に示しているように、この光波長測定装置20は、図示しない可変波長光源から出射され、波長が一定周期で変化する被測定光Pを、ハーフミラー21aとミラー21bとからなる分岐手段21で受けて2つの光路に分岐し、その一方の第1分岐光Paを第1光フィルタ22に入射し、他方の第2の分岐光Pbを第2光フィルタ23に入射する。   As shown in FIG. 1, this optical wavelength measuring device 20 splits measured light P, which is emitted from a variable wavelength light source (not shown) and whose wavelength changes at a constant cycle, from a half mirror 21a and a mirror 21b. 21 is branched into two optical paths, one of the first branched lights Pa is incident on the first optical filter 22 and the other second branched light Pb is incident on the second optical filter 23.

なお、被測定光Pとともに入力される信号Qは、被測定光Pの波長の変化方向を示す方向信号であり、例えば、波長が時間経過に伴って短くなる期間には1(ハイレベル)、波長が時間経過に伴って長くなる期間には0(ローレベル)が入力されるものとする。   The signal Q input together with the measured light P is a direction signal indicating the direction of change of the wavelength of the measured light P. For example, 1 (high level) during a period in which the wavelength becomes shorter as time elapses, It is assumed that 0 (low level) is input during a period in which the wavelength increases with time.

第1光フィルタ22は、エタロンと称するファブリペロー型の光フィルタであり、被測定光Pの所望の波長可変範囲(例えば1500〜1600nm)内で、図2の(a)のように、高い透過率を示す複数の透過波長帯域B0〜B9(この例では10個)を有している。各透過波長帯域B0〜B9の中心波長はλ0〜λ9とし、その間隔Δλは一定とみなせる。   The first optical filter 22 is a Fabry-Perot optical filter called an etalon, and has a high transmission as shown in FIG. 2A within a desired wavelength variable range (for example, 1500 to 1600 nm) of the light P to be measured. It has a plurality of transmission wavelength bands B0 to B9 (10 in this example) indicating the rate. The center wavelengths of the transmission wavelength bands B0 to B9 are λ0 to λ9, and the interval Δλ can be regarded as constant.

なお、第1光フィルタ22の透過波長帯域は、被測定光Pの所望の波長可変範囲の外にも存在し、被測定光Pの波長掃引範囲が変動してB0〜B9以外の透過波長帯域に達する場合があるが、所望の波長掃引範囲の両端近傍の透過波長帯域B0、B9は、被測定光Pの波長掃引範囲の変動を見込んでその内側に設定されており、被測定光Pは、波長掃引範囲が変動してもその周期内で必ず透過波長帯域B0、B9を透過する。   Note that the transmission wavelength band of the first optical filter 22 exists outside the desired wavelength variable range of the light to be measured P, and the wavelength sweep range of the light to be measured P varies so that the transmission wavelength band other than B0 to B9 is obtained. However, the transmission wavelength bands B0 and B9 in the vicinity of both ends of the desired wavelength sweep range are set on the inner side in consideration of the fluctuation of the wavelength sweep range of the light P to be measured. Even if the wavelength sweep range fluctuates, the transmission wavelength bands B0 and B9 are always transmitted within the period.

第2光フィルタ23は、第1光フィルタ22と同様にエタロンと称するファブリペロー型の光フィルタであり、図2の(b)のように、前記した被測定光Pの波長可変範囲内に中心波長をもち高い透過率を示す2つの透過波長帯域C0、C1を有している。透過波長帯域C0、C1は、第1光フィルタ22の両端の透過波長帯域B0、B9と重複しており、透過波長帯域C0、C1の中心波長はλ0、λ9と一致している(厳密には誤差があるが、その誤差の影響については後述する)。   The second optical filter 23 is a Fabry-Perot type optical filter called an etalon like the first optical filter 22, and is centered within the wavelength variable range of the measured light P as shown in FIG. It has two transmission wavelength bands C0 and C1 having a wavelength and high transmittance. The transmission wavelength bands C0 and C1 overlap with the transmission wavelength bands B0 and B9 at both ends of the first optical filter 22, and the center wavelengths of the transmission wavelength bands C0 and C1 coincide with λ0 and λ9 (strictly speaking, There is an error, but the effect of that error will be described later).

第1光フィルタ22を透過した第1透過光Pa′と第2光フィルタ23を透過した第2透過光Pb′は、受光部25に入射される。   The first transmitted light Pa ′ transmitted through the first optical filter 22 and the second transmitted light Pb ′ transmitted through the second optical filter 23 are incident on the light receiving unit 25.

受光部25は、第1透過光Pa′と第2透過光Pb′の強度を検出するためのものであり、ここでは両透過光Pa′、Pb′を共通の受光面で受けて、両透過光Pa′、Pb′の強度の和に対応してレベルが変化する信号(以下和信号という)Vを出力する単一の受光器25aにより構成されている。なお、干渉を防ぐために各透過光Pa′、Pb′は受光器25aの受光面の異なる位置に入射される。   The light receiving unit 25 is for detecting the intensities of the first transmitted light Pa ′ and the second transmitted light Pb ′. Here, the transmitted light Pa ′ and Pb ′ are received by a common light receiving surface, and both transmitted light is transmitted. It is composed of a single light receiver 25a that outputs a signal V whose level changes in accordance with the sum of the intensities of the light Pa 'and Pb' (hereinafter referred to as sum signal). In order to prevent interference, the transmitted light Pa ′ and Pb ′ are incident on different positions on the light receiving surface of the light receiver 25a.

和信号Vは、方向信号Qとともに処理部30に入力される。処理部30は、被測定光Pの波長が単調変化する期間内で、第1透過光Pa′の強度がピークになる各タイミングと、第2光透過光Pb′の強度が所定値以上となるあるいはピークとなるタイミングとを検出し、第2光透過光Pb′について検出したタイミングから第1透過光Pa′について検出した各タイミングの波長を特定して、被測定光Pの時刻対波長の関係を求める。   The sum signal V is input to the processing unit 30 together with the direction signal Q. In the processing unit 30, the timing at which the intensity of the first transmitted light Pa ′ peaks and the intensity of the second transmitted light Pb ′ become equal to or greater than a predetermined value within a period in which the wavelength of the measured light P changes monotonously. Alternatively, the timing of the peak is detected, the wavelength of each timing detected for the first transmitted light Pa ′ is specified from the timing detected for the second light transmitted light Pb ′, and the time-wavelength relationship of the measured light P Ask for.

ただし、この例では、透過波長帯域B0、B9と透過波長帯域C0、C1とが重複しており、その中心波長もλ0、λ9で一致しているので、被測定光Pの波長が、第1光フィルタ22の透過波長帯域B0、B9の中心波長λ0、λ9に一致するタイミングと、第2光フィルタ23の透過波長帯域C0、C1の中心波長に一致するタイミングとは同一である。この処理部30は、上記した受光部25の構成と2つの光フィルタ22、23の透過波長帯域の重なりを利用して、第1透過光Pa′の強度がピークとなるタイミングの波長を特定し、被測定光Pの時刻対波長の関係を求めている。   However, in this example, the transmission wavelength bands B0 and B9 and the transmission wavelength bands C0 and C1 overlap, and the center wavelengths thereof also coincide with each other at λ0 and λ9. The timing that coincides with the center wavelengths λ0 and λ9 of the transmission wavelength bands B0 and B9 of the optical filter 22 and the timing that coincides with the center wavelengths of the transmission wavelength bands C0 and C1 of the second optical filter 23 are the same. The processing unit 30 specifies the wavelength of the timing at which the intensity of the first transmitted light Pa ′ reaches a peak by using the configuration of the light receiving unit 25 and the overlapping of the transmission wavelength bands of the two optical filters 22 and 23. The relationship between the time of measurement and the wavelength of the light P to be measured is obtained.

即ち、図1に示しているように、受光部25から出力された和信号Vはコントローラ31およびA/D変換器32に入力される。   That is, as shown in FIG. 1, the sum signal V output from the light receiving unit 25 is input to the controller 31 and the A / D converter 32.

コントローラ31は、和信号Vと予め設定されたしきい値Vrとを比較し、方向信号Qが0から1あるいは1から0へ切り替わってから最初に信号Vがしきい値Vrを越えるタイミングをデータ取得の開始タイミングts、その次に信号Vがしきい値Vrを越えるタイミングをデータ取得の終了タイミングteとして、ts〜teの期間だけA/D変換器32による和信号Vのサンプリングを行わせ、デジタルの波形情報Dvに変換して、方向信号Qの情報とともに第1メモリ33に記憶させる。   The controller 31 compares the sum signal V with a preset threshold value Vr, and the timing at which the signal V first exceeds the threshold value Vr after the direction signal Q is switched from 0 to 1 or 1 to 0 is set as data. The acquisition start timing ts and then the timing when the signal V exceeds the threshold value Vr is set as the data acquisition end timing te, and the sum signal V is sampled by the A / D converter 32 only during the period ts to te, It is converted into digital waveform information Dv and stored in the first memory 33 together with the direction signal Q information.

演算部34は、第1メモリ33に記憶された波形情報Dvと方向信号Qとから時刻対波長の関係を求め、その情報を第2メモリ35に記憶する。   The computing unit 34 obtains a time-wavelength relationship from the waveform information Dv and the direction signal Q stored in the first memory 33, and stores the information in the second memory 35.

ここで、演算部34は、被測定光Pの波長が単調変化している期間の時刻対波長の関係を近似的に表す関数(例えば3次関数)λ=F(t)を確定するための係数を波形情報Dvと方向信号Qに基づいて求め、その期間の時刻情報(例えばts、te)とともに第2メモリ35に記憶し、外部から指定された時刻txにおける波長の出力が要求されたとき、第2メモリ35に記憶されている情報に基づいて要求時刻の波長λxを算出する。   Here, the calculation unit 34 determines a function (for example, a cubic function) λ = F (t) that approximately represents the relationship between time and wavelength during a period in which the wavelength of the light P to be measured is monotonically changing. When the coefficient is obtained based on the waveform information Dv and the direction signal Q, stored in the second memory 35 together with time information (for example, ts, te) during that period, and output of the wavelength at the time tx designated from the outside is requested Based on the information stored in the second memory 35, the wavelength λx of the request time is calculated.

次に、この光波長測定装置20の動作を説明する。
入射される被測定光Pの波長が、例えば図3の(a)に示すように、波長λ0より長い波長から波長λ9より短い波長までの範囲内を一定周期で掃引されているものとする。なお、ここでは、被測定光Pの波長が短い方へ単調変化する期間について説明するが、波長が長い方へ単調変化する期間についても同様の処理がなされるものとする。
Next, the operation of the optical wavelength measuring device 20 will be described.
For example, as shown in FIG. 3A, the wavelength of the incident measurement light P is swept within a range from a wavelength longer than the wavelength λ0 to a wavelength shorter than the wavelength λ9 at a constant period. Here, a period in which the wavelength of the light P to be measured is monotonously changed toward a shorter wavelength will be described, but the same processing is performed for a period in which the wavelength is monotonously changed toward a longer wavelength.

このとき、分岐手段21により分岐された第1分岐光Paと第2分岐光Pbは、それぞれ第1光フィルタ22、第2光フィルタ23に入射され、図3の(b)のように強度変化する第1透過光Pa′と、図3の(c)のように強度変化する第2透過光Pb′とが受光部25の受光器25aに入射される。   At this time, the first branched light Pa and the second branched light Pb branched by the branching unit 21 are incident on the first optical filter 22 and the second optical filter 23, respectively, and the intensity changes as shown in FIG. The first transmitted light Pa ′ and the second transmitted light Pb ′ whose intensity changes as shown in FIG. 3C are incident on the light receiver 25 a of the light receiving unit 25.

ここで、受光器25aに対する第1透過光Pa′の入射強度は、被測定光Pの波長が各透過波長帯域B0〜B9の中心波長λ0〜λ9にそれぞれ一致するタイミングt0〜t9でピークとなり、また、第2透過光Pb′の入射強度はタイミングt0、t9でピークとなる。   Here, the incident intensity of the first transmitted light Pa ′ with respect to the light receiver 25a peaks at timings t0 to t9 when the wavelength of the light P to be measured coincides with the center wavelengths λ0 to λ9 of the transmitted wavelength bands B0 to B9, respectively. Further, the incident intensity of the second transmitted light Pb ′ peaks at timings t0 and t9.

したがって、和信号Vは、図4の(a)のように、被測定光Pの波長がλ0、λ9になるタイミングt0、t9でピーク値Vp0、Vp9となり、被測定光Pの波長がλ1〜λ8になる各タイミングt1〜t8で、ピーク値Vp0、Vp9より小さいピーク値Vp1〜Vp8となる。   Therefore, as shown in FIG. 4A, the sum signal V has peak values Vp0 and Vp9 at timings t0 and t9 when the wavelength of the measured light P becomes λ0 and λ9, and the wavelength of the measured light P is from λ1 to λ1. At each timing t1 to t8 when λ8 is reached, the peak values Vp1 to Vp8 are smaller than the peak values Vp0 and Vp9.

この和信号Vは、図4の(b)に示す方向信号Q(この場合Q=1)とともにコントローラ31に入力される。コントローラ31は、大きいピーク値Vp0、Vp9と、小さいピーク値Vp1〜Vp8の間に設定されているしきい値Vrと和信号Vとを比較して、方向信号Qが0から1に切り替わってから最初に和信号Vがしきい値Vrを超えるタイミングtsと2番目に和信号Vがしきい値Vrを超えるタイミングteとを検出し、その間だけA/D変換器32によるA/D変換処理と第1メモリ33によるデータの記憶処理がなされるように制御するための制御信号を例えば図4の(c)のように出力する。   This sum signal V is input to the controller 31 together with a direction signal Q (Q = 1 in this case) shown in FIG. The controller 31 compares the large peak values Vp0 and Vp9 with the threshold value Vr set between the small peak values Vp1 to Vp8 and the sum signal V, and after the direction signal Q switches from 0 to 1. First, a timing ts when the sum signal V exceeds the threshold value Vr and a timing te when the sum signal V exceeds the threshold value Vr second are detected, and the A / D conversion process by the A / D converter 32 is performed only during that time. For example, a control signal for controlling the storage process of data by the first memory 33 is output as shown in FIG.

このため、第1メモリ33には、時刻ts〜teまでの和信号Vの時系列データ(波形情報Dv)と方向信号Qの値とが記憶されることになる。   For this reason, the time series data (waveform information Dv) of the sum signal V and the value of the direction signal Q from time ts to te are stored in the first memory 33.

なお、波形情報Dvと方向信号Qを第1メモリ33に記憶する際、データ取得の開始タイミング毎に第1メモリ33の書き込みアドレスを初期値に戻すようにすれば、容量の少ないメモリが使用できる。   When the waveform information Dv and the direction signal Q are stored in the first memory 33, if the write address of the first memory 33 is returned to the initial value at each data acquisition start timing, a memory with a small capacity can be used. .

演算部34は、この波形情報Dvと方向信号Qとを読み出し、大きさがしきい値Vrより小さい範囲でピークとなる各タイミングt1〜t8を、第1透過光Pa′がピークとなるタイミングとして求める。そして、このときの方向信号Qの値が波長減少方向期間を示す1であるので、各タイミングt1〜t8に波長をλ1〜λ8の順でそれぞれ対応付けする。なお、方向信号Qの値が0の場合には、各タイミングt1〜t8に波長をλ8〜λ1の順にそれぞれ対応付けする。   The calculation unit 34 reads out the waveform information Dv and the direction signal Q, and obtains the respective timings t1 to t8 at which the magnitude is in a range smaller than the threshold value Vr as the timing at which the first transmitted light Pa ′ reaches a peak. Since the value of the direction signal Q at this time is 1 indicating the wavelength decreasing direction period, the wavelengths are associated with the timings t1 to t8 in the order of λ1 to λ8. When the value of the direction signal Q is 0, the wavelengths are associated with the timings t1 to t8 in the order of λ8 to λ1.

そして、タイミングt1〜t8とそれに対応する波長λ1〜λ8の組合せ(ti,λi)を使って、最小2乗法で近似関数を求め、その近似関数の係数情報をその期間ts〜teの情報とともに第2メモリ35に格納する。   Then, an approximate function is obtained by the least square method using the combinations (ti, λi) of the timings t1 to t8 and the corresponding wavelengths λ1 to λ8, and coefficient information of the approximate function together with information of the periods ts to te is obtained. 2 Store in the memory 35.

以下、上記処理を繰り返し行い、被測定光Pの波長が単調変化する期間毎の時刻対波長の関係を表す情報を求めて第2メモリ35に順次記憶する。   Thereafter, the above process is repeated, and information indicating the relationship between time and wavelength for each period in which the wavelength of the light P to be measured monotonously changes is obtained and stored in the second memory 35 sequentially.

そして、例えば外部から時刻情報txが指定されると、その時刻が含まれる期間の関数F(t)の情報を第2メモリ35から読み出し、指定された時刻txを代入してその時刻における波長λx=F(tx)を算出し、外部に通知する。   For example, when the time information tx is designated from the outside, the information of the function F (t) of the period including the time is read from the second memory 35, the designated time tx is substituted, and the wavelength λx at the time is designated. = F (tx) is calculated and notified to the outside.

なお、上記処理は、被測定光Pの波長が単調減少する期間と単調増加する期間について行ってもよく、また、一方の単調変化期間だけについて行ってもよい。   The above processing may be performed for a period in which the wavelength of the light P to be measured monotonously decreases and a period in which the wavelength of the measured light P monotonously increases, or may be performed only for one monotonous change period.

また、この実施形態のように、受光部25の出力信号が第1透過光Pa′と第2透過光Pb′の強度の和に対応した和信号である場合、第1光フィルタ22と第2光フィルタ23の重複する透過波長帯域同士の中心波長に差があると、被測定光Pの波長が2つの中心波長の間になったときに和信号Vがピークになる可能性があり、このピークタイミングを第1光フィルタ22の透過波長帯域の中心波長に対応づけて演算を行うと誤差が発生する。   Further, as in this embodiment, when the output signal of the light receiving unit 25 is a sum signal corresponding to the sum of the intensities of the first transmitted light Pa ′ and the second transmitted light Pb ′, the first optical filter 22 and the second optical filter 22 If there is a difference in the center wavelength between overlapping transmission wavelength bands of the optical filter 23, the sum signal V may peak when the wavelength of the light P to be measured is between the two center wavelengths. An error occurs when the calculation is performed with the peak timing associated with the center wavelength of the transmission wavelength band of the first optical filter 22.

したがって、この実施形態では、重複した透過波長帯域についてのピークタイミングと波長の組合せを演算から除外している。   Therefore, in this embodiment, the combination of the peak timing and the wavelength for the overlapping transmission wavelength band is excluded from the calculation.

このように実施形態の光波長測定装置20では、被測定光Pの波長掃引範囲内に複数の透過波長帯域B0〜B9を有するファブリペロー型の第1光フィルタ22に加え、被測定光Pの波長掃引範囲内で第1光フィルタ22の透過波長帯域と重なる2つの透過波長帯域C0、C1を有する第2光フィルタ23を用い、被測定光Pの波長が単調変化する期間内で、第2光フィルタ23を透過した第2透過光Pb′の強度が所定値以上となるタイミングを検出し、そのタイミングに基づいて第1透過光Pa′の強度がピークとなる各タイミングと波長とを対応させているので、被測定光Pの波長掃引範囲が変動しても時刻対波長の関係を正確に求めることができる。   Thus, in the optical wavelength measuring device 20 of the embodiment, in addition to the Fabry-Perot type first optical filter 22 having a plurality of transmission wavelength bands B0 to B9 within the wavelength sweep range of the measured light P, the measured light P The second optical filter 23 having two transmission wavelength bands C0 and C1 that overlap the transmission wavelength band of the first optical filter 22 within the wavelength sweep range is used, and the second optical filter 23 is within a period in which the wavelength of the light P to be measured changes monotonously. The timing at which the intensity of the second transmitted light Pb ′ that has passed through the optical filter 23 becomes equal to or greater than a predetermined value is detected, and the timing at which the intensity of the first transmitted light Pa ′ reaches a peak is associated with the wavelength based on that timing. Therefore, even if the wavelength sweep range of the light P to be measured varies, the time-wavelength relationship can be accurately obtained.

また、光の透過率を求めるための光学系と演算処理が不要で構造を簡素化でき、検出されたタイミングの情報のみで被測定光の時刻対波長の情報を得ることができるので、高速で高精度な処理が可能となる。   In addition, the optical system for calculating the light transmittance and calculation processing are not required, the structure can be simplified, and the time-to-wavelength information of the light to be measured can be obtained from only the detected timing information. High-precision processing is possible.

また、上記実施形態のように、第2光フィルタ23の透過波長帯域を第1光フィルタ22の透過波長帯域に重複させ、さらに、第1透過光Pa′と第2透過光Pb′とを単一の受光器25aの受光面に入射して、両透過光の強度の和に対応した和信号Vを出力する構成にした場合、被測定光Pの波長が重複した透過波長帯域に入ったことを受光部25から出力される和信号Vのレベル比較のみで容易に行うことができ、受光部25や処理部30の構成を簡素化できるという利点がある。   Further, as in the above embodiment, the transmission wavelength band of the second optical filter 23 is overlapped with the transmission wavelength band of the first optical filter 22, and the first transmission light Pa ′ and the second transmission light Pb ′ are simply combined. When it is configured to output a sum signal V corresponding to the sum of the intensities of both transmitted lights by entering the light receiving surface of one light receiver 25a, the wavelength of the light P to be measured has entered an overlapping transmission wavelength band. Can be easily performed only by comparing the level of the sum signal V output from the light receiving unit 25, and the configuration of the light receiving unit 25 and the processing unit 30 can be simplified.

また、上記実施形態では、第2光フィルタ23の2つの透過波長帯域C0、C1を、第1光フィルタ22の中心波長最長の透過波長帯域B0と中心波長最短の透過波長帯域B9にそれぞれ重複させているので、被測定光Pの波長が単調変化している期間で和信号Vが最初にしきい値Vrを越えたタイミングをデータ取得の開始タイミングとし、次にしきい値Vrを越えたタイミングをデータ取得の終了タイミングとすることができ、被測定光Pの掃引波長範囲が変動しても、常に透過波長帯域B0〜B9の範囲内の波形データを取得することができ、無駄なデータ取得をしないで済む。   In the above embodiment, the two transmission wavelength bands C0 and C1 of the second optical filter 23 are overlapped with the transmission wavelength band B0 having the longest central wavelength and the transmission wavelength band B9 having the shortest central wavelength, respectively. Therefore, the timing at which the sum signal V first exceeds the threshold value Vr during the period in which the wavelength of the measured light P is monotonously changed is used as the data acquisition start timing, and then the timing at which the sum signal V exceeds the threshold value Vr is the data The acquisition end timing can be set, and even if the sweep wavelength range of the light P to be measured fluctuates, waveform data within the transmission wavelength band B0 to B9 can always be acquired, and unnecessary data acquisition is not performed. Just do it.

なお、データの取得終了タイミングは、データ取得開始タイミングから一定時間が経過した後に設定してもよく、さらに波長の単調変化期間のうちの一方期間だけでデータを取得する場合には、第2光フィルタ23の透過波長帯域を一つにして、これを第1光フィルタ22の透過波長帯域B0、B9のいずれか一方に重複させればよい。   The data acquisition end timing may be set after a certain time has elapsed from the data acquisition start timing. Further, when data is acquired only in one of the monotonic change periods of the wavelength, the second light The transmission wavelength band of the filter 23 is made one, and this may be overlapped with one of the transmission wavelength bands B0 and B9 of the first optical filter 22.

また、上記実施形態では、受光部25の和信号Vのレベル比較により、被測定光Pの波長がその重複した透過波長帯域に入ったことを検知してデータ取得を開始していたが、データ取得期間を特に限定せずに、和信号Vの波形情報と方向信号Qとを、ある時刻(例えば電源投入時)から第1メモリ33の記憶容量が許す限り連続的に記憶し、書き込みアドレスが最終値に達した後、書き込みアドレスを初期値に戻して記憶処理を継続する方法を採用してもよく、その場合には、図5に示す処理部30のように、コントローラ31は不要となる。また、この場合、演算部34は、方向信号Qが変化してから和信号Vのレベルが最初にしきい値Vrを超えるタイミングに被測定光Pの波長が透過波長帯域B0(またはB9)に達したものと判断し、これに続くしきい値Vrより低い各ピークの各タイミングに対し第1光フィルタ22の各透過波長帯域の各中心波長を順番に特定して、前記演算を行い、時刻対波長の関係を示す情報を順次求めて第2メモリ35に記憶する。   In the above-described embodiment, the level of the sum signal V of the light receiving unit 25 is compared to detect that the wavelength of the light P to be measured has entered the overlapping transmission wavelength band. Without specifically limiting the acquisition period, the waveform information of the sum signal V and the direction signal Q are continuously stored from a certain time (for example, when the power is turned on) as long as the storage capacity of the first memory 33 permits, and the write address is After reaching the final value, a method of returning the write address to the initial value and continuing the storage process may be adopted. In this case, the controller 31 is not required as in the processing unit 30 shown in FIG. . Further, in this case, the calculation unit 34 reaches the transmission wavelength band B0 (or B9) at the timing when the level of the sum signal V first exceeds the threshold value Vr after the direction signal Q changes. The center wavelength of each transmission wavelength band of the first optical filter 22 is specified in order for each timing of each peak lower than the threshold value Vr following this, and the above calculation is performed, Information indicating the wavelength relationship is sequentially obtained and stored in the second memory 35.

また、上記のようにデータの取得期間を限定しない場合、第1光フィルタ22の透過波長帯域と第2光フィルタの透過波長帯域の重複数は1でもよく、その重複位置も任意である。例えば、図6の(a)に示す第1光フィルタ22の一つ透過波長帯域B4に対して、図6の(b)のように第2光フィルタ23の透過波長帯域C0を重複させることも可能である。また、第1光フィルタ22と第2光フィルタ23の透過波長帯域の重複数は、被測定光Pの波長が、その重複している透過波長帯域のいずれに入ったかを特定できる範囲内であれば3以上であってもよい。   Further, when the data acquisition period is not limited as described above, the overlapping number of the transmission wavelength band of the first optical filter 22 and the transmission wavelength band of the second optical filter may be 1, and the overlapping position is arbitrary. For example, the transmission wavelength band C0 of the second optical filter 23 may be overlapped as shown in FIG. 6B with respect to one transmission wavelength band B4 of the first optical filter 22 shown in FIG. Is possible. In addition, the overlap of the transmission wavelength bands of the first optical filter 22 and the second optical filter 23 is within a range in which it is possible to specify which of the overlapping transmission wavelength bands the wavelength of the measured light P is in. 3 or more.

また、上記実施形態では、第1光フィルタ22の透過光Pa′と第2光フィルタ23の透過光Pb′とを単一の受光器25aの受光面に入射して、受光器25aから両透過光の強度の和に対応した和信号Vを出力させていたが、図7に示す光波長測定装置40のように、受光部25を、第1透過光Pa′を受ける第1受光器25bと、第2透過光Pb′を受ける第2受光器25cとにより構成し、その出力信号Va、Vbを処理部30の加算器36で加算して両透過光の強度の和に対応した和信号Vsを求め、A/D変換器32およびコントローラ31に入力し、和信号Vsに対して前記和信号Vと同様の処理を行うこともできる。   Further, in the above embodiment, the transmitted light Pa ′ of the first optical filter 22 and the transmitted light Pb ′ of the second optical filter 23 are incident on the light receiving surface of the single light receiver 25a, and both transmitted from the light receiver 25a. Although the sum signal V corresponding to the sum of the light intensities is output, like the optical wavelength measuring device 40 shown in FIG. 7, the light receiving unit 25 is connected to the first light receiver 25b that receives the first transmitted light Pa ′. And a second light receiver 25c that receives the second transmitted light Pb '. The output signals Va and Vb are added by the adder 36 of the processing unit 30 and the sum signal Vs corresponding to the sum of the intensities of both transmitted lights. Can be input to the A / D converter 32 and the controller 31, and the same processing as the sum signal V can be performed on the sum signal Vs.

また、上記実施形態では、第1光フィルタ22と第2光フィルタ23の透過波長帯域を重複させていたが、両光フィルタの透過波長帯域を離間させてもよい。ただし、上記したように第2光フィルタ23の透過光によりデータの取得期間を決定する場合には、図8の(a)示す第1光フィルタ22の透過波長帯域B0〜B9に対して、第2光フィルタ23の透過波長帯域C0、C1が図8の(b)のように両端の透過波長帯域B0、B9の近傍(この場合は僅かに内側)に設定する。   In the above embodiment, the transmission wavelength bands of the first optical filter 22 and the second optical filter 23 are overlapped. However, the transmission wavelength bands of both optical filters may be separated. However, as described above, when the data acquisition period is determined by the transmitted light of the second optical filter 23, the transmission wavelength band B0 to B9 of the first optical filter 22 shown in FIG. The transmission wavelength bands C0 and C1 of the two optical filters 23 are set in the vicinity of the transmission wavelength bands B0 and B9 at both ends (in this case, slightly inside) as shown in FIG. 8B.

また、図8の波長選択特性を有する光フィルタ22、23を用いる場合には、図9に示す光波長測定装置50のように、受光部25として第1透過光Pa′と第2透過光Pb′をそれぞれ受光する2つの受光器25b、25cにより構成し、受光器25bの出力信号Vaを処理部30のA/D変換器32に入力し、受光器25cの出力信号Vbをコントローラ31に入力する。   When the optical filters 22 and 23 having the wavelength selection characteristics shown in FIG. 8 are used, the first transmitted light Pa ′ and the second transmitted light Pb are used as the light receiving unit 25 as in the optical wavelength measuring device 50 shown in FIG. 'Is received by two light receivers 25b and 25c, the output signal Va of the light receiver 25b is input to the A / D converter 32 of the processing unit 30, and the output signal Vb of the light receiver 25c is input to the controller 31. To do.

そして、コントローラ31において、出力信号Vbに現れるピーク値より低い値に設定されたしきい値Vr′と出力信号Vbとを比較し、波長の単調変化期間で最初に出力信号Vbがしきい値Vr′を超えるタイミングを出力信号Vaに対するデータ取得開始タイミング、次に出力信号Vbがしきい値Vr′を超えるタイミング(あるいは一定時間経過後)を出力信号Vaに対するデータ取得終了タイミングとする。   Then, the controller 31 compares the output signal Vb with a threshold value Vr ′ set to a value lower than the peak value appearing in the output signal Vb, and the output signal Vb is first set to the threshold value Vr in the monotonic change period of the wavelength. The timing at which 'is exceeded is the data acquisition start timing for the output signal Va, and the timing at which the output signal Vb exceeds the threshold value Vr' (or after a certain time has elapsed) is the data acquisition end timing for the output signal Va.

また、図8の波長選択特性の光フィルタ22、23を用いる場合で、且つ前記したように、データ取得期間を限定しない場合には、図10に示す処理部30のように、受光器25b、25cの出力信号Va、VbをA/D変換器32A、32Bによりデジタルの波形情報Dva、Dvbに変換して方向信号Qとともに第1メモリ33に順次記憶し、演算部34により第1メモリ33に記憶された出力信号Vbがしきい値Vr′を超えるタイミングを、被測定光Pの波長が第2光フィルタ23の透過波長帯域に入ったタイミングとして検出し、そのタイミングと方向信号Qの値とから、出力信号Vaがピークとなる各タイミングにおける波長を特定して、前記同様に時刻対波長の関係を示す情報を求める。   In the case where the optical filters 22 and 23 having the wavelength selection characteristics shown in FIG. 8 are used and the data acquisition period is not limited as described above, the light receiver 25b, The output signals Va and Vb of 25c are converted into digital waveform information Dva and Dvb by A / D converters 32A and 32B, and are sequentially stored in the first memory 33 together with the direction signal Q, and are stored in the first memory 33 by the arithmetic unit 34. The timing at which the stored output signal Vb exceeds the threshold value Vr ′ is detected as the timing at which the wavelength of the measured light P enters the transmission wavelength band of the second optical filter 23, and the timing and the value of the direction signal Q From this, the wavelength at each timing when the output signal Va peaks is specified, and information indicating the relationship between time and wavelength is obtained in the same manner as described above.

なお、前記したように、両光フィルタの透過波長帯域が離間している場合には、第2透過光Pb′の強度がピークになる、即ち、出力信号Vbがピークになるタイミングと第2光フィルタ23の透過波長帯域の中心波長とを対応づけることができるので、前記したしきい値Vr′による比較をおこなわずに、出力信号Vbがピークになるタイミングを検出し、その検出タイミングに基づいて、第1透過光Pa′の強度がピークとなるタイミングの波長を特定してもよく、また、この場合には、出力信号Vbがピークになるタイミングと波長とを含めて演算に用いることもできる。   As described above, when the transmission wavelength bands of the two optical filters are separated from each other, the intensity of the second transmitted light Pb ′ reaches the peak, that is, the timing at which the output signal Vb reaches the peak and the second light. Since the center wavelength of the transmission wavelength band of the filter 23 can be correlated, the timing at which the output signal Vb reaches its peak is detected without performing the comparison using the threshold value Vr ′, and based on the detection timing. The wavelength of the timing at which the intensity of the first transmitted light Pa ′ reaches a peak may be specified. In this case, the timing and the wavelength at which the output signal Vb peaks can be used for calculation. .

また、このようにデータ取得期間を限定しないで時刻対波長の関係を示す情報を求める構成の場合、第2光フィルタ23の透過波長帯域は1つでもよく、また、被測定光Pの波長掃引範囲の変動があっても波長特定ができる範囲内で3つ以上の任意の数であってもよい。   In addition, in the case of the configuration for obtaining information indicating the relationship between time and wavelength without limiting the data acquisition period as described above, the transmission wavelength band of the second optical filter 23 may be one, and the wavelength sweep of the light P to be measured P Even if there is a variation in the range, the number may be any number of three or more within the range in which the wavelength can be specified.

また、前記実施形態では、処理部30は、外部から指定された時刻txに対応する波長情報λxを算出して出力するように構成されていたが、時間帯波長の関係を示す情報(近似関数の係数情報)を、その情報が適用される時間帯の情報とともに自発的に出力し、これを受ける側で波長を算出させてもよい。   In the above-described embodiment, the processing unit 30 is configured to calculate and output the wavelength information λx corresponding to the time tx designated from the outside. May be output spontaneously together with information on the time zone to which the information is applied, and the wavelength may be calculated on the receiving side.

本発明の実施形態の構成を示す図The figure which shows the structure of embodiment of this invention 実施形態の要部の波長選択特性図Wavelength selection characteristic diagram of the main part of the embodiment 実施形態の動作説明図Operation explanatory diagram of the embodiment 実施形態の動作説明図Operation explanatory diagram of the embodiment 実施形態の要部の変形例を示す図The figure which shows the modification of the principal part of embodiment. 実施形態の要部の別の波長選択特性図Another wavelength selective characteristic diagram of the main part of the embodiment 本発明の別の実施形態の構成図Configuration diagram of another embodiment of the present invention 実施形態の要部の別の波長選択特性図Another wavelength selective characteristic diagram of the main part of the embodiment 図8の選択特性を有する光フィルタを用いた別の実施形態の構成図The block diagram of another embodiment using the optical filter which has the selection characteristic of FIG. 図9の実施形態の要部の変形例を示す図The figure which shows the modification of the principal part of embodiment of FIG. 外部共振型の可変波長光源の構成を示す図Diagram showing the configuration of an external resonant variable wavelength light source エタロンの波長選択特性図と波長掃引光に対する透過光の強度変化を示す図Wavelength selective characteristic diagram of etalon and diagram showing intensity change of transmitted light with respect to wavelength swept light

符号の説明Explanation of symbols

20、40、50……光波長測定装置、21……分岐手段、22……第1光フィルタ、23……第2光フィルタ、25……受光部、25a〜25c……受光器、30……処理部、31……コントローラ、32、32A、32B……A/D変換器、33……第1メモリ、34……演算部、35……第2メモリ   20, 40, 50: Optical wavelength measuring device, 21: Branch means, 22: First optical filter, 23: Second optical filter, 25: Light receiving unit, 25a to 25c: Light receiver, 30 ... ... Processing unit, 31 ... Controller, 32, 32A, 32B ... A / D converter, 33 ... First memory, 34 ... Calculation unit, 35 ... Second memory

Claims (2)

波長が周期的に掃引変化する被測定光を受けて分岐する分岐手段(21)と、
前記被測定光の波長掃引範囲内にそれぞれの中心波長がある透過波長帯域を複数有し、前記分岐手段により分岐された第1分岐光を受ける第1光フィルタ(22)と、
前記被測定光の波長掃引範囲内に中心波長があり、且つ該波長掃引範囲内において、前記第1光フィルタの透過波長帯域のいずれかに重複する少なくとも一つの透過波長帯域を有し、前記分岐手段により分岐された第2分岐光を受ける第2光フィルタ(23)と、
前記第1光フィルタを透過した第1透過光と、前記第2光フィルタを透過した第2透過光の強度を検出するための受光部(25)と、
前記受光部の出力信号と前記被測定光の波長の変化方向を示す方向信号とを受け、前記被測定光の波長が単調変化する期間内で、前記第1透過光の強度がピークになる各タイミングと、前記第2透過光の強度が所定値以上となるまたは該所定値を超えてピークとなるタイミングとを検出し、前記第2透過光について検出したタイミングに基づいて前記第1透過光について検出した各タイミングの波長を特定し、前記被測定光の時刻対波長の関係を求める処理部(30)とを備えた光波長測定装置であって、
前記受光部は、前記第1透過光と前記第2透過光とを共通の受光面で受け、前記第1透過光と第2透過光の強度の和に対応した和信号を出力する単一の受光器(25a)により構成され、
前記処理部は、前記和信号が所定のしきい値を越えたタイミングを検出し、該タイミングに基づいて前記第1透過光の強度がピークとなる各タイミングの波長を特定することを特徴とする光波長測定装置
Branching means (21) for receiving and branching light to be measured whose wavelength is periodically swept;
A first optical filter (22) having a plurality of transmission wavelength bands each having a center wavelength within a wavelength sweep range of the light to be measured, and receiving a first branched light branched by the branching means;
A branch wavelength having a center wavelength within a wavelength sweep range of the light to be measured, and having at least one transmission wavelength band overlapping with any one of the transmission wavelength bands of the first optical filter within the wavelength sweep range; A second optical filter (23) for receiving the second branched light branched by the means;
A light receiving unit (25) for detecting the intensity of the first transmitted light transmitted through the first optical filter and the second transmitted light transmitted through the second optical filter;
Each of the intensity of the first transmitted light reaches a peak within a period in which the wavelength of the light to be measured monotonously changes in response to an output signal of the light receiving unit and a direction signal indicating a change direction of the wavelength of the light to be measured. The timing and the timing at which the intensity of the second transmitted light becomes equal to or higher than a predetermined value or reaches a peak after exceeding the predetermined value are detected, and the first transmitted light is detected based on the timing detected for the second transmitted light. An optical wavelength measuring device comprising: a processing unit (30) that identifies a wavelength of each detected timing and obtains a time-to-wavelength relationship of the measured light ;
The light receiving unit receives the first transmitted light and the second transmitted light on a common light receiving surface, and outputs a single signal corresponding to the sum of the intensities of the first transmitted light and the second transmitted light. It is composed of a light receiver (25a),
The processing unit detects a timing at which the sum signal exceeds a predetermined threshold value, and identifies a wavelength at each timing at which the intensity of the first transmitted light peaks based on the timing. Optical wavelength measuring device .
前記第2光フィルタの透過波長帯域の一つが前記被測定光の波長掃引範囲内で前記第1光フィルタの中心波長最長の透過波長帯域と重複し、前記第2光フィルタの透過波長帯域の別の一つが、前記被測定光の波長掃引範囲内で前記第1光フィルタの中心波長最短の透過波長帯域と重複しており、
前記処理部は、前記方向信号が変化した後に最初に前記和信号が前記しきい値を超えたタイミングから所定時間が経過するまでの期間における前記和信号の波形情報と前記方向信号情報とを取得し、該取得した情報に基づいて、前記第1透過光の強度がピークとなる各タイミングの波長を特定することを特徴とする請求項1記載の光波長測定装置。
One of the transmission wavelength bands of the second optical filter overlaps the transmission wavelength band of the longest center wavelength of the first optical filter within the wavelength sweep range of the light to be measured. Is overlapped with the shortest transmission wavelength band of the center wavelength of the first optical filter within the wavelength sweep range of the light to be measured,
The processing unit acquires waveform information and the direction signal information of the sum signal in a period from when the sum signal first exceeds the threshold after the change of the direction signal until a predetermined time elapses. The optical wavelength measuring device according to claim 1 , wherein a wavelength at each timing at which the intensity of the first transmitted light reaches a peak is specified based on the acquired information .
JP2005377530A 2005-12-28 2005-12-28 Optical wavelength measuring device Expired - Fee Related JP4445464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377530A JP4445464B2 (en) 2005-12-28 2005-12-28 Optical wavelength measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377530A JP4445464B2 (en) 2005-12-28 2005-12-28 Optical wavelength measuring device

Publications (2)

Publication Number Publication Date
JP2007178277A JP2007178277A (en) 2007-07-12
JP4445464B2 true JP4445464B2 (en) 2010-04-07

Family

ID=38303612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377530A Expired - Fee Related JP4445464B2 (en) 2005-12-28 2005-12-28 Optical wavelength measuring device

Country Status (1)

Country Link
JP (1) JP4445464B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5945210B2 (en) * 2012-10-26 2016-07-05 日本電信電話株式会社 Light intensity measuring device for wavelength swept light source

Also Published As

Publication number Publication date
JP2007178277A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
US7016047B2 (en) Active Q-point stabilization for linear interferometric sensors
US10731969B2 (en) In-line fiber sensing, noise cancellation and strain detection
US8552360B2 (en) Wavelength sweep control
EP1672312A1 (en) Fbg sensing system
US20150204748A1 (en) Multiplexed Fiber-Coupled Fabry-Perot Sensors and Method Therefor
US6573489B1 (en) Passive, temperature compensated techniques for tunable filter calibration in bragg-grating interrogation systems
JP4930126B2 (en) Physical quantity measurement system
JP4445464B2 (en) Optical wavelength measuring device
JP2002511572A (en) Method and system for determining the wavelength of light transmitted in an optical fiber
US4859844A (en) Comb filter pressure/temperature sensing system
JPH08145736A (en) Optical fiber sensor
EP2923230A1 (en) A method of interrogating a multiple number of optic sensors, a computer program product and an interrogating unit
JP5362169B2 (en) LASER DEVICE, OPTICAL DEVICE CONTROL METHOD, AND LASER DEVICE CONTROL METHOD
JP4274007B2 (en) Wavelength analyzer
US20150362386A1 (en) Fiber optic sensor system and method
JP2003324241A (en) Wavelength monitor and semiconductor laser module
JPH0915048A (en) Spectrophotometer
JP2015031606A (en) Spectrometry device and spectrometry method
EP2656033B1 (en) Optical measuring device
JP2005249775A (en) Light wavelength meter
JP2007205783A (en) Reflection spectrum measurement system
CN117091686B (en) Distributed optical fiber vibration sensor based on frequency division multiplexing
JP2003021576A (en) Wavelength-measuring apparatus
JP2004205271A (en) Wavemeter and fbg sensing apparatus using the same
KR20170086264A (en) Aparatus and method for measuring physical quantitiy based on time and wavelegnth division multiplexing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

R150 Certificate of patent or registration of utility model

Ref document number: 4445464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees