JP4443897B2 - Stainless steel and its manufacturing method - Google Patents

Stainless steel and its manufacturing method Download PDF

Info

Publication number
JP4443897B2
JP4443897B2 JP2003383525A JP2003383525A JP4443897B2 JP 4443897 B2 JP4443897 B2 JP 4443897B2 JP 2003383525 A JP2003383525 A JP 2003383525A JP 2003383525 A JP2003383525 A JP 2003383525A JP 4443897 B2 JP4443897 B2 JP 4443897B2
Authority
JP
Japan
Prior art keywords
stainless steel
particles
antibacterial
film
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003383525A
Other languages
Japanese (ja)
Other versions
JP2005146325A (en
Inventor
幸生 野村
康之 貫名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003383525A priority Critical patent/JP4443897B2/en
Publication of JP2005146325A publication Critical patent/JP2005146325A/en
Application granted granted Critical
Publication of JP4443897B2 publication Critical patent/JP4443897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

発明は、表面に抗菌性だけでなく、その性能を維持しつつ防汚性を有するステンレスおよびその製造方法に関する。   The present invention relates to stainless steel having antifouling properties while maintaining not only antibacterial properties on the surface, but also a method for producing the same.

従来、ステンレスの表面に抗菌性を持たせるのに、ステンレスに抗菌性の粒子を含有させ、それを表面に露出させる方法があった(例えば特許文献1参照)。   Conventionally, in order to impart antibacterial properties to the surface of stainless steel, there has been a method in which antibacterial particles are contained in stainless steel and exposed to the surface (see, for example, Patent Document 1).

一方、ステンレスの表面に防汚性を持たせるのに、一般にシリコーン系やフッ素系のコーティングが用いられる。
特許第3398591号公報
On the other hand, silicone-based or fluorine-based coatings are generally used to impart antifouling properties to the surface of stainless steel.
Japanese Patent No. 3398591

そこで、この両方を持たせるために、例えばに抗菌性の粒子を含有させ、それを表面に露出させたステンレス表面に、シリコーン系やフッ素系のコーティングをした場合は、このコーティングが抗菌性の粒子を被覆するため、防汚性が付与されるものの、抗菌性が付与されないという課題があった。   Therefore, in order to have both of these, for example, when antibacterial particles are incorporated into the surface of the stainless steel exposed on the surface, a silicone-based or fluorine-based coating is used. However, although antifouling property was provided, antibacterial property was not provided.

上記課題を解決するために本発明の手段は、少なくとも抗菌能を有する粒子を含み、前記粒子が島状に露出している表面において、その全表面上に少なくともシロキサン結合を含む膜が形成されたステンレスの構成とした。これによって、抗菌能を有する粒子が、シロキサン結合を有する膜を通して溶出することで、ステンレス表面に抗菌性と防汚性を同時に付与することができることを見出した。   In order to solve the above problems, the means of the present invention includes particles having at least antibacterial activity, and a film including at least a siloxane bond is formed on the entire surface of the surface where the particles are exposed in an island shape. It was made of stainless steel. As a result, it was found that antibacterial and antifouling properties can be simultaneously imparted to the stainless steel surface by eluting particles having antibacterial ability through a film having a siloxane bond.

本発明によって、ステンレス表面に抗菌性と防汚性を同時に付与することができる。   According to the present invention, antibacterial and antifouling properties can be simultaneously imparted to the stainless steel surface.

第1の発明は、少なくとも抗菌能を有する粒子を含み、前記粒子が島状に露出している表面において、その全表面上に少なくともシロキサン結合を有する膜が形成されたステンレスである。この構成により、抗菌能を有する粒子が、シロキサン結合を有する膜を通して溶出することで、ステンレス表面に抗菌性と防汚性を同時に付与することができる。   The first invention is stainless steel that includes particles having at least antibacterial activity, and a film having at least a siloxane bond is formed on the entire surface of the particle-exposed surface. With this configuration, antibacterial and antifouling properties can be simultaneously imparted to the stainless steel surface by allowing particles having antibacterial activity to elute through a film having a siloxane bond.

第2の発明は、抗菌能を有する粒子が、Zn、Cu、Agの酸化物およびそれらの複合酸化物であることを特徴とする。この構成により、抗菌能を有する粒子上の安定なシロキサン結合を有する膜を形成でき、しかも、シロキサン結合を有する膜を通して溶出することができる。   The second invention is characterized in that the particles having antibacterial activity are oxides of Zn, Cu, Ag and complex oxides thereof. With this configuration, it is possible to form a film having a stable siloxane bond on particles having antibacterial activity, and to elute through a film having a siloxane bond.

第3の発明は、少なくとも抗菌能を有する粒子を含み、前記粒子が島状に露出している表面において、その粒子が露出していない表面上にシロキサンを有する膜が形成されたステンレスである。この構成により、抗菌能を有する粒子が、シロキサン結合を有する膜には被覆されないので、容易に溶出でき、ステンレス表面に抗菌性と防汚性を同時に付与することができる。   A third invention is a stainless steel including at least particles having antibacterial activity, wherein a film having siloxane is formed on a surface where the particles are exposed in an island shape on a surface where the particles are not exposed. With this configuration, the particles having antibacterial ability are not coated on the film having a siloxane bond, so that they can be easily eluted, and antibacterial and antifouling properties can be simultaneously imparted to the stainless steel surface.

第4の発明は、抗菌能を有する粒子が、Zn、Cu、Agであることを特徴とする請求項3記載のステンレスである。この構成により、抗菌能を有する粒子上にはシロキサン結合を有する膜が形成されないので、容易に溶出することができる。   A fourth invention is the stainless steel according to claim 3, wherein the particles having antibacterial activity are Zn, Cu, and Ag. With this configuration, since a film having a siloxane bond is not formed on the particles having antibacterial activity, it can be easily eluted.

第5の発明は、シロキサン結合を有する膜がフルオロアルキル基を有することを特徴とするステンレスである。この構成により、ステンレス表面の表面エネルギーが小さくなり、撥水、撥油表面になるため防汚性が向上する。   A fifth invention is a stainless steel characterized in that the film having a siloxane bond has a fluoroalkyl group. With this configuration, the surface energy of the stainless steel surface is reduced and the surface becomes water and oil repellent, so that the antifouling property is improved.

第6の発明は、シロキサン結合を有する膜が単分子膜であることを特徴とするステンレスである。この構成により、膜厚が分子レベルの超薄膜でかつ均一になるので、抗菌能を有する粒子がシロキサン結合を有する膜を通して安定かつばらつきなく溶出することができる。   A sixth invention is stainless steel characterized in that the film having a siloxane bond is a monomolecular film. With this configuration, the film thickness is an ultra-thin film at a molecular level and uniform, so that particles having antibacterial activity can be eluted stably and without variation through the film having a siloxane bond.

第7の発明は、Zn、Cu、Agの合計の含有率が0.0001〜1wt%であることを特徴とするステンレスである。この構成により、ステンレスの耐食性またはその上のシロキサン結合の耐久性を維持しつつ、抗菌能を発揮することができる。   7th invention is stainless steel characterized by the total content rate of Zn, Cu, and Ag being 0.0001-1 wt%. With this configuration, the antibacterial ability can be exhibited while maintaining the corrosion resistance of stainless steel or the durability of the siloxane bond thereon.

第8の発明は、少なくとも抗菌能を有する粒子を含み、前記粒子が島状に露出している表面を有するステンレスを少なくともシラン化合物を含む溶液に浸漬する工程を有するステンレスの製造方法である。この方法によると容易に抗菌能を有する粒子が、シロキサン結合を有する膜を通して、あるいは直接溶出することで、表面に抗菌性と防汚性を同時に付与することができるステンレスを提供することができる。   The eighth invention is a method for producing stainless steel, comprising a step of immersing a stainless steel having at least particles having antibacterial activity and having a surface in which the particles are exposed in an island shape in a solution containing at least a silane compound. According to this method, it is possible to provide stainless steel capable of simultaneously imparting antibacterial and antifouling properties to the surface by easily eluting particles having antibacterial ability through a film having a siloxane bond or directly eluting.

第9の発明は少なくとも抗菌能を有する粒子を含み、前記粒子が島状に露出している表面を有するステンレスを加熱する工程と少なくともシラン化合物を含む溶液に浸漬する工程を有するステンレスの製造方法である。ステンレスを加熱する工程により、ステンレスおよび、抗菌粒子上に酸化被膜が形成されるので、その上に形成されるシロキサン結合を有する膜との結合ポイントが増え、シロキサン結合を有する膜の耐久性を大幅に向上できる。   A ninth invention is a method for producing stainless steel comprising a step of heating a stainless steel having a surface having at least particles having antibacterial activity, wherein the particles are exposed in an island shape, and a step of immersing in a solution containing at least a silane compound. is there. By heating the stainless steel, an oxide film is formed on the stainless steel and antibacterial particles, increasing the number of bonding points with the siloxane-bonded film formed on the stainless-steel and antibacterial particles, greatly increasing the durability of the siloxane-bonded film. Can be improved.

第10の発明は、少なくとも抗菌能を有する粒子を含み、前記粒子が島状に露出している表面を有するステンレスを加熱する工程と、少なくとも酸を含む溶液で洗浄する工程と、少なくともシラン化合物を含む溶液に浸漬する工程とを有するステンレスの製造方法である。酸で洗うことにより、ステンレスを加熱する工程により形成された抗菌粒子上の酸化被膜のうち、耐食性が低下する鉄酸化皮膜が除去されるので、その上に形成されるシロキサン結合を有する膜の耐久性を大幅に向上できる。   A tenth aspect of the invention includes a step of heating stainless steel having a surface including at least particles having antibacterial activity, the particles being exposed in an island shape, a step of washing with a solution containing at least an acid, and at least a silane compound. And a step of immersing in the solution to be contained. By washing with acid, iron oxide film with reduced corrosion resistance is removed from the oxide film on the antibacterial particles formed by the process of heating stainless steel, so the durability of the film with siloxane bond formed on it is removed. Can greatly improve performance.

第11の発明はシラン化合物がクロロシランであることを特徴とするステンレスの製造方法である。クロロシランを使うことにより、シラン化合物がステンレス表面上の表面水酸基と反応し、シラン化合物が強固に化学吸着し固定されるので、形成されるシロキサン結合を有する膜の耐久性を大幅に向上できる。   An eleventh invention is a method for producing stainless steel, wherein the silane compound is chlorosilane. By using chlorosilane, the silane compound reacts with the surface hydroxyl groups on the stainless steel surface, and the silane compound is strongly chemically adsorbed and fixed, so that the durability of the formed film having a siloxane bond can be greatly improved.

第12の発明はシラン化合物を含む溶液の溶媒が非水溶媒であることを特徴とするステンレスの製造方法である。非水溶媒を使用することにより、クロロシラン等のシラン化合物が水により加水分解することがないので、ステンレス表面上にシラン化合物が強固に化学吸着し固定されるので、形成されるシロキサン結合を有する膜の耐久性を大幅に向上できる。   A twelfth invention is a method for producing stainless steel, characterized in that the solvent of the solution containing the silane compound is a non-aqueous solvent. By using a non-aqueous solvent, a silane compound such as chlorosilane is not hydrolyzed by water, so the silane compound is firmly adsorbed and fixed on the stainless steel surface, so that a film having a siloxane bond is formed. The durability of can be greatly improved.

第13発明はシラン化合物を含む溶液を浸漬する工程が湿度35%以下の無水雰囲気下であることを特徴とするステンレスの製造方法である。湿度を35%以下にすることにより、クロロシラン等のシラン化合物の溶液が吸湿により加水分解することがないので、ステンレス表面上にシラン化合物が強固に化学吸着し固定されるので、形成されるシロキサン結合を有する膜の耐久性を大幅に向上できる。   A thirteenth invention is a method for producing stainless steel characterized in that the step of immersing the solution containing the silane compound is in an anhydrous atmosphere with a humidity of 35% or less. By reducing the humidity to 35% or less, the silane compound solution such as chlorosilane does not hydrolyze due to moisture absorption, so the silane compound is firmly chemisorbed and fixed on the stainless steel surface. Durability of the film having can be greatly improved.

第14発明はシラン化合物を含む溶液を浸漬する工程の後に過剰な未反応のシラン化合物を洗浄する工程を含むことを特徴とするステンレスの製造方法である。未反応のシラン化合物を洗浄するにより、シロキサン結合を有する膜の膜厚が分子レベルの超薄膜でかつ均一になるので、抗菌能を有する粒子がシロキサン結合を有する膜を通して安定かつばらつきなく溶出することができる。   14th invention is a manufacturing method of stainless steel characterized by including the process of wash | cleaning excess unreacted silane compound after the process of immersing the solution containing a silane compound. By washing the unreacted silane compound, the film thickness of the film with siloxane bonds becomes ultra-thin and uniform at the molecular level, so that particles having antibacterial activity can be stably and uniformly eluted through the film with siloxane bonds. Can do.

以下、本発明の実施形態について説明する。図1は本発明の第1の発明におけるステンレス表面の模式図とその製造プロセスを示す。窒素雰囲気(無水)下で抗菌能を有する酸化銀粒子を含み、それが島状に露出している表面を有するステンレス1をプタデカフルオロデシルトリクロロシラン2を含む溶液3に浸漬し、浸漬後過剰なヘプタデカフルオロデシルトリクロロシラン2を溶媒4で洗浄し、通常雰囲気で乾燥することで、本発明のステンレス5が作製される。そしてこのステンレスは抗菌能を有する酸化銀粒子がヘプタデカフルオロデシル基を有しシロキサン結合を有する膜を通して溶出することで、ステンレス表面に酸化銀による抗菌性とヘプタデカフルオロデシル基による防汚性を同時に付与することができる。   Hereinafter, embodiments of the present invention will be described. FIG. 1 shows a schematic diagram of a stainless steel surface and a manufacturing process thereof in the first invention of the present invention. A stainless steel 1 containing silver oxide particles having antibacterial activity under nitrogen atmosphere (anhydrous) and having a surface that is exposed in an island shape is immersed in a solution 3 containing ptadecafluorodecyltrichlorosilane 2 and excessive after immersion. By washing the heptadecafluorodecyltrichlorosilane 2 with the solvent 4 and drying in a normal atmosphere, the stainless steel 5 of the present invention is produced. And this stainless steel has antibacterial properties due to silver oxide and antifouling properties due to heptadecafluorodecyl group on the stainless steel surface by the silver oxide particles having antibacterial ability eluting through the membrane having heptadecafluorodecyl group and siloxane bond. It can be given at the same time.

図2は本発明の第3の発明におけるステンレス表面の模式図とその製造プロセスを示す。窒素雰囲気(無水)下で抗菌能を有する銀粒子を含み、それが島状に露出している表面を有するステンレス11を少なくともヘプタデカフルオロデシルトリクロロシラン12を含む溶液13に浸漬し、浸漬後過剰なヘプタデカフルオロデシルトリクロロシラン12を溶媒14で洗浄し、通常雰囲気で乾燥することで、本発明のステンレス15が作製される。そしてこのステンレスは抗菌能を有する銀粒子が、ヘプタデカフルオロデシル基を有しシロキサン結合を有する膜には被覆されないので、容易に溶出でき、ステンレス表面に銀による抗菌性とヘプタデカフルオロデシル基による防汚性を同時に付与することができる。   FIG. 2 shows a schematic view of a stainless steel surface and a manufacturing process thereof in the third aspect of the present invention. A stainless steel 11 containing silver particles having antibacterial activity under a nitrogen atmosphere (anhydrous) and having an island-like exposed surface is immersed in a solution 13 containing at least heptadecafluorodecyltrichlorosilane 12 and is excessive after immersion. The stainless steel 15 of the present invention is produced by washing the heptadecafluorodecyltrichlorosilane 12 with a solvent 14 and drying it in a normal atmosphere. This stainless steel has antibacterial silver particles that are not coated with a film having a heptadecafluorodecyl group and a siloxane bond, so that it can be easily eluted, and the stainless steel surface has antibacterial properties due to silver and heptadecafluorodecyl groups. Antifouling property can be imparted at the same time.

なお、本発明のシラン化合物としては、次のものが有効である。
(1)SiX4 (n=0に相当)
(2)SiX3−O−SiX3 (n=1に相当)
さらに具体的な化合物としては
(3)Si(OC254
(4)Si(OCH33−O−Si(OCH33
(5)Si(OC253−O−Si(OCH33
(6)Si(OC253−O−Si(OC253
(7)Si(NCO)4
(8)Si(NCO)3−O−Si(NCO)3
(9)SiCl4
(10)SiCl3−O−SiCl3
が挙げられる。
As the silane compound of the present invention, the following are effective.
(1) SiX 4 (equivalent to n = 0)
(2) SiX 3 —O—SiX 3 (corresponding to n = 1)
More specific compounds include (3) Si (OC 2 H 5 ) 4
(4) Si (OCH 3 ) 3 —O—Si (OCH 3 ) 3
(5) Si (OC 2 H 5 ) 3 —O—Si (OCH 3 ) 3
(6) Si (OC 2 H 5 ) 3 —O—Si (OC 2 H 5 ) 3
(7) Si (NCO) 4
(8) Si (NCO) 3 —O—Si (NCO) 3
(9) SiCl 4
(10) SiCl 3 —O—SiCl 3
Is mentioned.

また、本発明で用いることができるシラン化合物としては、下記のものを例示することができる。
(11)SiYpCl4-p
(12)CH3(CH2sO(CH2)tSiYqCl3-q
(13)CH3(CH2u−Si(CH32(CH2v−SiYqCl3-q
(14)CF3COO(CH2wSiYqCl3-q
但し、pは1〜3の整数、qは0〜2の整数、rは1〜25の整数、sは0〜12の整数、tは1〜20の整数、uは0〜12の整数、vは1〜20の整数、wは1〜25の整数を示す。また、Yは、水素、アルキル基、アルコキシル基、含フッ素アルキル基または含フッ素アルコキシ基である。
Moreover, the following can be illustrated as a silane compound which can be used by this invention.
(11) SiY p Cl 4-p
(12) CH 3 (CH 2 ) s O (CH2) t SiY q Cl 3-q
(13) CH 3 (CH 2 ) u -Si (CH 3) 2 (CH 2) v -SiY q Cl 3-q
(14) CF 3 COO (CH 2) w SiY q Cl 3-q
However, p is an integer of 1-3, q is an integer of 0-2, r is an integer of 1-25, s is an integer of 0-12, t is an integer of 1-20, u is an integer of 0-12, v represents an integer of 1 to 20, and w represents an integer of 1 to 25. Y is hydrogen, an alkyl group, an alkoxyl group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.

さらに、具体的なシラン系化合物として下記に示す(15)−(21)が挙げられる。
(15)CH3CH2O(CH215SiCl3
(16)CH3(CH22Si(CH32(CH215SiCl3
(17)CH3(CH26Si(CH32(CH29SiCl3
(18)CH3COO(CH215SiCl3
(19)CF3(CF27−(CH22−SiCl3
(20)CF3(CF25−(CH22−SiCl3
(21)CF3(CF27−C64−SiCl3
また、上記クロロシラン系化合物の代わりに、全てのクロロシリル基をイソシアネート基に置き扱えたイソシアネート系化合物、例えば下記に示す(22)−(26)を用いてもよい。
(22)SiYp(NCO)4-p
(23)CH3−(CH2rSiYp(NCO)3-p
(24)CH3(CH2sO(CH2tSiYq(NCO)q-P
(25)CH3(CH2u−Si(CH32(CH2)v−SiYq(NCO)3-q
(26)CF3COO(CH2vSiYq(NCO)3-q
但し、p、q、r、s、t、u、v、wおよびXは、前記と同様である。
Furthermore, the following (15)-(21) is mentioned as a specific silane type compound.
(15) CH 3 CH 2 O (CH 2 ) 15 SiCl 3
(16) CH 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(17) CH 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(18) CH 3 COO (CH 2 ) 15 SiCl 3
(19) CF 3 (CF 2 ) 7 — (CH 2 ) 2 —SiCl 3
(20) CF 3 (CF 2 ) 5 — (CH 2 ) 2 —SiCl 3
(21) CF 3 (CF 2 ) 7 —C 6 H 4 —SiCl 3
Further, instead of the chlorosilane compound, an isocyanate compound in which all chlorosilyl groups are handled as isocyanate groups, for example, (22) to (26) shown below may be used.
(22) SiY p (NCO) 4-p
(23) CH 3 - (CH 2) r SiY p (NCO) 3-p
(24) CH 3 (CH 2 ) s O (CH 2) t SiY q (NCO) qP
(25) CH 3 (CH 2 ) u -Si (CH 3) 2 (CH2) v -SiY q (NCO) 3-q
(26) CF 3 COO (CH 2 ) v SiY q (NCO) 3-q
However, p, q, r, s, t, u, v, w, and X are the same as described above.

前記のシラン系化合物に変えて、下記(27)−(33)に具体的に例示するシラン系化合物を用いてもよい。
(27)CH3CH2O(CH215Si(NCO)3
(28)CH3(CH22Si(CH32(CH215Si(NCO)3
(29)CH3(CH26Si(CH32(CH29Si(NCO)3
(30)CH3COO(CH215Si(NCO)3
(31)CF3(CF27−(CH22-Si(NCO)3
(32)CF3(CF25−(CH22-Si(NCO)3
(33)CF3(CF27−C64−Si(NCO)3
また、シラン系化合物として、一般に、SiYk(OA)4-k(Yは、前記と同様、Aはアルキル基、kは0、1、2または3)で表される物質を用いることが可能である。中でも、CF3−(CF2n−(R)l−SiYq(OA)3-q(nは1以上の整数、好ましくは1〜22の整数、Rはアルキル基、ビニル基、エチニル基、アリール基、シリコンもしくは酸素原子を含む置換基、lは0または1、Y、Aおよびqは前記と同様)で表される物質を用いると、よりすぐれた防汚性の被膜を形成できるが、これに限定されるものではなく、これ以外にも、 CH3−(CH2)r−SiYq(OA)3-qおよびCH3−(CH2)s−0−(CH2)t−SiYq(OA)3-q、CH3−(CH2u−Si(CH32−(CH2v−SiYq(OA)3-q、CF3COO−(CH2v−SiYq(OA)3-q(但し、q、r、s、t、u、v、w、YおよびAは、前記と同様)などが使用可能である。
Instead of the silane compound, a silane compound specifically exemplified in the following (27) to (33) may be used.
(27) CH 3 CH 2 O (CH 2 ) 15 Si (NCO) 3
(28) CH 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (NCO) 3
(29) CH 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(30) CH 3 COO (CH 2 ) 15 Si (NCO) 3
(31) CF 3 (CF 2 ) 7 — (CH 2 ) 2 —Si (NCO) 3
(32) CF 3 (CF 2 ) 5 — (CH 2 ) 2 —Si (NCO) 3
(33) CF 3 (CF 2 ) 7 —C 6 H 4 —Si (NCO) 3
In addition, as a silane compound, generally, a substance represented by SiY k (OA) 4-k (Y is an alkyl group, k is 0, 1, 2, or 3 as described above) can be used. It is. Among these, CF 3 - (CF 2) n - (R) l -SiY q (OA) 3-q (n is an integer of 1 or more, preferably 1 to 22 integer, R represents an alkyl group, a vinyl group, an ethynyl group , An aryl group, a silicon or a substituent containing an oxygen atom, l is 0 or 1, and Y, A and q are the same as described above), a better antifouling film can be formed. , is not limited thereto, other than this, CH3- (CH2) r -SiY q (OA) 3-q and CH 3 - (CH2) s -0- (CH2) t -SiY q (OA ) 3-q, CH 3 - (CH 2) u -Si (CH 3) 2 - (CH 2) v -SiY q (OA) 3-q, CF 3 COO- (CH 2) v -SiY q (OA ) 3-q (where q, r, s, t, u, v, w, Y and A are the same as above) can be used.

さらに、より具体的なシラン系化合物としては、下記に示す(34)−(57)を挙げることができる。
(34)CH3CH2O(CH215Si(OCH33
(35)CF3CH2O(CH215Si(OCH33
(36)CH3(CH22Si(CH32(CH215Si(OCH33
(37)CH3(CH26Si(CH32(CH29Si(OCH33
(38)CH3COO(CH215Si(OCH33
(39)CF3(CF25(CH22Si(OCH33
(40)CF3(CF27−C64−Si(OCH33
(41)CH3CH2O(CH215Si(OC253
(42)CH3(CH22Si(CH32(CH215Si(OC253
(43)CH3(CH26Si(CH32(CH29Si(OC253
(44)CF3(CH26Si(CH32(CH29Si(OC253
(45)CH3COO(CH215Si(OC253
(46)CF3COO(CH215Si(OC253
(47)CF3COO(CH215Si(OCH33
(48)CF3(CF29(CH22Si(OC253
(49)CF3(CF27(CH22Si(OC253
(50)CF3(CF25(CH22Si(OC253
(5l)CF3(CF2764Si(OC253
(52)CF3(CF29(CH22Si(OCH33
(53)CF3(CF25(CH22Si(OCH33
(54)CF3(CF27(CH22SiCH3(OC252
(55)CF3(CF27(CH22SiCH3(OCH32
(56)CF3(CF27(CH22Si(CH32OC25
(57)CF3(CF27(CH22Si(CH32OCH3
ここで(22)〜(57)の化合物を用いた場合には、塩酸が発生しないため、装置保全および作業上のメリットもある。また抗菌能を有する粒子の溶出のため、これらのうちアルキル鎖が1〜20までのもpのが望ましい。
Furthermore, as a more specific silane compound, the following (34)-(57) can be mentioned.
(34) CH 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(35) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(36) CH 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(37) CH 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(38) CH 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(39) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(40) CF 3 (CF 2 ) 7 —C 6 H 4 —Si (OCH 3 ) 3
(41) CH 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(42) CH 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (OC 2 H 5 ) 3
(43) CH 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(44) CF 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(45) CH 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(46) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(47) CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(48) CF 3 (CF 2 ) 9 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(49) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(50) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(5l) CF 3 (CF 2 ) 7 C 6 H 4 Si (OC 2 H 5 ) 3
(52) CF 3 (CF 2 ) 9 (CH 2 ) 2 Si (OCH 3 ) 3
(53) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(54) CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCH 3 (OC 2 H 5 ) 2
(55) CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCH 3 (OCH 3 ) 2
(56) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 OC 2 H 5
(57) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 OCH 3
Here, when the compounds (22) to (57) are used, hydrochloric acid is not generated, and there are also merit in terms of equipment maintenance and work. Moreover, in order to elute particles having antibacterial activity, it is desirable that the alkyl chain has 1 to 20 alkyl chains.

なお、図1のシラン化合物を浸漬する工程に示す最初の反応ステップ(脱塩化水素反応)は、一般に化学吸着反応と呼ばれている。   The first reaction step (dehydrochlorination reaction) shown in the step of immersing the silane compound in FIG. 1 is generally called a chemisorption reaction.

次に、溶媒としては、活性水素を含まない非水系溶媒を用いるのが好ましく、水を含まない炭化水素系溶媒、フッ化炭素系溶媒、シリコーン系溶媒などを用いることが可能である。なお、石油系の溶剤の他に具体的に使用可能なものは、石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、灯油、リグロイン、ジメチルミリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエステルシリコーンなどを挙げることができる。また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)などがある。なお、これらは1種単独で用いてもよいし、よく混合するものなら2種以上を組み合わせてもよい。   Next, as the solvent, it is preferable to use a non-aqueous solvent that does not contain active hydrogen, and it is possible to use a hydrocarbon solvent, a fluorocarbon solvent, a silicone solvent, or the like that does not contain water. In addition to petroleum-based solvents, petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, kerosene, ligroin, dimethyl millicorn, phenyl silicone , Alkyl-modified silicone, polyester silicone and the like. In addition, the fluorocarbon solvents include chlorofluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well.

また、基材のステンレスの抗菌能を有する粒子として、本発明のAg、Cu、Znおよびその酸化物以外に、Co、Mo、Vおよびその酸化物が有効である。またそれらの含有率は防汚性重視の場合は0.0001〜0.5wt%未満、抗菌性重視の場合は0.5〜1wt%が望ましい。   In addition to the Ag, Cu, Zn and oxides thereof according to the present invention, Co, Mo, V and oxides thereof are effective as particles having the antibacterial ability of the stainless steel substrate. In addition, the content is preferably 0.0001 to less than 0.5 wt% when emphasizing antifouling properties and 0.5 to 1 wt% when emphasizing antibacterial properties.

また、ステンレスを加熱する工程の温度としては100〜150℃が望ましい。200℃以上になると、Feが表面に析出しステンレス耐食性、シロキサン結合を有する膜の耐久性が悪くなる。ただし、この状態でも酸、例えば塩酸、硫酸、硝酸などで洗浄するとよい。特に硝酸は強固な酸化皮膜を形成するので、ステンレス耐食性、シロキサン結合を有する膜の耐久性を向上する。   Moreover, as temperature of the process which heats stainless steel, 100-150 degreeC is desirable. When the temperature is 200 ° C. or higher, Fe precipitates on the surface, and the stainless steel corrosion resistance and the durability of the film having a siloxane bond are deteriorated. However, even in this state, it may be washed with an acid such as hydrochloric acid, sulfuric acid, nitric acid or the like. In particular, nitric acid forms a strong oxide film, which improves stainless steel corrosion resistance and durability of the film having a siloxane bond.

(実施例1)
窒素雰囲気(無水)下で少なくとも抗菌能を有する0.05wt%酸化銀粒子を含み、それが島状に露出している表面を有するフェライト系ステンレス(SUS430系)をヘプタデカフルオロデシルトリクロロシランと溶媒ヘキサメチルシロキサン溶媒を含む溶液に浸漬し、通常雰囲気で乾燥することで、本発明のステンレスAを作製した。
Example 1
Ferrite stainless steel (SUS430 series) containing 0.05 wt% silver oxide particles having at least antibacterial activity under nitrogen atmosphere (anhydrous) and having an island-like surface exposed to heptadecafluorodecyltrichlorosilane and solvent Stainless steel A of the present invention was produced by dipping in a solution containing a hexamethylsiloxane solvent and drying in a normal atmosphere.

(実施例2)
窒素雰囲気(無水)下で少なくとも抗菌能を有する0.05wt%酸化銀粒子を含み、それが島状に露出している表面を有するフェライト系ステンレス(SUS430系)をヘプタデカフルオロデシルトリクロロシランと溶媒ヘキサメチルシロキサン溶媒を含む溶液に浸漬し、浸漬後過剰なヘプタデカフルオロデシルトリクロロシランを溶媒で洗浄し、通常雰囲気で乾燥することで、本発明のステンレスBを作製した。
(Example 2)
Ferrite stainless steel (SUS430 series) containing 0.05 wt% silver oxide particles having at least antibacterial activity under nitrogen atmosphere (anhydrous) and having an island-like surface exposed to heptadecafluorodecyltrichlorosilane and solvent Stainless steel B of the present invention was produced by immersing in a solution containing a hexamethylsiloxane solvent, washing the excess heptadecafluorodecyltrichlorosilane with a solvent, and drying in a normal atmosphere.

(実施例3)
窒素雰囲気(無水)下で少なくとも抗菌能を有する0.05wt%銀粒子を含み、それが島状に露出している表面を有するフェライト系ステンレス(SUS430系)をヘプタデカフルオロデシルトリクロロシランと溶媒ヘキサメチルシロキサン溶媒を含む溶液に浸漬し、浸漬後過剰なヘプタデカフルオロデシルトリクロロシランを溶媒で洗浄し、通常雰囲気で乾燥することで、本発明のステンレスCを作製した。
(Example 3)
Ferrite-based stainless steel (SUS430 system) containing 0.05 wt% silver particles having at least antibacterial activity under a nitrogen atmosphere (anhydrous) and having an island-like surface exposed to heptadecafluorodecyltrichlorosilane and solvent hexa Stainless steel C of the present invention was produced by immersing in a solution containing a methylsiloxane solvent, washing the excess heptadecafluorodecyltrichlorosilane with a solvent, and drying in a normal atmosphere.

(実施例4)
窒素雰囲気(無水)下で少なくとも抗菌能を有する0.1wt%酸化銀粒子を含み、それが島状に露出している表面を有するフェライト系ステンレス(SUS430系)をヘプタデカフルオロデシルトリクロロシランと溶媒ヘキサメチルシロキサン溶媒を含む溶液に浸漬し、浸漬後過剰なヘプタデカフルオロデシルトリクロロシランを溶媒で洗浄し、通常雰囲気で乾燥することで、本発明のステンレスDを作製した。
Example 4
Ferrite-based stainless steel (SUS430 system) containing 0.1 wt% silver oxide particles having at least antibacterial activity under nitrogen atmosphere (anhydrous) and having an island-like surface exposed to heptadecafluorodecyltrichlorosilane and solvent A stainless steel D of the present invention was produced by immersing in a solution containing a hexamethylsiloxane solvent, washing excess heptadecafluorodecyltrichlorosilane with a solvent, and drying in a normal atmosphere.

(実施例5)
窒素雰囲気(無水)下で少なくとも抗菌能を有する0.05wt%酸化銀粒子を含み、それが島状に露出している表面を有するフェライト系ステンレス(SUS430系)を空気中で150℃1時間熱処理した後、ヘプタデカフルオロデシルトリクロロシランと溶媒ヘキサメチルシロキサン溶媒を含む溶液に浸漬し、浸漬後過剰なヘプタデカフルオロデシルトリクロロシランを溶媒で洗浄し、通常雰囲気で乾燥することで、本発明のステンレスEを作製した。
(Example 5)
Ferritic stainless steel (SUS430 series) containing 0.05 wt% silver oxide particles having at least antibacterial activity under a nitrogen atmosphere (anhydrous) and having an island-like exposed surface is heat-treated in air at 150 ° C. for 1 hour. Then, the stainless steel of the present invention is immersed in a solution containing heptadecafluorodecyltrichlorosilane and a solvent hexamethylsiloxane solvent, and after the immersion, excess heptadecafluorodecyltrichlorosilane is washed with a solvent and dried in a normal atmosphere. E was produced.

(実施例6)
窒素雰囲気(無水)下で少なくとも抗菌能を有する0.05wt%酸化銀粒子を含み、それが島状に露出している表面を有するフェライト系ステンレス(SUS430系)を空気中で150℃1時間熱処理した後、1N硝酸に30分浸漬後、乾燥し、ヘプタデカフルオロデシルトリクロロシランと溶媒ヘキサメチルシロキサン溶媒を含む溶液に浸漬し、浸漬後過剰なヘプタデカフルオロデシルトリクロロシランを溶媒で洗浄し、通常雰囲気で乾燥することで、本発明のステンレスFを作製した。
(Example 6)
Ferritic stainless steel (SUS430 series) containing 0.05 wt% silver oxide particles having at least antibacterial activity under a nitrogen atmosphere (anhydrous) and having an island-like exposed surface is heat-treated in air at 150 ° C. for 1 hour. After being immersed in 1N nitric acid for 30 minutes, dried, immersed in a solution containing heptadecafluorodecyltrichlorosilane and a solvent hexamethylsiloxane solvent, and after immersion, excess heptadecafluorodecyltrichlorosilane was washed with a solvent, Stainless steel F of the present invention was produced by drying in an atmosphere.

(比較例1)なにも処理しない抗菌能を有する0.05wt%酸化銀粒子を含み、それが島状に露出している表面を有するフェライト系ステンレス(SUS430系)R1を作製した。   (Comparative Example 1) Ferritic stainless steel (SUS430 series) R1 containing 0.05 wt% silver oxide particles having antibacterial ability not treated and having a surface exposed in an island shape was produced.

(比較例2)窒素雰囲気(無水)下でフェライト系ステンレス(SUS430系)をヘプタデカフルオロデシルトリクロロシランと溶媒ヘキサメチルシロキサン溶媒を含む溶液に浸漬し、浸漬後過剰なヘプタデカフルオロデシルトリクロロシランを溶媒で洗浄し、通常雰囲気で乾燥することで、ステンレスR2を作製した。   (Comparative Example 2) Ferritic stainless steel (SUS430) is immersed in a solution containing heptadecafluorodecyltrichlorosilane and solvent hexamethylsiloxane under a nitrogen atmosphere (anhydrous), and after the immersion, excess heptadecafluorodecyltrichlorosilane is added. Stainless steel R2 was produced by washing with a solvent and drying in a normal atmosphere.

(本発明と比較例の抗菌性評価と、撥水性の耐久性評価)
本発明と比較例のステンレスを以下に示すJISに準拠したフィルム評価法で抗菌性評価を行った。
(1)25cm3 のステンレスを99.5%以上含有のエタノールを染みこませた脱脂綿で洗浄・脱脂する。
(2)大腸菌を1/500 普通ブイオン溶液に分散する。(菌の個数は2.0×105 〜1.0×106 cfu/ml に調整した。1/500 普通ブイオン溶液とは普通ブイオン培地を滅菌精製水で500倍に希釈したものである。普通ブイオン培地とは、肉エキス5.0g、塩化ナトリウム5.0g、ペプトン10.0g、精製水1000mL、pH:7.0±0.2のものをいう。)
(3) 菌液を0.5mL/25cm3 の割合でステンレス上(各水準3個)に塗布する。
(4) ステンレス表面に被覆フィルムを被せる。
(5) 試験体の温度を35±1.0℃、湿度を90%RHの条件下で24時間保存する。
(6) 寒天培養法(35±1.0℃ 40〜48時間)により生菌数を測定する。
(7) 滅菌率を算出する。滅菌率=(リファレンスの菌数−試験後の菌数)/(リファレンスの菌数)×100 なお、リファレンスの菌数とは、滅菌シャーレ上にて上記試験を行ったものの生菌数であり、9.30×107 であった。
(Antimicrobial evaluation of the present invention and comparative examples, and water repellency durability evaluation)
The stainless steels of the present invention and comparative examples were subjected to antibacterial evaluation by a film evaluation method based on JIS shown below.
(1) Wash and degrease with absorbent cotton soaked with ethanol containing 99.5% or more of 25 cm 3 stainless steel.
(2) Disperse E. coli in 1/500 ordinary Bion solution. (The number of bacteria was adjusted to 2.0 × 10 5 to 1.0 × 10 6 cfu / ml. The 1/500 ordinary buion solution is a solution obtained by diluting ordinary buion medium 500 times with sterilized purified water. (Normal bion medium means 5.0 g of meat extract, 5.0 g of sodium chloride, 10.0 g of peptone, 1000 mL of purified water, pH: 7.0 ± 0.2.)
(3) Bacteria solution is applied on stainless steel (each 3 levels) at a rate of 0.5 mL / 25 cm 3 .
(4) Cover the stainless steel surface with a coating film.
(5) The specimen is stored for 24 hours under conditions of 35 ± 1.0 ° C. and humidity of 90% RH.
(6) The viable cell count is measured by an agar culture method (35 ± 1.0 ° C., 40 to 48 hours).
(7) Calculate the sterilization rate. Sterilization rate = (reference bacterial count-post-test bacterial count) / (reference bacterial count) x 100 Note that the reference bacterial count is the viable count of the above-mentioned test performed on a sterile petri dish, It was 9.30 × 10 7 .

また、防汚性の評価は水の接触角で行った。   The antifouling property was evaluated based on the contact angle of water.

これらの耐久性を評価するのに、ステンレスを沸騰水中で100時間放置し、そのときの抗菌性および接触角の評価を行った。   In order to evaluate the durability, stainless steel was left in boiling water for 100 hours, and the antibacterial properties and contact angle at that time were evaluated.

以上の結果を(表1)に示す。   The results are shown in (Table 1).

Figure 0004443897
以上の結果から、比較例と比較して、本発明のステンレスは高い抗菌性し、また優れた防汚性能を有することがわかった。特に、ステンレスCは銀粒子上に単分子膜がないので銀粒子が流出しやすいこと、またステンレスDが酸化銀上の含有が高いことで、より高い抗菌性を示す。次に耐久性加熱処理をしたステンレスEもしくはFが優れていることがわかる。
Figure 0004443897
From the above results, it was found that the stainless steel of the present invention has a high antibacterial property and an excellent antifouling performance as compared with the comparative example. In particular, since stainless steel C has no monomolecular film on silver particles, silver particles easily flow out, and stainless steel D exhibits higher antibacterial properties due to its high content on silver oxide. Next, it can be seen that stainless steel E or F subjected to durable heat treatment is excellent.

本発明にかかるステンレスとその製造方法は、ステンレス表面に抗菌性と防汚性を同時に付与することが可能になるので、キッチンの流しや浴槽、トイレ、洗濯機、食器洗い機、調理器等の衛生、防汚回りの商品に適用できる。   Since the stainless steel according to the present invention and the manufacturing method thereof can simultaneously impart antibacterial and antifouling properties to the stainless steel surface, the sanitation of kitchen sinks, bathtubs, toilets, washing machines, dishwashers, cookers, etc. Applicable to anti-fouling products.

本発明の第1の発明におけるステンレスの表面状態を示す模式図とその製造工程を示す図The schematic diagram which shows the surface state of the stainless steel in 1st invention of this invention, and the figure which shows the manufacturing process 本発明の第3の発明におけるステンレスの表面状態を示す模式図とその製造工程を示す図The schematic diagram which shows the surface state of stainless steel in the 3rd invention of this invention, and the figure which shows the manufacturing process

符号の説明Explanation of symbols

1 抗菌能を有するステンレス
2 ヘプタデカフルオロデシルトリクロロシラン
3 ヘプタデカフルオロデシルトリクロロシラン溶液
4 溶媒
5 本発明の第1発明のステンレス
11 抗菌能を有するステンレス
12 ヘプタデカフルオロデシルトリクロロシラン
13 ヘプタデカフルオロデシルトリクロロシラン溶液
14 溶媒
15 本発明の第3発明のステンレス
DESCRIPTION OF SYMBOLS 1 Stainless steel which has antimicrobial ability 2 Heptadecafluorodecyl trichlorosilane 3 Heptadecafluorodecyl trichlorosilane solution 4 Solvent 5 Stainless steel of 1st invention of this invention 11 Stainless steel which has antimicrobial ability 12 Heptadecafluorodecyltrichlorosilane 13 Heptadecafluorodecyl Trichlorosilane solution 14 Solvent 15 Stainless steel of the third invention of the present invention

Claims (2)

少なくとも抗菌能を有するZn、Cu、Agの酸化物およびそれらの複合酸化物である粒子を含み、前記粒子が島状に露出している表面において、その粒子が露出していない表面上のみにフルオロアルキル基を有するシロキサン結合を有する単分子膜が形成されたステンレス。 At least a surface of an oxide of Zn, Cu, and Ag having antibacterial activity and a composite oxide thereof, and in a surface where the particles are exposed in the form of islands, only on the surface where the particles are not exposed Stainless steel in which a monomolecular film having a siloxane bond having an alkyl group is formed. 少なくとも抗菌能を有する粒子を含み、前記粒子が島状に露出している表面を有するステンレスを加熱する工程と、少なくとも酸を含む溶液で洗浄する工程と、少なくともクロロシランを含む溶液に浸漬する工程を有するステンレスの製造方法。 A step of heating a stainless steel having a surface including at least particles having antibacterial activity, wherein the particles are exposed in an island shape, a step of washing with a solution containing at least an acid, and a step of immersing in a solution containing at least a chlorosilane A method for producing stainless steel.
JP2003383525A 2003-11-13 2003-11-13 Stainless steel and its manufacturing method Expired - Fee Related JP4443897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003383525A JP4443897B2 (en) 2003-11-13 2003-11-13 Stainless steel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383525A JP4443897B2 (en) 2003-11-13 2003-11-13 Stainless steel and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2005146325A JP2005146325A (en) 2005-06-09
JP4443897B2 true JP4443897B2 (en) 2010-03-31

Family

ID=34692222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383525A Expired - Fee Related JP4443897B2 (en) 2003-11-13 2003-11-13 Stainless steel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4443897B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140069801A (en) * 2012-11-30 2014-06-10 삼성전자주식회사 Mutifunctional coating structure and forming method for the same

Also Published As

Publication number Publication date
JP2005146325A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP6698124B2 (en) Compositions and methods for forming self-decontaminating surfaces
JP6625998B2 (en) Treated article and method of making same
JP4681094B2 (en) Compositions having fluoroorganofunctional silanes and / or siloxanes, their preparation, their use and surface-modified supports
US10194664B2 (en) Methods of preparing self-decontaminating surfaces using reactive silanes, triethanolamine and titanium anatase sol
JP2021038471A (en) Coated article, and chemical vapor deposition method
CN101812086B (en) Anti-bacterial compound and preparation method thereof
EP2566874B1 (en) Solvent-free organosilane quaternary ammonium compositions, method of making and use
TW470861B (en) Chemical adsorption film, method of manufacturing the same, and chemical absorption solution used for the same
Arkles et al. The role of polarity in the structure of silanes employed in surface modification
JP2018513920A (en) Water-repellent nano-coating agent for vacuum deposition having antibacterial activity and coating method using the same
JP4443897B2 (en) Stainless steel and its manufacturing method
JP2005119026A (en) Antibacterial and anti-staining substrate and its manufacturing method
JPH05182952A (en) Semiconductor device
WO1998049218A1 (en) Fluoropolymer, process for preparing the same, and use thereof
JP2007196211A5 (en)
WO2009045302A9 (en) Antimicrobial polysiloxane materials containing metal species
JPH089510B2 (en) Antifouling ceramic product and manufacturing method thereof
JP2937036B2 (en) Manufacturing method of chemisorption membrane
JP5589215B2 (en) Solar energy utilization apparatus and manufacturing method thereof
JP6294443B2 (en) Surface treatment agent capable of removing bacterial cells by modifying surface of substrate with organic molecule, surface treatment method using the organic molecule, and antibacterial treated substrate
US20080318068A1 (en) Method for the production of a mineral substrate with modified surface and substrate thus obtained
JPH09255941A (en) Water-repellent treatment and preparation thereof
JP2013241551A (en) Surface treating agent for removing bacterial cell by modifying substrate surface with organic molecule, surface treating method with the organic molecule and substrate with anti-bacterial treatment applied
JPH0798026B2 (en) Cookware and manufacturing method thereof
JP5768233B2 (en) Method for controlling wettability of solid surface and solid surface thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

R151 Written notification of patent or utility model registration

Ref document number: 4443897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees