JP4443796B2 - Water tube reinforcement method, water tube reinforcement member, fiber reinforced resin for water tube reinforcement - Google Patents
Water tube reinforcement method, water tube reinforcement member, fiber reinforced resin for water tube reinforcement Download PDFInfo
- Publication number
- JP4443796B2 JP4443796B2 JP2001198067A JP2001198067A JP4443796B2 JP 4443796 B2 JP4443796 B2 JP 4443796B2 JP 2001198067 A JP2001198067 A JP 2001198067A JP 2001198067 A JP2001198067 A JP 2001198067A JP 4443796 B2 JP4443796 B2 JP 4443796B2
- Authority
- JP
- Japan
- Prior art keywords
- reinforced resin
- fiber reinforced
- hydraulic pipe
- fiber
- closing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、水圧管の補強方法等に関し、より詳しくは、現場作業を大きく軽減させる水圧管の補強方法等に関する。
【0002】
【従来の技術】
炭素(カーボン)やガラス、アラミド等の強化繊維を用いた繊維強化樹脂(FRP:Fiber Reinforced Plastics)は、高強度、軽量等の特色を生かして、各種スポーツ用品や航空機産業等に広く用いられている。また、近年、建設分野においても、橋脚、地下鉄の中柱、鉄筋コンクリート構造物の柱等の補強材として、例えばカーボン繊維強化樹脂(CFRP)の適用が試みられている。例えば、特開平10−280706号公報には、構造物の柱に設けられた2枚の補強鋼板の離間部分に、炭素繊維シートを貼り付け、補強を強化する技術が開示されている。
【0003】
一方、我が国にて現在運転中の水力発電所では、水圧管として水圧鉄管が広く用いられている。この水圧鉄管の代表的な損傷モードとしては、腐食・磨耗による管胴板厚の減少が挙げられるが、既に余裕厚を割り込んだ水圧鉄管が利用されている場合もあり、延命化手法の確立が強く望まれている。従来、水圧鉄管の老朽化が著しい場合には、取替新設が行なわれることが多かったが、近年における電力需要の伸びの低迷、電力市場の自由化など、電力事業環境が激しい中で、電力事業者からは、より短工期でより安価な延命化手法が要求されている。
【0004】
【発明が解決しようとする課題】
かかる現状を踏まえ、鉄筋コンクリート部材の補修・補強に数多くの実績があり、自重増加が少なく、耐食性に優れており、更に鋼管と同程度の強度を発揮できるCFRPを用い、水圧鉄管に対しても鉄筋コンクリート部材と同様に補強することができれば、電力事業者の要求に対する有効な回答となり得る。ここで、炭素シートを水圧鉄管の補修に応用するものとして、文献1(電力土木No.262 1996 酒井研二他著、「炭素繊維の水圧鉄管補修技術への応用」)には、水圧鉄管の表面を清掃した後、炭素繊維シートをエポキシ樹脂により接着し、炭素繊維シートの表面からエポキシ樹脂を含浸、硬化させて、水圧鉄管を補修する技術について示されている。
【0005】
しかしながら、文献1に示されている補修方法は、従来における一般の橋脚補強と同様であり、補強作業現場にてシートを広げて貼り付け、樹脂を含浸させて硬化(FRP化)させている。これでは、樹脂の含浸に手間がかかり、炭素繊維シートの各層ごとに養生期間が必要となることから、現場での施工期間が長期化してしまう。
【0006】
また、橋脚の作業現場とは異なり、水圧鉄管が設けられている現場は足場も悪く、例えば山場に設けられて鉄管が斜めになり、かつ、その周囲が非常に狭い。そのために、繊維シートの貼り付け時にバラツキが大きくなり、例えば、含浸時に樹脂厚のむら等が生じてしまう。その結果、補強部材としての品質が非常に悪くなり、補強性能の低下を招くこととなる。
【0007】
本発明は、以上のような技術的課題を解決するためになされたものであって、その目的とするところは、一般に作業が困難である水圧管の補強工事に際し、現場での工期を大幅に短縮することにある。
また、他の目的は、水圧管における補強部材としての製品品質を飛躍的に向上させることにある。
【0008】
【課題を解決するための手段】
かかる目的のもと、本発明では、現場での作業が困難な水圧管の補強に際し、既に硬化された部分を有するFRP成型品を工場にて製造し、現場に提供することで、現場作業を大幅に削減し、更に高品質な補強を提供している。即ち、本発明が適用される水圧管補強方法は、補強すべき水圧管(例えば水圧鉄管)の形状に合わせて予め成型された例えば炭素繊維強化樹脂(CFRP)等の繊維強化樹脂(FRP)を、この繊維強化樹脂の開口部を利用して、例えば繊維強化樹脂の有する可撓性により繊維強化樹脂を押し広げて水圧管に取り付ける取り付け工程と、取り付け工程の前後にて水圧管と繊維強化樹脂との間に接着剤を塗布または充填剤(接着剤不要)を注入する接着剤塗布/充填剤注入工程と、この水圧管に対して繊維強化樹脂を取り付けた後に、この開口部を繊維強化樹脂の端部から予め出された繊維に対して機械継手を用いて閉合する閉合工程とを有することを特徴としている。
【0009】
ここで、この繊維強化樹脂の取り付け工程では、繊維強化樹脂の可撓性を利用して押し広げる場合の他、繊維強化樹脂の一部に別に設けられた繊維部や半硬化部等の可撓性を利用して取り付けることが可能である。
【0010】
また、繊維強化樹脂は、開口部を覆う補強材をオーバーラップさせて接着させることで接合を強化することもできる。これら取り付け、閉合を複数回、繰り返し、複数層からなる繊維強化樹脂により補強を図ることも可能である。
【0011】
一方、本発明が適用される水圧管補強部材は、補強すべき水圧管の外周に沿う形状にて予め成型された繊維強化樹脂部と、この繊維強化樹脂部の端部に設けられ、機械継手による閉合に際して用いられる繊維を前記繊維強化樹脂部の端部から突出させていると共に、水圧管に繊維強化樹脂部を取り付けた後に閉合される閉合部とを備え、繊維強化樹脂部および閉合された閉合部により、水圧管に作用する応力に対して水圧管を補強することを特徴としている。
【0012】
また、本発明は、繊維強化樹脂として把握することができる。即ち、本発明が適用される水圧管補強のための繊維強化樹脂は、補強すべき水圧管の外周に沿う形状にて予め成型され、水圧管に取り付けられる際、押し広げられるために必要な所定の可撓性を有し、水圧管に成型部分を取り付けた後に閉合されて、水圧管に作用する応力に対して水圧管を補強する繊維強化樹脂であって、繊維強化樹脂の端部からは、機械継手による閉合に際して用いられる繊維が突出されていることを特徴としている。
【0013】
【発明の実施の形態】
以下、添付図面に示す実施の形態に基づいて本発明を詳細に説明する。
図1は、本実施の形態における水圧管補強方法が実行される鉄管構造の一例を示す図である。ここでは、水力発電所に設けられる水圧鉄管が示されており、山間の斜面に設けられている。本実施の形態における鉄管構造では、鉄管(水圧鉄管)1がリングガーダ2によって支持されており、全長で数百メートル(例えば約500m)の構造を有している。鉄管1は、例えば、材質SS34相当、板厚が約9mm(例えば6.3mm〜11.1mm)、内径が1.5m〜2mの管であり、リングガーダ2間の長さは各々が10m〜20m程度である。
【0014】
水力発電に用いられる水圧鉄管には内圧が働き、円周方向や管軸方向にひずみが生じる。内圧に対しては円周方向の応力が最も大きく発生し、その応力は水力発電所における水圧によって異なる。無補強の状態における鉄管1の円周方向発生応力σは、内圧をp、内径をD、鉄管1の板厚をtsとすると、
σ=pD / 2ts
で表すことができる。
【0015】
一方、水力発電に長期間、水圧鉄管を用いると、経過年数に応じて腐食が進む。水圧鉄管の代表的な損傷モードとしては、腐食・磨耗による管胴板厚の減少が挙げられる。この腐食の程度は、設備利用率によっても異なるが、水力発電所の水系によっても腐食の程度が異なる。
【0016】
このような水圧鉄管における管胴板厚の減少に対し、本実施の形態では、PAN系の炭素繊維強化樹脂(CFRP)を鉄管1の表面に接着し、鉄管1の補強を行なう。補強管の発生応力σ'は、上述の文献1によれば、
σ' = λσ
λ = tsEs / (tsEs+NtTET)
で表すことができる。ここで、Esは鉄管1の弾性係数、tTはシート一層あたりの厚さ、ETはシートの弾性係数、Nはシートの補強総数である。
【0017】
ここで、鉄筋コンクリート部材の補修・補強を含む、一般に行なわれるCFRPによる補強では、例えば、被補強部材に対する清掃等の下地処理の後、プライマーを塗布し、凹凸の修正である不陸修正、墨出しが行なわれた後、接着剤が塗布される。その後、炭素繊維シートが貼り付けられ、樹脂の含浸、脱泡によるCFRP工程が行なわれる。形成されたCFRPの上に接着剤塗布工程、シート貼り付け工程、CFRP工程が必要回数、繰り返されて、最後に仕上げ工程を経て、補強のための一連の工程が終了する。
【0018】
このような一般に行なわれているCFRPによる補強では、樹脂の含浸に手間がかかり、各層ごとに養生期間が必要となることから、現場での施工時間が長くなる。特に、水力発電の現場では、作業のための足場が悪く、長時間の作業を行なうことは困難である。更に、作業現場が山間となることから、炭素繊維シートの貼り付けに必要な広いスペースを確保することができず、従来の工法を適用することができない。本実施の形態では、かかる問題点に対処するために、鉄管1の形状に沿う寸法にてCFRP成型品を予め工場にて製作し、現場作業を少なくすることによって、現場の工期短縮と、製品の品質向上を図っている。
【0019】
図2(a),(b)は、本実施の形態が適用された水圧鉄管補強部材(繊維強化樹脂)の第1の例を示す図であり、図2(a)は工場から出荷される水圧鉄管補強部材の成型品を示し、図2(b)は鉄管1に取り付けられた状態を示している。図2(a)に示すように、この第1の例では、開口部(閉合部)12を有するCFRP成型品(繊維強化樹脂部)11を備え、例えば肉厚2mmで構成される。また製作効率等を考慮して、例えば肉厚約0.5mmシートを4層重ね、工場にてFRP化されることも好ましい。CFRP成型品11は、鉄管1の外形形状(鉄管径)を考慮して成型される。例えば内径が1.6mの鉄管1であれば、その内径1.6mに鉄管1の肉厚(例えば9mm)を考慮して、CFRP成型品11の管における内径が決定される。更に、成型品の軸方向の長さは、補強したい鉄管1の形状等に依存するが、10m〜20mであれば、工場から現場までの運搬・搬送にも支障とならない点で優れている。
【0020】
開口部(閉合部)12は、現場にて鉄管1を取り付けるために設けられる。CFRP成型品11は、現場にて鉄管1を取り付けて覆う必要性から、管としては閉合していないものである。CFRP成型品11の撓み、即ち、CFRP成型品11の有する可撓性を利用して、開口部(閉合部)12が押し広げられ、図2(b)に示すように、接着剤が塗布された鉄管1に取り付けられる。鉄管1と成型品であるCFRP成型品11とは、基本的に接着剤を塗布しておくか、閉合時に注入する充填剤(樹脂)にて接着することができる。
【0021】
また、図2(a)に示すように、開口部(閉合部)12には、CFRP成型品11の端部から、複数層からなる繊維13が突出されている。この繊維13は、後述するように、例えば、CFRP成型品11の取り付け後に開口部(閉合部)12を閉合する際、1層毎に接着剤を用いて重ね合わされ、下層から順番に樹脂が含浸される。この繊維13を全て接着し、含浸することで、鉄管1の外周をFRP構造で覆うことが可能となる。このように図2(a)に示す水圧鉄管補強部材(繊維強化樹脂)によれば、成型品を製作する際の加工性が高く、また、現場での工程を非常に簡素化することができる。
【0022】
尚、後述する他の例でも同様であるが、CFRP成型品11の軸方向の端部(図示せず)にも同様な繊維(図示せず)を設け、水圧鉄管補強部材を連結させて同様に閉合することで、軸方向に生じる応力に対しても対処できるように構成することも可能である。また、接着剤としては、エポキシ樹脂やビニールエステル等が用いられる。
【0023】
図3は、本実施の形態が適用された水圧鉄管補強部材(繊維強化樹脂)の第2の例を示す図である。ここでは、工場にて作成された複数のCFRP成型品(例えば第1CFRP成型品21および第2CFRP成型品22)を現場にて重ね合わせ、それぞれを接着させて補強するものであり、図3では、現場にて取り付けられた状態を示している。即ち、まず、図2に示した第1の例と同様に、鉄管1に接着剤を塗布した後、最も下層となる成型品(図3では第1CFRP成型品21)を鉄管1にはめ込み、開口部に樹脂を含浸させて閉合する。その後、閉合された成型品(図3では第1CFRP成型品21)の外側に接着剤を塗布した後、例えば180度ずらせた方向から次の成型品(図3では第2CFRP成型品22)をはめ込み、開口部に樹脂を含浸させて閉合する。
【0024】
この図3では、説明上、2枚の成型品(第1CFRP成型品21および第2CFRP成型品22)だけを示しているが、更に複数枚の成型品を重ねることが可能である。例えば、0.5mmの肉厚の成型品を4層、重ね、CFRPとして0.5×4=2mmの肉厚を得る等である。特に、図2(a)に示すような1枚の成型品では、板厚が厚くなり押し広げることができないような場合に、図3に示すような可撓性の高い、薄い肉厚の水圧鉄管補強部材(繊維強化樹脂)を複数枚、用いれば、現場での取り付け作業が容易となる。
【0025】
図4(a),(b)は、本実施の形態が適用された水圧鉄管補強部材(繊維強化樹脂)の第3の例を示す図である。この第3の例では、CFRP成型品の硬化された部分を分断して可撓性の高い変形可能箇所を設け、鉄管1への取り付け性能を向上させた点に特徴がある。図4(a)では、CFRP成型品が備える複数の硬化部31の間に未含浸部分である繊維部33を設け、鉄管1にCFRP成型品を装着する際に、繊維部33の可撓性を利用して開口部32を押し広げるものである。また、図4(b)では、図4(a)に示した繊維部33の代わりに、完全に硬化されていないプリプレグ状態にある未硬化部分である半硬化部34を設け、半硬化部34の有する可撓性を利用して開口部32を押し広げることができるように構成されている。尚、開口部32の構成は、図2(a)に示した開口部12と同様で構わないが、変形可能箇所が別に設けられていることから、その大きさ(弧の長さ)を小さくすることが可能である。
【0026】
図4(a)に示す例では、鉄管1に取り付けた後、繊維部33に樹脂を浸み込ませてFRP化させる。即ち、未含浸部分については、各層の繊維は連続しているので、鉄管1に取り付けた後、現場にて全層をまとめて含浸する。また、図4(b)に示す例では、鉄管1に取り付けた後、現場にて半硬化部34を例えば加熱することによって硬化させる。この図4(a),(b)に示す例によれば、径の大きな鉄管1への適用性に優れ、形状保持が容易であると同時に、現地での取り付け作業が容易となる点に特徴がある。また、図4(b)では、図4(a)の繊維部33だけでは切断の恐れがある場合等に、特に有効である。
【0027】
図5は、本実施の形態が適用された水圧鉄管補強部材(繊維強化樹脂)の第4の例を示す図である。この第4の例では、半割れ等、複数の成型品を組み合わせる点に特徴がある。即ち、図5に示すように、鉄管1の外径に合わせて形成され、鉄管1の外周を何等分かに分断するように設計されたCFRP成型品41を、複数個用いている。この複数個のCFRP成型品41を、例えば接着剤によって鉄管1に取り付ける。その後、CFRP成型品41の端部にもうけられた繊維42の部分を接着、含浸させることで、鉄管1に対する補強を図っている。
【0028】
図5に示す第4の例では、CFRP成型品41を製造した工場から作業現場までの運搬性が大きく向上する。また、保管等に際しても場所を取らない。更には、可撓性部分に依存せずに鉄管1に取り付けることが可能であり、現場での取り付け作業性を向上させることができる。
【0030】
次に、成型品における端部の間の閉合について説明する。上述した第1の例〜第4の例では、閉合する成型品の端部から予め繊維を出しておき、現場で樹脂を含浸して閉合する。その閉合時の繊維の連続方法としては、機械的継手による閉合方法、オーバーラップ繊維による閉合方法等が考えられる。
【0032】
図6(a),(b)は、機械継手による閉合方法の一例を示した図であり、同様に、図2〜図5に示した成型品の円周方向における開口部(12等)を詳細に示したものである。CFRP成型品81の各層から突出する繊維82の先に、スナップ等の機械継手83を設け、各層の各端部ごとに繊維82を機械継手83で接続している。図6(b)に示すように、この機械継手83により接続された繊維82の間に、樹脂を入れて含浸することで、現場における閉合が可能となる。この機械継手83によれば、接合部の強度を高く保つことが可能となる。
【0033】
図7は、オーバーラップ繊維による閉合方法の一例を示した図である。ここでは、6層のCFRPからなるCFRP成型品91と、その端部から1層おきに繊維が突出している。1層おきとしたのは、例えば織物の場合には、厚みがあり、全ての層を突出させると、その部分だけ厚みが増してしまうためである。図7に示す例では、ラップ区間にて交互に繊維を布設し、1〜2層ごとに含浸している。そして、最後にオーバーラップ繊維92を接着する。このオーバーラップ繊維92によるオーバーラップ区間を設けることで、接合部の強度を高めることが可能となる。
【0034】
尚、通常の水圧鉄管は、周方向の応力が支配的であるため、本実施の形態では、円周方向の補強を中心に説明した。軸方向に補強が必要か否かは、鉄管の種類によって異なり、必要なければ、そのままCFRP成型品を沿わせるだけでよい。しかし、軸方向の応力も作用し、これを補強するためには、相応する軸方向補強をFRPを用いて行なうことができる。この軸方向の閉合であるが、図6および図7にて説明したような閉合方法によって閉合する他に、単にオーバーラップのための繊維を含浸させてFRP化させることによって閉合しても良い。
【0035】
以上詳述したように、本実施の形態では、工場にて鉄管1の径に合うFRP成型品を作成し、そのFRP成型品を鉄管1に取り付けた後の閉合を現場にて行なうように構成した。これによって、山間の急傾斜に設けられた水圧鉄管に対して、現場での作業を大きく削減した状態にて、水圧鉄管の補強を行なうことが可能となる。
【0036】
尚、上述の説明では、炭素(カーボン)を用いたFRPであるCFRPの成型品を用いる例を挙げて説明したが、必要に応じて、ガラス(G)、アラミド、ボロン、炭素珪素、ウィスカー(黒鉛、アルミナ、炭化珪素、窒化珪素等のセラミックウィスカー、鉄、ニッケル、クロムなどの金属ウィスカー)、ポリエチレン等の繊維からなるFRPによって補強することも可能である。但し、CFRPであれば、軽量であると共に高弾性率が得られ、第一に剛性を確保し、第二に強度を確保するといった水圧鉄管の補強目的には、非常に適している。また、必要に応じて、例えば最下層(最内層)に電食防止のGFRP、最上層(最外層)に衝撃吸収のためのGFRPを配置する等、適宜、最適なFRPを選定することも可能である。
【0037】
【発明の効果】
このように、本発明によれば、一般に作業が困難である水圧管の補強工事に際し、現場での工期を大幅に短縮することができる。
【図面の簡単な説明】
【図1】本実施の形態における水圧管補強方法が実行される鉄管構造の一例を示す図である。
【図2】(a),(b)は、本実施の形態が適用された水圧鉄管補強部材(繊維強化樹脂)の第1の例を示す図である。
【図3】本実施の形態が適用された水圧鉄管補強部材(繊維強化樹脂)の第2の例を示す図である。
【図4】(a),(b)は、本実施の形態が適用された水圧鉄管補強部材(繊維強化樹脂)の第3の例を示す図である。
【図5】本実施の形態が適用された水圧鉄管補強部材(繊維強化樹脂)の第4の例を示す図である。
【図6】(a),(b)は、機械継手による閉合方法の一例を示した図である。
【図7】オーバーラップ繊維による閉合方法の一例を示した図である。
【符号の説明】
1…鉄管(水圧鉄管)、2…リングガーダ、11…CFRP成型品(繊維強化樹脂部)、12…開口部(閉合部)、13…繊維、21…第1CFRP成型品、22…第2CFRP成型品、31…硬化部、32…開口部、33…繊維部、34…半硬化部、41…CFRP成型品、42…繊維、81…CFRP成型品、82…繊維、83…機械継手、91…CFRP成型品、92…オーバーラップ繊維[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reinforcing a hydraulic pipe and the like, and more particularly, to a method for reinforcing a hydraulic pipe and the like that greatly reduce field work.
[0002]
[Prior art]
Fiber Reinforced Plastics (FRP: Fiber Reinforced Plastics) using reinforced fibers such as carbon, glass, and aramid are widely used in various sporting goods and aircraft industries, taking advantage of their high strength and light weight. Yes. In recent years, in the construction field, for example, application of carbon fiber reinforced resin (CFRP) has been attempted as a reinforcing material for piers, subway middle columns, reinforced concrete structure columns, and the like. For example, Japanese Patent Application Laid-Open No. 10-280706 discloses a technique for reinforcing reinforcement by attaching a carbon fiber sheet to a separation portion between two reinforcing steel plates provided on a pillar of a structure.
[0003]
On the other hand, in a hydroelectric power station currently operating in Japan, a hydraulic iron pipe is widely used as a hydraulic pipe. As a typical damage mode of a hydraulic iron pipe, there is a reduction in the thickness of the pipe body due to corrosion and wear, but there are cases where a hydraulic iron pipe with a surplus thickness has already been used, and the establishment of a life extension method has been established. It is strongly desired. In the past, when the hydraulic iron pipes were aging, replacements were often made. However, in recent years, the power business environment has been severe due to the sluggish growth in power demand and the liberalization of the power market. Operators are demanding a method for extending the life with a shorter construction period and lower cost.
[0004]
[Problems to be solved by the invention]
Based on this situation, we have a lot of experience in repairing and reinforcing reinforced concrete members, have little weight increase, have excellent corrosion resistance, and use CFRP that can exhibit the same strength as steel pipes. If it can be reinforced in the same way as a member, it can be an effective answer to the demands of electric power companies. Here, as an application of carbon sheet to repair of hydraulic iron pipes, Reference 1 (Electric Power Engineering No.262 1996 Kenji Sakai et al., “Application of Carbon Fiber to Hydraulic Iron Pipe Repair Technology”) describes the surface of hydraulic iron pipes. After the cleaning, the carbon fiber sheet is bonded with an epoxy resin, and the epoxy resin is impregnated and cured from the surface of the carbon fiber sheet to repair the hydraulic iron pipe.
[0005]
However, the repair method shown in
[0006]
Also, unlike the work site of the pier, the site where the hydraulic iron pipe is provided has a poor footing, for example, the iron pipe is inclined in a mountainous area, and its periphery is very narrow. For this reason, the variation becomes large when the fiber sheet is attached, and for example, unevenness of the resin thickness occurs during the impregnation. As a result, the quality as the reinforcing member is extremely deteriorated, and the reinforcing performance is deteriorated.
[0007]
The present invention has been made in order to solve the technical problems as described above, and the purpose of the present invention is to greatly reduce the construction period at the site for the reinforcement work of the hydraulic pipe, which is generally difficult to work. It is to shorten.
Another object is to dramatically improve product quality as a reinforcing member in a hydraulic pipe.
[0008]
[Means for Solving the Problems]
For this purpose, in the present invention, when reinforcing a hydraulic pipe that is difficult to work on-site, an FRP molded product having an already hardened part is manufactured at the factory and provided to the site, so that the field work can be performed. Significantly reduced and provides higher quality reinforcement. That is, the method for reinforcing a hydraulic pipe to which the present invention is applied is a method of using a fiber reinforced resin (FRP) such as a carbon fiber reinforced resin (CFRP) pre-molded according to the shape of a hydraulic pipe (for example, a hydraulic iron pipe) to be reinforced. Using the opening of the fiber reinforced resin, for example, an attachment step of spreading the fiber reinforced resin by the flexibility of the fiber reinforced resin and attaching the fiber reinforced resin to the hydraulic tube, and the hydraulic tube and the fiber reinforced resin before and after the attachment step Apply adhesive or inject filler (adhesive unnecessary) between the adhesive application / filler injection process, and after attaching fiber reinforced resin to this hydraulic pipe, this opening is fiber reinforced resin And a closing step of closing a fiber previously drawn from the end of the wire using a mechanical joint .
[0009]
Here, in the process of attaching the fiber reinforced resin, in addition to the case of spreading using the flexibility of the fiber reinforced resin, the flexible part such as a fiber part or a semi-cured part separately provided in a part of the fiber reinforced resin is used. It is possible to attach using the property.
[0010]
The fiber-reinforced resin may also enhance bonding by adhering a reinforcing member that covers the open mouth portion be overlapped. It is also possible to repeat the attachment and closing a plurality of times and to reinforce with a fiber reinforced resin composed of a plurality of layers.
[0011]
On the other hand, penstock reinforcing member to which the present invention is applied, and the fiber-reinforced resin portion which is previously molded in a shape along the outer periphery of the penstock to be reinforced, provided at an end portion of the fiber-reinforced resin portion, mechanical joint The fiber used at the time of closing is projected from the end of the fiber reinforced resin part, and the fiber reinforced resin part is closed with a closing part that is closed after the fiber reinforced resin part is attached to the hydraulic pipe. It is characterized in that the hydraulic pipe is reinforced against the stress acting on the hydraulic pipe by the closing portion.
[0012]
Moreover, this invention can be grasped | ascertained as a fiber reinforced resin. That is, the fiber reinforced resin for reinforcing the hydraulic pipe to which the present invention is applied is preliminarily molded in a shape along the outer periphery of the hydraulic pipe to be reinforced, and is required to be expanded when attached to the hydraulic pipe. Is a fiber reinforced resin that is closed after the molded portion is attached to the hydraulic pipe, and reinforces the hydraulic pipe against stress acting on the hydraulic pipe, from the end of the fiber reinforced resin The fiber used at the time of closing by the mechanical joint is projected .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
FIG. 1 is a diagram showing an example of an iron pipe structure in which the hydraulic pipe reinforcing method according to the present embodiment is executed. Here, a hydraulic iron pipe provided in a hydroelectric power plant is shown, and is provided on a slope between mountains. In the iron pipe structure in the present embodiment, an iron pipe (hydraulic iron pipe) 1 is supported by a ring girder 2 and has a total length of several hundred meters (for example, about 500 m). The
[0014]
Internal pressure acts on the hydraulic iron pipe used for hydroelectric power generation, and distortion occurs in the circumferential direction and the pipe axis direction. For internal pressure, the circumferential stress is the largest, and the stress varies depending on the water pressure at the hydroelectric power plant. The circumferential stress generated
σ = pD / 2t s
Can be expressed as
[0015]
On the other hand, when a hydraulic iron pipe is used for a long time for hydroelectric power generation, corrosion progresses according to the number of years elapsed. As a typical damage mode of a hydraulic iron pipe, there is a reduction in the thickness of the pipe body due to corrosion and wear. The degree of corrosion varies depending on the equipment utilization rate, but also varies depending on the water system of the hydroelectric power plant.
[0016]
In this embodiment, the PAN-based carbon fiber reinforced resin (CFRP) is bonded to the surface of the
σ '= λσ
λ = t s E s / ( t s E s + Nt T E T)
Can be expressed as Here, E s is the elastic coefficient of the
[0017]
Here, in general reinforcement by CFRP including repair / reinforcement of reinforced concrete members, for example, after primer treatment such as cleaning of the member to be reinforced, a primer is applied to correct unevenness, which is correction of unevenness, and ink marking. Is applied, an adhesive is applied. Thereafter, a carbon fiber sheet is attached, and a CFRP process by resin impregnation and defoaming is performed. On the formed CFRP, the adhesive coating process, the sheet sticking process, and the CFRP process are repeated as many times as necessary, and finally a finishing process is performed, and a series of steps for reinforcement is completed.
[0018]
In such general reinforcement by CFRP, it takes time to impregnate the resin, and a curing period is required for each layer, so that the construction time at the site becomes longer. In particular, in the field of hydroelectric power generation, a scaffold for work is poor and it is difficult to perform work for a long time. Furthermore, since the work site is mountainous, it is not possible to secure a wide space necessary for attaching the carbon fiber sheet, and it is impossible to apply a conventional construction method. In the present embodiment, in order to cope with such problems, CFRP molded products are manufactured in advance in the factory with dimensions along the shape of the
[0019]
FIGS. 2A and 2B are views showing a first example of a hydraulic iron pipe reinforcing member (fiber reinforced resin) to which the present embodiment is applied, and FIG. 2A is shipped from a factory. A molded product of the hydraulic iron pipe reinforcing member is shown, and FIG. 2 (b) shows a state where it is attached to the
[0020]
The opening (closing portion) 12 is provided for attaching the
[0021]
Further, as shown in FIG. 2A, fibers 13 composed of a plurality of layers protrude from the end of the CFRP molded product 11 in the opening (closing portion) 12. As will be described later, for example, when the opening (closing portion) 12 is closed after the CFRP molded product 11 is attached, the fibers 13 are overlapped using an adhesive for each layer, and the resin is impregnated in order from the lower layer. Is done. By bonding and impregnating all the fibers 13, the outer periphery of the
[0022]
The same applies to other examples which will be described later, but the same fiber (not shown) is provided at the axial end (not shown) of the CFRP molded product 11 and a hydraulic iron pipe reinforcing member is connected. It is also possible to configure so as to cope with the stress generated in the axial direction. Moreover, an epoxy resin, vinyl ester, etc. are used as an adhesive agent.
[0023]
FIG. 3 is a view showing a second example of a hydraulic iron pipe reinforcing member (fiber reinforced resin) to which the present embodiment is applied. Here, a plurality of CFRP molded products (for example, the first CFRP molded product 21 and the second CFRP molded product 22) created at the factory are superposed on the site, and each is bonded and reinforced. In FIG. It shows the state of being installed on site. That is, first, as in the first example shown in FIG. 2, after the adhesive is applied to the
[0024]
In FIG. 3, only two molded products (the first CFRP molded product 21 and the second CFRP molded product 22) are shown for explanation, but a plurality of molded products can be further stacked. For example, four layers of a 0.5 mm thick molded product are stacked to obtain a thickness of 0.5 × 4 = 2 mm as CFRP. In particular, in the case of a single molded product as shown in FIG. 2 (a), when the plate thickness is too thick to be expanded, a highly flexible and thin-walled hydraulic pressure as shown in FIG. If a plurality of steel pipe reinforcing members (fiber reinforced resins) are used, the installation work at the site becomes easy.
[0025]
FIGS. 4A and 4B are views showing a third example of a hydraulic iron pipe reinforcing member (fiber reinforced resin) to which the present embodiment is applied. This third example is characterized in that the hardened portion of the CFRP molded product is divided to provide a highly flexible deformable portion and the attachment performance to the
[0026]
In the example shown in FIG. 4A, after being attached to the
[0027]
FIG. 5 is a view showing a fourth example of a hydraulic iron pipe reinforcing member (fiber reinforced resin) to which the present embodiment is applied. This fourth example is characterized by combining a plurality of molded products such as half cracks. That is, as shown in FIG. 5, a plurality of CFRP molded
[0028]
In the fourth example shown in FIG. 5, the transportability from the factory where the CFRP molded
[0030]
Next, the closing between the end portions in the molded product will be described . In the first example to the fourth example of the above mentioned, it leaves out previously fibers from the end portion of the molded article to closing, the site of the resin impregnated in to closure. The continuous process of the fiber at the time of closure, closing the process according to the machine械的joint closure method and the like are contemplated by overlap fibers.
[0032]
FIG. 6 (a), the (b) is a diagram showing an example of a closure process according to mechanical joint, similarly, openings in the circumferential direction of the molding shown in FIGS. 2 to 5 (12 etc.) It is shown in detail. A mechanical joint 83 such as a snap is provided at the tip of the
[0033]
FIG. 7 is a diagram showing an example of a closing method using overlapping fibers. Here, a CFRP molded
[0034]
In addition, since the stress of the circumferential direction is dominant in the normal hydraulic iron pipe, in this Embodiment, it demonstrated centering on the reinforcement of the circumferential direction. Whether or not reinforcement is required in the axial direction depends on the type of iron pipe, and if it is not necessary, it is only necessary to place the CFRP molded product as it is. However, in order to reinforce axial stresses as well, corresponding axial reinforcement can be performed using FRP. This axial closing is not limited to the closing method as described with reference to FIGS . 6 and 7 , but may be closed by simply impregnating the fibers for overlap and forming FRP.
[0035]
As described above in detail, in the present embodiment, a FRP molded product that matches the diameter of the
[0036]
In the above description, an example of using a molded product of CFRP, which is FRP using carbon, has been described, but if necessary, glass (G), aramid, boron, carbon silicon, whisker ( It is also possible to reinforce with FRP made of fibers such as ceramic whiskers such as graphite, alumina, silicon carbide and silicon nitride, metal whiskers such as iron, nickel and chromium), and polyethylene. However, CFRP is lightweight and has a high elastic modulus, and is very suitable for the purpose of reinforcing a hydraulic iron pipe such as firstly ensuring rigidity and secondly ensuring strength. In addition, if necessary, the optimum FRP can be selected as appropriate, for example, by arranging GFRP for preventing electric corrosion in the lowermost layer (innermost layer) and GFRP for shock absorption in the uppermost layer (outermost layer). It is.
[0037]
【The invention's effect】
As described above, according to the present invention, it is possible to greatly shorten the construction period in the field in the reinforcement work of the hydraulic pipe, which is generally difficult to work.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an iron pipe structure in which a method for reinforcing a hydraulic pipe in the present embodiment is executed.
FIGS. 2A and 2B are views showing a first example of a hydraulic iron pipe reinforcing member (fiber reinforced resin) to which the present embodiment is applied.
FIG. 3 is a view showing a second example of a hydraulic iron pipe reinforcing member (fiber reinforced resin) to which the present embodiment is applied.
4 (a) and 4 (b) are views showing a third example of a hydraulic iron pipe reinforcing member (fiber reinforced resin) to which the present embodiment is applied.
FIG. 5 is a view showing a fourth example of a hydraulic iron pipe reinforcing member (fiber reinforced resin) to which the present embodiment is applied.
FIGS. 6A and 6B are diagrams showing an example of a closing method using a mechanical joint.
FIG. 7 is a diagram showing an example of a closing method using overlapping fibers.
[Explanation of symbols]
DESCRIPTION OF
Claims (8)
前記取り付け工程の前後にて前記水圧管と前記繊維強化樹脂との間に接着剤を塗布または充填剤を注入する接着剤塗布/充填剤注入工程と、
前記水圧管に対して前記繊維強化樹脂を取り付けた後に前記開口部を閉合する閉合工程と、を有し、
前記繊維強化樹脂は、前記開口部における当該繊維強化樹脂の端部から予め繊維が出されており、
前記閉合工程は、前記繊維に対して機械継手を用いて閉合することを特徴とする水圧管補強方法。An attachment step of attaching a fiber reinforced resin (FRP) molded in advance according to the shape of the hydraulic pipe to be reinforced to the hydraulic pipe using an opening of the fiber reinforced resin;
An adhesive application / filler injection step of applying an adhesive or injecting a filler between the hydraulic pipe and the fiber reinforced resin before and after the attachment step;
Have a, a closure step of closing the opening after mounting the fiber-reinforced resin to the penstock,
The fiber reinforced resin, the fiber has been taken out in advance from the end of the fiber reinforced resin in the opening,
The said closing process closes using a mechanical coupling with respect to the said fiber, The hydraulic pipe reinforcement method characterized by the above-mentioned .
前記取り付け工程は、前記非硬化部を利用して前記繊維強化樹脂を押し広げて前記水圧管に取り付けることを特徴とする請求項1記載の水圧管補強方法。The fiber reinforced resin partially includes a non-cured portion having flexibility,
The hydraulic pipe reinforcing method according to claim 1, wherein in the attaching step, the fiber reinforced resin is spread and attached to the hydraulic pipe using the non-cured portion.
前記繊維強化樹脂部の端部に設けられ、前記水圧管に当該繊維強化樹脂部を取り付けた後に閉合される閉合部と、を備え、
前記閉合部は、機械継手による閉合に際して用いられる繊維を前記繊維強化樹脂部の前記端部から突出させており、
前記繊維強化樹脂部および閉合された前記閉合部により、前記水圧管に作用する応力に対して当該水圧管を補強することを特徴とする水圧管補強部材。A fiber reinforced resin portion pre-shaped in a shape along the outer periphery of the hydraulic pipe to be reinforced,
Provided at the end of the fiber reinforced resin portion, and a closed portion that is closed after attaching the fiber reinforced resin portion to the hydraulic pipe,
The closing portion projects fibers used for closing by a mechanical joint from the end portion of the fiber reinforced resin portion,
A hydraulic pipe reinforcing member that reinforces the hydraulic pipe against stress acting on the hydraulic pipe by the fiber reinforced resin portion and the closed closing portion.
前記水圧管に取り付けられる際、押し広げられるために必要な所定の可撓性を有し、
前記水圧管に成型部分を取り付けた後に閉合されて、当該水圧管に作用する応力に対して当該水圧管を補強する水圧管補強のための繊維強化樹脂であって、
前記繊維強化樹脂の端部からは、機械継手による前記閉合に際して用いられる繊維が突出されていること特徴とする繊維強化樹脂。Pre-molded in a shape along the outer circumference of the hydraulic pipe to be reinforced,
When attached to the hydraulic pipe, it has a predetermined flexibility required to be spread out,
A fiber reinforced resin for reinforcing the hydraulic pipe that is closed after attaching the molded part to the hydraulic pipe and reinforces the hydraulic pipe against stress acting on the hydraulic pipe ,
A fiber reinforced resin characterized in that a fiber used for the closing by a mechanical joint protrudes from an end of the fiber reinforced resin .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001198067A JP4443796B2 (en) | 2001-06-29 | 2001-06-29 | Water tube reinforcement method, water tube reinforcement member, fiber reinforced resin for water tube reinforcement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001198067A JP4443796B2 (en) | 2001-06-29 | 2001-06-29 | Water tube reinforcement method, water tube reinforcement member, fiber reinforced resin for water tube reinforcement |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003014163A JP2003014163A (en) | 2003-01-15 |
JP4443796B2 true JP4443796B2 (en) | 2010-03-31 |
Family
ID=19035572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001198067A Expired - Fee Related JP4443796B2 (en) | 2001-06-29 | 2001-06-29 | Water tube reinforcement method, water tube reinforcement member, fiber reinforced resin for water tube reinforcement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4443796B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5427503B2 (en) * | 2009-07-31 | 2014-02-26 | 日産自動車株式会社 | FIBER-REINFORCED RESIN COMPONENT, ITS MANUFACTURING METHOD, AND MANUFACTURING DEVICE |
CN104956138A (en) * | 2013-02-01 | 2015-09-30 | 中国电力株式会社 | Pipe-reinforcing implement |
-
2001
- 2001-06-29 JP JP2001198067A patent/JP4443796B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003014163A (en) | 2003-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0378232B1 (en) | Method for reinforcing concrete structures | |
US3177902A (en) | Reinforced pipe and method of making | |
US5505030A (en) | Composite reinforced structures | |
CN101204770B (en) | Pressure structure clamp and fiber compound material combined reinforcement technology | |
US3340115A (en) | Method of making a reinforced composite concrete pipe | |
US20060054231A1 (en) | Tube for transporting high-viscosity materials | |
EP1298267B1 (en) | Structure reinforcing method, reinforcing structure material and reinforced structure | |
CN101967619B (en) | Method for reinforcement repair of pipeline by using metal hot spraying and fibrous composite | |
CN110486568B (en) | Pretightening force repairing method, pretightening force and clamp combined repairing method and repaired pipeline | |
US20090038702A1 (en) | Cost effective repair of piping to increase load carrying capability | |
CN109555909B (en) | Double-wall inner rib glass fiber reinforced plastic sandwich concrete high-strength composite pipeline and processing method thereof | |
USRE27061E (en) | Method of making a reinforced composite concrete pipe | |
WO2022129878A1 (en) | A rotor sail | |
US20040065033A1 (en) | Prefabricated construction element for buildings | |
KR101143906B1 (en) | High-tensile sheet metal panels construction method for concrete structure reinforcement and repair | |
JP4443796B2 (en) | Water tube reinforcement method, water tube reinforcement member, fiber reinforced resin for water tube reinforcement | |
JP3415107B2 (en) | Method for reinforcing concrete structure and reinforcing structure | |
CN113152791A (en) | Combined column and construction method thereof | |
FI105414B (en) | Procedure for laying underwater pipelines in deep water | |
JPH09250247A (en) | Composite material reinforced concrete structural body | |
US20240077165A1 (en) | Lightweight strong pipe for new construction and repair of pipes | |
CN215334910U (en) | Fiber reinforced cement-based composite material prefabricated pipe and preparation mold thereof | |
KR20010036866A (en) | Reinforcing high tension thin panel for concrete structure and the method of manufacturing the panel | |
CN113216512B (en) | Carbon fiber rib and steel bar composite ICCP-SS seawater sea sand concrete beam | |
JP3779806B2 (en) | Method for reinforcing concrete columnar body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090909 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090924 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091222 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100113 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140122 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
LAPS | Cancellation because of no payment of annual fees |