JP4443714B2 - High yield production method of hepatitis B virus surface antigen in cell culture - Google Patents

High yield production method of hepatitis B virus surface antigen in cell culture Download PDF

Info

Publication number
JP4443714B2
JP4443714B2 JP2000089517A JP2000089517A JP4443714B2 JP 4443714 B2 JP4443714 B2 JP 4443714B2 JP 2000089517 A JP2000089517 A JP 2000089517A JP 2000089517 A JP2000089517 A JP 2000089517A JP 4443714 B2 JP4443714 B2 JP 4443714B2
Authority
JP
Japan
Prior art keywords
antigen
hbs antigen
production
dex
dma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000089517A
Other languages
Japanese (ja)
Other versions
JP2001269194A (en
Inventor
隆宏 黒津
宗宏 小田
克郎 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Meiji Dairies Corp
Original Assignee
Meiji Co Ltd
Meiji Dairies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd, Meiji Dairies Corp filed Critical Meiji Co Ltd
Priority to JP2000089517A priority Critical patent/JP4443714B2/en
Publication of JP2001269194A publication Critical patent/JP2001269194A/en
Application granted granted Critical
Publication of JP4443714B2 publication Critical patent/JP4443714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は、B型肝炎ワクチン製造原料であるB型肝炎ウイルス表面抗原を産生するヒト肝癌組織由来の細胞を無血清培地で培養して、培養上清中に該抗原を産生分泌させるに際し、培養液にデキサメタゾンおよびN,N−ジメチルアセトアミドを添加することにより該抗原の生産を相乗的に高める技術に関するものである。
【0002】
【従来の技術】
B型肝炎ウイルス(HBウイルス)は感染率の高いウイルスで、東アジアや中部アフリカを中心に世界的に無症候状のキャリアを含め2億人、我が国だけでも約200万人の罹患者の存在が推定されている。HBウイルスは急性肝炎・劇症肝炎の原因となるだけでなく、慢性肝炎、肝硬変、肝細胞癌にまで関与し、無症候性キャリアでも長期的な肝癌発生率は健常人の200倍以上といわれている。したがって、B型肝炎ウイルス表面抗原(HBs抗原あるいは抗原)を用いて作製したB型肝炎ワクチン(HBワクチンあるいはワクチン)は、HBウイルスの感染の予防に有効であるとともに、癌の予防にも有効であるともいえる。
【0003】
HBウイルスは、ヒト以外ではチンパンジーの肝臓でしか増殖しないため、ワクチン製造原料となるHBウイルス表面抗原(HBs抗原あるいは抗原)粒子を得るため、当初はキャリアの血液から調製された直径が22nmのHBs抗原粒子が用いられた。しかし、キャリアの血液の供給量には限りがあり、また、感染性のHBウイルスの不活化はヒトあるいはチンパンジーでしか確認できず、さらに、未知因子の混入を完全に否定することが困難である。
【0004】
遺伝子組換え技術は新しいワクチン開発の道を開き、遺伝子操作技術により、血液由来のワクチンと同等の物理化学的性状と免疫原性をもつHBs抗原粒子が製造できるようになった(McAleer, W. J. et al.: Nature, 307: 178-180, 1984)。しかしながら、遺伝子組換えHBワクチンは不活化ワクチンであり、複数回にわたって多量の抗原を投与あるいはアジュバントを使って投与しなければならず、発展途上国で広く使用されるには高価である。また、酵母を宿主として得られたHBs抗原は、血漿由来のHBs抗原の抗体との反応性を100とすると20〜50%といわれている(William J. McAleer, et al.: Nature,307: 178, 1984)。
【0005】
一方、HBs抗原を産生するヒト肝癌組織由来の樹立細胞株huGK-14(日本国特許第1,823,385号)を、ウシ血清アルブミンおよびデキサメタゾンを添加した無血清培養液で培養し、その培養上清からHBワクチン原料となるHBs抗原粒子を分離・精製している(日本国特許第2,042,239号)。この抗原粒子の力価は、対照抗原(血漿由来)と同等である(小田宗宏, 角尾 肇, 小池克郎 : 肝胆膵,13(3): 585-590, 1986)。このワクチンは、安全性と有効性が確認されている。しかしながら、培養細胞から該抗原を培養液中に大量に産生分泌させることにより、該抗原の生産量をあげ、ワクチンの製造コストをさらに低下させることが望まれている。
【0006】
【発明が解決しようとする課題】
したがって本発明は、HBs抗原を産生するヒト肝癌組織由来の樹立細胞株を培養して、その培養上清から該抗原を得るに際し、該抗原の生産をさらに高め、かつ、得られる該抗原の物理化学的特性および免疫学的特性が、天然型のHBs抗原(血漿由来)と同等である該抗原を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明者らは、HBs抗原を産生するヒト肝癌組織由来の樹立細胞株huGK-14を培養し、その培養上清から該抗原を得るに際し、生産培養培地にデキサメタゾン(dexamethasone)および N,N−ジメチルアセトアミド(N,N−Dimethylacetamide)を生産用培養液(単に培地ともいう)に含ませることより、培養上清中に従来にない高い濃度のHBs抗原粒子が分泌産生されることを見出した。
【0008】
すなわち、本発明は
(1) B型肝炎ウイルス表面抗原を産生するヒト肝癌組織由来の細胞を培養し、得られた培養上清からB型肝炎ウイルス表面抗原を得る方法において、生産用培養液にデキサメタゾン0.5〜1μMおよびN,N−ジメチルアセトアミド15〜30mMを含有させることを特徴とするB型肝炎ウイルス表面抗原の高収率生産方法、
(2) デキサメタゾン0.5〜1μMおよびN,N−ジメチルアセトアミド15〜25mMを含有させる(1)のB型肝炎ウイルス表面抗原の高収率生産方法、
(3) ヒト肝癌組織由来の細胞がhuGK-14である(1)または(2)のB型肝炎ウイルス表面抗原の高収率生産方法、
に関する。
【0009】
【発明の実施の形態】
本発明において、用いられるHBs抗原粒子を産生するヒト肝癌組織由来の樹立細胞株huGK-14は以下のようにして得られている。
許らは、ヒト肝癌患者(日本人の男性, 53歳)の肝癌組織から細胞を分離し、15%ウシ胎仔血清添加DM-160培地で培養し、huH-1細胞株を樹立した(Huh, N. and Utakoji, T. : Jpn. J. Cancer Res. 72: 178-179, 1981)。小池らは、HBs抗原を著量産生する肝癌由来の細胞を得るために、このhuH-1細胞株を用いて、限界希釈法(Puck, T.T. et al.: J. Exp. Med., 103: 273-284, 1956)によるクローニングを行い、クローンhuSPを得た(Mizusawa, H. et al.: Proc. Natl. Acad. Sci. USA, 82: 208-212, 1985)。さらに、小池らは、このクローンhuSPを用いて、軟寒天培養法によるクローニングを行い、HBs抗原をhuSPよりもさらに高い濃度で培養液中に分泌産生する細胞株huGK-14を得た(Koike, K. et al.: Jpn. J. Cancer Res. 78: 1341-1346, 1987; 日本国特許第1,823,385号)。
【0010】
この細胞株huGK-14の特徴は、無血清の生産用培地でも良好な分裂増殖を示し、adr型HBs抗原粒子を培養液中に著量分泌産生し、さらにステロイドホルモンの一つであるデキサメタゾンを生産用培地に1μM添加すると、HBs抗原の産生量を増加させることができる(日本国特許第2,042,239号)。
このようなホルモンによるHBs抗原産生誘導現象によるHBs抗原の生産性の向上に基づき、新たに分化誘導剤とホルモンの組み合わせによるさらなる生産性の向上を目的として検討を行った結果、デキサメタゾン単独による誘導効果を遙かに越えるデキサメタゾンと分化誘導剤との組み合わせを見い出した。
【0011】
以下、本発明の理解のために試験例により本発明を説明する。
HBs抗原の産生に最適の誘導物質濃度を探索する目的で、誘導物質としてデキサメタゾン(以下、「Dex」という)、あるいは各種誘導物質を選び、それぞれについて、HBs抗原生産用培地に添加し、8週間にわたり、HBs抗原の産生量を調べた。
Dexを添加した場合、表1に示すように、Dexの濃度が0.5〜1.0μMの範囲では、HBs抗原の産生量は、安定していたが、〜2μMでは逆に産生量が低下することが示された。したがって、HBs抗原を培養液中に高い濃度で分泌産生させるためには、生産用培地へ添加するDexの濃度は、0.5〜1μMの範囲に設定するのが好ましく、さらに好ましい濃度はほぼ1μM近辺と考えられる。培地中のDexの濃度が生細胞数に及ぼす影響(細胞毒性)は、表1に示すように、設定した0.5〜2μMの範囲ではほとんど認められず、増殖傾向にあった。
表中、分子はHBs抗原量(ng/ml)を示し、分母は生細胞数(×105cells/cm2)を示す。
【0012】
【表1】

Figure 0004443714
【0013】
一方、N,N−ジメチルアセトアミド(以下、「DMA」という)のHBs抗原産生誘導効果は、表2に示すように、15〜25mMの範囲では、HBs抗原の産生量は濃度依存的に増加することが示唆されたが、〜30mMでは逆に産生量が低下することが示された。したがって、HBs抗原を培養液中に高い濃度で分泌産生させるためには、生産用培地へ添加するDMAの濃度は15〜25mM近辺の範囲に設定するのが好ましく、さらに好ましい濃度は20〜25mM近辺の範囲であり、最も好ましい濃度は25mM近辺、と考えられる。DMAの濃度が生細胞数に及ぼす影響は、表2に示すように、設定した5〜30mMの範囲ではほとんど認められず、増殖傾向にあった。
表中、分子はHBs抗原量(ng/ml)を示し、分母は生細胞数(×105cells/cm2)を示す。
【0014】
【表2】
Figure 0004443714
【0015】
以上の結果から、DexおよびDMAを生産用培地にそれぞれ単独で添加した場合、HBs抗原産生を増強し、かつ、添加した濃度範囲では、細胞毒性は極めて低く、単位細胞当たりのHBs抗原産生レベルの向上が示された。
そこで、本発明者らは、DexとDMAを生産用培地に添加した場合、HBs抗原産生誘導が相乗的あるいは相加的に増強されるかどうか、そして、増強された場合での、DexとDMAの最適組合わせ濃度を調べた。
その結果、表3に示すように、生産用培地に添加するDexとDMAの濃度が、Dexが0.5〜1μMの範囲で、かつ、DMAの濃度が12.5〜25mMの範囲である組合わせの場合に、HBs抗原の産生が、Dex単独の場合に対して2.3〜3.4倍、DMA単独の場合に対して4〜6倍増強されることが明らかとなった。
表中、分子はHBs抗原量(ng/ml)を示し、分母は生細胞数(×105cells/cm2)を示す。
【0016】
【表3】
Figure 0004443714
【0017】
DexとDMAの好ましい組み合わせは、Dexが0.5〜1.0μM近辺で、かつ、DMAが12.5〜25mM近辺、さらに好ましい組み合わせは、Dex0.5〜1.0μMで、かつ、DMA 25mM近辺、最も好ましい組み合わせは、Dex0.5μM近辺と、DMA 25mM近辺との組み合わせと考えられる。細胞毒性に関しては、細胞播種時の細胞数が維持されており、細胞毒性は低いと推察される。
DexとDMAとの組み合わせにより、HBs抗原産生が著明に増強されることが明らかとなった。そこで、さらに、DMAと同様な分化誘導物質である、N,N−ジエチルアセトアミド(N,N−Diethylacetamide)(以下、「DEA」という)、N,N−ジメチルフオルムアミド(N,N−Dimethylformamide)(以下、「DMF」という)、N,N−ジエチルアクリルアミド(N,N−Diethylacrylamide)(以下。「DEAA」という)、ヘキサメチレンビスアセトアミド(Hexamethylene bis acetamide)(以下、「HMBA」という)、およびジメチルスルホキシド(Dimethylsulfoxide)(以下、「DMSO」という)、について、Dexとの組み合わせによるHBs抗原の産生増強効果を調べた。
その結果、表4に示すように、Dexと各種分化誘導物質との組み合わせは、いずれも、HBs抗原産生増強効果を示さなかった。すなわち、DexとDMAとは、極めてユニークな組み合わせであることが本発明により初めて明らかにされた。表中の数値はHBs抗原量(ng/ml)を示す。
【0018】
【表4】
Figure 0004443714
【0019】
さらに、本発明者らは、DexとDMAとの組み合わせが、HBs抗原の産生を著明に増強したことに鑑み、Dex以外の他のホルモンとDMAとの組み合わせがHBs抗原の産生を増強するかどうかを探索する目的で、他のホルモンとして、コルチゾール、コルチゾン、コルチコステロン、プレドニソン、プレドニゾロン、トリアムシノロンを選び、これらのホルモンとDexとの組み合わせ効果を調べた。
その結果、表5に示すように、DMA25mMとコルチゾール1〜100μMとの組み合わせは、Dex単独の場合に対して、HBs抗原の産生を約3倍程度増強したが、DexとDMAの増強効果を超えることはなかった。表中の数値はHBs抗原量(ng/ml)を示す。
【0020】
【表5】
Figure 0004443714
【0021】
さらにまた、DexとDMAの組み合わせによる誘導効果は、一旦、DexとDMAによる誘導がかかれば持続するものなのか、あるいはDexとDMAが常時培養液中に存在しないと誘導がかからないのかを明らかにするために、DexとDMAを間歇的に生産用培地中含ませたときのHBs抗原産生誘導を調べた。その結果、表6に示す([ ]内は誘導物質無添加期間の抗原量を示す)ように、DexあるいはDMA+Dexを常時添加した系においては誘導効果は培養期間中持続していた。しかし、DMA+Dexを間歇的に培地中に存在させると、明らかに誘導剤が含まれる場合のみ誘導効果が確認され、誘導剤が含まれない場合の産生量は低値であった。間歇添加の系でのHBs抗原産生量はDMA+Dexを常時存在させた場合とほぼ同等であった。表中の数値はHBs抗原量(ng/ml)を示す。
【0022】
【表6】
Figure 0004443714
【0023】
以上の結果から、DexとDMAをHBs抗原生産用培地に添加することにより、huGK-14細胞は、HBs抗原を高濃度で培養液中に分泌産生することが明らかとなった。
【0024】
ところで、huGK-14細胞の生産用培養(Dex添加)上清から分離・精製したHBs抗原の力価(抗体価)および物理化学的特性が明らかにされている(小田宗宏, 角尾 肇, 小池克郎 : 肝胆膵,13(3): 585-590, 1986)。そこで、本発明で得られたHBs抗原が、HBワクチンの原料として、あるいはB型肝炎の診断薬の抗原として上記HBs抗原の抗原性および物理化学的特性を有しているかを調べる必要がある。
【0025】
DMAとDexを含ませた生産用培地で産生誘導された抗原を精製し、精製抗原粒子の物理化学的特性と抗HBs抗体保有血清に対する反応性について検討した。
【0026】
その結果、(1)HBs抗原は粒子を形成しており、その平均粒子径は24〜25nmで天然型に存在するHBs抗原粒子径(約18〜25nm)とほぼ同じであり、(2)密度は1.21g/cm3、(3)紫外吸収スペクトルは波長282nmにおいて吸収極大が、波長275nm付近および290nm付近に肩が認められ(図1)、(4)SDS-ポリアクリルアミドゲル(10〜20%グラジエントゲル)電気泳動において、メジャーなポリペプチド(22K)のピークとこれに糖鎖の結合したポリペプチド(26K)を主成分とし、これらポリペプチドのダイマーである2本のポリペプチド(44K、47K)のピークが認められ(図3)、および(5)上記文献(小田宗宏, 角尾 肇, 小池克郎 : 肝胆膵,13(3): 585-590, 1986)の抗原と本発明で得られた抗原の、血清との反応性は同等であり、相関係数も高く(0.992)傾きも1に近い(図5)、ことから、本発明で得られた抗原と文献記載(小田宗宏, 角尾 肇, 小池克郎 : 肝胆膵,13(3): 585-590, 1986)の抗原との物理化学的特性および免疫学的特性は同等であることが明らかとなった。
huGK-14を培養して、ワクチン原料、あるいは診断薬の原料として適切なHBs抗原を得る方法は、当業者であれば、文献(日本国特許第2,042,239号)記載の方法、あるいはそれを適宜修正して実施可能である。したがってそのような修正も本発明に包含される。
【0027】
【実施例】
以下、実施例および試験例により本発明を具体的に説明するが、本発明はこれらの実施例および試験例に限定されるものではない。
【0028】
[実施例1]
1)細胞培養
HBs抗原産生細胞は、小池らにより樹立されたクローンhuGK-14(Koike, K. et al.: Jpn. J. Cancer. Res., 78: 1341-1346, 1987; 日本特許第1,823,385号)を使用した。
凍結保存したアンプル中のhuGK−14細胞(以下、「細胞」ともいう)を解凍した後、培養し、5継代以内の細胞を使用した。細胞の播種密度は約3×104cells/cm2とした。
細胞培養は、細胞を増殖させる増殖期と、HBs抗原を生産させる抗原生産期に分けて行った。増殖期に用いる培地は、DM−160培地にウシ胎仔血清(FCS)を播種時は5%、その後の増殖(培地交換)にはFCSを1%添加したものを用いた。HBs抗原生産用培地は、ウイリアムズE培地にウシ血清アルブミンを0.1%、および各種誘導物質(分化誘導剤、ホルモン)を所定量添加したものを用いた。
細胞培養は6穴、あるいは24穴培養プレートを用い、5%CO2雰囲気下、37℃のインキュベーター中で行った。増殖期間中は、2−3日間に一度の割合で培地交換を行った。一週間で細胞はほぼ飽和密度に達した。抗原生産期間中は、一週間に一度の割合で培地交換を行い、8−11週間培養した。HBs抗原産生誘導効果、細胞生存数、および長期間生産の可能性を評価した。なお、24穴プレートは細胞数計測のために、6穴プレートはHBs抗原産生誘導評価のために使用した。HBs抗原生産用培地に交換した時点および培地交換の都度生細胞数を計測した。計測はトリパンブルー色素排除法によった。
【0029】
2)誘導物質
以下の誘導物質を用いた。
N,N−ジメチルアセトアミド(DMA)
N,N−ジエチルアクリルアミド(DEA)
N,N−ジメチルホルムアミド(DMF)
N,N−ジエチルアクリルアミド(DEAA)
ヘキサメチレンビスアセトアミド(HMBA)
ジメチルスルホキシド(DMSO)
デキサメタゾン
コルチゾール
コルチゾン
コルチコステロン
プレドニソン
プレドニゾロン
トリアムシノロン
【0030】
3)HBs抗原量測定
HBs抗原量は、酵素免疫測定法(EIA)により測定した。
純度99%以上の精製HBs抗原をLowry法で定量し、濃度既知の標準抗原とした。EIAは、96穴プレートを用い、HBs抗原上のたがいに異なるエピトープを認識する2種類の抗HBsモノクローナル抗体による1-ステップサンドイッチ法を採用した。
モノクローナル抗体をウエルに固相化し、ブロッキング操作を行った。ウエルを洗浄液で5回洗浄した後、あらかじめペルオキシダーゼ標識抗HBsモノクーロナル抗体と培養上清液との反応液を各ウエルに50μl添加し室温で90分間の反応させた。洗浄液でプレートを5回洗浄後、発色用基質溶液(TMB発色液)を各ウエルに100μl添加した。室温で30分間発色反応をさせた後、2N−硫酸を各ウエルに100μl加え、反応を停止させた。発色強度を96穴マイクロプレートリーダーを用いて測定した(測定波長450nm、対照波長655nm)。標準抗原液の発色強度より検量線を作成し、培養上清液中の抗原濃度を算出した。
【0031】
[試験例1]
各種濃度のDexを含む生産用培地について、8週間にわたり、DexによるHBs抗原産生誘導効果、および生細胞数を調べた。結果を表1に示す。
表中、分子はHBs抗原量(ng/ml)を示し、分母は生細胞数(×105cells/cm2)を示す。
Dexが0.5〜1.0μMではHBs抗原の産生誘導が安定しており、そして1.0μM近辺にHBs抗原の産生誘導の至適濃度が存在することが示唆される。
一方、生細胞数は、Dex0.5〜2.0μMでは、細胞毒性は認められなかった。
各種濃度のDMAを含む生産用培地について、8週間にわたり、DMAによるHBs抗原産生誘導効果、および生細胞数を調べた。結果を表2に示す。表中、分子はHBs抗原量(ng/ml)を示し、分母は生細胞数(×105cells/cm2)を示す。
DMA15〜25mMでは濃度依存的にHBs抗原の産生誘導が高められ、そして25mM近辺にHBs抗原の産生誘導の至適濃度が存在することが示唆される。
一方、生細胞数は、DMA15〜25mMでは増殖傾向にあり、細胞毒性は極めて低いとみなされ、結果、単位細胞当たりのHBs抗原の産生の向上が明らかとなった。
【0032】
[試験例2]
実施例1において、DexおよびDMAは、いずれもHBs抗原産生誘導効果を有していることが確認された。そこで、両物質を生産用培地に添加すると、HBs抗原産生誘導が相乗的、あるいは相加的に増強されるかを調べた。
DexおよびDMAの濃度を変え、HBs抗原産生誘導に対する最適な組み合わせ濃度を検討した。8週間にわたり、DexとDMAの存在下でのHBs抗原産生誘導併用効果を調べた。結果を表5に示す。分子はHBs抗原量(ng/ml)を示し、分母は生細胞数(×105cells/cm2)を示す。
【0033】
Dex0.5〜1.0μMと、DMA 12.5〜25mMとの組み合わせは、Dex1.0μMの場合に比較して、HBs抗原の産生量が約2.3〜6倍増強していることが認められる。好ましい組み合わせは、Dex0.5〜1.0μMと、DMA 25mM近辺との組み合わせであり、さらに好ましい組み合わせは、Dex0.5μM近辺と、DMA 25mM近辺との組み合わせと考えられる。
【0034】
[試験例3]
DMAと同様な分化誘導作用を示すその他の物質すなわち、DEA、DMF、DEAA、HMBA、およびDMSOについて、Dexとの、HBs抗原誘導産生に対する組み合わせ効果を調べた。結果を表4に示す。
【0035】
Dexと、DMA以外の分化誘導剤の組み合わせによるHBs抗原産生誘導は、いずれの組み合わせも、DexとDMAの組み合わせによるそれを超えるものはなかった。
【0036】
[試験例4]
Dexと同様なホルモン作用を示すその他の物質すなわち、コルチゾール、コルチゾン、コルチコステロン、プレドニソン、プレドニゾロン、およびトリアムシノロンについて、DMAとの、HBs抗原誘導産生に対する組み合わせ効果を調べた。結果を表5に示す。
【0037】
コルチゾール1〜100μMとDMA25mMとの組み合わせは、Dex単独の場合に比較して約3〜3.6倍と最大のHBs抗原誘導効果を示したが、Dex0.5μMとDMA 25mMとの組み合わせのそれを超えることはなかった。
【0038】
[試験例5]
HBs抗原産生誘導に、誘導物質が常時培養液中に存在する必要があるかどうかを調べるために以下の試験を行った。
DMA25mM+Dex0.5μMを含む培地で2週間培養(1〜2週)、ついでこれらの誘導物質含まない培地で3週間培養(3〜5週)、そして、再度、DMA25mM+Dex0.5μMを含む培地で6週間培養(6〜11週)培養を行った。結果を表9に示す。対照として、Dex1.0μM、あるいはDMA25mM+Dex0.5μMを培地中に、培養期間中含ませた系を用いた。結果を表6に示す。
【0039】
DMA+Dexを培地中に含む培地で培養し(1〜2週)、その後、DMA+Dexを培地中に含まない培地で培養すると、その期間(3〜5週)は、対照(DMA+Dex を含む)に比較して、HBs抗原の産生誘導が低下していることが認められる。そして、再度DMA+Dexを培地中に含む培地で培養(6〜9週)すると、HBs産生誘導が対照(DMA+Dex を含む)と同等かそれ以上に回復することが認められる。
【0040】
[試験例6]
DMA+Dexで産生誘導されたHBs抗原の抗原性および物理化学的特性が、すでに小田らにより明らかにされているHBs抗原(Dexで産生誘導)のそれら(小田宗宏, 角尾 肇, 小池克郎 : 肝胆膵,13(3): 585-590, 1986)と同一か、HBs抗原を精製して調べた。
1) 粒子径の測定
電子顕微鏡を用いて撮影した精製抗原粒子の粒子径をノギスで100粒子測定し、その平均値を粒子径とした。その結果、平均粒子径は24〜25nmであり、この値は小田らのHBs抗原のそれとほぼ同一であった。
2) 密度の測定
精製抗原粒子の密度を臭化カリウムによる平衡密度勾配超遠心分離法で求めたところ、1.21g/cm3であった。この値は小田らのHBs抗原のそれと同一であった。
3) 紫外吸収スペクトル
波長282nmにおいて吸収極大が、波長275nm付近および290nm付近に肩が認められた(図1)。この紫外吸収スペクトルのプロフィルは小田らのHBs抗原(図2)のそれと同一であった。
4) SDS-ポリアクリルアミドゲル電気泳動(SDS-PAGE)
精製抗原液をSDS−PAGE後、染色し、デンシトメーターにて解析した。精製抗原をSDSと2-メルカプトエタノールを含むサンプルバッファー中で100℃で5分間加熱した。ポリアクリルアミドゲル(10〜20%グラジエントゲル)のウエルに加熱試料溶液を負荷した。30〜50mA/ゲルの定電流で約2時間泳動した。泳動終了後ゲルをクマシー染色液に浸し、約1時間染色した。
ゲルをデンシトメーターで解析した。メジャーなポリペプチド(22K)のピークとこれに糖鎖の結合したポリペプチド(26K)を主成分とし、これらポリペプチドのダイマーである2本のポリペプチド(44K、47K)のピークが認められた(図3)。これらのポリペプチドの移動度、およびピークの高さは、小田らのHBs抗原(小田宗宏, 角尾 肇, 小池克郎 : 肝胆膵,13(3): 585-590, 1986)(図4)のそれらと同一であった。
5) 免疫化学的特性
HBs抗原はHBワクチン原料、あるいはB型肝炎の診断薬原料として使用されることから、抗原性が重要である。本発明方法で得られたHBs抗原、あるいは小田らのHBs抗原を固相化し、抗体保有血清検体と反応させ、抗原・抗体の反応性について比較した。結果を図5に示す。
図5から、本発明方法で得られたHBs抗原、あるいは小田らのHBs抗原(小田宗宏, 角尾 肇, 小池克郎 : 肝胆膵,13(3): 585-590, 1986)と血清検体中の抗体との反応性を近似式で示すと、近似式:y=1.1054x−0.013が導かれ、傾きがほぼ1であり、相関係数が0.992と高い値である。すなわち、本発明方法で得られたHBs抗原と小田らのHBs抗原の免疫学的特性は同等であることが明らかとなった。
これらの試験結果から、本発明方法で得られたHBs抗原の物理化学的特性、および免疫学的特性は、小田らのHBs抗原のそれと全く同一であり、HBワクチン、あるいはB型肝炎の診断薬の抗原として有効であることが明らかになった。
【0041】
【発明の効果】
本発明により、従来の天然型HBs抗原(血漿由来)に近いhuGK−14細胞由来のHBs抗原と同等の物理化学的特性および免疫学的特性を有するHBs抗原を、大量(従来の4〜6倍)に生産することが可能となり、ワクチン製造費の大幅なコストダウンが可能となった。
【図面の簡単な説明】
【図1】 ヒト肝癌由来のhuGK-14細胞を、デキサメタゾン1.0μMおよびN,N−ジメチルアセトアミド(DMA)25mMを含む生産用培地で培養して得られたHBs抗原の紫外吸収スペクトルを示す図である。
【図2】 ヒト肝癌由来のhuGK-14細胞を、デキサメタゾン1.0μMを含む生産用培地で培養して得られたHBs抗原の紫外吸収スペクトルを示す図である。
【図3】 ヒト肝癌由来のhuGK-14細胞を、デキサメタゾン1.0μMおよびDMA25mMを含む生産用培地で培養して得られたHBs抗原のSDS-ポリアクリルアミドゲル電気泳動(還元下)のデンシトメーター解析結果を示す図である。
【図4】 ヒト肝癌由来のhuGK-14細胞を、デキサメタゾン1.0μMを含む生産用培地で培養して得られたHBs抗原のSDS-ポリアクリルアミドゲル電気泳動(還元下)のデンシトメーター解析プロフィルを示す図である。
【図5】 ヒト肝癌由来のhuGK-14細胞を、デキサメタゾン1.0μMおよびDMA25mMを含む生産用培地、あるいはデキサメタゾン1.0μMを含む生産用培地で培養して得られたHBs抗原と、抗体保有血清検体との反応性をEIA法で測定し(OD450)、回帰分析した図である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for culturing cells derived from human liver cancer tissue producing hepatitis B virus surface antigen, which is a raw material for producing hepatitis B vaccine, in a serum-free medium, and producing and secreting the antigen in the culture supernatant. The present invention relates to a technique for synergistically enhancing the production of the antigen by adding dexamethasone and N, N-dimethylacetamide to the solution.
[0002]
[Prior art]
Hepatitis B virus (HB virus) is a highly contagious virus, with 200 million people including asymptomatic carriers worldwide, mainly in East Asia and Central Africa, and about 2 million people in Japan alone. Is estimated. HB virus not only causes acute hepatitis and fulminant hepatitis, but is also involved in chronic hepatitis, cirrhosis, and hepatocellular carcinoma, and it is said that the long-term incidence of liver cancer is 200 times that of healthy individuals even in asymptomatic carriers. ing. Therefore, a hepatitis B vaccine (HB vaccine or vaccine) prepared using a hepatitis B virus surface antigen (HBs antigen or antigen) is effective in preventing HB virus infection and also in preventing cancer. It can be said that there is.
[0003]
Since HB virus grows only in chimpanzee livers except for humans, HBs having a diameter of 22 nm initially prepared from the blood of a carrier were obtained in order to obtain HB virus surface antigen (HBs antigen or antigen) particles as a vaccine production raw material. Antigen particles were used. However, the amount of blood supplied by the carrier is limited, and inactivation of infectious HB virus can be confirmed only in humans or chimpanzees, and it is difficult to completely deny contamination with unknown factors. .
[0004]
Genetic engineering technology has opened the way for new vaccine development, and genetic engineering technology has made it possible to produce HBs antigen particles that have the same physicochemical properties and immunogenicity as blood-derived vaccines (McAleer, WJ et al. al .: Nature, 307: 178-180, 1984). However, the recombinant HB vaccine is an inactivated vaccine, and a large amount of antigen must be administered multiple times or using an adjuvant, and is expensive to be widely used in developing countries. In addition, the HBs antigen obtained using yeast as a host is said to be 20 to 50% when the reactivity of the HBs antigen derived from plasma with an antibody is 100 (William J. McAleer, et al .: Nature, 307: 178, 1984).
[0005]
On the other hand, an established cell line huGK-14 (Japanese Patent No. 1,823,385) derived from human liver cancer tissue producing HBs antigen is cultured in a serum-free culture medium supplemented with bovine serum albumin and dexamethasone, and HB HBs antigen particles used as vaccine raw materials are separated and purified (Japanese Patent No. 2,042,239). The titer of this antigen particle is equivalent to the control antigen (derived from plasma) (Munehiro Oda, Jun Tsunoo, Katsuro Koike: Hepatobiliary pancreas, 13 (3): 585-590, 1986). This vaccine has been confirmed to be safe and effective. However, it is desired that the production amount of the antigen is increased and the production cost of the vaccine is further reduced by producing and secreting the antigen in a large amount from the cultured cells.
[0006]
[Problems to be solved by the invention]
Therefore, in the present invention, when an established cell line derived from human liver cancer tissue producing HBs antigen is cultured and the antigen is obtained from the culture supernatant, the production of the antigen is further enhanced, and the physics of the antigen obtained It is an object of the present invention to provide an antigen having chemical characteristics and immunological characteristics equivalent to those of a natural HBs antigen (derived from plasma).
[0007]
[Means for Solving the Problems]
When the present inventors cultured an established cell line huGK-14 derived from human liver cancer tissue that produces HBs antigen and obtained the antigen from the culture supernatant, the production culture medium contained dexamethasone and N, N- By including dimethylacetamide (N, N-dimethylacetamide) in a production culture medium (also simply referred to as a medium), it was found that HBs antigen particles with a high concentration that were not conventionally produced are secreted and produced in the culture supernatant.
[0008]
That is, the present invention
(1) In a method of culturing cells derived from human liver cancer tissue that produces hepatitis B virus surface antigen and obtaining hepatitis B virus surface antigen from the obtained culture supernatant, dexamethasone 0.5 to 1 μM and N, N-dimethylacetamide 15-30 mM, a high yield production method of hepatitis B virus surface antigen,
(2) High-yield production method of hepatitis B virus surface antigen according to (1), containing dexamethasone 0.5 to 1 μM and N, N-dimethylacetamide 15 to 25 mM,
(3) A high-yield production method of hepatitis B virus surface antigen according to (1) or (2), wherein the cells derived from human liver cancer tissue are huGK-14,
About.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, an established cell line huGK-14 derived from human liver cancer tissue that produces the HBs antigen particles used is obtained as follows.
Kon et al. Isolated cells from the liver cancer tissue of a human liver cancer patient (Japanese male, 53 years old) and cultured in DM-160 medium supplemented with 15% fetal calf serum to establish a huH-1 cell line (Huh, N. and Utakoji, T .: Jpn. J. Cancer Res. 72: 178-179, 1981). Koike et al. Used this huH-1 cell line in order to obtain cells derived from hepatoma producing a significant amount of HBs antigen using the limiting dilution method (Puck, TT et al .: J. Exp. Med., 103: 273-284, 1956) to obtain a clone huSP (Mizusawa, H. et al .: Proc. Natl. Acad. Sci. USA, 82: 208-212, 1985). Furthermore, using this clone huSP, Koike et al. Obtained a cell line huGK-14 that secreted and produced HBs antigen in the culture at a higher concentration than huSP (Koike, K. et al .: Jpn. J. Cancer Res. 78: 1341-1346, 1987; Japanese Patent No. 1,823,385).
[0010]
The characteristics of this cell line huGK-14 are that it shows good mitotic growth even in serum-free production medium, secreted and produced adr type HBs antigen particles in the culture medium, and dexamethasone, one of the steroid hormones. When 1 μM is added to the production medium, the amount of HBs antigen produced can be increased (Japanese Patent No. 2,042,239).
Based on the improvement in the productivity of HBs antigen by the phenomenon of induction of HBs antigen production by such hormones, as a result of examination for the purpose of further improving the productivity by the combination of a differentiation inducer and a hormone, the induction effect by dexamethasone alone We found a combination of dexamethasone and differentiation-inducing agent far exceeding the above.
[0011]
Hereinafter, the present invention will be described with reference to test examples in order to understand the present invention.
For the purpose of searching for the optimum inducer concentration for the production of HBs antigen, dexamethasone (hereinafter referred to as “Dex”) or various inducers are selected as inducers, and each is added to the medium for producing HBs antigen for 8 weeks. Over time, the amount of HBs antigen produced was examined.
When Dex was added, as shown in Table 1, the production amount of HBs antigen was stable when the Dex concentration was in the range of 0.5 to 1.0 μM, but conversely, the production amount decreased to ˜2 μM. Was shown to do. Therefore, in order to secrete and produce HBs antigen at a high concentration in the culture solution, the concentration of Dex added to the production medium is preferably set in the range of 0.5 to 1 μM, and more preferably about 1 μM. Considered in the vicinity. As shown in Table 1, the influence of the concentration of Dex in the medium on the number of living cells (cytotoxicity) was hardly observed in the set range of 0.5 to 2 μM, and was prone to growth.
In the table, the numerator indicates the amount of HBs antigen (ng / ml), and the denominator indicates the number of living cells (× 10 Five cells / cm 2 ).
[0012]
[Table 1]
Figure 0004443714
[0013]
On the other hand, as shown in Table 2, the HBs antigen production-inducing effect of N, N-dimethylacetamide (hereinafter referred to as “DMA”) increases in a concentration-dependent manner in the range of 15 to 25 mM. However, it was shown that the production amount was reduced at ˜30 mM. Therefore, in order to secrete and produce HBs antigen at a high concentration in the culture solution, the concentration of DMA added to the production medium is preferably set in the range of about 15 to 25 mM, and more preferably about 20 to 25 mM. The most preferable concentration is considered to be around 25 mM. As shown in Table 2, the influence of the DMA concentration on the number of viable cells was hardly observed in the set range of 5 to 30 mM, and had a tendency to proliferate.
In the table, the numerator indicates the amount of HBs antigen (ng / ml), and the denominator indicates the number of living cells (× 10 Five cells / cm 2 ).
[0014]
[Table 2]
Figure 0004443714
[0015]
From the above results, when Dex and DMA were added individually to the production medium, HBs antigen production was enhanced, and in the added concentration range, cytotoxicity was extremely low, and the level of HBs antigen production per unit cell was low. An improvement was shown.
Therefore, the present inventors have determined whether or not the induction of HBs antigen production is synergistically or additively enhanced when Dex and DMA are added to the production medium, and in the case of enhanced Dex and DMA. The optimal combination concentration of was examined.
As a result, as shown in Table 3, the concentrations of Dex and DMA added to the production medium are combinations in which Dex is in the range of 0.5 to 1 μM and DMA concentration is in the range of 12.5 to 25 mM. In the case of the combination, it was revealed that the production of HBs antigen was enhanced by 2.3 to 3.4 times as compared with the case of Dex alone and 4 to 6 times as compared with the case of DMA alone.
In the table, the numerator indicates the amount of HBs antigen (ng / ml), and the denominator indicates the number of living cells (× 10 Five cells / cm 2 ).
[0016]
[Table 3]
Figure 0004443714
[0017]
A preferred combination of Dex and DMA is a Dex of around 0.5 to 1.0 μM, a DMA of around 12.5 to 25 mM, and a more preferred combination of Dex of 0.5 to 1.0 μM and a DMA of around 25 mM. The most preferable combination is considered to be a combination of around Dex 0.5 μM and around DMA 25 mM. Regarding cytotoxicity, the number of cells at the time of cell seeding is maintained, and it is assumed that the cytotoxicity is low.
It was revealed that the combination of Dex and DMA markedly enhanced HBs antigen production. Therefore, N, N-diethylacetamide (hereinafter referred to as “DEA”), N, N-dimethylformamide (N, N-dimethylformamide), which are differentiation inducers similar to DMA. (Hereinafter referred to as “DMF”), N, N-diethylacrylamide (N, N-Diethylacrylamide) (hereinafter referred to as “DEAA”), hexamethylenebisacetamide (hereinafter referred to as “HMBA”), and Regarding dimethylsulfoxide (hereinafter referred to as “DMSO”), the effect of enhancing the production of HBs antigens by combination with Dex was examined.
As a result, as shown in Table 4, none of the combinations of Dex and various differentiation inducers showed an effect of enhancing HBs antigen production. That is, the present invention revealed for the first time that Dex and DMA are a very unique combination. The numerical values in the table indicate the amount of HBs antigen (ng / ml).
[0018]
[Table 4]
Figure 0004443714
[0019]
Furthermore, in view of the fact that the combination of Dex and DMA markedly enhanced the production of HBs antigen, the inventors have determined whether the combination of other hormones other than Dex and DMA enhances the production of HBs antigen. For the purpose of investigating whether or not, cortisol, cortisone, corticosterone, prednisone, prednisolone and triamcinolone were selected as other hormones, and the combined effect of these hormones and Dex was examined.
As a result, as shown in Table 5, the combination of DMA 25 mM and cortisol 1 to 100 μM enhanced the production of HBs antigen by about 3 times compared to the case of Dex alone, but exceeded the enhancement effect of Dex and DMA. It never happened. The numerical values in the table indicate the amount of HBs antigen (ng / ml).
[0020]
[Table 5]
Figure 0004443714
[0021]
Furthermore, it is clarified whether the induction effect by the combination of Dex and DMA lasts once the induction by Dex and DMA is applied, or whether the induction does not take place unless Dex and DMA are always present in the culture medium. Therefore, the induction of HBs antigen production when Dex and DMA were intermittently included in the production medium was examined. As a result, as shown in Table 6 (inside [], the amount of antigen during the period when no inducer was added), the induction effect was maintained during the culture period in the system where Dex or DMA + Dex was constantly added. However, when DMA + Dex was intermittently present in the medium, the induction effect was clearly confirmed only when the inducer was included, and the production amount when the inducer was not included was low. The amount of HBs antigen produced in the system with intermittent addition was almost the same as when DMA + Dex was always present. The numerical values in the table indicate the amount of HBs antigen (ng / ml).
[0022]
[Table 6]
Figure 0004443714
[0023]
From the above results, it was clarified that huGK-14 cells secrete and produce HBs antigen in the culture solution at a high concentration by adding Dex and DMA to the medium for producing HBs antigen.
[0024]
By the way, the titer (antibody titer) and physicochemical properties of HBs antigen separated and purified from the huGK-14 cell production culture (Dex addition) supernatant have been clarified (Oda Munehiro, Kakuo Takeshi, Koike Katsuro) : Hepatobiliary pancreas, 13 (3): 585-590, 1986). Therefore, it is necessary to examine whether the HBs antigen obtained in the present invention has the antigenicity and physicochemical characteristics of the HBs antigen as a raw material of an HB vaccine or as an antigen of a diagnostic agent for hepatitis B.
[0025]
Antigens produced and induced in a production medium containing DMA and Dex were purified, and the physicochemical characteristics of the purified antigen particles and the reactivity with anti-HBs antibody-containing serum were examined.
[0026]
As a result, (1) HBs antigen forms particles, the average particle size is 24 to 25 nm, which is almost the same as the HBs antigen particle size (about 18 to 25 nm) existing in the natural type, and (2) density Is 1.21 g / cm Three (3) In the ultraviolet absorption spectrum, the absorption maximum is observed at a wavelength of 282 nm, and shoulders are observed around 275 nm and 290 nm (FIG. 1). (4) In SDS-polyacrylamide gel (10-20% gradient gel) electrophoresis A major polypeptide (22K) peak and a polypeptide (26K) with a sugar chain bound thereto are the main components, and peaks of two polypeptides (44K, 47K) that are dimers of these polypeptides are observed. (FIG. 3), and (5) The above-mentioned literature (Munehiro Oda, Satoshi Tsunoo, Katsuro Koike: Hepatobiliary pancreas, 13 (3): 585-590, 1986) and the serum of the antigen obtained in the present invention. The reactivity is the same, the correlation coefficient is high (0.992), and the slope is close to 1 (Fig. 5). , 13 (3): 585-590 , 1986), the physicochemical and immunological properties of the antigen were found to be equivalent.
A person skilled in the art can cultivate huGK-14 to obtain an appropriate HBs antigen as a vaccine raw material or a diagnostic agent raw material, or a method described in the literature (Japanese Patent No. 2,042,239) or a modification thereof as appropriate. Can be implemented. Accordingly, such modifications are also encompassed by the present invention.
[0027]
【Example】
EXAMPLES Hereinafter, although an Example and a test example demonstrate this invention concretely, this invention is not limited to these Examples and a test example.
[0028]
[Example 1]
1) Cell culture
HBs antigen-producing cells use clone huGK-14 (Koike, K. et al .: Jpn. J. Cancer. Res., 78: 1341-1346, 1987; Japanese Patent No. 1,823,385) established by Koike et al. did.
After thawing huGK-14 cells (hereinafter also referred to as “cells”) in ampoules that were cryopreserved, cells were cultured and used within 5 passages. Cell seeding density is about 3 × 10 Four cells / cm 2 It was.
Cell culture was performed by dividing into a growth phase in which cells were grown and an antigen production phase in which HBs antigen was produced. The medium used in the growth phase was DM-160 medium containing 5% fetal calf serum (FCS) at the time of seeding, and subsequent growth (medium exchange) with 1% FCS added. As a medium for producing HBs antigen, a medium prepared by adding 0.1% of bovine serum albumin and various inducers (differentiation inducers, hormones) to Williams E medium was used.
Cell culture uses 6-well or 24-well culture plates, and 5% CO 2 It was carried out in an incubator at 37 ° C. under an atmosphere. During the growth period, the medium was changed once every 2-3 days. In one week, the cells reached near saturation density. During the antigen production period, the medium was changed once a week and cultured for 8-11 weeks. The effects of inducing HBs antigen production, the number of viable cells, and the possibility of long-term production were evaluated. The 24-well plate was used for cell number measurement, and the 6-well plate was used for HBs antigen production induction evaluation. The number of viable cells was counted at the time of replacement with the medium for HBs antigen production and each time the medium was replaced. The measurement was based on the trypan blue dye exclusion method.
[0029]
2) Inducer
The following inducers were used.
N, N-dimethylacetamide (DMA)
N, N-diethylacrylamide (DEA)
N, N-dimethylformamide (DMF)
N, N-diethylacrylamide (DEAA)
Hexamethylene bisacetamide (HMBA)
Dimethyl sulfoxide (DMSO)
Dexamethasone
Cortisol
cortisone
Corticosterone
Prednisone
Prednisolone
Triamcinolone
[0030]
3) Measurement of HBs antigen content
The amount of HBs antigen was measured by enzyme immunoassay (EIA).
Purified HBs antigen with a purity of 99% or more was quantified by the Lowry method, and used as a standard antigen with a known concentration. The EIA employed a 1-step sandwich method using two types of anti-HBs monoclonal antibodies that recognize different epitopes on the HBs antigen using a 96-well plate.
The monoclonal antibody was solid-phased in the well and a blocking operation was performed. After the wells were washed 5 times with a washing solution, 50 μl of a reaction solution of a peroxidase-labeled anti-HBs monoclonal antibody and a culture supernatant was added in advance to each well and allowed to react at room temperature for 90 minutes. After washing the plate 5 times with a washing solution, 100 μl of a coloring substrate solution (TMB coloring solution) was added to each well. After a color development reaction at room temperature for 30 minutes, 100 μl of 2N-sulfuric acid was added to each well to stop the reaction. The color intensity was measured using a 96-well microplate reader (measurement wavelength 450 nm, control wavelength 655 nm). A calibration curve was created from the color intensity of the standard antigen solution, and the antigen concentration in the culture supernatant was calculated.
[0031]
[Test Example 1]
The production medium containing various concentrations of Dex was examined for the effect of inducing HBs antigen production by Dex and the number of living cells over 8 weeks. The results are shown in Table 1.
In the table, the numerator indicates the amount of HBs antigen (ng / ml), and the denominator indicates the number of living cells (× 10 Five cells / cm 2 ).
When Dex is 0.5 to 1.0 μM, the induction of HBs antigen production is stable, and it is suggested that there is an optimum concentration of HBs antigen production induction in the vicinity of 1.0 μM.
On the other hand, when the number of viable cells was Dex 0.5 to 2.0 μM, no cytotoxicity was observed.
The production medium containing various concentrations of DMA was examined for the effect of inducing HBs antigen production by DMA and the number of living cells over 8 weeks. The results are shown in Table 2. In the table, the numerator indicates the amount of HBs antigen (ng / ml), and the denominator indicates the number of living cells (× 10 Five cells / cm 2 ).
It is suggested that DMA 15 to 25 mM enhances the induction of HBs antigen production in a concentration-dependent manner, and that an optimum concentration for inducing the production of HBs antigen exists in the vicinity of 25 mM.
On the other hand, the number of viable cells tends to proliferate in DMA of 15 to 25 mM, and the cytotoxicity is considered to be extremely low. As a result, it was revealed that the production of HBs antigen per unit cell was improved.
[0032]
[Test Example 2]
In Example 1, it was confirmed that both Dex and DMA had an effect of inducing HBs antigen production. Therefore, it was examined whether the induction of HBs antigen production is synergistically or additively enhanced when both substances are added to the production medium.
The optimum combination concentration for inducing HBs antigen production was examined by changing the concentrations of Dex and DMA. The effect of HBs antigen production induction in the presence of Dex and DMA was examined over 8 weeks. The results are shown in Table 5. The numerator indicates the amount of HBs antigen (ng / ml), and the denominator indicates the number of living cells (× 10 Five cells / cm 2 ).
[0033]
It can be seen that the combination of Dex 0.5 to 1.0 μM and DMA 12.5 to 25 mM enhances the production of HBs antigen by about 2.3 to 6 times compared to the case of Dex 1.0 μM. A preferred combination is a combination of Dex 0.5 to 1.0 μM and around DMA 25 mM, and a more preferred combination is considered a combination of around Dex 0.5 μM and around DMA 25 mM.
[0034]
[Test Example 3]
For other substances showing differentiation-inducing action similar to DMA, that is, DEA, DMF, DEAA, HMBA, and DMSO, the combined effect on the HBs antigen-induced production with Dex was examined. The results are shown in Table 4.
[0035]
No induction of HBs antigen production by a combination of Dex and a differentiation inducer other than DMA exceeded that by the combination of Dex and DMA.
[0036]
[Test Example 4]
For other substances exhibiting the same hormonal action as Dex, ie, cortisol, cortisone, corticosterone, prednisone, prednisolone, and triamcinolone, the combined effect of DMA on HBs antigen-induced production was examined. The results are shown in Table 5.
[0037]
The combination of cortisol 1-100 μM and DMA 25 mM showed the maximum HBs antigen induction effect about 3-3.6 times that of Dex alone, but the combination of Dex 0.5 μM and DMA 25 mM Never exceeded.
[0038]
[Test Example 5]
In order to examine whether or not the inducer must always be present in the culture medium for induction of HBs antigen production, the following test was performed.
Culture for 2 weeks in a medium containing DMA 25 mM + Dex 0.5 μM (1-2 weeks), then for 3 weeks in a medium not containing these inducers (3-5 weeks), and again for 6 weeks in a medium containing DMA 25 mM + Dex 0.5 μM Culture was performed (6-11 weeks). The results are shown in Table 9. As a control, a system in which Dex 1.0 μM or DMA 25 mM + Dex 0.5 μM was included in the medium during the culture period was used. The results are shown in Table 6.
[0039]
When cultured in a medium containing DMA + Dex (1 to 2 weeks) and then cultured in a medium not containing DMA + Dex, the period (3 to 5 weeks) is compared to the control (including DMA + Dex). It can be seen that the induction of HBs antigen production is reduced. When cultured again in a medium containing DMA + Dex in the medium (6 to 9 weeks), it is recognized that the induction of HBs production is restored to the same level or higher than that of the control (including DMA + Dex).
[0040]
[Test Example 6]
The antigenicity and physicochemical properties of HBs antigens induced by DMA + Dex have already been clarified by Oda et al. (Munehiro Oda, Satoshi Kakuo, Katsuro Koike: Hepatobiliary pancreas, 13 (3): 585-590, 1986), and the HBs antigen was purified and examined.
1) Measurement of particle size
100 particles of purified antigen particles photographed using an electron microscope were measured with a caliper, and the average value was taken as the particle size. As a result, the average particle size was 24 to 25 nm, and this value was almost the same as that of the HBs antigen of Oda et al.
2) Density measurement
The density of the purified antigen particles was determined by an equilibrium density gradient ultracentrifugation method using potassium bromide and found to be 1.21 g / cm. Three Met. This value was identical to that of Oda et al.'S HBs antigen.
3) Ultraviolet absorption spectrum
Absorption maximums were observed at a wavelength of 282 nm, and shoulders were observed near the wavelengths of 275 nm and 290 nm (FIG. 1). The profile of the ultraviolet absorption spectrum was identical to that of Oda et al.'S HBs antigen (Figure 2).
4) SDS-polyacrylamide gel electrophoresis (SDS-PAGE)
The purified antigen solution was stained after SDS-PAGE and analyzed with a densitometer. The purified antigen was heated at 100 ° C. for 5 minutes in a sample buffer containing SDS and 2-mercaptoethanol. The heated sample solution was loaded into the wells of a polyacrylamide gel (10-20% gradient gel). Electrophoresis was performed at a constant current of 30 to 50 mA / gel for about 2 hours. After the electrophoresis, the gel was immersed in Coomassie stain and stained for about 1 hour.
The gel was analyzed with a densitometer. A major polypeptide (22K) peak and a polypeptide (26K) with a sugar chain bound thereto were the main components, and peaks of two polypeptides (44K, 47K) that were dimers of these polypeptides were observed. (Figure 3). The mobility of these polypeptides and the height of the peaks are those of the HBs antigen of Oda et al. (Munehiro Oda, Jun Tsunoo, Katsuo Koike: Hepatobiliary pancreas, 13 (3): 585-590, 1986) (Fig. 4) Was the same.
5) Immunochemical properties
Since the HBs antigen is used as a raw material for HB vaccine or a diagnostic agent for hepatitis B, antigenicity is important. The HBs antigen obtained by the method of the present invention or the HBs antigen of Oda et al. Was immobilized and reacted with an antibody-carrying serum sample, and the antigen / antibody reactivity was compared. The results are shown in FIG.
From FIG. 5, the HBs antigen obtained by the method of the present invention, or the HBs antigen of Oda et al. (Munehiro Oda, Jun Tsunoo, Katsuo Koike: Hepatobiliary pancreas, 13 (3): 585-590, 1986) and antibodies in serum samples The approximate expression: y = 1.1054x−0.013 is derived, the slope is approximately 1, and the correlation coefficient is 0.992, which is a high value. That is, it was revealed that the immunological characteristics of the HBs antigen obtained by the method of the present invention and the HBs antigen of Oda et al. Are equivalent.
From these test results, the physicochemical properties and immunological properties of the HBs antigen obtained by the method of the present invention are exactly the same as those of the HBs antigen of Oda et al., And the HB vaccine or the diagnostic agent for hepatitis B It became clear that it was effective as an antigen.
[0041]
【The invention's effect】
According to the present invention, a large amount of HBs antigen having physicochemical properties and immunological characteristics equivalent to those of huGK-14 cells derived from huGK-14 cells close to conventional natural HBs antigen (derived from plasma) (4 to 6 times the conventional amount) ), Making it possible to significantly reduce the cost of vaccine production.
[Brief description of the drawings]
FIG. 1 is a diagram showing an ultraviolet absorption spectrum of HBs antigen obtained by culturing huGK-14 cells derived from human liver cancer in a production medium containing 1.0 μM dexamethasone and 25 mM N, N-dimethylacetamide (DMA). is there.
FIG. 2 is a diagram showing an ultraviolet absorption spectrum of HBs antigen obtained by culturing huGK-14 cells derived from human liver cancer in a production medium containing 1.0 μM dexamethasone.
FIG. 3 Densitometer analysis of SDS-polyacrylamide gel electrophoresis (under reduction) of HBs antigen obtained by culturing huGK-14 cells derived from human liver cancer in a production medium containing 1.0 μM dexamethasone and 25 mM DMA. It is a figure which shows a result.
FIG. 4 shows a densitometer analysis profile of SDS-polyacrylamide gel electrophoresis (under reduction) of HBs antigen obtained by culturing huGK-14 cells derived from human liver cancer in a production medium containing 1.0 μM dexamethasone. FIG.
FIG. 5 shows an HBs antigen obtained by culturing huGK-14 cells derived from human liver cancer in a production medium containing 1.0 μM dexamethasone and DMA25 mM, or a production medium containing 1.0 μM dexamethasone, and an antibody-containing serum sample. Was measured by the EIA method (OD 450 ), A regression analysis.

Claims (2)

B型肝炎ウイルス表面抗原を産生するヒト肝癌組織由来の細胞huGK-14を培養し、得られた培養上清からB型肝炎ウイルス表面抗原を得る方法において、生産用培養液にデキサメタゾン0.5〜1μMおよびN,N−ジメチルアセトアミド15〜30mMを含有させることを特徴とするB型肝炎ウイルス表面抗原の高収率生産方法。In a method of culturing cells huGK-14 derived from human liver cancer tissue producing hepatitis B virus surface antigen and obtaining hepatitis B virus surface antigen from the obtained culture supernatant, dexamethasone 0.5 to A high-yield production method of hepatitis B virus surface antigen, comprising 1 μM and N, N-dimethylacetamide 15-30 mM. デキサメタゾン0.5〜1μMおよびN,N−ジメチルアセトアミド15〜25mMを含有させる請求項1に記載のB型肝炎ウイルス表面抗原の高収率生産方法。The method for producing a hepatitis B virus surface antigen according to claim 1 in a high yield, comprising 0.5 to 1 µM dexamethasone and 15 to 25 mM N, N-dimethylacetamide.
JP2000089517A 2000-03-28 2000-03-28 High yield production method of hepatitis B virus surface antigen in cell culture Expired - Lifetime JP4443714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000089517A JP4443714B2 (en) 2000-03-28 2000-03-28 High yield production method of hepatitis B virus surface antigen in cell culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000089517A JP4443714B2 (en) 2000-03-28 2000-03-28 High yield production method of hepatitis B virus surface antigen in cell culture

Publications (2)

Publication Number Publication Date
JP2001269194A JP2001269194A (en) 2001-10-02
JP4443714B2 true JP4443714B2 (en) 2010-03-31

Family

ID=18605263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000089517A Expired - Lifetime JP4443714B2 (en) 2000-03-28 2000-03-28 High yield production method of hepatitis B virus surface antigen in cell culture

Country Status (1)

Country Link
JP (1) JP4443714B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540426B2 (en) 2009-10-06 2017-01-10 Bristol-Myers Squibb Company Mammalian cell culture processes for protein production

Also Published As

Publication number Publication date
JP2001269194A (en) 2001-10-02

Similar Documents

Publication Publication Date Title
Sarmiento et al. Membrane proteins specified by herpes simplex viruses. III. Role of glycoprotein VP7 (B2) in virion infectivity
Schneider et al. Rabies group-specific ribonucleoprotein antigen and a test system for grouping and typing of rhabdoviruses
Ho et al. An inhibitor of viral activity appearing in infected cell cultures
Holborow et al. The distribution of the blood group A antigen in human tissues
Wainwright et al. Protection provided by hepatitis B vaccine in a Yupik Eskimo population—results of a 10-year study
CA1200485A (en) Inactivated target cells, methods of using same and vaccines and diagnostic kits containing same
DE60116107T2 (en) CLEANING OF HBV ANTIGENES FOR USE IN VACCINES
North et al. Observations on the EB virus envelope and virus‐determined membrane antigen (MA) polypeptides
Ahmed et al. Demonstration of a blocking factor in the plasma and spinal fluid of patients with subacute sclerosing panencephalitis: I. Partial characterization
JPS62281823A (en) High potency antiperspirant syncytilium virus intravenous immunoglobulin
JPH01502956A (en) Viral antigens, their production methods and their use for diagnosis and treatment (vaccines)
Walzer et al. Pneumocystis carinii: new separation method from lung tissue
Zavada et al. Pseudotypes of vesicular stomatitis virus with envelope antigens provided by murine mammary tumor virus
JP4443714B2 (en) High yield production method of hepatitis B virus surface antigen in cell culture
JP2751950B2 (en) Proliferating hepatitis A virus
McFadden et al. Biogenesis of poxviruses: transitory expression of molluscum contagiosum early functions
DE2555169C2 (en)
US4118478A (en) Vaccine manufacture for active immunization containing hepatitis B surface antigen and associated antigen
Provost et al. Isolation of Hepatitis A Virus in Vitr o in Cell Culture Directly from Human Specimens
US4118479A (en) Vaccine for active immunization containing hepatitis B surface antigen and associated antigen
Sehgal et al. Characteristics of a nucleoproteinaceous subviral entity resulting from partial degradation of southern bean mosaic virus
Stone Enzymic modification of the reaction between influenza virus and susceptible tissue cells
JPH01279844A (en) Antigen against hepatitis a virus
Fritz et al. Reaction of chick embryo cells infected with leukosis strain MC29 virus with fluorescein-labeled antibody
Müller et al. Further evidence for common antigens in intracytoplasmic A particles of mouse mammary tumors and B type virions of murine milk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

R150 Certificate of patent or registration of utility model

Ref document number: 4443714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term