JP4443145B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP4443145B2
JP4443145B2 JP2003136904A JP2003136904A JP4443145B2 JP 4443145 B2 JP4443145 B2 JP 4443145B2 JP 2003136904 A JP2003136904 A JP 2003136904A JP 2003136904 A JP2003136904 A JP 2003136904A JP 4443145 B2 JP4443145 B2 JP 4443145B2
Authority
JP
Japan
Prior art keywords
fuel cell
negative electrode
fuel
positive electrode
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003136904A
Other languages
Japanese (ja)
Other versions
JP2004342434A (en
Inventor
文晴 岩崎
恒昭 玉地
孝史 皿田
考応 柳瀬
一吉 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2003136904A priority Critical patent/JP4443145B2/en
Publication of JP2004342434A publication Critical patent/JP2004342434A/en
Application granted granted Critical
Publication of JP4443145B2 publication Critical patent/JP4443145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、携帯電子機器の電源として用いられる電源デバイスに関するものであり、特に携帯電話やPDA、デジタルカメラ、ノートパソコンなどの小型携帯機器用の電源としての超小型燃料電池に関するものである。
【0002】
【従来の技術】
従来、携帯電話、PDA、デジタルカメラ、ノートパソコン等に代表される小型電子機器用電源としては、ニッケル−水素電池やリチウムイオン電池などに代表される二次電池が主流であるが、機器の高機能化の進行に伴い消費電力が向上し、飛躍的なエネルギー密度の向上が求められている。
【0003】
しかしながら、前述のような二次電池はすでに理論的に考えうるエネルギー密度に近づきつつあり、飛躍的なエネルギー密度の向上は期待できない。そこで近年ポストリチウムイオン電池として盛んに技術開発が進められているのが、燃料電池である。燃料電池は、空気中の酸素を正極とし、燃料から取り出した水素を負極とし、触媒反応により電子を取り出すような仕組みである。いわば発電器と同様な機能を果たす。燃料が消費して発電できなくなった場合には、燃料を補給すればよく、従来の二次電池のように長時間の充電が必要ない点は、ユーザーにとって大きなメリットである。
【0004】
燃料電池には、燃料・触媒などの違いによりいくつかの方法がある。たとえばアルカリ型、リン酸型、溶融炭酸塩型、高分子固体電解質型、固体酸化物型などがそれである。中でも小型携帯機器用の燃料電池としては、固体高分子型が適しているといわれている。なぜなら、駆動温度が低いためである。特に、高分子固体電解質型でも、ダイレクトメタノール型(DMFC)と呼ばれる方式は、作動温度が80〜100℃であり、非常に低温で作動できる(例えば、特許文献1、または、非特許文献1参照)。しかし、作動温度の低いDMFCの燃料電池でさえも80〜100℃と常温と比べると高い。そのため、ヒーターなどをセル内に設置して加温する方法が用いられている(例えば、非特許文献2参照)。
【0005】
【特許文献1】
特許第3307891号
【0006】
【非特許文献1】
池田宏之助編著「燃料電池のすべて」日本実業出版社、2001年8月20日、p.212.
【0007】
【非特許文献2】
池田宏之助編著「燃料電池のすべて」日本実業出版社、2001年8月20日、p.217
【0008】
【発明が解決しようとする課題】
しかしながら、従来のようにヒーターなどを用いて加温する場合、燃料電池で発電した電力の一部を消費してしまい非常に効率が悪い。また、燃料電池動作開始時には、燃料電池の発電も無くヒーターでの加熱が困難であることから、初期駆動用の二次電池あるいはキャパシタ等との併用が必須であった。
【0009】
【課題を解決するための手段】
本発明の燃料電池は、燃料電池内に電磁波を吸収して発熱する部位が設けられる、あるいは、燃料電池を構成する部材が電磁波を吸収して発熱する材料から構成されている。すなわち、燃料電池周辺に存在する電磁波を選択的に吸収することによって発熱する材料を燃料電池内に何らかの状態で用いることで、無消費電力なヒーターを実現することができる。とくに携帯電話等の電源として本燃料電池を用いる場合には、電磁波が多く発生している機器であり非常に有効である。また、携帯機器あるいは精密電子機器などにおいては電磁波によるノイズ対策が必須となるが、この電磁波遮蔽機能と電磁波吸収機能の併用によりより効率的な使い方ができる。
【0010】
電磁波を吸収する材料としては、炭素、鉄、ステンレス、アルミ、炭化珪素などの粉体や繊維等を用いることができる。また、メタルウール状の形状とすることでより電磁波吸収効率を向上することができる。また、前述の金属系以外にも有機ポリマー材料を用いることも可能である。金属材料の粉体や繊維などと電磁特性を持つポリマー材料を混合し、燃料電池の電極やセル外装などを構成すると設計上より効率的である。特にカーボン材料の一形態であるカーボンマイクロコイルは、電磁波の吸収効率も高く、また触媒を担持している炭素材料とも相性が良く好ましい。カーボンマイクロコイルに触媒を担持することも可能である。電磁波吸収材料およびその形態については例示したもののこれに限定されるものではない。
【0011】
前述の電磁波吸収材料は吸収したエネルギーを熱として放出する性質があり、この熱をヒーターの代替手段として用いて、燃料電池の発電効率を向上するものである。発電した電力をヒーターとして消費することも無く、また発電開始のヒーター予熱用にキャパシタや二次電池を搭載する必要も無くなり、燃料電池としてはより体積あたりエネルギー密度を向上することができる。
【0012】
電磁波吸収材料の近傍に熱伝導性がよい材料を配置することで更に加熱効率が向上する。熱伝導性が良い材料としては、銀、カーボン、銅、アルミ、鉄、セラミック等の材料を用いることができる、更にコージライト(2MgO・2AlO5・5SiO)、チタン酸アルミニウム(Al・Ti)、β−スポジューメン(LiO・Al・4SiO)等の遠赤外線を放出する材料を添加することでさらに熱効率の向上が期待できる。
【0013】
【発明の実施の形態】
図1に、燃料電池の基本構成を示す概略図を示す。正極燃料導入口13より空気や酸素ガスなどの正極燃料が導入され、正極拡散層11で拡散される。拡散された正極燃料は、正極触媒層12で触媒と接し酸素イオンが生成される。
【0014】
一方、負極燃料導入口23より水素ガス、メタノールなどの負極燃料が導入され、負極拡散層21で拡散される。拡散された負極燃料は、負極触媒層22で触媒に接し水素イオンが生成され、電解質膜3を透過し前述の酸素イオンと反応し水が生成される。このときに発生した電子が電気取り出し口24、14から電力として取り出される。
【0015】
(実施例1)
炭素材料に触媒を担持させた正極触媒層12および負極触媒層22に電磁波を吸収して発熱する性質を持つカーボンマイクロコイルを混合し触媒層を構成し、燃料電池を作成した。電磁波を照射すると触媒層が加熱され発電量の向上が確認された。
【0016】
(実施例2)
正極触媒層12の正極拡散層11側へ、カーボンマイクロコイルとエポキシ樹脂を混合した極薄い電磁波吸収層を形成し、正極拡散層11と接着し、燃料電池を作成した。電磁波を照射すると発熱し発電効率の向上が確認された。さらに、電磁波吸収層を多孔質とすることで酸素の透過率が向上し更に発電効率の向上が確認された。
【0017】
(実施例3)
実施例2と同様にして、負極拡散層21と負極触媒層22の間に電磁波吸収層を設けて燃料電池を作成した。このような構成により、負極燃料を分解する負極触媒の効率が向上し、発電効率が向上した。また、DMFC型の燃料電池ではその効果が更に大きかった。
【0018】
(実施例4)
外装4へ電磁波を吸収して発熱する性質を持つカーボンマイクロコイルを混合し外装を作成し、燃料電池の発電効率を測定した。電磁波を照射すると外装が発熱し、燃料電池セル全体が加熱され出力の向上が確認された。
【0019】
(実施例5)
電解質膜4に電磁波を吸収して発熱する性質を持ったポリマー材料を混合して電解質膜を作成し、燃料電池の出力特性を測定した。電磁波をすると出力の向上が確認された。また、電解質膜の表面に電磁波吸収層を形成することでも同様の効果が確認された。
【0020】
以上、上述の各実施例では、高分子固体電解質型の燃料電池でその効果を確認してきたが、これに限定されるものではない。
【0021】
【発明の効果】
以上の様に、電解質をはさんで正極としての酸素極及び負極としての燃料極を有する燃料電池において、電池内または電池を構成する部材に電磁波を吸収して発熱する材料を含有することで、電力消費を伴うヒーター等を用いることなく発電効率を向上することができる。
【図面の簡単な説明】
【図1】本発明による燃料電池の構成を示す概略図である。
【符号の説明】
1 正極
2 負極
3 電解質膜
4 外装
11 正極拡散層
12 正極触媒層
13 正極燃料導入口
14 正極電気取り出し口
21 負極拡散層
22 負極触媒層
23 負極燃料導入口
24 負極電気取り出し口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power device used as a power source for portable electronic devices, and more particularly to a micro fuel cell as a power source for small portable devices such as mobile phones, PDAs, digital cameras, and notebook computers.
[0002]
[Prior art]
Conventionally, secondary batteries typified by nickel-hydrogen batteries and lithium ion batteries have been the mainstream as power sources for small electronic devices typified by mobile phones, PDAs, digital cameras, notebook computers, etc. With the progress of functionalization, power consumption is improved, and a dramatic improvement in energy density is required.
[0003]
However, the secondary battery as described above is already approaching a theoretically conceivable energy density, and a dramatic improvement in energy density cannot be expected. Therefore, a fuel cell has been actively developed as a post lithium ion battery in recent years. The fuel cell has a mechanism in which oxygen in the air is used as a positive electrode, hydrogen extracted from fuel is used as a negative electrode, and electrons are extracted by a catalytic reaction. In other words, it performs the same function as a generator. When the fuel cannot be generated due to the consumption of the fuel, it is only necessary to replenish the fuel, and the fact that charging for a long time is not required unlike the conventional secondary battery is a great merit for the user.
[0004]
There are several methods for fuel cells depending on the difference in fuel and catalyst. For example, alkali type, phosphoric acid type, molten carbonate type, polymer solid electrolyte type, solid oxide type and the like. Above all, it is said that a solid polymer type is suitable as a fuel cell for small portable devices. This is because the driving temperature is low. In particular, even in a solid polymer electrolyte type, a method called direct methanol type (DMFC) has an operating temperature of 80 to 100 ° C. and can operate at a very low temperature (see, for example, Patent Document 1 or Non-Patent Document 1). ). However, even a DMFC fuel cell with a low operating temperature is 80 to 100 ° C., which is higher than normal temperature. For this reason, a method in which a heater or the like is installed in the cell and heated is used (for example, see Non-Patent Document 2).
[0005]
[Patent Document 1]
Japanese Patent No. 3307891 [0006]
[Non-Patent Document 1]
Edited by Hironosuke Ikeda, “All about Fuel Cells”, Nihon Jitsugyo Shuppansha, August 20, 2001, p. 212.
[0007]
[Non-Patent Document 2]
Edited by Hironosuke Ikeda, “All about Fuel Cells”, Nihon Jitsugyo Shuppansha, August 20, 2001, p. 217
[0008]
[Problems to be solved by the invention]
However, when heating is performed using a heater or the like as in the prior art, a part of the power generated by the fuel cell is consumed, which is very inefficient. In addition, at the start of the fuel cell operation, it is difficult to heat with a heater because there is no power generation of the fuel cell, so it is essential to use it together with a secondary battery for initial driving or a capacitor.
[0009]
[Means for Solving the Problems]
The fuel cell of the present invention is provided with a portion that generates heat by absorbing electromagnetic waves in the fuel cell, or a member that constitutes the fuel cell is made of a material that generates heat by absorbing electromagnetic waves. That is, a heater that consumes no electric power can be realized by using a material that generates heat by selectively absorbing electromagnetic waves existing around the fuel cell in any state. In particular, when this fuel cell is used as a power source for a mobile phone or the like, it is a device that generates a lot of electromagnetic waves and is very effective. Moreover, in portable devices or precision electronic devices, noise countermeasures due to electromagnetic waves are essential, but more efficient usage can be achieved by combining this electromagnetic wave shielding function and electromagnetic wave absorbing function.
[0010]
As a material that absorbs electromagnetic waves, powders or fibers of carbon, iron, stainless steel, aluminum, silicon carbide, or the like can be used. Moreover, electromagnetic wave absorption efficiency can be improved more by using a metal wool shape. Moreover, it is also possible to use an organic polymer material other than the above-mentioned metal type. It is more efficient in terms of design if metallic materials such as powders and fibers are mixed with a polymer material having electromagnetic characteristics to form fuel cell electrodes and cell exteriors. In particular, a carbon microcoil, which is one form of the carbon material, has high electromagnetic wave absorption efficiency and is preferable because of its good compatibility with the carbon material carrying the catalyst. It is also possible to carry a catalyst on the carbon microcoil. The electromagnetic wave absorbing material and the form thereof are exemplified but not limited thereto.
[0011]
The above-mentioned electromagnetic wave absorbing material has a property of releasing absorbed energy as heat, and this heat is used as an alternative to the heater to improve the power generation efficiency of the fuel cell. The generated power is not consumed as a heater, and it is not necessary to mount a capacitor or a secondary battery for heater preheating at the start of power generation. As a fuel cell, the energy density per volume can be further improved.
[0012]
Heating efficiency is further improved by disposing a material having good thermal conductivity in the vicinity of the electromagnetic wave absorbing material. As materials having good thermal conductivity, materials such as silver, carbon, copper, aluminum, iron, and ceramic can be used. Further, cordierite (2MgO · 2Al 2 O5 · 5SiO 2 ), aluminum titanate (Al 2 O) Further improvement of thermal efficiency can be expected by adding a material that emits far-infrared rays such as 3 · Ti 2 O 3 ) and β-spodumene (Li 2 O · Al 2 O 3 · 4SiO 2 ).
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic diagram showing the basic configuration of a fuel cell. Positive electrode fuel such as air or oxygen gas is introduced from the positive electrode fuel inlet 13 and diffused in the positive electrode diffusion layer 11. The diffused positive electrode fuel comes into contact with the catalyst in the positive electrode catalyst layer 12 to generate oxygen ions.
[0014]
On the other hand, negative electrode fuel such as hydrogen gas and methanol is introduced from the negative electrode fuel inlet 23 and diffused in the negative electrode diffusion layer 21. The diffused negative electrode fuel comes into contact with the catalyst in the negative electrode catalyst layer 22 to generate hydrogen ions, permeates the electrolyte membrane 3 and reacts with the aforementioned oxygen ions to generate water. Electrons generated at this time are taken out from the electric outlets 24 and 14 as electric power.
[0015]
Example 1
A carbon microcoil having the property of absorbing electromagnetic waves and generating heat was mixed in the positive electrode catalyst layer 12 and the negative electrode catalyst layer 22 in which a catalyst was supported on a carbon material to form a catalyst layer, and a fuel cell was produced. When the electromagnetic wave was irradiated, the catalyst layer was heated and it was confirmed that power generation was improved.
[0016]
(Example 2)
An ultrathin electromagnetic wave absorption layer in which carbon microcoils and an epoxy resin were mixed was formed on the positive electrode diffusion layer 11 side of the positive electrode catalyst layer 12 and bonded to the positive electrode diffusion layer 11 to prepare a fuel cell. When it was irradiated with electromagnetic waves, it generated heat and improved power generation efficiency was confirmed. Further, it was confirmed that oxygen permeability was improved by making the electromagnetic wave absorbing layer porous, and further improvement in power generation efficiency was confirmed.
[0017]
(Example 3)
In the same manner as in Example 2, an electromagnetic wave absorbing layer was provided between the negative electrode diffusion layer 21 and the negative electrode catalyst layer 22 to prepare a fuel cell. With such a configuration, the efficiency of the negative electrode catalyst for decomposing the negative electrode fuel was improved, and the power generation efficiency was improved. Further, the effect was even greater in the DMFC type fuel cell.
[0018]
Example 4
A carbon microcoil having the property of absorbing electromagnetic waves and generating heat was mixed into the exterior 4 to create an exterior, and the power generation efficiency of the fuel cell was measured. When the electromagnetic wave was irradiated, the exterior was heated, and the entire fuel cell was heated, confirming improvement in output.
[0019]
(Example 5)
An electrolyte membrane was prepared by mixing the electrolyte membrane 4 with a polymer material having the property of absorbing electromagnetic waves and generating heat, and the output characteristics of the fuel cell were measured. Improvement in output was confirmed when electromagnetic waves were applied. The same effect was confirmed by forming an electromagnetic wave absorbing layer on the surface of the electrolyte membrane.
[0020]
As described above, in each of the above-described embodiments, the effect has been confirmed with a polymer solid electrolyte type fuel cell, but the present invention is not limited to this.
[0021]
【The invention's effect】
As described above, in a fuel cell having an oxygen electrode as a positive electrode and a fuel electrode as a negative electrode with an electrolyte interposed therebetween, by containing a material that generates heat by absorbing electromagnetic waves in the battery or a member constituting the battery, The power generation efficiency can be improved without using a heater or the like with power consumption.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the configuration of a fuel cell according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Electrolyte membrane 4 Exterior 11 Positive electrode diffusion layer 12 Positive electrode catalyst layer 13 Positive electrode fuel inlet 14 Positive electrode outlet 21 Negative electrode diffusion layer 22 Negative electrode catalyst layer 23 Negative electrode fuel inlet 24 Negative electrode outlet

Claims (4)

電解質をはさんで正極と負極を有する燃料電池において、
前記燃料電池内または前記燃料電池を構成する部材は携帯電話が発信する電磁波を吸収して発熱する発熱材料を含有することにより、前記正極と前記負極の少なくとも一方の触媒層を加熱するものであって、前記発熱材料が、カーボンマイクロコイルであることを特徴とする燃料電池。
In a fuel cell having a positive electrode and a negative electrode across an electrolyte,
Members constituting the fuel cell or the fuel cell, by the mobile phone contains a heat generating material which generates heat by absorbing electromagnetic waves originating, intended for heating at least one of the catalyst layer of the positive electrode and the negative electrode The fuel cell is characterized in that the heat generating material is a carbon microcoil .
前記発熱材料が前記触媒層中に混合されていることを特徴とする請求項1に記載の燃料電池。The fuel cell according to claim 1, wherein the heat generating material is mixed in the catalyst layer. 前記燃料電池を構成する外装に前記発熱材料が含有されていることを特徴とする請求項1に記載の燃料電池。  The fuel cell according to claim 1, wherein the heat generating material is contained in an exterior constituting the fuel cell. 前記燃料電池の電解質に前記発熱材料が含有されていることを特徴とする請求項1に記載の燃料電池。  The fuel cell according to claim 1, wherein the heat generating material is contained in an electrolyte of the fuel cell.
JP2003136904A 2003-05-15 2003-05-15 Fuel cell Expired - Fee Related JP4443145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136904A JP4443145B2 (en) 2003-05-15 2003-05-15 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136904A JP4443145B2 (en) 2003-05-15 2003-05-15 Fuel cell

Publications (2)

Publication Number Publication Date
JP2004342434A JP2004342434A (en) 2004-12-02
JP4443145B2 true JP4443145B2 (en) 2010-03-31

Family

ID=33526693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136904A Expired - Fee Related JP4443145B2 (en) 2003-05-15 2003-05-15 Fuel cell

Country Status (1)

Country Link
JP (1) JP4443145B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5311105B2 (en) * 2007-07-12 2013-10-09 イマジニアリング株式会社 Exhaust gas purification equipment
KR20230137125A (en) * 2022-03-21 2023-10-04 (주)에스에이치코리아 Dual electromagnetic wave shieliding heating film

Also Published As

Publication number Publication date
JP2004342434A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US8597842B2 (en) Fuel cell module
JP2005522846A (en) Control of gas transport in fuel cells.
CN206225464U (en) A kind of methanol fuel cell assembly of porous metal fiber plate
CN101022171A (en) Ion exchange film fuel cell dipole plate and application thereof
CN1722500A (en) Fuel cell system
JP4879691B2 (en) Ceramic multilayer substrate reformer for micro fuel cell and manufacturing method thereof
KR100755620B1 (en) High-performance micro fuel cells
JP4443145B2 (en) Fuel cell
CN1691390A (en) Fuel cell system
JP2007005134A (en) Steam generator and fuel cell
JP2001006695A (en) Separator of fuel cell
JP2006202509A (en) Portable computer
CN206441813U (en) A kind of fuel cell for realizing first alcohol and water feed
KR100599712B1 (en) Fuel cell system and reformer
KR100665123B1 (en) Micro Reforming Apparatus for Fuel Cell
TW200921975A (en) Fuel cell with composite pole plate
JP2005340158A (en) Fuel cell module
CN206340609U (en) A kind of methanol fuel cell utilized based on reformation and the integrated efficiency of pile
JP2006294624A (en) Reformer for fuel cell system
TWI282185B (en) Fuel cell with fractal structure and device thereof
CN201207410Y (en) Activation apparatus for fuel cell
CN113764706B (en) Secondary fuel cell with active circulation system
CN217544675U (en) Near-zero-carbon-emission direct coal fuel cell in-situ reforming system
JP2006107819A (en) Power source device
JP3774443B2 (en) Fuel cell container and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100112

R150 Certificate of patent or registration of utility model

Ref document number: 4443145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees