JP4442952B2 - Process for producing 5-formylimidazoles - Google Patents

Process for producing 5-formylimidazoles Download PDF

Info

Publication number
JP4442952B2
JP4442952B2 JP17772599A JP17772599A JP4442952B2 JP 4442952 B2 JP4442952 B2 JP 4442952B2 JP 17772599 A JP17772599 A JP 17772599A JP 17772599 A JP17772599 A JP 17772599A JP 4442952 B2 JP4442952 B2 JP 4442952B2
Authority
JP
Japan
Prior art keywords
reaction
amount
formylimidazoles
ppm
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17772599A
Other languages
Japanese (ja)
Other versions
JP2001002654A (en
Inventor
学 中谷
章夫 勝浦
和正 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP17772599A priority Critical patent/JP4442952B2/en
Publication of JP2001002654A publication Critical patent/JP2001002654A/en
Application granted granted Critical
Publication of JP4442952B2 publication Critical patent/JP4442952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、利尿剤、降圧剤等医薬品の原料として有用な2−アルキル−5−ホルミルイミダゾール等の5−ホルミルイミダゾール類の製造方法に関する。
【0002】
【従来の技術】
アルキルホルミルイミダゾールは上記の如く有用な用途を有し、近年注目されている化学品であるがその製造法に関する公知文献はあまりなく例えば、出発原料として2−アルキル−5−ヒドロキシメチルイミダゾールを用い、重金属類による試薬酸化法、硝酸による酸化法が研究されている。
【0003】
【発明が解決しようとする課題】
しかしながらかかる技術では、前者の場合は重金属類の取り扱いや廃触媒の処理に多大の労力を必要とすること、後者の場合は目的物の収率面や窒素酸化物の発生の点等において、工業的規模での実施に非常に不利となり満足し得る方法とは言い難い。故に、かかる問題点を避け工業的に安全な方法でかつ高収率で目的物が製造できる、2−アルキル−5−ホルミルイミダゾールの新たな製造方法の開発が当業者間で強く望まれており、本出願人はかかる目的を達成すべく鋭意研究を重ねた結果、先に2−アルキル−5−ヒドロキシメチルイミダゾールを貴金属触媒の存在下で接触酸化させる場合、特にアルカリ水溶媒中での反応においてその目的が有利に達成出来ることを見出し、特許出願を行った。
しかし、かかる反応においては高価な貴金属触媒を使用するので、工業的規模での実施ではその使用量を出来るだけ低減するのが望ましいとの見解から、縷々検討を行ったが、触媒の低減は反応の不安定化を導き、ひいては目的物の収率低下となる難点は容易に解決出来なかった。
【0004】
【課題を解決するための手段】
しかるに本発明者は、アルカリ水溶媒中で、下記一般式(1)で示される5−ヒドロキシメチルイミダゾール類を貴金属触媒の存在下に、酸素あるいは空気を導入して接触酸化させて下記一般式(2)で示される5−ホルミルイミダゾール類を製造するにあたり、反応液の溶存酸素量を5ppm以下に維持して反応を行う場合、触媒の使用量を少なくしても、5−ホルミルイミダゾール類を収率良く製造できることを見出し、本発明を完成するに至った。
【化1】
(式中、Rは水素又は炭素数1〜5のアルキル基であり、4位の炭素に結合する水素は、ハロゲン、炭素数1〜12のアルキル基あるいは置換アルキル基で置換されていてもよい。)
【0005】
【発明の実施の形態】
本発明の反応は下記()式で示される。
化2
【0006】
ここでRは水素又は炭素数1〜5のアルキル基であり、好ましくはn−ブチル基が有用である。4位の炭素に結合する水素はクロル、ブロム等のハロゲンあるいは炭素数1〜12のアルキル基あるいは置換アルキル基で置換されていても差し支えない。
具体的に原料を例示すれば、5−ヒドロキシメチルイミダゾール、4−メチル−5−ヒドロキシメチルイミダゾール、2−メチル−5−ヒドロキシメチルイミダゾール、2−プロピル−5−ヒドロキシメチルイミダゾール、2−ブチル−5−ヒドロキシメチルイミダゾール、2−ブチル−4−クロル−5−ヒドロキシメチルイミダゾール等が挙げられる。
【0007】
本発明では接触酸化反応に当たって、アルカリ水溶媒を使用することが必須条件であり、かかる溶媒の使用により目的物の収率の向上が保持される。
アルカリ水におけるアルカリとしては水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、酢酸ナトリウム等が挙げられる。
アルカリの使用量は原料の5−ヒドロキシメチルイミダゾール類1モルに対して0.9モル以上、好ましくは1.0〜1.5モルが必要である。0.9モル未満では生成する5−ホルミルイミダゾール類が系に溶解しない。一方、1.5モルを越えると中和工程での酸量が増大し実用的でない。
【0008】
本発明で使用する貴金属触媒は白金、パラジウム、金等であり、白金及びパラジウムが実用的である。又かかる貴金属触媒には第二成分としてビスマス、セリウム、鉛、インジウム等を添加することも可能である。かかる触媒は金属状態ばかりでなく塩、酸化物等の状態であっても良い。本発明で用いる貴金属触媒はそのまま、あるいは必要に応じて活性炭、シリカ、アルミナ等の担体に担持されて用いられる。
接触酸化反応を実施するに当たっては、反応器にアルカリ水溶媒を仕込み、これに上記の触媒、原料の5−ヒドロキシメチルイミダゾール類を供給する。
【0009】
本発明で使用されるすべての薬剤の仕込み手段は任意であり、一括仕込み、分割仕込み、連続仕込み、滴下仕込み等いずれも実施可能であるが、特に一括仕込みが有利である。
本発明の趣旨を逸脱しない範囲であれば、各種の有機溶媒を併用することもできる。
【0010】
本発明においてはかかる反応時に反応液の溶存酸素量を5ppm以下、好ましくは0〜3ppm、特に好ましくは0〜2ppmに調節して反応を行うことより低触媒量にもかかわらず、目的物が収率よく製造出来る。
溶存酸素量が5ppmを越えると目的物の収率が低下がおこる。
反応液の溶存酸素量を5ppm以下にコントローする方法としては、特に制限はないが下記の手段が採用される。
1.酸素あるいは空気の吹き込み速度を制御する
通常は5−ヒドロキシメチルイミダゾール類1gに対して0.01〜1.0ミリリットル(標準状態換算)/分で初期供給を行い、以後溶存酸素量を5ppm以下になるように吹き込み速度をコントロールする
2.ヘリウム、アルゴン、窒素、二酸化炭素、水素等の不活性ガスやメタン、エタン、プロパン等の炭化水素を併用して酸素量をコントロ−ルする
3.過剰の酸素と反応する添加剤、例えばメタノール、エタノール、プロパノール、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等を反応液に添加してコントロールする
【0011】
本発明においては反応時に系の撹拌効率を特定化すると更に効果が発揮され、PV値を0.3以上、好ましくは0.6以上、特に好ましくは1.0以上とするのが良い。
ここでPV値とは流体単位体積当たりの撹拌所要動力を意味し、撹拌機の撹拌動力(kW)/反応液の体積(m3)で定義される。
V値が0.3未満では反応が十分に進行せず、反応に長時間を必要としたり、副生物の生成も増加する。一方PV値をあまりに高くしてもそれほど本発明の効果は発揮されず、むしろ大きな撹拌機を必要とする等経済性が損なわれるので、PV値の上限は3.0好ましくは2.0で十分である。
撹拌機の種類は特定されず、例えば三枚後退翼、フルゾーン翼、タービン翼、マックスブレンド翼等任意のものが挙げられる。
【0012】
触媒の使用量は原料の5−ヒドロキシメチルイミダゾール類に対して0.01〜50モル%、好ましくは0.05〜20モル%が適当であるが、本発明の効果が顕著に発揮されるのは、上記範囲でも触媒使用量の少ない範囲すなわち0.1〜10モル%である。
溶媒は原料の3〜50重量倍で使用する。必要に応じて他の有機溶媒例えばメタノール、エタノール、プロパノール等の低級アルコール等も併用出来る。
反応温度は0℃〜還流温度のいずれでも良いが、通常は室温以上、好ましくは10〜80℃、特に望ましくは15〜60℃が適当であり、又反応時間は1〜24時間、好ましくは2〜15時間が有利である。
【0013】
接触酸化反応に際しては、上記の系内に酸素あるいは空気を導入することが必要である。勿論、この際前述した様に、反応液中の溶存酸素をコントロールする。系は常圧でも加圧でもよい。反応は懸濁系で進行し酸素の吸収が停止した時点で反応を終了させ、反応終了液から触媒を濾別する。濾液には5−ホルミルイミダゾール類が塩の形で溶解しているので、硫酸、塩酸等の鉱酸で中和して目的物である5−ホルミルイミダゾール類の結晶を得る。必要であれば更に精製が行われる。目的物の収率は、原料5−ヒドロキシメチルイミダゾール類に対して90%以上である。
【0014】
【実施例】
以下、本発明を実例を挙げて詳述する。「%」は重量基準である。
実施例1
内径100mmφのセパラブルフラスコにタービン翼(翼径60mmφ)と酸素ガス吹き込み管、溶存酸素測定計及び温度計を取り付けた反応装置に、2−n−ブチル−4−クロロ−5−ヒドロキシメチルイミダゾール100g(0.53モル)、水酸化ナトリウム25.4g(0.64モル)、水930ml、更に、白金−ビスマス系触媒(活性炭に白金5%及びビスマス2%を担持、含水率50%)6.7gをそれぞれ仕込んだ。
V値が1.3となるように撹拌し、反応液の温度を20℃にコントロールしながら、酸素を20ml/分の割合で吹き込みはじめ、反応液中の溶存酸素量を2ppm以下に保ちながら8時間接触酸化反応を行った。
【0015】
反応終了後、反応液から触媒を濾別し濾液を30%硫酸水で中和し2−n−ブチル−4−クロロ−5−ホルミルイミダゾールを結晶として析出させ濾取、乾燥して95.1gの白色結晶を得た。
2−n−ブチル−4−クロロ−5−ヒドロキシメチルイミダゾールに対する収率は96.2%であり、純度は100%であった。
赤外線分析、NMR分析の結果、2−n−ブチル−4−クロロ−5−ホルミルイミダゾールと確認できた。
【0016】
実施例2
実施例1において触媒量を5gに減らし、撹拌翼をフルゾーン翼に、PV値を1.8に変更した以外は同例に従って実験をした。
但し8時間頃から窒素を吹き込み溶存酸素量を2ppm以下とし10時間反応を行った。
収率97.0%で2−n−ブチル−4−クロロ−5−ホルミルイミダゾール(純度100%)を得た。
【0017】
実施例3
実施例1において撹拌翼としてマックスブレンド翼を使用し、PV値を1.5に、反応温度を40℃に、初めの酸素吹き込みを80ml/分にそれぞれ変更した以外は同例に従って実験をした。反応時の溶存酸素量は3pm以下とした。
収率95.1%で2−n−ブチル−4−クロロ−5−ホルミルイミダゾール(純度100%)を得た。
【0018】
実施例4
実施例1において触媒を白金黒3.3gに、反応温度を60℃に変えて、接触酸化反応を行った。反応時の溶存酸素量は2ppm以下とした。
赤外線分析、NMR分析の結果、2−n−ブチル−4−クロロ−5−ホルミルイミダゾールと確認できた。純度は100%、収率は94.0%であった。
【0019】
実施例5
実施例1に準じて、2−n−ブチル−5−ヒドロキシメチルイミダゾールを接触酸化した。反応時の溶存酸素量は2ppm以下とした。
赤外線分析、NMR分析の結果、2−n−ブチル−5−ホルミルイミダゾールと確認できた。純度は100%、収率は93.0%であった。
【0020】
実施例6
実施例1に準じて、4−メチル−5−ヒドロキシメチルイミダゾールの接触酸化反応を行った。反応時の溶存酸素量は2ppm以下とした。
赤外線分析、NMR分析の結果、4−メチル−5−ホルミルイミダゾールと確認できた。純度は100%、収率は92.0%であった。
【0021】
実施例7
実施例1に準じて、5−ヒドロキシメチルイミダゾールの接触酸化反応を行った。反応時の溶存酸素量は2ppm以下とした。
赤外線分析、NMR分析の結果、5−ホルミルイミダゾールと確認できた。
純度は100%、収率は91.5%であった。
【0022】
対照例1
実施例1において溶存酸素量が5ppm以上となってもそのまま実験を行ったところ、収率77.3%で2−n−ブチル−4−クロロ−5−ホルミルイミダゾール(純度82.6%)を得たにすぎなかった。
【0023】
【発明の効果】
本発明は、利尿剤や降圧剤等医薬品の原料として有用な2−アルキル−5−ホルミルイミダゾールを初めとする5−ホルミルイミダゾール類を接触酸化法によって製造するに際して、アルカリ水溶媒を使用し、反応液中の溶存酸素量を5ppm以下に維持して反応を行うと、貴金属触媒の使用量を低減しても、高収率で目的物が得られるので経済面、製造面において非常に有利である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing 5-formylimidazoles such as 2-alkyl-5-formylimidazole useful as a raw material for pharmaceuticals such as diuretics and antihypertensives.
[0002]
[Prior art]
Alkylformylimidazole has a useful use as described above, and is a chemical product that has been attracting attention in recent years, but there are not many known literatures regarding its production method. For example, 2-alkyl-5-hydroxymethylimidazole is used as a starting material, Reagent oxidation methods using heavy metals and oxidation methods using nitric acid have been studied.
[0003]
[Problems to be solved by the invention]
However, in such a technique, in the former case, a great deal of labor is required for handling heavy metals and processing of the waste catalyst, and in the latter case, in terms of yield of the target product and generation of nitrogen oxides, etc. It is difficult to say that it is very disadvantageous and satisfactory for implementation on a scale. Therefore, development of a new method for producing 2-alkyl-5-formylimidazole, which avoids such problems and can produce the target product in an industrially safe manner and in a high yield, is strongly desired among those skilled in the art. As a result of intensive researches to achieve such an object, the present applicant has previously conducted catalytic oxidation of 2-alkyl-5-hydroxymethylimidazole in the presence of a noble metal catalyst, particularly in a reaction in an alkaline water solvent. We found that the object can be achieved advantageously, and filed a patent application.
However, since an expensive precious metal catalyst is used in such a reaction, it has been frequently studied from the view that it is desirable to reduce the amount used in an industrial scale as much as possible. The problem of leading to destabilization of the product and thus reducing the yield of the target product could not be easily solved.
[0004]
[Means for Solving the Problems]
However, the present inventor introduces oxygen or air in the presence of a noble metal catalyst and catalytically oxidizes 5-hydroxymethylimidazoles represented by the following general formula (1) in an alkaline water solvent to form the following general formula ( In producing the 5-formylimidazoles shown in 2), when the reaction is carried out while maintaining the dissolved oxygen content in the reaction solution at 5 ppm or less, the 5-formylimidazoles are collected even if the amount of the catalyst used is reduced. The inventors have found that it can be produced efficiently, and have completed the present invention.
[Chemical 1]
(In the formula, R is hydrogen or an alkyl group having 1 to 5 carbon atoms, and the hydrogen bonded to the 4-position carbon may be substituted with halogen, an alkyl group having 1 to 12 carbon atoms or a substituted alkyl group. .)
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The reaction of the present invention is represented by the following formula ( 3 ).
[ Chemical 2 ]
[0006]
Here, R is hydrogen or an alkyl group having 1 to 5 carbon atoms, preferably an n-butyl group. Hydrogen bonded to carbon at the 4-position may be substituted with halogen such as chloro and bromo, alkyl groups having 1 to 12 carbon atoms or substituted alkyl groups.
Specific examples of raw materials include 5-hydroxymethylimidazole, 4-methyl-5-hydroxymethylimidazole, 2-methyl-5-hydroxymethylimidazole, 2-propyl-5-hydroxymethylimidazole, 2-butyl-5. -Hydroxymethylimidazole, 2-butyl-4-chloro-5-hydroxymethylimidazole and the like.
[0007]
In the present invention, it is an essential condition to use an alkaline water solvent in the catalytic oxidation reaction, and the use of such a solvent maintains the improvement in the yield of the target product.
Examples of the alkali in the alkaline water include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium acetate and the like.
The amount of alkali used is 0.9 mol or more, preferably 1.0 to 1.5 mol, per mol of 5-hydroxymethylimidazole as a raw material. If it is less than 0.9 mol, the resulting 5-formylimidazoles will not dissolve in the system. On the other hand, when the amount exceeds 1.5 mol, the acid amount in the neutralization step increases, which is not practical.
[0008]
The noble metal catalyst used in the present invention is platinum, palladium, gold or the like, and platinum and palladium are practical. It is also possible to add bismuth, cerium, lead, indium or the like as the second component to such noble metal catalyst. Such a catalyst may be in the form of not only a metal state but also a salt, an oxide or the like. The noble metal catalyst used in the present invention is used as it is or supported on a carrier such as activated carbon, silica, alumina or the like as necessary.
In carrying out the catalytic oxidation reaction, an alkaline water solvent is charged into the reactor, and the above-mentioned catalyst and raw material 5-hydroxymethylimidazoles are supplied thereto.
[0009]
The means for charging all the chemicals used in the present invention is arbitrary, and batch charging, split charging, continuous charging, dropping charging, etc. can be carried out, but batch charging is particularly advantageous.
Various organic solvents can be used in combination as long as they do not depart from the spirit of the present invention.
[0010]
In the present invention, the amount of dissolved oxygen in the reaction liquid during the reaction is adjusted to 5 ppm or less, preferably 0 to 3 ppm, particularly preferably 0 to 2 ppm. Can be manufactured efficiently.
When the amount of dissolved oxygen exceeds 5 ppm, the yield of the target product decreases.
As a method for controls to 5ppm or less amount of dissolved oxygen in the reaction solution, not particularly limited, but it means the following is adopted.
1. The oxygen or air blowing speed is controlled. Usually, initial supply is performed at a rate of 0.01 to 1.0 milliliter (converted to the standard state) per minute per 1 g of 5-hydroxymethylimidazole, and the dissolved oxygen amount is reduced to 5 ppm or less thereafter. 1. Control the blowing speed so that 2. Use an inert gas such as helium, argon, nitrogen, carbon dioxide, or hydrogen, or a hydrocarbon such as methane, ethane, or propane to control the amount of oxygen. Additives that react with excess oxygen, such as methanol, ethanol, propanol, formaldehyde, acetaldehyde, propionaldehyde, etc., are added to the reaction solution for control.
In the present invention, if the stirring efficiency of the system is specified during the reaction, the effect is further exerted, and the P V value is 0.3 or more, preferably 0.6 or more, particularly preferably 1.0 or more.
Here, the P V value means the power required for stirring per unit volume of fluid, and is defined as stirring power (kW) of the stirrer / volume of reaction liquid (m 3 ).
If the P V value is less than 0.3, the reaction does not proceed sufficiently, requiring a long time for the reaction, and increasing the production of by-products. On the other hand, even if the P V value is too high, the effect of the present invention is not exhibited so much. Rather, the economic efficiency such as the need for a large stirrer is impaired, so the upper limit of the P V value is 3.0, preferably 2.0. Is enough.
The type of the stirrer is not specified, and examples thereof include arbitrary ones such as a three-blade swept blade, a full zone blade, a turbine blade, and a max blend blade.
[0012]
The catalyst is used in an amount of 0.01 to 50 mol%, preferably 0.05 to 20 mol%, based on the starting 5-hydroxymethylimidazoles, but the effects of the present invention are remarkably exhibited. Is a range where the amount of catalyst used is small, that is, 0.1 to 10 mol%.
The solvent is used 3 to 50 times by weight of the raw material. If necessary, other organic solvents such as lower alcohols such as methanol, ethanol and propanol can be used in combination.
The reaction temperature may be any of 0 ° C. to reflux temperature, but is usually room temperature or higher, preferably 10 to 80 ° C., particularly preferably 15 to 60 ° C., and the reaction time is 1 to 24 hours, preferably 2 ~ 15 hours is advantageous.
[0013]
In the catalytic oxidation reaction, it is necessary to introduce oxygen or air into the above system. Of course, as described above, the dissolved oxygen in the reaction solution is controlled. The system may be atmospheric or pressurized. The reaction proceeds in a suspension system and is terminated when the absorption of oxygen is stopped, and the catalyst is filtered off from the reaction completed solution. Since 5-formylimidazoles are dissolved in the filtrate in the form of a salt, they are neutralized with a mineral acid such as sulfuric acid or hydrochloric acid to obtain crystals of the desired 5-formylimidazoles. Further purification is performed if necessary. The yield of the target product is 90% or more based on the starting 5-hydroxymethylimidazoles.
[0014]
【Example】
Hereinafter, the present invention will be described in detail with examples. “%” Is based on weight.
Example 1
100 g of 2-n-butyl-4-chloro-5-hydroxymethylimidazole was attached to a reactor equipped with a separable flask having an inner diameter of 100 mmφ and a turbine blade (blade diameter 60 mmφ), an oxygen gas blowing tube, a dissolved oxygen meter and a thermometer. (0.53 mol), 25.4 g (0.64 mol) of sodium hydroxide, 930 ml of water, and further a platinum-bismuth catalyst (activated carbon loaded with 5% platinum and 2% bismuth, water content 50%) Each 7g was charged.
While stirring so that the P V value becomes 1.3, while controlling the temperature of the reaction solution at 20 ° C., oxygen is started to be blown at a rate of 20 ml / min, and the amount of dissolved oxygen in the reaction solution is kept at 2 ppm or less. A catalytic oxidation reaction was carried out for 8 hours.
[0015]
After completion of the reaction, the catalyst was filtered off from the reaction solution, and the filtrate was neutralized with 30% aqueous sulfuric acid to precipitate 2-n-butyl-4-chloro-5-formylimidazole as crystals, collected by filtration, and dried to obtain 95.1 g. Of white crystals were obtained.
The yield based on 2-n-butyl-4-chloro-5-hydroxymethylimidazole was 96.2%, and the purity was 100%.
As a result of infrared analysis and NMR analysis, it could be confirmed as 2-n-butyl-4-chloro-5-formylimidazole.
[0016]
Example 2
Reduce the amount of catalyst to 5g in Example 1, a stirring blade in a full zone blade, except for changing the P V value of 1.8 was experimentally according the example.
However, nitrogen was blown in from about 8 hours, and the amount of dissolved oxygen was set to 2 ppm or less, and the reaction was carried out for 10 hours.
2-n-butyl-4-chloro-5-formylimidazole (purity 100%) was obtained with a yield of 97.0%.
[0017]
Example 3
In Example 1, an experiment was performed according to the same example except that a Max blend blade was used as a stirring blade, the P V value was changed to 1.5, the reaction temperature was changed to 40 ° C., and the initial oxygen blowing was changed to 80 ml / min. . The amount of dissolved oxygen during the reaction was 3 pm or less.
2-n-butyl-4-chloro-5-formylimidazole (purity 100%) was obtained with a yield of 95.1%.
[0018]
Example 4
In Example 1, the catalytic oxidation reaction was carried out by changing the catalyst to 3.3 g of platinum black and the reaction temperature to 60 ° C. The amount of dissolved oxygen during the reaction was 2 ppm or less.
As a result of infrared analysis and NMR analysis, it could be confirmed as 2-n-butyl-4-chloro-5-formylimidazole. The purity was 100% and the yield was 94.0%.
[0019]
Example 5
According to Example 1, 2-n-butyl-5-hydroxymethylimidazole was catalytically oxidized. The amount of dissolved oxygen during the reaction was 2 ppm or less.
As a result of infrared analysis and NMR analysis, it could be confirmed as 2-n-butyl-5-formylimidazole. The purity was 100% and the yield was 93.0%.
[0020]
Example 6
According to Example 1, the catalytic oxidation reaction of 4-methyl-5-hydroxymethylimidazole was performed. The amount of dissolved oxygen during the reaction was 2 ppm or less.
As a result of infrared analysis and NMR analysis, 4-methyl-5-formylimidazole was confirmed. The purity was 100% and the yield was 92.0%.
[0021]
Example 7
According to Example 1, the catalytic oxidation reaction of 5-hydroxymethylimidazole was performed. The amount of dissolved oxygen during the reaction was 2 ppm or less.
As a result of infrared analysis and NMR analysis, it was confirmed as 5-formylimidazole.
The purity was 100% and the yield was 91.5%.
[0022]
Control Example 1
When the amount of dissolved oxygen was 5 ppm or more in Example 1, the experiment was conducted as it was, and 2-n-butyl-4-chloro-5-formylimidazole (purity 82.6%) was obtained in a yield of 77.3%. I just got it.
[0023]
【The invention's effect】
The present invention uses an alkaline water solvent to produce 5-formylimidazoles such as 2-alkyl-5-formylimidazole useful as a raw material for pharmaceuticals such as diuretics and antihypertensive agents by a catalytic oxidation method. When the reaction is carried out while maintaining the dissolved oxygen content in the liquid at 5 ppm or less, the target product can be obtained in a high yield even if the amount of noble metal catalyst used is reduced, which is very advantageous in terms of economy and production. .

Claims (2)

アルカリ水溶媒中で、下記一般式(1)で示される5−ヒドロキシメチルイミダゾール類を貴金属触媒の存在下に、酸素あるいは空気を導入して接触酸化させて下記一般式(2)で示される5−ホルミルイミダゾール類を製造するにあたり、反応液中の溶存酸素量を5ppm以下に維持して反応を行うことを特徴とする5−ホルミルイミダゾール類の製造方法
(式中、Rは水素又は炭素数1〜5のアルキル基であり、4位の炭素に結合する水素、はハロゲン、炭素数1〜12のアルキル基あるいは置換アルキル基で置換されていてもよい。)
In an alkaline water solvent, 5-hydroxymethylimidazoles represented by the following general formula (1) are catalytically oxidized by introducing oxygen or air in the presence of a noble metal catalyst, and represented by the following general formula (2). -A process for producing 5-formylimidazoles, wherein the reaction is carried out while maintaining the amount of dissolved oxygen in the reaction solution at 5 ppm or less in producing formylimidazoles.
(In the formula, R is hydrogen or an alkyl group having 1 to 5 carbon atoms, and hydrogen bonded to carbon at the 4-position may be substituted with halogen, an alkyl group having 1 to 12 carbon atoms or a substituted alkyl group. .)
貴金属触媒として、白金又はパラジウム系触媒を使用することを特徴とする請求項1記載の製造方法  2. The production method according to claim 1, wherein a platinum or palladium-based catalyst is used as the noble metal catalyst.
JP17772599A 1999-06-24 1999-06-24 Process for producing 5-formylimidazoles Expired - Fee Related JP4442952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17772599A JP4442952B2 (en) 1999-06-24 1999-06-24 Process for producing 5-formylimidazoles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17772599A JP4442952B2 (en) 1999-06-24 1999-06-24 Process for producing 5-formylimidazoles

Publications (2)

Publication Number Publication Date
JP2001002654A JP2001002654A (en) 2001-01-09
JP4442952B2 true JP4442952B2 (en) 2010-03-31

Family

ID=16036032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17772599A Expired - Fee Related JP4442952B2 (en) 1999-06-24 1999-06-24 Process for producing 5-formylimidazoles

Country Status (1)

Country Link
JP (1) JP4442952B2 (en)

Also Published As

Publication number Publication date
JP2001002654A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP5073133B2 (en) Catalyst and method for direct synthesis of hydrogen peroxide
TW201538475A (en) Process for producing methyl methacrylate
JP7050066B2 (en) Methods and systems for producing glycolic acid and / or glycolates
US7704916B2 (en) Compound having a pyrochlore-structure and its use as a catalyst carrier in water gas shift reaction
JP4442952B2 (en) Process for producing 5-formylimidazoles
JP4235202B2 (en) Catalyst for producing carboxylic acid ester and method for producing carboxylic acid ester using the catalyst
US5336779A (en) Method of producing formylimidazoles
JP4442951B2 (en) Process for producing 5-formylimidazoles
JP3391837B2 (en) Method for producing 5-formylimidazoles
JP3391836B2 (en) Method for producing 5-formylimidazoles
KR20090097952A (en) Ethane oxidation catalyst and process utilising the catalyst
JPH05213607A (en) Direct synthesization of hydrogen perox- ide by heterogeneous catalytic action and catalyst for synthesization and manufacture of catalyst
JP2001002652A (en) Production of 5-formylimidazoles
JP3168079B2 (en) Method for producing 2-alkylformylimidazole
JP2001002651A (en) Production of 5-formylimidazoles
JPS5945666B2 (en) Method for producing aminocarboxylic acids
US4599446A (en) Process for the preparation of 2-keto-L-gulonic acid
JP4293504B2 (en) Process for producing N-substituted formylimidazoles
JP2001233828A (en) Method for producing carboxylic acid ester
JPH01149752A (en) Oxidation of (poly)oxyethylene alkyl ether compound
JPH10158214A (en) Production of carboxylate
JPS6039063B2 (en) Method for producing hydroxyacetic acid
JP2002052343A (en) Oxidation catalyst and production method for acetals using the same
JPH06157416A (en) Production of glyoxylic acid ester
JP4273784B2 (en) Method for producing phenyl ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees