JP4441588B2 - Image creation device for determining myocardial infarction - Google Patents

Image creation device for determining myocardial infarction Download PDF

Info

Publication number
JP4441588B2
JP4441588B2 JP2004090771A JP2004090771A JP4441588B2 JP 4441588 B2 JP4441588 B2 JP 4441588B2 JP 2004090771 A JP2004090771 A JP 2004090771A JP 2004090771 A JP2004090771 A JP 2004090771A JP 4441588 B2 JP4441588 B2 JP 4441588B2
Authority
JP
Japan
Prior art keywords
myocardial
myocardial infarction
image
myocardium
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004090771A
Other languages
Japanese (ja)
Other versions
JP2005270478A (en
Inventor
肇 佐久間
壽登 前田
Original Assignee
株式会社三重ティーエルオー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三重ティーエルオー filed Critical 株式会社三重ティーエルオー
Priority to JP2004090771A priority Critical patent/JP4441588B2/en
Publication of JP2005270478A publication Critical patent/JP2005270478A/en
Application granted granted Critical
Publication of JP4441588B2 publication Critical patent/JP4441588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は磁気共鳴造影剤を被検体に注入して造影遅延相における磁気共鳴撮影を行い、この撮影によって得られた画像について、心筋内の梗塞範囲を画像処理により自動的に求め、心筋内の梗塞範囲と心筋生存度を反映した結果を数値やイメージとして表示する、心筋梗塞判定用画像作成装置に関する。 The present invention performs magnetic resonance imaging in the imaging delay phase by injecting a magnetic resonance contrast agent into the subject, the image obtained by the photographing, automatically determined by image processing infarct size in the myocardium, intramyocardial The present invention relates to an image creation device for determining myocardial infarction , which displays results reflecting the infarct range and myocardial viability as numerical values and images .

虚血性心疾患は欧米において死因の第一位を占めており、日本においても年間7万人が虚血性心疾患のために死亡している。心筋梗塞は心筋に酸素を供給する冠動脈の閉塞ないし高度狭窄のために心筋が壊死を来たす疾患である。急性期心筋梗塞の症例では、不可逆的な壊死を来たした梗塞心筋領域と、生存しているが高度の血流低下のため収縮できない虚血心筋領域はいずれも心筋壁運動低下を示すため、心エコー法や心血管造影法で心筋壁の動きを観察しても両者を区別することはできない。梗塞心筋領域は不可逆的な壊死を来たしているため、冠動脈血行再建術を行っても治療効果は得られないが、虚血心筋領域は冠動脈血行再建術による壁運動機能の改善が期待できるため、両者を正確に区別することは適切な治療を行う上で非常に重要である。   Ischemic heart disease is the leading cause of death in the US and Europe, and 70,000 people die annually in Japan due to ischemic heart disease. Myocardial infarction is a disease in which the myocardium becomes necrotic due to occlusion or severe stenosis of the coronary artery that supplies oxygen to the myocardium. In cases of acute myocardial infarction, both the infarcted myocardial region that has undergone irreversible necrosis and the ischemic myocardial region that is alive but cannot contract due to severe blood flow decline show decreased myocardial wall motion. Even if the movement of the myocardial wall is observed by echocardiography or cardiovascular angiography, the two cannot be distinguished. Because the infarcted myocardial region has undergone irreversible necrosis, there is no therapeutic effect even if coronary revascularization is performed, but the ischemic myocardial region can be expected to improve the wall motion function by coronary revascularization, It is very important to accurately distinguish between the two in order to provide appropriate treatment.

このように、心筋梗塞患者の診療において、梗塞心筋の位置と広がりを正確に評価することは極めて重要である。これまで、心筋梗塞の画像診断法としては核医学検査が主に用いられ、タリウムやテクネシウム製剤による心筋血流シンチグラフィでは梗塞病変が欠損として認められる。しかし、核医学的手法では空間分解能の限界から、内膜下梗塞の診断や梗塞病変の壁内における広がりを正確に評価することは困難である。心臓の心電図同期磁気共鳴イメージング(MRI)は空間解像度に優れ、心筋梗塞の存在と心筋壁内での広がりを正確に予測できる(例えば非特許文献1を参照)。   Thus, in the medical treatment of myocardial infarction patients, it is extremely important to accurately evaluate the position and spread of the infarcted myocardium. So far, nuclear medicine examinations have been mainly used as diagnostic imaging methods for myocardial infarction, and infarct lesions are recognized as defects in myocardial perfusion scintigraphy using thallium and technesium preparations. However, in the nuclear medicine technique, it is difficult to accurately evaluate the diagnosis of subintimal infarction and the extent of the infarct lesion in the wall due to the limitation of spatial resolution. Electrocardiogram-synchronized magnetic resonance imaging (MRI) of the heart is excellent in spatial resolution and can accurately predict the presence of myocardial infarction and the spread within the myocardial wall (see, for example, Non-Patent Document 1).

Hajime Sakuma, et al, 「Acute Myocardial Infarction: Myocardial Viability Assessment in Patients Early Thereafter-Comparison of Contrast-enhanced MR Imaging with Resting TI SPECT」, Radiology, January 2003, Vol.226,Number1, pp138-144Hajime Sakuma, et al, `` Acute Myocardial Infarction: Myocardial Viability Assessment in Patients Early-Comparison of Contrast-enhanced MR Imaging with Resting TI SPECT '', Radiology, January 2003, Vol.226, Number1, pp138-144

造影MRIにおいて梗塞心筋が高信号を示すことは、1980年代から良く知られていたが、従来の心電図同期スピンエコー法による心筋造影MRIは画質が不十分であり、梗塞心筋の分布を正確に捉えることはできなかった。最近になって、インバージョン・リカバリ法を用いた遅延造影MRIが開発され、心筋造影MRIの画質が飛躍的に向上し、正常心筋と梗塞心筋を明瞭に区別できるようになった(特許文献1参照)。遅延造影MRIでは急性期から慢性期までの梗塞病変が高信号領域として明瞭に描出され、内膜梗塞や乳頭筋梗塞,右室梗塞も容易に診断できる。   It has been well known since the 1980s that the infarcted myocardium shows a high signal in contrast-enhanced MRI, but the myocardial contrast-enhanced MRI based on the conventional ECG-synchronized spin echo method has insufficient image quality and accurately captures the distribution of the infarcted myocardium. I couldn't. Recently, delayed contrast MRI using the inversion recovery method has been developed, and the image quality of myocardial contrast MRI has been dramatically improved, so that normal and infarcted myocardium can be clearly distinguished (Patent Document 1). reference). In contrast-enhanced MRI, infarct lesions from the acute phase to the chronic phase are clearly depicted as high-signal areas, and intimal, papillary muscle infarction, and right ventricular infarction can be easily diagnosed.

特開2004−24637号公報Japanese Patent Laid-Open No. 2004-24637

梗塞心筋では心筋細胞の壊死や細胞膜障害に伴って磁気共鳴コントラスト造影剤が分布する細胞外液分画が増加し、完全な壊死領域では100%に近くなる。この結果、梗塞領域の造影剤濃度は正常心筋の数倍以上となり、遅延造影MRIにおいて明瞭な高信号を示すようになる。線維化を示す慢性期梗塞も、心筋細胞成分が減少し細胞外液成分が相対的に増加するため、やはり高信号を示す。   In the infarcted myocardium, the extracellular fluid fraction in which the magnetic resonance contrast contrast agent is distributed increases with the necrosis of the myocardial cells and the cell membrane damage, and approaches 100% in the complete necrotic region. As a result, the contrast agent concentration in the infarct region is several times that of normal myocardium, and a clear high signal is shown in delayed contrast MRI. Chronic infarction showing fibrosis also shows a high signal because the myocardial cell component decreases and the extracellular fluid component relatively increases.

遅延造影における高信号領域は,TTC染色による病理学的梗塞心筋の分布とよく一致することが示されている。MRIは空間解像度が高いために心筋の内膜縁と外膜縁も明瞭に描出され、遅延造影を示さない生存心筋の厚さから心筋生存能の診断が可能となる上に、負荷検査を必要とせず、検査に必要な時間も短いため、ルーチン検査法として臨床利用できる。心筋梗塞の範囲と心筋生存能の診断における造影MRIの有効性については、エビデンスの蓄積も最近かなり進みつつあり、全心筋容積に対する梗塞心筋容積の割合(梗塞占有率)は治療方針を決定する上で非常に有用な指標となるとされている。   It has been shown that the high-signal area in delayed contrast is in good agreement with the distribution of pathological infarcted myocardium by TTC staining. Since MRI has high spatial resolution, the intima and outer membrane edges of the myocardium are clearly depicted, and it is possible to diagnose myocardial viability from the thickness of the surviving myocardium that does not show delayed angiography. However, since the time required for the test is short, it can be clinically used as a routine test method. Regarding the effectiveness of contrast-enhanced MRI in diagnosing the extent of myocardial infarction and myocardial viability, the accumulation of evidence has recently progressed considerably, and the ratio of infarcted myocardial volume to the total myocardial volume (infarct occupancy rate) determines the treatment strategy. It is considered to be a very useful index.

しかし現状では、造影MRIにおける心筋梗塞領域の判定は医師による視覚的評価によって行われており、画像評価に時間がかかり、判定医により結果がばらつく問題が指摘されている。このため、心筋造影MRIにおける梗塞心筋領域を定量的に解析・表示できる、心筋梗塞判定用画像作成装置の開発が強く望まれていた。 However, at present, the determination of the myocardial infarction region in contrast-enhanced MRI is performed by a visual evaluation by a doctor, and it takes time to evaluate the image, and there is a problem that the result of the determination doctor varies. Therefore, the development of an image creation device for determining myocardial infarction that can quantitatively analyze and display the infarcted myocardial region in myocardial contrast MRI has been strongly desired.

これまで、造影MRIによる心筋梗塞の範囲の決定と心筋生存度の判定では、視覚的評価が用いられてきた。心筋を多数のセグメントに等分割し、造影効果を示す梗塞心筋と造影効果を示さない生存心筋を合わせた心筋全体の厚さに対する造影効果を示す梗塞心筋の厚さの比(%)を各セグメント毎に視覚的に判断し、この比が50%を超えていれば治療を行っても効果は期待できず、この比が小さければ冠動脈血行再建の治療適応になることが示されている。   So far, visual evaluation has been used in determining the extent of myocardial infarction by contrast-enhanced MRI and determining myocardial viability. Divide the myocardium into a number of segments and calculate the ratio (%) of the thickness of the infarcted myocardium showing the contrast effect to the total thickness of the infarcted myocardium showing the contrast effect and the surviving myocardium not showing the contrast effect. Judgment is visually made every time, and if this ratio exceeds 50%, no effect can be expected even if treatment is performed, and if this ratio is small, it is indicated that the treatment is indicated for coronary revascularization.

しかし、従来の方法は視覚的判定に基づいているため、判定者の経験度や技量の影響を強く受け、画像を表示する際の閾値(ウィンドウ・レベル)設定によっても結果は変動する可能性がある。さらに、視覚的判定法では、心筋全体に占める梗塞心筋の割合や、梗塞心筋の重量などの定量的指標を得ることは難しい。一定の閾値を設定し、信号強度がその閾値を上回る領域を梗塞心筋領域と判定とする学会発表もみられるが、閾値の設定によって梗塞領域の範囲が大幅に変動する欠点がある。また、梗塞領域の心筋内膜側から外膜側へ及ぶ範囲を効果的に定量表示できる心筋梗塞判定用画像作成装置はこれまで開発されていない。 However, since the conventional method is based on visual judgment, it is strongly influenced by the judgment person's experience and skill, and the result may vary depending on the threshold (window level) setting when displaying the image. is there. Furthermore, it is difficult to obtain a quantitative index such as the ratio of the infarcted myocardium in the entire myocardium and the weight of the infarcted myocardium by the visual determination method. There are academic presentations in which a certain threshold value is set and a region where the signal intensity exceeds the threshold value is determined as an infarcted myocardial region. However, there is a drawback that the range of the infarct region varies greatly depending on the threshold value setting. In addition, an image creation device for determining myocardial infarction that can effectively and quantitatively display the range of the infarct region from the myocardial intima side to the adventitia side has not been developed so far.

この課題を解決するために、本発明者らは、心筋画像処理方法および心筋梗塞領域と心筋生存度の定量的評価方法に関する検討を行い、本心筋梗塞判定用画像作成装置を発明するに至った。本装置では、磁気共鳴造影剤を用いた心電図同期磁気共鳴イメージング(MRI)の心筋スライス毎の各画像に、まず、V−フィルター(Variancedependent filter)処理を行い、次いで微分処理を行う。更に細線化処理を実施して心筋梗塞判定用画像の作成を行う。この心筋スライス毎に作成された梗塞判定用画像は更に心筋のセグメントに分割され、各セグメント毎に心筋梗塞領域と心筋生存度が求められる。 In order to solve this problem, the present inventors have studied a myocardial image processing method and a quantitative evaluation method of myocardial infarction region and myocardial viability, and have come to invent the present myocardial infarction determination image creation device. . In this apparatus, each image for each myocardial slice of electrocardiogram-synchronized magnetic resonance imaging (MRI) using a magnetic resonance contrast agent is first subjected to a V-filter (Variance dependent filter) process, and then subjected to a differentiation process. Further, thinning processing is performed to create a myocardial infarction determination image. The infarction determination image created for each myocardial slice is further divided into myocardial segments, and the myocardial infarction region and myocardial viability are obtained for each segment.

本心筋梗塞判定用画像作成装置では、心筋の各セグメント毎に求めた前記心筋梗塞領域と前記心筋生存度が、極座標表示される。具体的には、心尖部を中心にして心基部を外周に配置し、側壁から分割した角度毎に同心円状に、梗塞心筋の内膜側と外膜側における心筋梗塞占有率を極座標上に表示する。In this myocardial infarction determination image creation device, the myocardial infarction region and the myocardial viability determined for each segment of the myocardium are displayed in polar coordinates. Specifically, the base of the heart is placed around the apex, and the myocardial infarction occupancy rate on the intima side and the epicardium side of the infarcted myocardium is displayed in polar coordinates in a concentric manner for each angle divided from the side wall. To do.

上記の本発明に係る心筋梗塞判定用画像作成装置は、心筋梗塞の範囲と生存心筋の範囲を、観察者の主観に基づく閾値等設定でなく、装置自身に自動的に設定させることを可能とした。さらに、心筋梗塞と生存心筋の厚みと、それらが心筋壁厚に占める割合を定量的に計測し、梗塞領域の心筋内膜側から外膜側へ及ぶ範囲を効果的に定量表示する機能を有するので、心筋梗塞患者における心筋生存能の判定を行う際の画像作成装置として、従来の画像作成装置に比較して精確性と客観性を大幅に向上させることができた。 The image creation device for determining myocardial infarction according to the present invention can automatically set the range of myocardial infarction and the range of surviving myocardium by the device itself instead of setting a threshold based on the subjectivity of the observer. did. Furthermore, has a thickness of myocardial infarction with viable myocardium, they quantitatively measures the percentage of the myocardial wall thickness, effectively function to quantify displaying a range extending to the outer membrane side from intramyocardial film side of the infarct area Therefore , as an image creation apparatus for determining myocardial viability in patients with myocardial infarction, accuracy and objectivity can be greatly improved as compared with a conventional image creation apparatus.

以下本発明に係る心筋梗塞範囲と心筋生存度の定量的評価方法の、実施の形態について図を参照して説明する。ところで、本発明に係る定量的評価方法は、T1短縮効果を有し細胞外液に分布する磁気共鳴造影コントラスト剤を静脈投与し、造影剤が細胞外液まで十分に分布した後に、インバージョン・リカバリ法やサチュレーション・リカバリ法などのT1強調効果を有する磁気共鳴画像撮影法を用いて得られた心筋の造影MRIを対象とするものである。   Embodiments of a quantitative evaluation method for myocardial infarction range and myocardial viability according to the present invention will be described below with reference to the drawings. By the way, in the quantitative evaluation method according to the present invention, a magnetic resonance contrast agent having a T1 shortening effect and distributed in the extracellular fluid is intravenously administered, and the contrast agent is sufficiently distributed to the extracellular fluid. It is intended for myocardial contrast-enhanced MRI obtained using a magnetic resonance imaging method having a T1 enhancement effect such as a recovery method or a saturation recovery method.

最初に、心筋の造影MRIにおいて心筋梗塞の範囲を定量的に解析する方法について説明する(図1参照)。造影MRIにおいて左室ないし右室の心筋壁の内膜縁と外膜縁を検出し、心筋領域全体の関心領域(ROI)を設定する。次に、生存心筋と高信号を示す梗塞心筋の境界を定量的に自動抽出するために、V−フィルター処理を行う。   First, a method for quantitatively analyzing the range of myocardial infarction in myocardial contrast-enhanced MRI will be described (see FIG. 1). In contrast-enhanced MRI, the intima and adventitia edges of the myocardial wall of the left or right ventricle are detected, and the region of interest (ROI) for the entire myocardial region is set. Next, in order to quantitatively automatically extract the boundary between the surviving myocardium and the infarcted myocardium showing a high signal, V-filter processing is performed.

V−フィルターは境界を保存したまま平滑化を行うフィルターであり、図3に示すように注目画素の近傍を4領域に分割し、各領域において平均、分散を算出する。分散が最小となる領域を選択し、その平均値を注目画素に代入する。境界の両側では選択領域の切換えが明確に行われるので鋭い境界を得ることができる。V−フィルター処理を行うことにより雑音を除去し、境界が強調され、輪郭抽出が容易となる。さらに、V−フィルター処理により、後述する微分処理時の閾値の設定が多少変動しても、画像変化が少なくなる特長を有する。   The V-filter is a filter that performs smoothing while preserving the boundary. As shown in FIG. 3, the neighborhood of the target pixel is divided into four regions, and the average and variance are calculated in each region. An area where the variance is minimized is selected, and the average value is assigned to the target pixel. Since the selection area is clearly switched on both sides of the boundary, a sharp boundary can be obtained. By performing V-filter processing, noise is removed, the boundary is emphasized, and contour extraction becomes easy. Further, the V-filter processing has a feature that image change is reduced even if the threshold setting at the time of differentiation processing described later varies slightly.

V−フィルター処理を行った画像には、正常心筋と壊死心筋の境界を検出するために微分処理を行う。心筋の造影MRIにおける梗塞心筋と正常心筋の輪郭は画像の信号強度が変化する部分であり、信号の変化を抽出する微分演算が輪郭抽出に使用される。画像に対して1次微分を求めるため、数式1および2に示すSobelの微分オペレータを用いてx方向、y方向の微分値を算出する。   The image subjected to the V-filter processing is subjected to differentiation processing in order to detect the boundary between the normal myocardium and the necrotic myocardium. The contour of the infarcted heart muscle and the normal heart muscle in contrast-enhanced MRI of the myocardium is a portion where the signal strength of the image changes, and a differential operation for extracting the signal change is used for contour extraction. In order to obtain the first derivative for the image, the differential values in the x direction and the y direction are calculated using the Sobel differential operator shown in equations 1 and 2.

Figure 0004441588
Figure 0004441588

Figure 0004441588
Figure 0004441588

ここでfをx方向の微分値、fをy方向の微分値とする。両方向の微分値を求めた後、数式3によりx、y方向を合成した微分値fxyを算出する。画像の各画素についてfxyを算出し、微分画像を作成する。微分オペレータは合計すると0となり、平坦な領域では出力は0となる。従って、信号変化のある領域、つまり輪郭領域が描出される。 Here the f x differential value in the x direction, the f y a differential value in the y direction. After obtaining the differential value in both directions, the differential value f xy obtained by combining the x and y directions is calculated according to Equation 3. F xy is calculated for each pixel of the image to create a differential image. The total differential operator is 0, and the output is 0 in a flat region. Therefore, an area with a signal change, that is, an outline area is drawn.

Figure 0004441588
Figure 0004441588

次に、微分処理後の画像閾値処理により2値画像とし輪郭抽出を行う。輪郭抽出を行う場合、得られた輪郭は1画素幅ではないので、細線化処理により1画素幅の輪郭を作成する。図4に示す8パターンのいずれかと一致する場合、注目画素を削除する。この処理を図3のパターンと一致する画素がなくなるまで繰り返すことにより、複数画素幅を有する領域を外側から削除していき、1画素幅の輪郭を作成する。   Next, contour extraction is performed using a binary image by image threshold processing after differentiation. When performing contour extraction, since the obtained contour is not one pixel wide, a one pixel wide contour is created by thinning processing. If it matches any of the eight patterns shown in FIG. 4, the target pixel is deleted. By repeating this process until there are no more pixels that match the pattern in FIG. 3, the region having a plurality of pixel widths is deleted from the outside to create a one-pixel width contour.

次に、心筋全体をカバーする複数スライスの造影MRIに対して、前記の方法によって決定された梗塞心筋と生存心筋の壁内分布を効果的に表示し、内膜側から外膜側へ心筋梗塞の広がりを描出する方法について図2を参照しながら説明する。   Next, the intramural distribution of the infarcted myocardium and the surviving myocardium determined by the above method is effectively displayed for the multi-slice contrast MRI covering the entire myocardium, and the myocardial infarction from the intima side to the adventitia side A method of depicting the spread of the image will be described with reference to FIG.

遅延造影MRIに対する前記の方法によって算出された梗塞心筋は、極座標表示することによって一枚の画像上に表示することができる。心筋梗塞の極座標表示は、心筋全体の心筋梗塞の分布を一度に評価できるだけでなく、冠動脈との対応が容易であるという利点を有する。   The infarcted myocardium calculated by the above method for delayed contrast MRI can be displayed on one image by displaying polar coordinates. The polar coordinate display of the myocardial infarction has an advantage that not only the distribution of the myocardial infarction of the entire myocardium can be evaluated at a time but also the correspondence with the coronary artery is easy.

心筋梗塞病変を心筋血流欠損として極座標表示する方法は核医学で用いられているが、MRIは空間分解能が高いため、核医学では困難であった内膜側と外膜側の心筋における梗塞領域を分離して評価することができる。心筋梗塞は内膜側に起こりやすく、梗塞の程度が高くなると外膜側へと広がる。心筋梗塞が内膜下に止まっている場合には、外膜側の心筋が生存しているため、冠動脈血行再建術などの治療によって、心機能の改善を期待できる。   The method of displaying myocardial infarction lesions as polar coordinates as a myocardial blood flow defect is used in nuclear medicine, but MRI has high spatial resolution, so that the infarct region in the myocardium on the intima side and epicardium side that was difficult with nuclear medicine Can be evaluated separately. Myocardial infarction tends to occur on the intima side and spreads toward the adventitia side as the infarct level increases. When the myocardial infarction has stopped below the intima, the epicardial myocardium is alive, so that improvement in cardiac function can be expected by treatment such as coronary revascularization.

一方、心筋梗塞が内膜側だけでなく外膜側まで広がっている場合には、生存心筋がわずかしか残存していないため、冠動脈血行再建術などの治療効果を期待できない。このため、心筋壁内における梗塞心筋の範囲を臨床医が精確かつ容易に認識できるような表示方法は、心筋梗塞の診断上大きな利点を有する。また、心筋梗塞患者における梗塞心筋の総量と生存心筋の総量を造影MRI画像から定量的に表示することは、治療による左室全体の心機能の改善効果を予測する上で重要な情報となる。   On the other hand, when the myocardial infarction spreads not only to the intima side but also to the adventitia side, since only a few surviving myocardium remains, a therapeutic effect such as coronary revascularization cannot be expected. For this reason, a display method that allows a clinician to accurately and easily recognize the range of the infarcted myocardium within the myocardial wall has a great advantage in the diagnosis of myocardial infarction. In addition, quantitatively displaying the total amount of infarcted myocardium and the total amount of surviving myocardium in myocardial infarction patients from contrast-enhanced MRI images is important information for predicting the improvement effect of the cardiac function of the entire left ventricle by treatment.

本発明者等は、心筋梗塞の分布と、梗塞心筋の心筋内膜側から外膜側への広がりを定量的、総合的に表示する方法を発明した。すなわち、梗塞領域をV−フィルターと微分処理、細線化処理を用いて決定した後、各スライスの左心室内腔中央に設定した点を中心点として、左心室心筋領域の側壁が0度となるように任意の角度で分割し(例えば10°毎)、各角度における心筋領域に対する梗塞領域内の面積を算出し、梗塞占有率を算出する。   The present inventors have invented a method for quantitatively and comprehensively displaying the distribution of myocardial infarction and the spread of the infarcted myocardium from the myocardial intima side to the outer membrane side. That is, after determining the infarct region using a V-filter, differential processing, and thinning processing, the side wall of the left ventricular myocardial region becomes 0 degree with the point set at the center of the left ventricular cavity of each slice as the center point. In this way, it is divided at an arbitrary angle (for example, every 10 °), the area in the infarct region with respect to the myocardial region at each angle is calculated, and the infarct occupation rate is calculated.

この処理を心尖部から心基部までの各スライスについて行い、心筋各領域における梗塞占有率を極座標表示する。次に、左室の中心より放射状にスキャンを行い、各角度において中心から内膜、外膜側ROIまでの各距離を算出し、両距離の中間点を求めた。得られた各角度の中間点を用いて心筋を心内膜、外膜側に分割した後、各領域の占有率を算出し、心内膜・外膜側の梗塞占有率の極座標表示マップを作成する。更に、心筋全体における梗塞心筋量と生存心筋量とそれぞれの割合(%)、内膜側心筋と外膜側心筋における梗塞心筋量と生存心筋量と各々の割合(%)を表示する。   This process is performed for each slice from the apex to the base, and the infarct occupancy in each myocardial region is displayed in polar coordinates. Next, scanning was performed radially from the center of the left ventricle, and each distance from the center to the intima and outer membrane ROIs was calculated at each angle, and the midpoint of both distances was obtained. After dividing the myocardium into endocardium and epicardium using the obtained midpoint of each angle, calculate the occupancy rate of each region, and display the polar coordinate display map of infarct occupancy rate on the endocardium and epicardium side create. Furthermore, the ratio (%) of the infarcted myocardium and the survival myocardium in the whole myocardium, and the ratio (%) of the infarct myocardium and the survival myocardium in the intima-side myocardium and the epicardial myocardium are displayed.

男性9名、女性5名の計14症例を対象として遅延造影MRIを施行し、検討を行った。
MRI装置としてGE社製 1.5T 心臓用高速MR装置(CV/i)およびGE社製心臓用フェーズドアレイコイルを用い、Gd−DTPA(0.1-0.15mmol/kg)を静脈注射後、15分以上経過後に呼吸停止下で撮像を行った。撮像シーケンスにはインバージョン・リカバリー法(TR=5.3msec, TE=1.3msec, TI=200-250ms)を使用し、スライス厚10mm、有効視野34cm×34cmにて撮像を行った。
A delayed contrast-enhanced MRI was performed on a total of 14 cases of 9 males and 5 females for examination.
15 minutes or more after intravenous injection of Gd-DTPA (0.1-0.15 mmol / kg) using a 1.5T cardiac high-speed MR device (CV / i) manufactured by GE and a phased array coil for heart manufactured by GE as an MRI device After the lapse of time, imaging was performed while breathing was stopped. An inversion recovery method (TR = 5.3 msec, TE = 1.3 msec, TI = 200-250 ms) was used for the imaging sequence, and imaging was performed with a slice thickness of 10 mm and an effective field of view of 34 cm × 34 cm.

左室心筋の内膜縁と外膜縁を同定し、心筋領域に関心領域(ROI)を設定した後、梗塞領域の辺縁を自動検出するためにV−フィルター処理を行い、さらに微分、細線化処理を行うことにより梗塞領域の輪郭を検出した(図1参照)。梗塞領域決定後、設定したROI内を10°毎に分割し、各角度における心筋領域に対する梗塞領域内の面積を算出し、梗塞占有率を算出した(図2)。この処理を心尖部から心基部までの各スライスについて行い、心筋各領域における梗塞占有率を極座標表示した。また左室の中心より放射状にスキャンを行い、各角度において中心から内膜、外膜側ROIまでの各距離を算出し、両距離の中間点を求めた。得られた各角度の中間点を用いて心筋を心内膜、外膜側に分割した後、各領域の占有率を算出し、心内膜・外膜側の梗塞占有率の極座標表示マップを作成した。   After identifying the intima and epicardium edges of the left ventricular myocardium and setting the region of interest (ROI) in the myocardial region, V-filter processing is performed to automatically detect the margin of the infarct region, and further differentiation and fine lines The contour of the infarct region was detected by performing the conversion process (see FIG. 1). After determining the infarct area, the set ROI was divided every 10 °, the area in the infarct area with respect to the myocardial area at each angle was calculated, and the infarct occupancy was calculated (FIG. 2). This process was performed for each slice from the apex to the base, and the infarct occupancy rate in each myocardial region was displayed in polar coordinates. Further, a radial scan was performed from the center of the left ventricle, and each distance from the center to the intima and outer membrane ROI was calculated at each angle, and the midpoint of both distances was obtained. After dividing the myocardium into endocardium and epicardium using the obtained midpoint of each angle, calculate the occupancy rate of each region, and display the polar coordinate display map of infarct occupancy rate on the endocardium and epicardium side Created.

<症例1>
図5に発症後6日の下壁梗塞・再灌流治療後の症例について、本発明による心筋梗塞判定用画像作成装置の出力結果を示す。全心筋に対する梗塞占有率を示す極座標表示マップでは、梗塞領域が下壁に分布していることが明確に認められる。梗塞占有率は全心筋領域において13.9%、心内膜側では20.9%および外膜側では7.9%であった。心内膜および外膜側の梗塞占有率の極座標表示マップをみると、下壁の梗塞領域は主に内膜側に分布し、外膜側心筋における梗塞占有率は7.9%と比較的低く、下壁の心筋生存能は比較的保たれていることが分かる。
<Case 1>
FIG. 5 shows the output result of the myocardial infarction determination image creation apparatus according to the present invention for the case after the lower wall infarction / reperfusion treatment on day 6 after the onset . In the polar coordinate display map showing the infarct occupancy ratio for the whole myocardium, it is clearly recognized that the infarct region is distributed on the lower wall. The infarct occupancy was 13.9% in all myocardial regions, 20.9% on the endocardium side, and 7.9% on the epicardium side. Looking at the polar coordinate display map of the infarct occupancy rate on the endocardium and epicardium side, the infarct area of the lower wall is mainly distributed on the intima side, and the infarct occupancy rate on the epicardial side myocardium is relatively 7.9% It can be seen that the lower wall myocardial viability is relatively maintained.

なお、MRI画像から心筋梗塞占有率を求める場合の、従来法(閾値法)と本法(V−フィルター処理法)を用いた場合の結果に与える影響について述べる。図6に示すように、本法は、従来法(閾値法)に比べ、閾値の設定値による影響を殆ど受けることなく、梗塞占有率を求めることができ、精確性に優れている。   The influence of the conventional method (threshold method) and the present method (V-filter processing method) on obtaining the myocardial infarction occupancy rate from the MRI image will be described. As shown in FIG. 6, the present method can obtain the infarct occupancy rate almost without being affected by the set value of the threshold value and is excellent in accuracy compared with the conventional method (threshold method).

<症例2>
図7に発症後7日の下壁梗塞の症例について、本発明による心筋梗塞判定用画像作成装置の出力結果を示す。この症例における梗塞占有率は全心筋領域において27.7%、心内膜側では30.7%および外膜側では24.7%であった。本症例は、図5の症例と同じ下壁梗塞を有するが、心内膜および外膜側の梗塞占有率の極座標表示マップでは、心筋梗塞の範囲が下壁の外膜側まで及んでおり、下壁の心筋生存能はすでに失われており、冠動脈血行再建術などの治療の効果はあまり期待できないことが分かる。
<Case 2>
FIG. 7 shows the output result of the myocardial infarction determination image creation device according to the present invention for the case of lower wall infarction on the 7th day after onset . The infarct occupancy rate in this case was 27.7% in the whole myocardial region, 30.7% on the endocardium side, and 24.7% on the epicardial side. This case has the same lower wall infarction as the case of FIG. 5, but in the polar coordinate display map of the infarct occupancy on the endocardium and epicardium side, the range of myocardial infarction extends to the epicardial side of the lower wall, It can be seen that the viability of the myocardium in the inferior wall has already been lost, and the effect of treatment such as coronary revascularization cannot be expected much.

他の症例においても、梗塞占有率の局座標表示マップを作成することにより、心筋梗塞の分布と壁内における広がりが明瞭に示され、心筋梗塞患者の診断と治療方針の決定における本法の有用性が確認された。   In other cases, by creating a local coordinate display map of infarct occupancy rate, the distribution of myocardial infarction and the spread within the wall are clearly shown, and this method is useful in diagnosing myocardial infarction patients and determining treatment strategies. Sex was confirmed.

<まとめ>
本法では心筋の内膜側と外膜側の辺縁をトレースすれば、その後の梗塞心筋領域の検出処理は自動化されている。このため梗塞心筋の範囲や梗塞占有率を算出も、従来の視覚的な診断のように読影者に依存せず、定量的な解析が可能となった。また左室心筋領域を心内膜・外膜側に分割して処理を行うことにより、梗塞領域の分布をより詳細に評価し、治療方針の決定に直接結びつく定量的画像を提示することが可能となった。
<Summary>
In this method, if the margins on the intima side and the adventitia side of the myocardium are traced, the subsequent detection process of the infarcted myocardial region is automated. Therefore, the calculation of the infarcted myocardial range and the infarct occupancy rate can be performed quantitatively without depending on the interpreter as in the conventional visual diagnosis. In addition, by dividing the left ventricular myocardial region into endocardial and epicardial sides, it is possible to evaluate the distribution of the infarct region in more detail and present quantitative images that directly relate to the decision of the treatment policy. It became.

遅延造影MRIにおける梗塞領域の定量的解析のための処理の流れを示す図である。It is a figure which shows the flow of the process for the quantitative analysis of the infarction area | region in delayed contrast MRI. 心筋各領域における梗塞画像と梗塞範囲(梗塞占有率)を示す図である。It is a figure which shows the infarction image and infarct range (infarct occupation rate) in each area | region of a myocardium. V−フィルター処理における注目画素の近傍4領域を示す図である。It is a figure which shows 4 area | regions near the attention pixel in V-filter process. 細線化処理において注目画素を削除する8パターンを示す図である。It is a figure which shows 8 patterns which delete a focused pixel in thinning process. 症例1における梗塞占有率を示す図である。It is a figure which shows the infarction occupation rate in case 1. FIG. 梗塞占有率に与える閾値の影響について、本法(V−フィルター法)と従来法(閾値法)の比較を示す図である。It is a figure which shows the comparison of this method (V-filter method) and the conventional method (threshold method) about the influence of the threshold value which acts on an infarction occupation rate. 症例2における梗塞占有率を示す図である。FIG. 4 is a diagram showing an infarct occupancy rate in case 2.

Claims (1)

磁気共鳴造影剤を用いた心電図同期磁気共鳴イメージング(MRI)装置を用いて、心筋の心筋梗塞領域と心筋生存度の判定に供する心筋梗塞判定用画像作成装置であって、
撮像されたMRI心筋画像に、V−フィルター(Variance dependent filter)処理を行う工程と、前記V−フィルター処理後の画像に微分処理を行う工程と、前記微分処理後の画像に細線化処理を行う工程とを経て心筋梗塞判定用画像が作成され、
前記心筋梗塞判定用画像に基づき前記心筋梗塞領域と、前記心筋生存率とが前記心筋のセグメント毎に求められ、
心尖部を中心に心基部を外周に配置し、側壁から分割した角度毎に同心円状に前記心筋梗塞判定画像の内膜側と外膜側における前記心筋梗塞領域の占有率を極座標表示することを特徴とする心筋梗塞判定用画像作成装置。
Using gated magnetic resonance imaging (MRI) apparatus using a magnetic resonance imaging agent, an image operation NaruSo location for myocardial infarction determined to be subjected to determination of the myocardial infarction region and myocardial viability of myocardial,
A V-filter (Variance dependent filter) process is performed on the captured MRI myocardial image, a differential process is performed on the image after the V-filter process, and a thinning process is performed on the image after the differential process Through the process, an image for determining myocardial infarction is created,
Based on the myocardial infarction determination image, the myocardial infarction region and the myocardial survival rate are obtained for each segment of the myocardium,
The cardiac base is arranged on the outer periphery centered on the apex, and the occupancy rate of the myocardial infarction region on the intima side and the epicardial side of the myocardial infarction determination image is displayed in polar coordinates concentrically for each angle divided from the side wall. An image creation device for determining myocardial infarction as a feature.
JP2004090771A 2004-03-26 2004-03-26 Image creation device for determining myocardial infarction Expired - Fee Related JP4441588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004090771A JP4441588B2 (en) 2004-03-26 2004-03-26 Image creation device for determining myocardial infarction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004090771A JP4441588B2 (en) 2004-03-26 2004-03-26 Image creation device for determining myocardial infarction

Publications (2)

Publication Number Publication Date
JP2005270478A JP2005270478A (en) 2005-10-06
JP4441588B2 true JP4441588B2 (en) 2010-03-31

Family

ID=35170746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004090771A Expired - Fee Related JP4441588B2 (en) 2004-03-26 2004-03-26 Image creation device for determining myocardial infarction

Country Status (1)

Country Link
JP (1) JP4441588B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558672B2 (en) * 2008-03-19 2014-07-23 株式会社東芝 Image processing apparatus and X-ray computed tomography apparatus
JP5215036B2 (en) * 2008-05-19 2013-06-19 株式会社東芝 Medical image processing apparatus and medical image processing program
JP5398230B2 (en) * 2008-10-30 2014-01-29 株式会社東芝 Image processing apparatus, magnetic resonance imaging apparatus, and image management system
WO2015049324A1 (en) * 2013-10-01 2015-04-09 Koninklijke Philips N.V. System and method for myocardial perfusion pathology characterization

Also Published As

Publication number Publication date
JP2005270478A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
US8660327B2 (en) Workstations with circuits for generating images of global injury
JP5123954B2 (en) Identification and analysis of lesions in medical images
JP2007167656A (en) Method for analysis of motion of subject, and tomographic device
JP5658686B2 (en) Image analysis of transmural perfusion gradients.
Hellier et al. An automatic geometrical and statistical method to detect acoustic shadows in intraoperative ultrasound brain images
JP4589114B2 (en) Display image data information
Hoogi et al. Quantitative analysis of ultrasound contrast flow behavior in carotid plaque neovasculature
JP5305757B2 (en) Image processing apparatus, ultrasonic diagnostic apparatus, and image processing program
Kumar et al. State-of-the-art review on automated lumen and adventitial border delineation and its measurements in carotid ultrasound
JP2007160108A (en) System and method for image based physiological monitoring of cardiovascular function
Liu et al. Direct planimetry of left ventricular outflow tract area by simultaneous biplane imaging: challenging the need for a circular assumption of the left ventricular outflow tract in the assessment of aortic stenosis
JP4441588B2 (en) Image creation device for determining myocardial infarction
KR101059824B1 (en) Method measuring the ratio of intima to media thickness in carotid artery using ultrasound image
Chan et al. Full cardiac cycle asynchronous temporal compounding of 3D echocardiography images
US10482597B2 (en) Automated method for tissue-based contrast media arrival detection for dynamic contrast enhanced MRI
JPH11506950A (en) Automatic Boundary Drawing and Part Dimensioning Using Contrast-Enhanced Imaging
Dwivedi et al. Scar imaging using multislice computed tomography versus metabolic imaging by F-18 FDG positron emission tomography: a pilot study
Noble et al. The automatic identification of hibernating myocardium
JP6343004B2 (en) Computer program, image processing apparatus and method
Ibrahim et al. Role of cardiac MRI in assessment of patients with dilated cardiomyopathy
Akkus et al. Statistical segmentation of carotid plaque neovascularization
de Roos et al. CT and MRI in suspected ischemic heart disease
Addae-Mensah et al. Pitfalls and pearls in the imaging of cardiac ischemia
Meiburger et al. Automated Techniques for Vessel Detection and Segmentation in Cardiovascular Images
JP2005270491A (en) Cardiac function quantitative evaluation method in cine mri

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090827

R150 Certificate of patent or registration of utility model

Ref document number: 4441588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees