JP4439659B2 - Powdering method and apparatus - Google Patents

Powdering method and apparatus Download PDF

Info

Publication number
JP4439659B2
JP4439659B2 JP2000040836A JP2000040836A JP4439659B2 JP 4439659 B2 JP4439659 B2 JP 4439659B2 JP 2000040836 A JP2000040836 A JP 2000040836A JP 2000040836 A JP2000040836 A JP 2000040836A JP 4439659 B2 JP4439659 B2 JP 4439659B2
Authority
JP
Japan
Prior art keywords
powder
granular material
space
storage
storage space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000040836A
Other languages
Japanese (ja)
Other versions
JP2001224986A (en
Inventor
文治 金田
Original Assignee
大盛工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大盛工業株式会社 filed Critical 大盛工業株式会社
Priority to JP2000040836A priority Critical patent/JP4439659B2/en
Publication of JP2001224986A publication Critical patent/JP2001224986A/en
Application granted granted Critical
Publication of JP4439659B2 publication Critical patent/JP4439659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Nozzles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、貯室に貯えられた粉粒体を外部へ必要量給粉する給粉機であって、粉圧の影響を少なくでき、高精度の給粉を可能にする方法及び給粉機に関する。
【0002】
【従来の技術】
従来、粉粒体の貯室の底部に回転する供給盤を設け、同回転体の上面の収容空間に粉粒体を所要量流入させ、供給盤を回転させて貯室外へ排出する構造の給粉機は広く使用されている。
供給盤の収容空間の回転路は排出部を残して開放されている構造のものが使用されていたが、貯室内の粉圧が収容空間に長く作用し、収容空間の粉粒体が上方からの粉圧によって加圧され、嵩密度が高くなったり、上方からの粉粒体を移動させるため流れが不安定となっていた。これを解消すべく供給盤の収容空間の回送路の上方に隔板を設け、同隔板に粉粒体を下方の収容空間に流入させる流入口を開口させる構造が開発された。この粉粒体流入口は1個所であって収容空間に粉粒体を充填させるに充分なやや広い開口面積を有するものであった。しかしながら、この粉粒体流入口から貯室内の粉圧が作用し、やはり粉圧によって加圧され、嵩比重が大きくなり、給粉精度を低下させていた。詳しく説明すると、
貯室の中心と同心に回転する粉粒体供給盤を配した1軸式の粉体定量供給機に於いては、供給盤羽根部に加わる粉体圧力が、貯室の粉面高さの変動、貯室へのチャージ衝撃の影響及びブリッジ現象やラットホール現象を防止するためのエアレーションやバイブレーターの影響による粉圧変動により、羽根部に充填される粉体の嵩密度が変動する現象に対し、従来の定量供給機に於いては、羽根部の粉体圧力変動防止対策として、隔板スポート方式や円筒・コーンスポート方式が広く採用されているが、いずれの方式も下記の欠点がある。
(1)隔板方式の欠点
本体円筒径と入り口径を同じ径にすることができるので、スポート式に比し装置がコンパクトになり、本機を小貯室に使用する場合、隔板スポートにより、供給盤上の粉面高さを一定にすることができるが、粉体によっては、隔板開口部の位置が中心部にあるため、上部撹拌体で隔板上を撹拌しても、開口部より外側の粉体は中心部に移動しにくいので、ホッパー側に開口径に相当するラットホールができ易い。又、上部の貯室が大型になると、ブリッジやラットホール防止のためのエアレーションやバイブレーターの影響で隔板が装備されていても供給盤上の粉圧は変動し易い。
供給盤と隔板間の空間には空マスの排出部の空気輸送用のエアーが持ち込まれ、上部空間内の空気圧力が上昇し、供給盤上の全粉面を加圧するので、空間内のエアー圧力が変動すると粉体の充填嵩密度が変動する。
(2)円筒・コーンスポート方式の欠点
円筒の場合、スポートの径は定量供給機の入り口径であり、その必要最小径は粉体の物性や供給能力等の要素で決まるため、スポートより大きい本体円筒径はスポートを使用しない場合に比し、本体の径が一回り大きくなるためコストが高くなる。
コーンスポート
コーンスポートの場合、スポートの入り口径より下端の径を小さくした逆円錐状のスポートを採用し、定量供給機の本体円筒径とスポート入り口径を同じにする方式があるが、逆円錐型のスポートは、粉体の嵩密度が低く、圧縮比が高い粉粒体(粉砕した廃プラ、やフラフ、溶融飛灰等)の場合スポート部にブリッジが発生し易い。
スポート方式は、回転体に対する粉圧緩和には大きな効果があるが、撹拌翼でスポートと底板の隙間より、本体円筒外周部の輸送空間に水平方向に粉体を掻き出す方式であり、スリキリ板がないスポート方式では、輸送空間内の粉面高さは粉圧変動の影響で変動するので、高い定量性能は得られない。
【0003】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、従来のこれらの問題点を解消し、粉圧の影響を少なくでき、高精度の給粉を可能とする給粉方法及び装置を提供することにある。
【0004】
【課題を解決するための手段】
かかる課題を解決した本発明の構成は、
1) 粉粒体を貯えた貯室の底部に貯室内の粉粒体を上方開口から流下させて収容する収容空間を環状に形成した供給盤を回転自在に装置し、同収容空間の回送路の途中に収容空間内の粉粒体を貯室外へ排出する排出部を設け、収容空間の回送路の上方を粉粒体流下口を除いて閉鎖する隔板を設け、貯室内の粉粒体を粉粒体流下口から下方の供給盤の収容空間内へ流下させて充填し、排出部にて粉粒体を排出する給粉方法に於いて、
収容空間が供給盤外周に半径方向に突出させた羽根間に複数形成され、隔板を羽根の直上に設け、粉粒体流下口を複数箇所に分けて設けるとともに、隔板の粉粒体流下口の開口面積を排出部から回送方向まわりに大きくするようにし、排出部で排出した後の最初に流下させる粉粒体流下口を小さくして同粉粒体流下口からの粉粒体が収容空間の全空間に入らないようにし、最後に流下させる粉粒体流下口において全量が確実に充填させることによって粉圧の影響を少なくすることを特徴とする給粉方法
2) 最初に流下させる粉粒体流下口からの粉粒体が収容空間の容量の70%以下にしか収容されないようにした前記1)記載の給粉方法
3) 粉粒体を貯えた貯室の底部に貯室内の粉粒体を上方開口から流下させて収容する収容空間を環状に形成した供給盤を回転自在に装置し、同収容空間の回送路の途中に収容空間内の粉粒体を貯室外へ排出する排出部を設け、収容空間の回送路の上方を粉粒体流下口を除いて閉鎖する隔板を設け、粉粒体流下口を同隔板に複数設けるとともに、収容空間が供給盤外周に半径方向に突出させた羽根間に複数形成され、隔板を羽根の直上に設け、隔板の粉粒体流下口の開口面積を排出部から回送方向まわりに大きくするようにし、排出部で排出した後の最初に流下させる粉粒体流下口を小さくして同粉粒体流下口からの粉粒体が収容空間の全量が入らないようにし、最後に流下させる粉粒体流下口において全量が確実に充填させることによって粉圧の影響を少なくする給粉装置
4) 最初に流下させる粉粒体流下口からの粉粒体が収容空間の容量の70%以下にしか収容されないようにその粉粒体流下口の面積を小さくした前記3)記載の給粉装置
にある。
【0005】
【発明の実施の形態】
本発明の隔板は、供給盤の収容空間の回送路の上方を閉鎖するものでリング状又は円板状を普通とする。又隔板の粉粒体流下口は複数であるが最初に流下させる粉粒体流下口の面積は収容空間全部に粉粒体を充填させることがないように小さくし、3個の粉粒体流下口のときは4〜6割程を最初の粉粒体流下口で充填させ、残りの粉粒体流下口で全量充填するようにし、最後に流下させる粉粒体流下口において全量が確実に充填させるようにするのが好ましく、そのため回送方向にそって流下口の面積は大きくするのがよい。又最後に流下させる粉粒体流下口は排出部に近ずける方が粉圧の影響を少なくできるので好ましい。
供給盤の構造タイプとしては、外周に羽根を放射状に設け、羽根間に所要の粉粒体量を収容し、排出部で下方又は上方へ自重又は空気流で吐出させる構造、又は外周に環状溝又は棚を設け、排出部に設けたスクレーパーによって強制吐出する構造タイプが代表的な例である。
【0006】
【実施例】
以下、本発明の実施例を図面に基づいて説明する。本実施例はリングに羽根を放射状に複数枚突設し、羽根間と貯室の下部側面と底面とに囲われた空間に所定量の粉粒体を収容する収容空間を複数設け、同リングと羽根とから形成される供給盤を貯室中心に設けた回転軸でアームを介して回動し、又リング状の隔板を羽根の直上に貯室外壁側から固定させる。同隔板に4個所に粉粒体流下口を設け、回転方向に沿って漸次その開口面積を大きくした例である。最初の粉粒体流下口による充填率は略3〜4割程である。
図1は、実施例の縦断面図である。
図2は、実施例の平面図である。
図3は、実施例の隔板を示す拡大平面図である。
図4は、実施例の供給量と貯室粉粒体残量との関係図である。
図5は、排出部のみの隔板の場合の供給量と貯室粉粒体残量との関係図である。
【0007】
図中、Kは実施例の給粉装置、1は貯室、1aは貯室1の底面、1bは貯室1の側面、2は供給盤、2aは同供給盤のリング、2bは同リングから半径方向へ放射用に突出させた羽根、2cは同羽根と貯室1の底面1aと側面1bとによって囲われた収容空間、2dはリング2aを回転軸3に連結するアーム、3は回転軸、4は排出部、4aは同排出部4の底面1aに開口した排出口、4bは排出シュート、5は羽根2bの真上で貯室1の側面1bに取付けられた隔板、5a,5b,5c,5dは隔板5に設けた粉粒体の収容空間2cへの粉粒体流下口、6は回転軸3を回動するモータを用いた駆動部、Pは炭酸カルシウムの粉粒体である。
【0008】
この実施例では、粉粒体Pとして炭酸カルシウムが貯室1内に貯えられ、駆動部6を作動させて供給盤2を回転させる。貯室1内の粉粒体Pは隔板5及び中央の円状の底面1aの上に載り、隔板5の4個所の粉粒体流下口5a〜5dから下方へ落下して下方で回転している供給盤2の収容空間2cへ流入する。供給盤2の回転に伴ってアーム2dによって貯室1内の粉粒体は撹拌されている。
粉粒体流下口5a〜5dは、最初の粉粒体流下口5aの面積は最も小さく、この粉粒体流下口5aによって収容空間2cへ充填される粉粒体量は3〜4割程度であり、次の流下口5bの面積はやや大きく、これによって充填される割合は6〜8割程となり、次の流下口5cはかなり広く開口され、充填率は85〜95%程度であり、最後の流下口5dは最も広く開口され、100%以上の充填となり、軽く粉圧を受けるが排出部4に近いので粉圧を受けて強く加圧される前に排出部4へ到達し、同排出部4において底面1aの排出口4aから下方へ排出される。
この供給盤2の収容空間2cには4回に分けて粉粒体Pが流入するが、1〜2番目の粉粒体流下口5a,5bでは収容空間2cは充填されていない空間があり、充填に伴う空気の排気を容易にし、又充填された粉粒体Pの加圧はなされずに済む。そして3番目の粉粒体流下口5cで満杯に近く収容空間2dに充填されるが、加圧は強く作用されない。そして4番目の粉粒体流下口5dで完全に充填され、やや加圧状態になるが排出部4までの時間が短かいので加圧による影響はほとんどなく排出部4から下方へ排出される。
本実施例の粉粒体流下口5a〜5dと隔板5の作用を排出部4以外の隔板5を取り除いて開放した構造とし、同じ量の貯室1内の粉粒体量、実施例と同じ粉粒体、同じ供給盤回転数9rpmで回転させた場合と、本実施例の場合とでの供給量を貯室内粉粒体量(残量)との関係で計測した結果を図4,5に示す。
この図5から分るように、隔板5を取り除いた場合は、貯室の粉粒体残量が多いと供給量が高く残量が減少するにつれて供給量が低下し変動する。これは残量が粉圧として作用し、収容空間4の粉粒体が加圧され圧密状態であることが分る。
一方、本実施例の場合は、図4に示すように残量が大巾に減るまで略一定の供給量を得ることができるものである。即ち、残量(貯室内の粉粒体圧力)の影響を受けないことが分る。尚残量が大巾に低下して供給量が変化する前に貯室に粉粒体を補充することで残量が著しく減少したときの供給量の低下は解消できる。
【0009】
【発明の効果】
以上の様に、本発明によれば隔板に複数の流下口を設け、最初から満杯に充填させないようにすることで、貯室内の粉粒体の粉圧及びその変化(貯室内の粉粒体量の変化)による供給量の影響を大巾に遮断でき、より高精度の給粉を可能にできるものとした。
【図面の簡単な説明】
【図1】実施例の縦断面図である。
【図2】実施例の平面図である。
【図3】実施例の隔板を示す拡大平面図である。
【図4】実施例の供給量と貯室粉粒体残量との関係図である。
【図5】排出部のみの隔板の場合の供給量と貯室粉粒体残量との関係図である。
【符号の説明】
K 給粉装置
P 粉粒体
1 貯室
1a 底面
1b 側面
2 供給盤
2a リング
2b 羽根
2c 収容空間
2d アーム
3 回転軸
4 排出部
4a 排出口
4b 排出シュート
5 隔板
5a,5b,5c,5d 流下口
6 駆動部
[0001]
BACKGROUND OF THE INVENTION
The present invention is a powder feeder that powders a necessary amount of powder stored in a storage chamber to the outside, and a method and a powder feeder capable of reducing the influence of powder pressure and enabling highly accurate powder feeding About.
[0002]
[Prior art]
Conventionally, a supply disk that rotates at the bottom of the storage room for the granular material is provided, and a required amount of the granular material flows into the storage space on the upper surface of the rotary body, and the supply disk is rotated and discharged outside the storage room. Powder machines are widely used.
The rotation path of the storage space of the supply panel was used with an open structure leaving the discharge part. However, the powder pressure in the storage chamber acts on the storage space for a long time, and the powder particles in the storage space are seen from above. The pressure was increased by the powder pressure, and the bulk density became high, or the flow was unstable because the powder particles from above were moved. In order to solve this problem, a structure has been developed in which a partition plate is provided above the feeding path of the storage space of the supply board, and an inflow port through which the granular material flows into the storage space below is opened. This granular material inlet has one opening and has a slightly wide opening area sufficient to fill the accommodating space with the granular material. However, the powder pressure in the storage chamber acts from this granular material inlet and is also pressurized by the powder pressure, increasing the bulk specific gravity and reducing the powder feeding accuracy. In detail,
In a single-shaft powder metering machine equipped with a powder supply plate that rotates concentrically with the center of the storage chamber, the powder pressure applied to the blades of the supply plate is equal to the powder surface height of the storage chamber. For the phenomenon in which the bulk density of the powder filled in the blades fluctuates due to fluctuations, the influence of charge impact on the storage chamber, and the fluctuation of powder pressure due to the influence of aeration and vibrator to prevent bridge phenomenon and rathole phenomenon In conventional quantitative feeders, the diaphragm sport method and the cylindrical / cones sport method are widely used as measures for preventing fluctuations in powder pressure in the blades, but each method has the following drawbacks.
(1) Disadvantages of the diaphragm system Since the cylinder diameter and the entrance diameter of the main body can be made the same diameter, the device is more compact than the sport system, and when this machine is used in a small storage chamber, The height of the powder surface on the supply board can be made constant, but depending on the powder, the position of the opening of the partition plate is in the center, so even if the upper stirring body is stirred on the partition plate, the opening Since the powder outside the portion hardly moves to the center, a rat hole corresponding to the opening diameter is easily formed on the hopper side. In addition, when the upper storage chamber is large, the powder pressure on the supply panel is likely to fluctuate even if a partition plate is equipped due to the influence of aeration and a vibrator for preventing bridges and ratholes.
Air for air transportation of the empty mass discharge part is brought into the space between the supply panel and the partition plate, the air pressure in the upper space rises and pressurizes all powder surfaces on the supply panel, so When the air pressure varies, the filling bulk density of the powder varies.
(2) Cylinder / conesport type defects In the case of a cylinder, the diameter of the sport is the entrance diameter of the metering feeder, and the required minimum diameter is determined by factors such as the physical properties and supply capacity of the powder. The diameter of the cylinder is higher than that in the case where no sport is used, so the diameter of the main body becomes one size larger and the cost becomes higher.
In the case of Cornsport Cone Sport, there is a method that uses an inverted conical sport with a lower end diameter smaller than the entrance diameter of the sport and makes the cylindrical diameter of the meter feeder and the sport entrance diameter the same. In the case of a powder, when the powder has a low bulk density and a high compression ratio (such as pulverized waste plastic, fluff, molten fly ash, etc.), bridging is likely to occur in the sport part.
The sport method has a great effect on reducing the powder pressure on the rotating body, but it is a method that scrapes the powder horizontally in the transport space of the outer periphery of the main body cylinder from the gap between the sport and the bottom plate with a stirring blade. With no sport system, the powder surface height in the transport space fluctuates due to fluctuations in powder pressure, so high quantitative performance cannot be obtained.
[0003]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a powder feeding method and apparatus that eliminates these conventional problems, reduces the influence of powder pressure, and enables highly accurate powder feeding.
[0004]
[Means for Solving the Problems]
The configuration of the present invention that solves this problem is as follows.
1) A feed board in which a storage space in which the powder particles in the storage chamber are flowed down from the upper opening and accommodated in an annular shape is rotatably installed at the bottom of the storage chamber in which the powder particles are stored, and the transfer path of the storage space In the middle of the storage space, a discharge part for discharging the granular material in the storage space to the outside of the storage chamber is provided, and a partition plate for closing the upper part of the storage space except the granular material outlet is provided, and the granular material in the storage space In the powder feeding method, the powder is flowed down from the lower part of the granular material flow into the storage space of the lower supply panel, and the granular material is discharged at the discharge part.
A plurality formed between the accommodation space is projected in the radial direction to the feed plate outer peripheral vanes, it provided the diaphragm directly above the blade, provided with separately granular material falling port at a plurality of locations, granular material stream of diaphragm The opening area of the mouth is increased from the discharge part around the direction of forwarding, and the powder flow from the discharge part is accommodated by reducing the first drop of the powder that flows down after discharge from the discharge part. Powder supply method characterized by reducing the influence of powder pressure by ensuring that the entire amount is filled at the outlet of the granular material to be flown down last so that it does not enter the entire space 2) Powder to be flowed down first The powder feeding method according to 1) above, wherein the granular material from the lower outlet of the granular material is accommodated only in 70% or less of the capacity of the accommodating space. 3) Powder in the storage chamber at the bottom of the storage chamber storing the granular material An accommodation space for accommodating particles by flowing down from the upper opening is formed in an annular shape. The formed supply board is rotatably installed, and a discharge unit is provided in the middle of the transfer path of the storage space to discharge the powder in the storage space to the outside of the storage chamber. A partition plate that is closed except for the mouth is provided, and a plurality of granular material flow-down ports are provided in the partition plate, and a plurality of storage spaces are formed between the blades that protrude radially from the outer periphery of the supply plate. It is provided directly above, and the opening area of the granule flow outlet of the partition plate is increased from the discharge part around the feeding direction. Powder supply device 4 that reduces the influence of powder pressure by ensuring that the entire amount of the storage space is not filled with the granular material from the granular material flow outlet, and that the entire amount is surely filled at the granular material flow outlet to be finally flowed down. The granular material from the granular material flowing down first is 70 of the capacity of the accommodation space. It said to reduce the area of the granular material falling port so as not to be accommodated only below 3) in the powder feeding apparatus <br/> according.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The partition plate of the present invention closes the upper part of the feeding path of the accommodation space of the supply board, and is usually ring-shaped or disk-shaped. In addition, there are a plurality of powder outlets on the partition plate, but the area of the powder outlet to be flowed down first is small so that the entire accommodation space is not filled with powder, and three powders At the flow outlet, about 40 to 60% is filled at the first granule flow outlet, and the remaining powder flow is filled at all, and the final flow at the final flow is ensured. It is preferable to make it fill, so that the area of the flow-down port should be increased along the direction of feeding. In addition, it is preferable that the outlet of the granular material flowed down last is closer to the discharge portion because the influence of the powder pressure can be reduced.
As the structure type of the supply board, blades are provided radially on the outer periphery, the required amount of powder is accommodated between the blades, and the discharge part is discharged downward or upward by its own weight or air flow, or an annular groove on the outer periphery Or the structure type which provides a shelf and forcibly discharges it with the scraper provided in the discharge part is a typical example.
[0006]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, a plurality of blades project radially from the ring, and a plurality of storage spaces for storing a predetermined amount of powder particles are provided in a space surrounded by the blades and the lower side surface and bottom surface of the storage chamber. A supply board formed of a blade and a blade is rotated through an arm by a rotation shaft provided at the center of the storage chamber, and a ring-shaped partition plate is fixed directly above the blade from the storage chamber outer wall side. This is an example in which the granular material flow outlets are provided at four locations on the partition plate and the opening area is gradually increased along the rotation direction. The filling rate by the first granular material lowering port is about 30 to 40%.
FIG. 1 is a longitudinal sectional view of the embodiment.
FIG. 2 is a plan view of the embodiment.
FIG. 3 is an enlarged plan view showing the partition plate of the embodiment.
FIG. 4 is a diagram showing the relationship between the supply amount of the example and the remaining amount of powder in the storage chamber.
FIG. 5 is a diagram showing the relationship between the supply amount and the remaining amount of powder in the storage chamber in the case of the partition plate having only the discharge part.
[0007]
In the figure, K is a powdering device of the embodiment, 1 is a storage chamber, 1a is a bottom surface of the storage chamber 1, 1b is a side surface of the storage chamber 1, 2 is a supply panel, 2a is a ring of the supply panel, and 2b is the same ring. 2c is a housing space surrounded by the blade and the bottom surface 1a and side surface 1b of the storage chamber 1, 2d is an arm for connecting the ring 2a to the rotary shaft 3, and 3 is a rotation. A shaft, 4 is a discharge portion, 4a is a discharge port opened in the bottom surface 1a of the discharge portion 4, 4b is a discharge chute, 5 is a partition plate attached to the side surface 1b of the storage chamber 1 directly above the blade 2b, 5a, Reference numerals 5b, 5c, 5d denote powder particle flow openings to the particle space 2c provided in the partition plate 5, 6 denotes a driving unit using a motor that rotates the rotating shaft 3, and P denotes calcium carbonate particles. Is the body.
[0008]
In this embodiment, calcium carbonate is stored in the storage chamber 1 as the granular material P, and the drive unit 6 is operated to rotate the supply board 2. The granular material P in the storage chamber 1 is placed on the partition plate 5 and the circular bottom surface 1a at the center, falls downward from the four granular material flow outlets 5a to 5d of the partition plate 5, and rotates downward. It flows into the storage space 2c of the supply board 2 that is being operated. As the supply board 2 rotates, the powder particles in the storage chamber 1 are stirred by the arm 2d.
The granular material flow lower ports 5a to 5d have the smallest area of the first granular material flow lower port 5a, and the amount of the granular material filled into the accommodation space 2c by this granular material flow lower port 5a is about 30 to 40%. Yes, the area of the next downflow port 5b is slightly large, and the filling ratio is about 60 to 80%, the next downflow port 5c is opened fairly widely, and the filling rate is about 85 to 95%. The flow-down port 5d is the widest opening and is filled to 100% or more, and is lightly subjected to powder pressure, but close to the discharge part 4, so it reaches the discharge part 4 before being pressed strongly by receiving powder pressure, and the same discharge In the part 4, it discharges | emits below from the discharge port 4a of the bottom face 1a.
Although the granular material P flows into the accommodating space 2c of the supply board 2 in four times, there is a space in which the accommodating space 2c is not filled in the first and second granular material flow outlets 5a and 5b, It is easy to exhaust the air accompanying the filling, and the filled powder P is not pressurized. And although it fills in the accommodation space 2d near the 3rd granular material flow lower opening 5c, pressurization is not acted strongly. Then, it is completely filled in the fourth granular material flow lower port 5d and is in a slightly pressurized state, but since the time to the discharge unit 4 is short, there is almost no influence by the pressurization, and the discharge is performed downward from the discharge unit 4.
It is set as the structure which removed the partition plates 5 other than the discharge part 4, and open | released the effect | action of the granular material flow lower openings 5a-5d and the partition plate 5 of a present Example, and the amount of the granular materials in the storage chamber 1 of the same quantity, Example Fig. 4 shows the result of measuring the supply amount in the case of rotating at the same granular material, the same supply disk rotation speed of 9 rpm, and the case of this example in relation to the amount of granular material (remaining amount) in the storage chamber. , 5.
As can be seen from FIG. 5, when the partition plate 5 is removed, if the remaining amount of powder in the storage chamber is large, the supply amount is high and the supply amount decreases and fluctuates as the remaining amount decreases. It can be seen that the remaining amount acts as a powder pressure, and the granular material in the accommodation space 4 is pressurized and in a compacted state.
On the other hand, in this embodiment, as shown in FIG. 4, a substantially constant supply amount can be obtained until the remaining amount is greatly reduced. That is, it can be seen that there is no influence of the remaining amount (powder body pressure in the storage chamber). In addition, the fall of supply amount when the remaining amount reduces remarkably can be eliminated by replenishing a granular material to a storage chamber before the remaining amount falls greatly and a supply amount changes.
[0009]
【The invention's effect】
As described above, according to the present invention, by providing a plurality of flow-down openings in the partition plate so as not to be filled completely from the beginning, the powder pressure in the reservoir and its change (powder in the reservoir) The effect of the supply amount due to changes in body weight can be largely blocked, and more accurate powder feeding can be achieved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an embodiment.
FIG. 2 is a plan view of the embodiment.
FIG. 3 is an enlarged plan view showing a partition plate according to an embodiment.
FIG. 4 is a diagram showing the relationship between the supply amount of the example and the remaining amount of powder in the storage chamber.
FIG. 5 is a diagram showing the relationship between the supply amount and the remaining amount of powder in the storage chamber in the case of a partition plate with only a discharge part.
[Explanation of symbols]
K powder supply device P granular material 1 storage chamber 1a bottom surface 1b side surface 2 supply board 2a ring 2b blade 2c accommodation space 2d arm 3 rotary shaft 4 discharge part 4a discharge port 4b discharge chute 5 partition plates 5a, 5b, 5c, 5d Mouth 6 Drive unit

Claims (4)

粉粒体を貯えた貯室の底部に貯室内の粉粒体を上方開口から流下させて収容する収容空間を環状に形成した供給盤を回転自在に装置し、同収容空間の回送路の途中に収容空間内の粉粒体を貯室外へ排出する排出部を設け、収容空間の回送路の上方を粉粒体流下口を除いて閉鎖する隔板を設け、貯室内の粉粒体を粉粒体流下口から下方の供給盤の収容空間内へ流下させて充填し、排出部にて粉粒体を排出する給粉方法に於いて、
収容空間が供給盤外周に半径方向に突出させた羽根間に複数形成され、隔板を羽根の直上に設け、粉粒体流下口を複数箇所に分けて設けるとともに、隔板の粉粒体流下口の開口面積を排出部から回送方向まわりに大きくするようにし、排出部で排出した後の最初に流下させる粉粒体流下口を小さくして同粉粒体流下口からの粉粒体が収容空間の全空間に入らないようにし、最後に流下させる粉粒体流下口において全量が確実に充填させることによって粉圧の影響を少なくすることを特徴とする給粉方法。
At the bottom of the storage chamber for storing the powder particles, a feeding board in which a storage space for storing the powder particles in the storage chamber by flowing down from the upper opening is annularly rotated, and the transfer space of the storage space is on the way Provided with a discharge part that discharges the granular material in the storage space to the outside of the storage room, and provided with a partition that closes the upper part of the feeding path of the storage space except for the powder flow outlet, to powder the granular material in the storage room In the powder supply method of flowing and filling from the lower part of the granular material flow into the storage space of the lower supply board, and discharging the granular material at the discharge part,
A plurality formed between the accommodation space is projected in the radial direction to the feed plate outer peripheral vanes, it provided the diaphragm directly above the blade, provided with separately granular material falling port at a plurality of locations, granular material stream of diaphragm The opening area of the mouth is increased from the discharge part around the direction of forwarding, and the powder flow from the discharge part is accommodated by reducing the first drop of the powder that flows down after discharge from the discharge part. A powder feeding method characterized by reducing the influence of powder pressure by ensuring that the entire amount is filled at the outlet of the granular material flowing down so as not to enter the entire space and finally flowing down .
最初に流下させる粉粒体流下口からの粉粒体が収容空間の容量の70%以下にしか収容されないようにした請求項1記載の給粉方法。  2. The powder feeding method according to claim 1, wherein the granular material from the granular material flow-down port that is allowed to flow first is accommodated only in 70% or less of the capacity of the accommodating space. 粉粒体を貯えた貯室の底部に貯室内の粉粒体を上方開口から流下させて収容する収容空間を環状に形成した供給盤を回転自在に装置し、同収容空間の回送路の途中に収容空間内の粉粒体を貯室外へ排出する排出部を設け、収容空間の回送路の上方を粉粒体流下口を除いて閉鎖する隔板を設け、粉粒体流下口を同隔板に複数設けるとともに、収容空間が供給盤外周に半径方向に突出させた羽根間に複数形成され、隔板を羽根の直上に設け、隔板の粉粒体流下口の開口面積を排出部から回送方向まわりに大きくするようにし、排出部で排出した後の最初に流下させる粉粒体流下口を小さくして同粉粒体流下口からの粉粒体が収容空間の全量が入らないようにし、最後に流下させる粉粒体流下口において全量が確実に充填させることによって粉圧の影響を少なくする給粉装置。At the bottom of the storage chamber for storing the powder particles, a feeding board in which a storage space for storing the powder particles in the storage chamber by flowing down from the upper opening is annularly rotated, and the transfer space of the storage space is on the way Provided with a discharge part for discharging the granular material in the storage space to the outside of the storage chamber, a partition plate for closing the upper part of the conveying path of the storage space except for the granular material flow outlet, and separating the granular material flow outlet at the same interval A plurality of storage spaces are formed between the blades projecting radially on the outer periphery of the supply board, a partition plate is provided immediately above the blades, and an opening area of the granule flow outlet of the partition plate from the discharge portion Increase the size around the feeding direction, and reduce the size of the powder flow outlet that flows down first after discharge at the discharge section so that the entire amount of powder is not contained in the storage space. The powder pressure is reduced by ensuring that the entire amount is filled at the final outlet of the granular material. Powder feeding device to reduce the sound. 最初に流下させる粉粒体流下口からの粉粒体が収容空間の容量の70%以下にしか収容されないようにその粉粒体流下口の面積を小さくした請求項3記載の給粉装置。4. The powder feeding apparatus according to claim 3, wherein the area of the granular material flow outlet is made small so that the granular material from the granular material flowing down first is accommodated only in 70% or less of the capacity of the accommodation space.
JP2000040836A 2000-02-18 2000-02-18 Powdering method and apparatus Expired - Lifetime JP4439659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000040836A JP4439659B2 (en) 2000-02-18 2000-02-18 Powdering method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000040836A JP4439659B2 (en) 2000-02-18 2000-02-18 Powdering method and apparatus

Publications (2)

Publication Number Publication Date
JP2001224986A JP2001224986A (en) 2001-08-21
JP4439659B2 true JP4439659B2 (en) 2010-03-24

Family

ID=18564160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000040836A Expired - Lifetime JP4439659B2 (en) 2000-02-18 2000-02-18 Powdering method and apparatus

Country Status (1)

Country Link
JP (1) JP4439659B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000155B2 (en) * 2006-03-03 2012-08-15 株式会社粉研パウテックス Device for continuous quantitative supply of powder

Also Published As

Publication number Publication date
JP2001224986A (en) 2001-08-21

Similar Documents

Publication Publication Date Title
US4785976A (en) Dispenser for fluent materials
CN101580175A (en) Turntable-type quantitative feeder
CN201432975Y (en) Rotary disc type quantitative feeder
EP1033332B1 (en) Powder grain material control unit and powder grain material filling unit comprising such a unit
JP4439659B2 (en) Powdering method and apparatus
US20060182503A1 (en) Method and device for the transportation of pulverulent filling material through a line
EP1530031A1 (en) Powder and granular material metering device
CN216367391U (en) Dry-process denitration equipment
JP7173493B2 (en) Granular quantitative feeder
JP2009062098A (en) Powder and granule supply device
JP3073449B2 (en) Powder storage device
JP3389013B2 (en) Powder supply unit
JP2004067269A (en) Feeder device for small lump material
JPH0144498Y2 (en)
CN219636431U (en) Feeding device of pneumatic feeding system
CN112010058A (en) Quantitative powder feeding device and method
JP2698807B2 (en) Feeding equipment
JP2000074811A (en) Method for measuring fluidity characteristic of powder and grain
JP2955738B2 (en) Feeding equipment
JPH06198269A (en) Dust discharge device
JP3015022B1 (en) Rotary feeder
SU443258A1 (en) Bulk material dispenser
RU1793239C (en) Weighing drum
JP3485821B2 (en) Method for measuring flow characteristics of powders
RU2083459C1 (en) Pneumatic transport installation for vacuum reloading of powder material from container into package with small-size filling neck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4439659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term