JP4439571B2 - Resin separation method - Google Patents

Resin separation method Download PDF

Info

Publication number
JP4439571B2
JP4439571B2 JP2008127783A JP2008127783A JP4439571B2 JP 4439571 B2 JP4439571 B2 JP 4439571B2 JP 2008127783 A JP2008127783 A JP 2008127783A JP 2008127783 A JP2008127783 A JP 2008127783A JP 4439571 B2 JP4439571 B2 JP 4439571B2
Authority
JP
Japan
Prior art keywords
resin
temperature
separation
glass transition
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008127783A
Other languages
Japanese (ja)
Other versions
JP2009137273A (en
Inventor
将稔 宮坂
環生 小島
晃 磯見
大助 田端
裕之 中
弥彦 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008127783A priority Critical patent/JP4439571B2/en
Priority to CN2008102157168A priority patent/CN101434112B/en
Priority to US12/261,091 priority patent/US7863409B2/en
Priority to AT08168491T priority patent/ATE529198T1/en
Priority to EP20080168491 priority patent/EP2060330B1/en
Publication of JP2009137273A publication Critical patent/JP2009137273A/en
Application granted granted Critical
Publication of JP4439571B2 publication Critical patent/JP4439571B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0203Separating plastics from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0255Specific separating techniques using different melting or softening temperatures of the materials to be separated
    • B29B2017/0258Specific separating techniques using different melting or softening temperatures of the materials to be separated using heated surfaces for selective softening or melting of at least one plastic ingredient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

To provide a high purity separation method of resin materials, which method does not produce waste water and is not affected by the specific gravities and dielectric characteristics of resin materials, in recycling of resin materials as resources. A separation object including at least two types of resins with different glass transition temperatures (glass transition temperature of a first resin 1 < glass transition temperature of a second resin 2) is placed on a separating member 3. Next, primary heating is applied at a temperature between the glass transition temperatures of the first resin 1 and the second resin 2, and pressurization is additionally performed to cause the first resin 1 to adhere to the separating member 3. Subsequently, a heat history of secondary heating at a temperature higher than the primary heating temperature is applied to detach and recover the second resin 2 by restoring the shape of the second resin 2, while the first resin 1 adhering to and retained by the separating member 3 is detached by a blade 5 and the like for recovery.

Description

本発明は、使用済み家電製品の再資源化を目的とした、樹脂片が混在する分別対象物からの樹脂の分別技術に関するものである。   The present invention relates to a technology for separating resin from a separation object in which resin pieces are mixed for the purpose of recycling used household electrical appliances.

近年の大量生産、大量消費、大量廃棄型の経済活動が、地球温暖化や資源の枯渇など地球規模での環境問題を引き起こしている。このような状況の中、循環型社会の構築に向けて、平成13年4月から家電リサイクル法が完全施行され、使用済みになったエアコン(air conditioner)、テレビジョン受像機、冷蔵庫・冷凍庫、洗濯機のリサイクルが義務付けられている。   Recent mass production, mass consumption, and mass disposal economic activities have caused global environmental problems such as global warming and resource depletion. Under such circumstances, air conditioners, television receivers, refrigerators / freezers, etc. that have been used since the Home Appliance Recycling Law was fully enforced in April 2001 to build a recycling-oriented society. Washing machine recycling is obligatory.

従来、不要になった家電製品は、家電リサイクル工場で、破砕後に磁気、風力、振動等を利用して材料毎に分別回収し、再資源化されている。特に金属材料は、比重選別装置や磁気選別装置を用いることで、鉄、銅、アルミニウムなど材料毎に高純度で回収され、高い再資源化率が実現されている。   Conventionally, home appliances that are no longer needed are recycled at home appliance recycling factories after being crushed and separated by material using magnetism, wind power, vibration, and the like. In particular, by using a specific gravity sorting device or a magnetic sorting device, the metal material is recovered with high purity for each material such as iron, copper, and aluminum, and a high recycling rate is realized.

一方、樹脂材料では、軽比重物であるポリプロピレン(以下、PPと表記)が、水を活用した比重選別で高比重物と分別され、比較的高純度で回収されている。しかしながら、水を活用した比重選別は、大量の排水が発生することや比重の近いポリスチレン(以下、PSと表記)とアクリロニトリルスチレンブタジェン(以下、ABSと表記)が分別できないことが大きな課題となっている。また近年、高比重物であるフィラー入りポリプロプレンも需要が拡大し、これは従来の比重分別では対応できなくなっている。   On the other hand, in the resin material, polypropylene (hereinafter referred to as PP), which is a light specific gravity, is separated from high specific gravity by specific gravity sorting using water and recovered with relatively high purity. However, specific gravity selection using water is a major issue in that a large amount of wastewater is generated and that polystyrene (hereinafter referred to as PS) and acrylonitrile styrene butadiene (hereinafter referred to as ABS) having similar specific gravity cannot be separated. ing. In recent years, demand for filler-filled polypropylene, which has a high specific gravity, has been increasing, and this cannot be handled by conventional specific gravity separation.

樹脂材料の再資源化に関する前記課題を考慮した分別方法が下記の(特許文献1)(特許文献2)で提案されている。
(特許文献1)は、分別対象となる2種類の樹脂の溶融温度差を活用した分別方法で、分別対象の2種類の樹脂の溶融温度の中間温度になるように、一対の耐熱鋼製の周動面を加熱し、前記加熱した周動面の隙間に、分別対象の2種類の樹脂を通過させ、溶融温度の低い樹脂のみを前記加熱した周動面に付着させることで2種類の樹脂を分別する方法である。
The following (Patent Document 1) and (Patent Document 2) have proposed a sorting method in consideration of the above-mentioned problems related to the recycling of resin materials.
(Patent Document 1) is a separation method that utilizes the difference in melting temperature between two types of resins to be separated, and is made of a pair of heat-resistant steel so as to be an intermediate temperature between the melting temperatures of the two types of resins to be separated. Two types of resins are obtained by heating the circumferential surface, passing two kinds of resins to be separated into the gap between the heated circumferential surfaces, and attaching only a resin having a low melting temperature to the heated circumferential surface. It is a method of separating.

また、(特許文献2)は、樹脂材料間の誘電損失の違いを利用した分別方法である。2種類以上の樹脂が混在する分別対象物に、電磁波などを印加して誘電加熱を施し、樹脂材料毎の発熱性状の違いによる溶融特性差を活用して分別する方法であり、これらの分別方法では、排水の発生がなく、樹脂材料の比重の影響も受けない。
実開平4−126822号公報 特開2002−234031号公報
Further, (Patent Document 2) is a sorting method using a difference in dielectric loss between resin materials. It is a method of applying electromagnetic heating to an object to be separated in which two or more types of resin are mixed and subjecting it to dielectric heating, and utilizing the difference in melting characteristics due to the difference in heat generation property of each resin material. In this case, there is no drainage, and the resin material is not affected by the specific gravity.
Japanese Utility Model Publication No. 4-126822 JP 2002-234031 A

しかしながら、(特許文献1)では、PPやPSなど他の物質への接着性が低い低極性分子物質では、溶融した樹脂の付着強度が不安定になり、高純度の分別が出来ない。また、低融点の樹脂と高融点の樹脂が同時に加熱された周動面の隙間を通過すると、溶融した低融点の樹脂に未溶融の高融点の樹脂が付いて、分別できないという課題も発生する。   However, in (Patent Document 1), a low-polar molecular substance having low adhesion to other substances such as PP and PS becomes unstable in the adhesion strength of the molten resin and cannot be separated with high purity. In addition, if a low melting point resin and a high melting point resin pass through the clearance between the circumferential surfaces heated simultaneously, an unmelted high melting point resin is attached to the molten low melting point resin, which causes a problem that separation is not possible. .

また、(特許文献2)では、誘電損失特性の近い樹脂材料の分別ができないため、高純度での回収は困難である。
本発明は上記従来の課題を解決するもので、排水の発生がなく、樹脂材料の比重および誘電損失特性の影響を受けない樹脂分別方法を提供することを目的とする。
Moreover, in (patent document 2), since the resin material with a near dielectric loss characteristic cannot be fractionated, collection | recovery with high purity is difficult.
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described conventional problems and to provide a resin separation method that does not generate waste water and is not affected by the specific gravity and dielectric loss characteristics of the resin material.

本発明の請求項1記載の樹脂分別方法は、ガラス転移温度および降伏応力の異なる2種類以上の樹脂が混在した分別対象物を、分別部材に載置して第1次加熱するとともに加圧し、そのときの第1次加熱の温度を、前記樹脂のうちの1種類以上の樹脂のガラス転移温度よりも低い温度で、かつ1種類以上の樹脂のガラス転移温度よりも高い温度に設定し、そのときの加圧力を、第1次加熱の温度よりも低いガラス転移温度の樹脂のうち、最も圧縮降伏応力の高い樹脂の圧縮降伏応力以上に設定して、前記第1次加熱の温度における圧縮降伏応力が前記加圧力よりも低い樹脂を前記分別部材に付着させ、前記加圧した加圧力を開放した後、前記分別部材に付着していない樹脂または付着力の小さい樹脂を前記分別部材から分離し、さらに、樹脂が付着した前記分別部材を第2次加熱し、そのときの第2次加熱の温度を、第1次加熱の温度より高温かつ前記分別対象物の最も低い融点の樹脂の融点より低い温度に設定して、第1次加熱の温度よりも低いガラス転移温度の樹脂のみを前記分別部材に付着させ、前記分別部材に付着した樹脂を前記分別部材から分離して分別することを特徴とする。 In the resin separation method according to claim 1 of the present invention, a separation object in which two or more kinds of resins having different glass transition temperatures and yield stresses are mixed is placed on a separation member and subjected to primary heating and pressurization, The temperature of the primary heating at that time is set to a temperature lower than the glass transition temperature of one or more kinds of resins among the resins and higher than the glass transition temperature of one or more kinds of resins, The compressive yield at the temperature of the primary heating is set at a pressure higher than the compressive yield stress of the resin having the highest compressive yield stress among the resins having a glass transition temperature lower than the temperature of the primary heating. After the resin having a stress lower than the applied pressure is adhered to the separating member and the pressurized applied pressure is released, the resin not adhered to the separating member or the resin having a small adhesive force is separated from the separating member. In addition, resin The separating member attached to the secondary heating, the temperature of the secondary heating at that time, is set to a temperature lower than the lowest melting point of the resin melting point of the hot and the separation object than the primary heating temperature Thus, only the resin having a glass transition temperature lower than the temperature of the primary heating is attached to the separation member, and the resin attached to the separation member is separated from the separation member and separated.

本発明の請求項2記載の樹脂分別方法は、請求項1において、第1次加熱の温度を、前記ガラス転移温度および降伏応力の異なる2種類以上の樹脂のうちの、最もガラス転移温度の低い樹脂と、その次にガラス転移温度の低い樹脂の間の温度に設定することを特徴とする。   The resin fractionation method according to claim 2 of the present invention is the resin separation method according to claim 1, wherein the primary heating temperature is the lowest among the two or more kinds of resins having different glass transition temperatures and yield stresses. It is characterized in that the temperature is set between the resin and the resin having the next lower glass transition temperature.

本発明の請求項3記載の樹脂分別方法は、請求項1において、第1次加熱の温度を、前記ガラス転移温度および降伏応力の異なる2種類以上の樹脂のうちの、最もガラス転移温度の高い樹脂と、その次にガラス転移温度の高い樹脂の間の温度に設定することを特徴とする。   The resin fractionation method according to claim 3 of the present invention is the resin separation method according to claim 1, wherein the temperature of the primary heating is the highest glass transition temperature among the two or more types of resins having different glass transition temperatures and yield stresses. The temperature is set between the resin and the resin having the next highest glass transition temperature.

本発明の請求項4記載の樹脂分別方法は、請求項1〜請求項3の何れかにおいて、前記加圧力、圧縮降伏応力の1.2倍以上での加圧力であることを特徴とする。
本発明の請求項5記載の樹脂分別方法は、請求項1〜請求項4の何れかにおいて、分別対象物を分別部材に載置した加圧方向における樹脂の最小厚みに対する最大厚みの差が5.5mm以内であることを特徴とする。
The resin fractionation method according to claim 4 of the present invention is characterized in that, in any one of claims 1 to 3, the pressure is a pressure equal to or greater than 1.2 times the compressive yield stress. .
The resin separation method according to claim 5 of the present invention is the resin separation method according to any one of claims 1 to 4, wherein the difference in the maximum thickness with respect to the minimum thickness of the resin in the pressing direction in which the object to be separated is placed on the separation member is 5. It is within 5 mm.

本発明の請求項6記載の樹脂分別方法は、請求項1〜請求項5の何れかにおいて、分別対象物を分別部材に載置した加圧方向における樹脂の厚みが、0.5mm以上かつ6.0mm以下の範囲であることを特徴とする。   The resin sorting method according to claim 6 of the present invention is the resin sorting method according to any one of claims 1 to 5, wherein the thickness of the resin in the pressurizing direction in which the sorting object is placed on the sorting member is 0.5 mm or more and 6 It is the range of 0.0 mm or less.

本発明の請求項7記載の樹脂分別方法は、請求項1〜請求項5の何れかにおいて、分別対象物を分別部材に載置した加圧方向における樹脂の厚みが、1.0mm以上かつ6.0mm以下の範囲であることを特徴とする。   A resin separation method according to a seventh aspect of the present invention is the resin separation method according to any one of the first to fifth aspects, wherein the thickness of the resin in the pressure direction in which the separation object is placed on the separation member is 1.0 mm or more and 6 It is the range of 0.0 mm or less.

本発明の請求項8記載の樹脂分別方法は、請求項1〜請求項5の何れかにおいて、分別対象物を分別部材に載置した加圧方向における樹脂の厚みが、1.0mm以上かつ3.0mm以下の範囲であることを特徴とする。   The resin separation method according to an eighth aspect of the present invention is the resin separation method according to any one of the first to fifth aspects, wherein the thickness of the resin in the pressing direction in which the separation object is placed on the separation member is 1.0 mm or more and 3 It is the range of 0.0 mm or less.

本発明の請求項9記載の樹脂分別方法は、請求項1〜請求項8の何れかにおいて、第2次加熱における、第1次加熱の温度よりも低いガラス転移温度の樹脂の昇温速度が、第1次加熱の温度よりも高いガラス転移温度の樹脂の昇温速度よりも小さいことを特徴とする。   In the resin fractionation method according to claim 9 of the present invention, in any one of claims 1 to 8, the temperature increase rate of the resin having a glass transition temperature lower than the temperature of the primary heating in the secondary heating. The temperature rise rate of the resin having a glass transition temperature higher than the temperature of the primary heating is smaller.

本発明の請求項10記載の樹脂分別方法は、請求項1〜請求項8の何れかにおいて、第2次加熱における、第1次加熱の温度よりも低いガラス転移温度の樹脂の昇温速度を、第1次加熱の温度よりも高いガラス転移温度の樹脂の昇温速度よりも小さくすることで、前記第1次加熱の温度よりも低いガラス転移温度の樹脂の昇温到達温度での加熱処理時間を前記第1次加熱の温度よりも高いガラス転移温度の樹脂よりも5秒以上短くし、かつ、前記第1次加熱の温度よりも低いガラス転移温度の樹脂の昇温時間が60秒以下であることを特徴とする。   The resin fractionation method according to claim 10 of the present invention is the resin fractionation method according to any one of claims 1 to 8, wherein the temperature increase rate of the resin having a glass transition temperature lower than the temperature of the primary heating in the secondary heating. The heat treatment at the temperature reached temperature of the resin having a glass transition temperature lower than the temperature of the primary heating by making the temperature rise rate lower than that of the resin having a glass transition temperature higher than the temperature of the primary heating. The time is shorter by 5 seconds or more than the resin having a glass transition temperature higher than the temperature of the primary heating, and the temperature rising time of the resin having a glass transition temperature lower than the temperature of the primary heating is 60 seconds or less. It is characterized by being.

本発明の請求項11記載の樹脂分別方法は、請求項1〜請求項10の何れかにおいて、分別対象物が、ポリプロピレン、ポリエチレン、ポリ乳酸、ポリ塩化ビニル、ポリスチレン、アクリロニトリルスチレン、アクリロニトリルブタジェンスチレン、ポリカーボネートのうち、少なくともいずれか1種を含むことを特徴とする。   The resin fractionation method according to claim 11 of the present invention is the resin fractionation method according to any one of claims 1 to 10, wherein the separation object is polypropylene, polyethylene, polylactic acid, polyvinyl chloride, polystyrene, acrylonitrile styrene, acrylonitrile butadiene styrene. And at least any one of polycarbonate.

本発明の請求項12記載の樹脂分別方法は、請求項1〜請求項10の何れかにおいて、分別対象物がポリプロピレンと、ポリスチレンまたはアクリロニトリルブタジェンスチレンの少なくとも1種からなることを特徴とする。   The resin fractionation method according to claim 12 of the present invention is characterized in that, in any one of claims 1 to 10, the fractionation object is composed of polypropylene and at least one of polystyrene or acrylonitrile butadiene styrene.

本発明の請求項13記載の樹脂分別方法は、請求項12において、第1次加熱の温度を、15℃以上かつポリプロピレン以外の全ての分別対象物の樹脂種のガラス転移温度未満に設定し、第2次加熱の温度を、70℃以上かつ155℃以下で、第1次加熱の温度よりも高く設定することを特徴とする。   The resin fractionation method according to claim 13 of the present invention is the resin fractionation method according to claim 12, wherein the temperature of the primary heating is set to 15 ° C. or more and lower than the glass transition temperature of the resin species of all fractionation objects other than polypropylene, The temperature of the secondary heating is set to 70 ° C. or more and 155 ° C. or less and higher than the temperature of the primary heating.

本発明の請求項14記載の樹脂分別方法は、請求項12において、第1次加熱の温度を、15℃以上かつポリプロピレン以外の全ての分別対象物の樹脂種のガラス転移温度未満に設定し、第2次加熱の温度を、100℃以上かつ155℃以下で、第1次加熱の温度よりも高く設定することを特徴とする。   The resin fractionation method according to claim 14 of the present invention is the resin fractionation method according to claim 12, wherein the temperature of the primary heating is set to 15 ° C. or more and lower than the glass transition temperature of the resin species of all fractionation objects other than polypropylene, The temperature of the secondary heating is set to 100 ° C. or more and 155 ° C. or less and higher than the temperature of the primary heating.

この構成によれば、厚みが設定された範囲内である樹脂の分別対象物を分別部材に載置し、前記分別対象物の樹脂のガラス転移温度の間で加熱加圧を行うことにより、分別部材を介して、加熱温度よりガラス転移温度が高い側の樹脂と、低い側の樹脂に分別することができる。これにより、従来技術では分別不可であった前記分別対象物から所望の樹脂を高純度で分別できる。   According to this configuration, by placing the resin separation object within the set thickness on the separation member and performing heating and pressurization between the glass transition temperatures of the resin of the separation object, the separation is performed. Through the member, the resin can be separated into a resin having a glass transition temperature higher than the heating temperature and a resin having a lower glass transition temperature than the heating temperature. Thereby, a desired resin can be separated with high purity from the separation object, which is impossible to be separated by the conventional technique.

(実施の形態1)
図1〜図14は本発明の実施の形態1を示す。
図1(a)〜図1(f)は、ガラス転移温度および降伏応力の異なる第1の樹脂1および第2の樹脂2の2種類が混在する分別対象物から、樹脂を分別する工程を示している。
(Embodiment 1)
1 to 14 show Embodiment 1 of the present invention.
FIG. 1A to FIG. 1F show a process of separating a resin from a separation object in which two kinds of a first resin 1 and a second resin 2 having different glass transition temperatures and yield stresses are mixed. ing.

図1(a)では、分別部材3の上に、前記分別対象物が載置されている。ここでは第1の樹脂1のガラス転移温度は、第2の樹脂2のガラス転移温度よりも低い。
図1(b)では、第1次加熱する。そのときの加熱温度は第1の樹脂1と第2の樹脂2のガラス転移温度の間の温度である。
In FIG. 1A, the separation object is placed on the separation member 3. Here, the glass transition temperature of the first resin 1 is lower than the glass transition temperature of the second resin 2.
In FIG. 1B, primary heating is performed. The heating temperature at that time is a temperature between the glass transition temperatures of the first resin 1 and the second resin 2.

このとき、第1の樹脂1と第2の樹脂2を平板4によって分別部材3に押し付ける。その加圧力の大きさは、第1の樹脂1の圧縮降伏応力と同じかそれ以上であって、この状態で第1の樹脂1および第2の樹脂2を加熱加圧することで、少なくとも第1の樹脂1が分別部材3に付着する。換言すると、このときの第1の樹脂1は、ガラス転移温度以上かつ圧縮降伏応力以上で加熱加圧されているため、塑性変形して分別部材3に付着する。また、前記加熱加圧の加圧力が第2の樹脂2の圧縮降伏応力以上の場合は、第2の樹脂2も形状変形して分別部材3に付着するが、ガラス転移温度より低い温度での加工変形のため、圧力解放後に第1次加圧温度より高い熱履歴を加えると、形状が加圧前の状態に復元して分別部材3より離脱する。また、前記加熱加圧の加圧力が第2の樹脂2の圧縮降伏応力より小さい場合は、第2の樹脂2は分別部材3に付着しない。なお、分別部材3には、金網やパンチングメタルなど表面に凹凸形状を有する板材を用いると良好な接着強度が得られる。   At this time, the first resin 1 and the second resin 2 are pressed against the separation member 3 by the flat plate 4. The magnitude of the applied pressure is equal to or greater than the compressive yield stress of the first resin 1, and at least the first resin 1 and the second resin 2 are heated and pressurized in this state, so that at least the first The resin 1 adheres to the separation member 3. In other words, since the first resin 1 at this time is heated and pressurized at a temperature equal to or higher than the glass transition temperature and higher than the compressive yield stress, it is plastically deformed and adheres to the separation member 3. Moreover, when the applied pressure of the heating and pressing is equal to or higher than the compressive yield stress of the second resin 2, the second resin 2 also deforms and adheres to the separation member 3, but at a temperature lower than the glass transition temperature. If a heat history higher than the primary pressurizing temperature is applied after the pressure is released due to processing deformation, the shape is restored to the state before pressurization and is detached from the separation member 3. Further, when the pressure applied by heating and pressurization is smaller than the compressive yield stress of the second resin 2, the second resin 2 does not adhere to the separation member 3. In addition, when the board | plate material which has uneven | corrugated shape on the surface, such as a metal net | network or a punching metal, is used for the separating member 3, and favorable adhesive strength is obtained.

次に図1(c)のように前記加圧圧力を開放して、分別部材3を傾斜させたり、または分別部材3を微振動などさせることで、分別部材3に付着している樹脂と付着していない樹脂とを分別できる。ここでは分別部材3に付着していない第2の樹脂2bは、分別部材3から離脱する。分別部材3に付着した第2の樹脂を2aとして図示している。   Next, as shown in FIG. 1C, the pressure applied is released, and the separating member 3 is tilted, or the separating member 3 is slightly vibrated to adhere to the resin adhering to the separating member 3. Can be separated from unresined resin. Here, the second resin 2 b not attached to the separation member 3 is detached from the separation member 3. The second resin adhering to the sorting member 3 is shown as 2a.

なお、分別対象物に図1(b)の加熱加圧で分別部材3に付着しない材質(金属、紙、木片、熱硬化性樹脂など)が含まれている場合には、第2の樹脂2bと同様に未接着物として、分別部材3に付着する第1の樹脂1,第2の樹脂2aと分別除去できる。   When the material to be separated includes a material (metal, paper, wood piece, thermosetting resin, etc.) that does not adhere to the separation member 3 by the heating and pressurization of FIG. 1B, the second resin 2b. In the same manner as above, the first resin 1 and the second resin 2a adhering to the separation member 3 can be separated and removed as unbonded materials.

次に図1(d)では、第1次加熱温度より高温で、かつ第1の樹脂1および第2の樹脂2のうち融点の低い樹脂の融点より低い温度で第2次加熱する。これによって、分別部材3にそれまで付着していた第2の樹脂2aは加圧前の状態に形状が復元し、分別部材3から離脱した状態または分別部材3への付着強度が著しく低い状態になるため、分別部材3を傾斜させたり、または分別部材3を微振動などさせることで、図1(e)のように、分別部材3に付着している第1の樹脂1と分別できる。   Next, in FIG. 1D, the secondary heating is performed at a temperature higher than the primary heating temperature and lower than the melting point of the first resin 1 and the second resin 2 having a lower melting point. As a result, the shape of the second resin 2a that has been adhered to the separation member 3 is restored to the state before pressurization, and is separated from the separation member 3 or in a state where the adhesion strength to the separation member 3 is extremely low. Therefore, the first resin 1 attached to the separating member 3 can be separated as shown in FIG. 1E by inclining the separating member 3 or by slightly vibrating the separating member 3.

なお、前記第1次加熱および第2次加熱は、分別部材3を熱板に接触させることで実施しても良いし、輻射方式または熱風方式などを特に限定なく採用できる。
次に図1(f)では、分別部材3に付着している第1の樹脂1を、ブレード5等で掻き落すことにより回収できる。このとき、第1の樹脂1に対して第3次加熱を行うことにより第1の樹脂1の弾性率を低下させると、第1の樹脂1と分別部材3の分離が容易になる。
The primary heating and the secondary heating may be performed by bringing the separation member 3 into contact with the hot plate, and a radiation method or a hot air method can be employed without any particular limitation.
Next, in FIG.1 (f), it can collect | recover by scraping off the 1st resin 1 adhering to the separation member 3 with the blade 5 grade | etc.,. At this time, if the elastic modulus of the first resin 1 is reduced by performing the third heating on the first resin 1, the separation of the first resin 1 and the separating member 3 is facilitated.

一般に、樹脂材料を加熱した場合に、低温では堅く流動性がない状態から、ある狭い温度範囲で急速に剛性が低下して流動性が増す温度が存在する。このような物性の変化がおこる温度をガラス転移温度という。   Generally, when a resin material is heated, there is a temperature at which the rigidity is rapidly lowered and the fluidity is increased in a narrow temperature range from a state in which the resin material is hard and does not have fluidity at a low temperature. The temperature at which such changes in physical properties occur is called the glass transition temperature.

下記の(表1)は、PP、PE、PLA、PVC、PS、AS、ABSおよびPCのガラス転移温度を、セイコーインスツルメンツ社製の示差走査熱量計(機種名:DSC220)により測定した結果である。各樹脂の違いによるガラス転移温度の明確な差が確認された。   The following (Table 1) is the result of measuring the glass transition temperature of PP, PE, PLA, PVC, PS, AS, ABS and PC with a differential scanning calorimeter (model name: DSC220) manufactured by Seiko Instruments Inc. . A clear difference in glass transition temperature due to the difference in each resin was confirmed.

Figure 0004439571
なお、表中のSP2はScientific Polymer Products.Inc.(米国)、UMGはユーエムジー・エービーエス株式会社である。
Figure 0004439571
In the table, SP2 is Scientific Polymer Products. Inc. (USA) and UMG is UMG ABS Co., Ltd.

樹脂材料に圧力を加え、その加圧力を上昇させた場合に、樹脂材料の弾性限界以上の領域になると、加圧力のわずかな増加に対して急激に変位(ひずみ)が増加し始める点(降伏点)に達する。この点に達した時の加圧力を圧縮降伏応力と定義する。   When pressure is applied to the resin material and the applied pressure is increased, the displacement (strain) starts to increase suddenly (yield) when the pressure exceeds the elastic limit of the resin material. Point). The pressure applied when this point is reached is defined as the compressive yield stress.

図2は、東京衝機製造所製の圧縮応力測定器(機種名:TCM10000(圧縮荷重速度1mm/分)を用いて、(表1)の各樹脂材料の圧縮降伏応力を温度別に測定した結果である。   FIG. 2 is a result of measuring the compressive yield stress of each resin material in (Table 1) according to temperature using a compression stress measuring instrument (model name: TCM10000 (compression load speed 1 mm / min)) manufactured by Tokyo Shiki Seisakusho. is there.

各樹脂材料ともに、温度が高くなると圧縮降伏応力が小さくなり、ガラス転移温度以上になると、測定限界以下になった。これは、ガラス転移温度以上で樹脂の流動性が急激に増加するためで、ガラス転移温度以上では、各樹脂共に低加圧力で容易に圧縮変形が起こることがわかる。   For each resin material, the compressive yield stress decreased as the temperature increased, and when the temperature exceeded the glass transition temperature, it was below the measurement limit. This is because the fluidity of the resin sharply increases above the glass transition temperature, and it can be seen that, at the glass transition temperature or higher, each resin easily undergoes compressive deformation at a low applied pressure.

(実施例1)
PPおよびPSを含む分別対象物から所望の樹脂を分別する方法を説明する。
ここでは第1の樹脂1がPP、第2の樹脂2がPSである。
Example 1
A method for separating a desired resin from a separation object containing PP and PS will be described.
Here, the first resin 1 is PP and the second resin 2 is PS.

平板プレス機の加圧板の上に分別部材3と分別対象物を載せ、所定の厚みになるように3.0mmのスペーサーを挟んで60秒間加圧し、さらに1.0mm以下の樹脂を取り除くことで、加圧方向の厚みを1.0mm以上かつ3.0mm以下の範囲に均一化した。   By placing the separation member 3 and the object to be separated on the pressure plate of the flat plate press, pressurizing for 60 seconds with a 3.0 mm spacer sandwiched to a predetermined thickness, and removing 1.0 mm or less of resin The thickness in the pressing direction was made uniform in the range of 1.0 mm to 3.0 mm.

なお、平板プレス機の代わりに、ロールによる圧縮方式でも樹脂を所望の厚みに均一化することが可能である。ロールの場合は、縦型、横型どちらでも連続的に樹脂の厚みを均一化させることができ、このときロールギャップ、ロール径、ロール回転数、またロール数を適宜、最適化することで効率的に樹脂厚みの均一化が実施できる。   In addition, it is possible to make the resin uniform to a desired thickness by a compression method using a roll instead of a flat plate press. In the case of rolls, the thickness of the resin can be made uniform continuously in both vertical and horizontal types. At this time, it is efficient by optimizing the roll gap, roll diameter, roll rotation speed, and roll number as appropriate. In addition, the resin thickness can be made uniform.

分別部材3には、目開き0.28mm、線径0.23mm、大きさ150mm×150mmのステンレス金網を用いた。
次に分別部材3の全体の面積に対して45〜55%の割合で樹脂同士が重ならないように前記分別対象物を分別部材3に載置し、この分別部材3を熱プレス機の熱板上に載せ、70℃で第1次加熱し、加圧力20000kgfで30秒間加熱加圧した。
For the separating member 3, a stainless steel wire mesh having an opening of 0.28 mm, a wire diameter of 0.23 mm, and a size of 150 mm × 150 mm was used.
Next, the separation object is placed on the separation member 3 so that the resins do not overlap each other at a ratio of 45 to 55% with respect to the entire area of the separation member 3, and the separation member 3 is used as a hot plate of a hot press machine. It was placed on top, subjected to primary heating at 70 ° C., and heated and pressurized at a pressure of 20000 kgf for 30 seconds.

次に加熱加圧を施した分別対象物を載置した前記分別部材3をホットプレートの上にのせ、150℃で20秒間の第2次加熱するとともに、分別部材3を傾けて第2の樹脂2を分別回収した。   Next, the separation member 3 on which the object to be subjected to heat and pressure is placed is placed on a hot plate, subjected to secondary heating at 150 ° C. for 20 seconds, and the separation member 3 is inclined to form a second resin. 2 was collected separately.

次に第2の樹脂2を分別除去した分別部材3を前記ホットプレートの上に載せて、150℃で30秒間の第3次加熱をし、かつ前記ホットプレートの上で、厚さ1mmのステンレス製ブレードを用いて、前記分別部材3に接着している第1の樹脂1のPPを掻き落として剥離回収した。   Next, the separation member 3 from which the second resin 2 has been separated and removed is placed on the hot plate, subjected to tertiary heating at 150 ° C. for 30 seconds, and stainless steel having a thickness of 1 mm on the hot plate. The PP of the first resin 1 adhering to the sorting member 3 was scraped off and collected by using a blade made from the material.

第2次加熱および第3次加熱で分別した樹脂の定性分析を赤外吸光分析装置により実施し、樹脂分別の品質を確認した。その結果、第2次加熱により離脱した樹脂は純度100%のPSであり、第3次加熱によりブレードで掻き落とした樹脂は純度100%のPPであった。   The qualitative analysis of the resin fractionated by the secondary heating and the tertiary heating was performed with an infrared absorption analyzer, and the quality of the resin fractionation was confirmed. As a result, the resin released by the secondary heating was PS having a purity of 100%, and the resin scraped off by the blade by the tertiary heating was PP having a purity of 100%.

なお、所定の厚みに均一化する前に、分別対象物の粒子径を篩により均一化するとさらに好ましい。まず目開き8.5mmの篩を用いて分別対象物中の粗大物を除去し、次に目開き1.0mmの篩を用いて分別対象物中の小さな混在片や粉末を取り除くことで、分別対象物の粒子径を一定範囲内に均一化することが可能である。   In addition, it is more preferable that the particle diameter of the object to be separated is made uniform with a sieve before it is made uniform to a predetermined thickness. First, remove coarse particles in the separation object using a sieve with an opening of 8.5 mm, and then remove small mixed pieces and powder in the separation object using a sieve with an opening of 1.0 mm. It is possible to make the particle diameter of the object uniform within a certain range.

なお、第1次加熱の温度が高いほど樹脂の接着強度が大きくなり、また第2,第3次加熱の温度が高いほど樹脂の剥離が容易になる傾向が見られる。しかしながら、分別対象物中の樹脂の融点以上の温度で加熱を行うと、樹脂の溶融が起こるために接着及び剥離が完全に行えず、効率的な分別が行えない。従って、加熱温度は前記分別対象物の最も低い樹脂の融点を超えてはならない。   In addition, the adhesive strength of resin becomes large, so that the temperature of primary heating is high, and the tendency for peeling of resin to become easy is seen, so that the temperature of 2nd, 3rd heating is high. However, if the heating is performed at a temperature equal to or higher than the melting point of the resin in the separation target, the resin melts, so that adhesion and peeling cannot be performed completely, and efficient separation cannot be performed. Therefore, the heating temperature must not exceed the melting point of the lowest resin of the separation object.

以下、前記樹脂分別の品質に及ぼす加熱加圧時の加圧力、第1,第2次加熱の温度、樹脂の厚みおよび不純物の影響について順次説明する。
− 加熱加圧時の加圧力の影響 −
図3は、PPおよびPSを含む分別対象物の分別における加熱加圧時の加圧力とPP回収率の関係を示している。横軸は、第1次加熱温度におけるPPの圧縮降伏応力に対する、第1次加熱の温度における分別対象物への加圧力の比率である。縦軸のPP回収率(%)は、分別対象物に含まれるPP総量に対する、第3次加熱により回収したPP量の百分率(%)である。
Hereinafter, the influence of the pressure applied during heating and pressurization, the temperature of the first and second heating, the thickness of the resin, and the impurities on the quality of the resin separation will be described in order.
− Effect of pressure during heating and pressurization −
FIG. 3 shows the relationship between the pressure applied during heating and pressurization and the PP recovery rate in the separation of the separation object including PP and PS. The horizontal axis represents the ratio of the pressure applied to the object to be separated at the temperature of the primary heating to the compressive yield stress of PP at the primary heating temperature. The PP recovery rate (%) on the vertical axis is the percentage (%) of the PP amount recovered by the third heating with respect to the total PP amount contained in the separation object.

この図3のように、加圧力を増大するとPPの回収率が向上することを見出した。加圧力をPPの圧縮降伏応力以上にすることで、PPを分別部材に接着保持でき、分別対象物からのPP回収が可能となる。またPPの加圧力に対するPPの圧縮降伏応力は、PPの回収率が100%となる1.2倍以上であることが好ましいことを見出した。   As shown in FIG. 3, it was found that the recovery rate of PP is improved when the applied pressure is increased. By making the applied pressure equal to or higher than the compression yield stress of PP, PP can be adhered and held on the separation member, and PP can be recovered from the separation object. Further, it has been found that the compression yield stress of PP with respect to the pressure of PP is preferably 1.2 times or more at which the PP recovery rate becomes 100%.

同様の検証を(表1)に挙げたPP以外の樹脂でも行ったところ、いずれの樹脂においても降伏圧縮応力以上で回収が可能となり、また降伏圧縮応力以上の1.2倍以上で高い回収率となった。   When the same verification was performed on resins other than PP listed in Table 1, it was possible to recover any resin with a yield compression stress or higher, and a high recovery rate with 1.2 times or more the yield compression stress or higher. It became.

なお、加圧力が過剰に大きければ分別部材の破損や、設備への負荷の増大、樹脂の破壊などの不具合が生じるため、分別部材や設備仕様に応じて上限値が設定される。
− 第1次加熱の温度の影響 −
図4はPPおよびPSを含む分別対象物の分別における第1次加熱の温度とPPの回収率の関係を示している。図5はPPおよびPSを含む分別対象物の分別における第1次加熱温度とPPの純度の関係を示している。図5の縦軸のPP純度(%)は、第3次加熱により回収した樹脂総量に対する第3次加熱により回収したPP量の百分率(%)である。
Note that if the applied pressure is excessively large, problems such as breakage of the sorting member, increase in load on the equipment, and destruction of the resin occur, so the upper limit value is set according to the sorting member and equipment specifications.
− Effect of primary heating temperature −
FIG. 4 shows the relationship between the primary heating temperature and the PP recovery rate in the separation of the separation object including PP and PS. FIG. 5 shows the relationship between the primary heating temperature and the purity of PP in the separation of the separation object including PP and PS. The PP purity (%) on the vertical axis in FIG. 5 is a percentage (%) of the amount of PP recovered by the third heating with respect to the total amount of resin recovered by the third heating.

図4の実線は加圧力20000kgfで30秒間加熱加圧した曲線である。第1次加熱の温度が40℃以下の場合は、PPが分別部材3に付着しないために、分別部材3にPPを保持させることができず分別回収することができなかった。第1次加熱の温度を60℃以上から90℃の領域で加熱した場合は、PPの付着強度が増大し、第2次加熱および第3次加熱の操作により、PPの純度および回収率を100%にすることが可能であった。   The solid line in FIG. 4 is a curve heated and pressurized for 30 seconds at a pressure of 20000 kgf. When the temperature of the primary heating was 40 ° C. or lower, PP did not adhere to the separation member 3, so that the separation member 3 could not hold the PP and could not be separated and collected. When the temperature of the primary heating is heated in the region of 60 ° C. or higher to 90 ° C., the adhesion strength of PP is increased, and the purity and recovery rate of PP are set to 100 by the operations of the secondary heating and the tertiary heating. % Was possible.

なお、図4の点線は加圧力40000kgfで30秒間加熱加圧した曲線であり、15℃以上でPPの付着強度が増大するために、PPの純度および回収率を100%にすることが可能であった。このように加圧力が高い条件では、低温域にてPPを分別することが可能であった。ただし、圧力を40000kgfより高くすると分別部材の破損が生じた。   The dotted line in FIG. 4 is a curve heated and pressurized for 30 seconds at a pressure of 40,000 kgf. Since the adhesion strength of PP increases at 15 ° C. or higher, the purity and recovery rate of PP can be made 100%. there were. Under such high pressure conditions, PP could be fractionated in a low temperature range. However, when the pressure was higher than 40000 kgf, the separation member was damaged.

また図5のように、第1次加熱の温度を100℃以上にすると、PPのガラス転移温度だけでなくPSのガラス転移温度のガラス転移温度よりも大きくなるために、第2次加熱によりPSの形状が復元できなくなりPPの純度が低下した。   Further, as shown in FIG. 5, when the temperature of the primary heating is set to 100 ° C. or higher, not only the glass transition temperature of PP but also the glass transition temperature of PS is increased. The shape of PP could not be restored, and the purity of PP decreased.

以上よりPPおよびPSを含む分別対象物においては、15℃以上かつ90℃以下で第1次加熱を行うことが必要であり、加圧力が20000kgfにおいては60℃以上かつ90℃以下で第1次加熱を行うとさらに好ましいことを見出した。   From the above, it is necessary to perform primary heating at 15 ° C. or higher and 90 ° C. or lower for the separation object including PP and PS, and the primary pressure is 60 ° C. or higher and 90 ° C. or lower when the applied pressure is 20000 kgf. It has been found that heating is more preferable.

図6はPPおよびABSを含む分別対象物の分別における第1次加熱の温度とPPの回収率の関係を示している。図7はPPおよびABSを含む分別対象物の分別における第1次加熱の温度とPPの純度の関係を示している。   FIG. 6 shows the relationship between the primary heating temperature and the PP recovery rate in the separation of the separation object including PP and ABS. FIG. 7 shows the relationship between the temperature of primary heating and the purity of PP in the separation of the separation object including PP and ABS.

図6と図7のように、PPおよびPSを含む分別対象物の分別と同様の傾向が確認できた。図6のように、第1次加熱の温度が40℃以下の場合は、分別部材3にPPを付着させて保持させることができず、回収することができなかった。第1次加熱の温度が60℃から110℃の範囲では、PPの付着強度が増大し、第2、第3次加熱の操作により、PPの純度および回収率を100%にすることが可能であった。なお、図6の点線は加圧力40000kgfで30秒間加熱加圧した曲線であり、15℃以上でPPの付着強度が増大するために、PPの純度および回収率を100%にすることが可能であった。   As shown in FIGS. 6 and 7, the same tendency as the separation of the separation object including PP and PS was confirmed. As shown in FIG. 6, when the temperature of the primary heating was 40 ° C. or lower, PP could not be attached to and held on the separation member 3 and could not be recovered. When the temperature of the primary heating is in the range of 60 ° C. to 110 ° C., the adhesion strength of PP increases, and the purity and recovery rate of PP can be made 100% by the operation of the second and third heating. there were. The dotted line in FIG. 6 is a curve heated and pressurized for 30 seconds at a pressure of 40,000 kgf. Since the adhesion strength of PP increases at 15 ° C. or higher, the purity and recovery rate of PP can be made 100%. there were.

また図7のように、第1次加熱の温度を120℃以上にすると、PPだけでなくABSもガラス転移温度よりも大きくなるために、第2次加熱によりABSの形状が復元できなくなり、PPの純度が低下した。   Further, as shown in FIG. 7, when the temperature of the primary heating is set to 120 ° C. or higher, not only PP but also ABS becomes larger than the glass transition temperature, so that the shape of the ABS cannot be restored by the secondary heating, and PP The purity decreased.

以上よりPPおよびABSを含む分別対象物においては、15℃以上かつ110℃以下で第1次加熱を行うことが必要であり、加圧力が20000kgfにおいては60℃以上かつ110℃以下で第1次加熱を行うとさらに好ましいことを見出した。   As described above, in the separation object including PP and ABS, it is necessary to perform the primary heating at 15 ° C. or more and 110 ° C. or less. It has been found that heating is more preferable.

− 第2次加熱の温度の影響 −
図8は、PPおよびPSを含む分別対象物の分別における第2次加熱温度に対するPPおよびPSの純度の関係を示している。図9はPPおよびPSを含む分別対象物の分別における第2次加熱温度に対するPPの回収率の関係を示している。
− Effect of secondary heating temperature −
FIG. 8 shows the relationship of the purity of PP and PS with respect to the secondary heating temperature in the separation of the separation object including PP and PS. FIG. 9 shows the relationship between the recovery rate of PP and the secondary heating temperature in the separation of the separation object including PP and PS.

図8の縦軸のPSの純度(%)は、第2次加熱により離脱回収した樹脂総量に対する、第2次加熱により離脱回収したPS量の百分率(%)である。一方、図8の縦軸のPPの純度(%)は、所定の温度により第2次加熱を行った後、第3次加熱により分別回収した樹脂総量に対する第3次加熱により回収したPP量の百分率である。   The purity (%) of PS on the vertical axis in FIG. 8 is the percentage (%) of the amount of PS removed and recovered by secondary heating with respect to the total amount of resin released and recovered by secondary heating. On the other hand, the purity (%) of PP on the vertical axis in FIG. 8 is the amount of PP recovered by tertiary heating with respect to the total amount of resin fractionally recovered by tertiary heating after secondary heating at a predetermined temperature. Percentage.

図8のように、第2次加熱の温度が70℃より低い場合は、第1次加熱より第2次加熱の温度が低く、PSの形状が加圧前の状態に復元しないため、分別部材3からPSが離脱せず、PPとPSは効率的な分別ができなかった。第2次加熱の温度を70℃以上にするとPSの形状の復元が始まるためにPSが分別部材から離脱し、PPとPSの分別が可能であった。   As shown in FIG. 8, when the temperature of the secondary heating is lower than 70 ° C., the temperature of the secondary heating is lower than the primary heating, and the shape of the PS does not restore to the state before pressurization. PS did not leave from 3, and PP and PS could not be separated efficiently. When the temperature of the secondary heating was set to 70 ° C. or higher, the restoration of the shape of the PS started, so that the PS separated from the separation member, and the PP and PS could be separated.

第2次加熱の温度が100℃から155℃の範囲で20秒間加熱した場合は、PPの純度を100%にすることが可能であった。また図9のように第2次加熱温度を155℃より高くすると、PPが溶融して分別部材3に溶着するために、PPの回収率が低下した。   When the secondary heating temperature was in the range of 100 ° C. to 155 ° C. for 20 seconds, the PP purity could be 100%. In addition, when the secondary heating temperature was higher than 155 ° C. as shown in FIG. 9, PP was melted and welded to the separation member 3, so that the PP recovery rate was lowered.

同様の検証を(表1)に記載の他の樹脂でも行った結果、2次加熱は分別対象物の最も低い樹脂の融点よりも低い温度で、かつ1次加熱温度よりも高い温度で実施する必要があった。   As a result of performing the same verification with other resins described in (Table 1), the secondary heating is performed at a temperature lower than the melting point of the lowest resin of the separation target and at a temperature higher than the primary heating temperature. There was a need.

以上よりPPおよびPSを含む分別対象物、PPおよびABSを含む分別対象物、およびPP、PSおよびABSを含む分別対象物においては、70℃以上かつ155℃以下で、かつ第1次加熱の温度よりも高く設定して第2次加熱を行うことが必要であり、100℃以上かつ155℃以下で、かつ第1次加熱の温度よりも高く設定して第2次加熱を行うとさらに好ましいことを見出した。   From the above, in the separation object including PP and PS, the separation object including PP and ABS, and the separation object including PP, PS and ABS, the temperature of the primary heating is 70 ° C. or more and 155 ° C. or less. It is necessary to perform secondary heating at a higher setting, and it is more preferable to perform secondary heating at a temperature of 100 ° C. or higher and 155 ° C. or lower and higher than the temperature of the primary heating. I found.

− 樹脂の厚みの影響 −
分別対象物の形状バラツキが大きい場合には、加圧時に圧力のバラツキが発生し、良好な付着現象が得られないため、分別対象物の厚みは予め均一化することが好ましい。加圧方向の厚みの樹脂の最小厚みに対する最大厚みの差が5.5mm以内になると、圧力がほぼ均一にかかり、良好な付着現象が得られることを見出した。
− Effect of resin thickness −
When the shape variation of the separation target is large, pressure variation occurs during pressurization, and a good adhesion phenomenon cannot be obtained. Therefore, it is preferable that the thickness of the separation target is equalized in advance. It was found that when the difference between the thickness in the pressing direction and the maximum thickness with respect to the minimum thickness of the resin is within 5.5 mm, the pressure is applied almost uniformly and a good adhesion phenomenon is obtained.

厚みの影響を調べるために、スペーサーを用いて平板プレス機により厚みの調整を実施した。下記の(表2)は、分別対象物の加圧方向の厚みの範囲に対するPPおよびPSの純度および回収率を測定した結果である。   In order to investigate the influence of thickness, the thickness was adjusted with a flat plate press using a spacer. The following (Table 2) is the result of measuring the purity and recovery rate of PP and PS with respect to the range of thickness in the pressing direction of the separation object.

Figure 0004439571
平板プレス機の加圧板の上に分別部材3と分別対象物を載せ、所定の厚みになるように6.0mmのスペーサーを挟んで60秒間加圧し、さらに0.5mm未満の樹脂を取り除くことで、加圧方向の厚みを0.5mm以上かつ6.0mm以下の範囲に均一化し、最小厚みに対する最大厚みの差を5.5mm以内に調整した。このとき、PSの純度が90%以上となり、他の樹脂分別方法と組み合わせることにより、多くの樹脂材料メーカーで樹脂の再生が可能となるために好ましい。
Figure 0004439571
By placing the separation member 3 and the object to be separated on the pressure plate of the flat plate press, pressurizing for 60 seconds with a 6.0 mm spacer so as to have a predetermined thickness, and removing resin less than 0.5 mm The thickness in the pressing direction was made uniform in the range of 0.5 mm or more and 6.0 mm or less, and the difference in maximum thickness with respect to the minimum thickness was adjusted to 5.5 mm or less. At this time, the purity of PS is 90% or more, and it is preferable because many resin material manufacturers can regenerate the resin by combining with other resin separation methods.

同じように、スペーサー等による厚みの調整により、前記樹脂の厚みを1.0mm以上かつ6.0mm以下の範囲に均一化すると、PS純度が98%以上となり、リサイクル材として直接、樹脂材料メーカーにより再生が可能となる純度になるためにさらに好ましい。   Similarly, when the thickness of the resin is made uniform within the range of 1.0 mm or more and 6.0 mm or less by adjusting the thickness with a spacer or the like, the PS purity becomes 98% or more, and directly by the resin material manufacturer as a recycled material. This is more preferable because the purity is such that regeneration is possible.

さらに、前記樹脂の厚みを1.0mm以上かつ3.0mm以下の範囲に均一化すると、PPおよびPSの純度および回収率は各々100%となったためにさらに好ましい。
(表1)に挙げたその他の樹脂で同様の検証を行った結果、他の樹脂でもPPおよびPS樹脂と同じ現象を確認した。
Furthermore, it is more preferable that the thickness of the resin is uniformized in the range of 1.0 mm or more and 3.0 mm or less because the purity and recovery rate of PP and PS are 100% respectively.
As a result of conducting the same verification with the other resins listed in Table 1, the same phenomenon as that of the PP and PS resins was confirmed with the other resins.

− 第2次加熱の昇温速度の影響 −
図10は、PPおよびPSを含む分別対象物の分別における第2次加熱時間に対するPPおよびPSの分別部材との接着強度の関係を示している。分別対象物は、加圧方向の厚みを0.5mm以上かつ6.0mm以下の範囲に予め均一化して使用した。PPおよびPSの接着強度は、日本電産シンポ社製フォースゲージFGP−20を用いて、分別部材と水平方向のせん断応力を測定値とした。なお、分別対象物を分別部材から傾斜や微振動などで簡易に脱着するには、接着強度がゼロであることが好ましい。また、分別対象物を分別部材に安定的に付着維持するためには、接着強度が2N以上であることが好ましい。つまり、PPとPSを含む分別対象物の分別においては、第2次加熱後にPSの接着強度がゼロ、かつ、PPの接着強度が2N以上で良好な分別結果が得られる。
− Effect of rate of temperature increase in secondary heating −
FIG. 10 shows the relationship of the adhesive strength between the PP and PS separation members with respect to the secondary heating time in the separation of the separation object including PP and PS. The object to be separated was used by making the thickness in the pressing direction uniform in the range of 0.5 mm or more and 6.0 mm or less in advance. The adhesive strength of PP and PS was measured by using a separation gauge and horizontal shear stress using a force gauge FGP-20 manufactured by Nidec Sympos. In order to easily remove the separation object from the separation member by tilting or slight vibration, the adhesive strength is preferably zero. Moreover, in order to stably adhere and maintain the separation object to the separation member, it is preferable that the adhesive strength is 2N or more. That is, in the separation of the separation object including PP and PS, a good separation result can be obtained when the PS adhesive strength is zero and the PP adhesive strength is 2N or more after the secondary heating.

図10のように、第2次加熱時間の増大に伴いPSの接着強度が低下し、第2次加熱時間が20秒以上でPSの接着強度はゼロになることがわかった。PPの接着強度については、厚みが1mm以上のPPは、接着強度の低下が認められなかった。しかしながら、厚みが1mmより小さいPPでは、第2次加熱時間の増大に伴い、接着強度が低下し、第2次加熱時間が20秒以上になると、接着強度が2N以下になるものがあり、PSの純度低下やPPの回収率低下の原因になっていることが判った。   As shown in FIG. 10, it was found that the adhesive strength of PS decreased as the secondary heating time increased, and that the PS adhesive strength became zero when the secondary heating time was 20 seconds or more. Regarding PP adhesive strength, PP with a thickness of 1 mm or more showed no decrease in adhesive strength. However, with PP having a thickness of less than 1 mm, the adhesive strength decreases as the secondary heating time increases, and when the secondary heating time is 20 seconds or longer, the adhesive strength may be 2 N or lower. It has been found that this is the cause of the decrease in the purity of PP and the recovery rate of PP.

そこで、厚みが1mmより小さいPPの接着強度の低下を抑制する手段を検討し、その結果、第2次加熱におけるPPの昇温速度をPSの昇温速度よりも小さくすることで、PPの第2次加熱時間を実質的に短くし、第2次加熱におけるPPの接着強度の低下を抑制する手段を見出した。   Therefore, a means for suppressing a decrease in the adhesive strength of PP having a thickness of less than 1 mm was examined, and as a result, the PP temperature increase rate in the secondary heating was made smaller than the PS temperature increase rate. The present inventors have found a means for substantially shortening the secondary heating time and suppressing a decrease in PP adhesive strength in the secondary heating.

PPとPSの昇温速度のコントロールは、樹脂の赤外線吸収特性の差を利用することで容易に実施できる。図11および図12は、PPおよびPSの赤外線吸収カーブであり、PPでは吸収がなく、PSだけが吸収する500〜1200cm−1の波数帯の赤外線を照射すると、PSが優先的に加熱される。また、実際に、図13のような特性をもつゲルマニウム系赤外線フィルターと近赤外線パネルヒーターを用いて、PPとPSを同時に加熱した結果、PSの昇温速度に対して、PPの昇温速度が小さくなることが再現よく確認できた。 The temperature increase rate of PP and PS can be easily controlled by utilizing the difference in the infrared absorption characteristics of the resin. FIG. 11 and FIG. 12 are infrared absorption curves of PP and PS. When irradiated with infrared rays having a wave number band of 500 to 1200 cm −1 which is not absorbed by PP and is absorbed only by PS, PS is preferentially heated. . Moreover, as a result of simultaneously heating PP and PS using a germanium-based infrared filter and a near-infrared panel heater having the characteristics as shown in FIG. 13, the temperature increase rate of PP is higher than the temperature increase rate of PS. It was confirmed with good reproducibility that it became smaller.

(表3)は、PPおよびPSを含む分別対象物の分別における第2次加熱を、前記ゲルマニウム系赤外線フィルターと近赤外線パネルヒーターを用いて実施することで、PPの昇温速度を小さくし、昇温到達温度(150℃)での実質的な加熱時間をPSに対して5秒間短くしたときのPPおよびPSの純度および回収率を測定した結果で、比較のためにホットプレートで、第2次加熱した結果も併記した。(表3)により、PPの加熱時間を短くすることで、PPおよびPSの純度および回収率が改善することが確認できた。   (Table 3) reduces the temperature increase rate of PP by performing the secondary heating in the separation of the separation object including PP and PS using the germanium infrared filter and the near infrared panel heater, As a result of measuring the purity and recovery rate of PP and PS when the substantial heating time at the temperature rise temperature (150 ° C.) was shortened by 5 seconds with respect to PS, The result of the next heating is also shown. From Table 3, it was confirmed that the purity and recovery rate of PP and PS were improved by shortening the heating time of PP.

Figure 0004439571
図14は、PSとPPの昇温到達温度での加熱時間の差とPPおよびPSの純度の関係を示している。PPの加熱時間を5秒以上短くすることで、PS樹脂の純度が98%以上になり、リサイクル材として直接、樹脂材料メーカーにより再生が可能となる純度になることが見出せた。しかしながら、PPが昇温到達温度に達するまでの時間すなわち昇温時間が60秒を超えると、第2次加熱後の接着強度が2N以下になるものが出はじめるため、PPの加熱時間がPSに対して5秒以上短く、かつ、昇温時間が60秒以下であることが好ましい。
Figure 0004439571
FIG. 14 shows the relationship between the difference in heating time between the temperature at which PS and PP rise in temperature and the purity of PP and PS. It was found that by shortening the PP heating time by 5 seconds or more, the purity of the PS resin becomes 98% or more, and the purity can be directly recycled as a recycled material by a resin material manufacturer. However, since the time until the PP reaches the temperature rise, that is, the temperature rise time exceeds 60 seconds, the adhesive strength after the second heating starts to become 2N or less, so the PP heating time becomes PS. On the other hand, it is preferable that the heating time is shorter than 5 seconds and the heating time is shorter than 60 seconds.

(実施の形態2)
図15〜図17は本発明の実施の形態2を示す。
図15(a)〜図15(f)は、ガラス転移温度および降伏応力の異なる第1の樹脂6,第2の樹脂7および第3の樹脂8の3種類が混在する分別対象物から、樹脂を分別する工程を示している。
(Embodiment 2)
15 to 17 show a second embodiment of the present invention.
15 (a) to 15 (f) show a resin from a separation object in which three kinds of first resin 6, second resin 7 and third resin 8 having different glass transition temperatures and yield stresses are mixed. The process of separating is shown.

図15(a)では、分別部材3の上に、分別対象物が載置されている。ここでは第1の樹脂6のガラス転移温度は、第2の樹脂7のガラス転移温度よりも低い。第2の樹脂7のガラス転移温度は、第3の樹脂8のガラス転移温度よりも低い。   In FIG. 15A, the separation object is placed on the separation member 3. Here, the glass transition temperature of the first resin 6 is lower than the glass transition temperature of the second resin 7. The glass transition temperature of the second resin 7 is lower than the glass transition temperature of the third resin 8.

図15(b)では、第1次加熱する。そのときの加熱温度は第1の樹脂6のガラス転移温度以上であり、かつ第2の樹脂7および第3の樹脂8のガラス転移温度よりも低い温度である。   In FIG. 15B, primary heating is performed. The heating temperature at that time is equal to or higher than the glass transition temperature of the first resin 6 and is lower than the glass transition temperatures of the second resin 7 and the third resin 8.

このとき、第1の樹脂6と第2の樹脂7および第3の樹脂8を平板4によって分別部材3に押し付ける。その加圧力の大きさは、第1の樹脂6の圧縮降伏応力と同じかそれ以上であって、この状態で第1の樹脂6、第2の樹脂7および第3の樹脂8を加熱加圧することで、少なくとも第1の樹脂6が分別部材3に付着する。   At this time, the first resin 6, the second resin 7, and the third resin 8 are pressed against the separation member 3 by the flat plate 4. The magnitude of the applied pressure is equal to or greater than the compressive yield stress of the first resin 6, and the first resin 6, the second resin 7, and the third resin 8 are heated and pressurized in this state. As a result, at least the first resin 6 adheres to the separation member 3.

また、第2の樹脂7と第3の樹脂8は、前記加熱加圧の加圧力が、第2の樹脂7および第3の樹脂8の各々の圧縮降伏応力以上の場合は、各々は形状変形して分別部材3に付着するが、ガラス転移温度より低い温度での加工変形のために、圧力解放後に加圧温度より高い熱履歴を加えると、形状が加圧前の状態に復元し、分別部材3より離脱した。   Further, the second resin 7 and the third resin 8 are each deformed when the pressure applied by heating and pressurization is equal to or greater than the compressive yield stress of each of the second resin 7 and the third resin 8. Although it adheres to the separation member 3, if a heat history higher than the pressurization temperature is applied after pressure release due to processing deformation at a temperature lower than the glass transition temperature, the shape is restored to the state before pressurization, and the separation is performed. Detached from member 3.

前記加熱加圧の加圧力が圧縮降伏応力より小さい場合は、第2の樹脂7および第3の樹脂8は分別部材3に付着しない。
次に図15(c)のように、加圧圧力を開放すると、第2の樹脂7および第3の樹脂8が分別部材3に付着していない場合には、実施の形態1と同様の理由で、分別部材3を傾斜または微振動等させることにより、分別部材3に付着している第1の樹脂6と分別できる。
When the pressure applied by heating and pressing is smaller than the compressive yield stress, the second resin 7 and the third resin 8 do not adhere to the separation member 3.
Next, as shown in FIG. 15C, when the pressurization pressure is released, the second resin 7 and the third resin 8 are not attached to the separation member 3, and the same reason as in the first embodiment. Thus, by separating or finely vibrating the separating member 3, it can be separated from the first resin 6 attached to the separating member 3.

図15(d)では、第1次加熱温度より高い温度かつ、第1の樹脂6、第2の樹脂7および第3の樹脂8のうち融点の低い樹脂の融点より低い温度で第2次加熱することにより、第2の樹脂7および第3の樹脂8は、加圧前の状態に形状が復元し、分別部材3に付着していない状態または付着強度が著しく低い状態になるため、分別部材3を傾斜または微振動等させることにより、図15(e)のように、第1の樹脂6と分別できる。   In FIG. 15D, the secondary heating is performed at a temperature higher than the primary heating temperature and lower than the melting point of the first resin 6, the second resin 7 and the third resin 8 having a low melting point. By doing so, the second resin 7 and the third resin 8 are restored to their pre-pressurized state and are not attached to the separation member 3 or have a very low adhesion strength. 3 can be separated from the first resin 6 as shown in FIG.

分別部材3の上に付着して保持された第1の樹脂6は、図15(f)のように、ブレード5等で掻き落すことにより回収できる。このとき、第1の樹脂6に対して第3次加熱を行うことにより第1の樹脂6の弾性率を低下させると、第1の樹脂6と分別部材3の分離が容易になる。   The first resin 6 adhered and held on the separating member 3 can be recovered by scraping it off with a blade 5 or the like as shown in FIG. At this time, if the elastic modulus of the first resin 6 is reduced by performing the third heating on the first resin 6, the separation of the first resin 6 and the separation member 3 is facilitated.

このようにガラス転移温度および降伏応力の異なる3種類の樹脂が混在する場合は、ガラス転移温度の低い樹脂から順番に分別部材3に接着保持させて高純度化する手法が好ましいことを見出した。なお、分別部材3から分離した第2の樹脂7と第3の樹脂8は、同様の操作を繰り返すことにより分別が可能である。   As described above, when three types of resins having different glass transition temperatures and yield stresses coexist, it has been found that a method of increasing the purity by adhering and holding the separation member 3 in order from a resin having a lower glass transition temperature is preferable. Note that the second resin 7 and the third resin 8 separated from the separation member 3 can be separated by repeating the same operation.

図16は、PP、PS、ABSを含む樹脂混合物の分別における、第1次加熱温度に対するPPの回収率の関係を示している。図17はPP、PS、ABSを含む樹脂混合物の分別における、第1次加熱温度に対するPPの回収率の純度の関係を示している。   FIG. 16 shows the relationship between the recovery rate of PP and the primary heating temperature in the fractionation of the resin mixture containing PP, PS and ABS. FIG. 17 shows the relationship between the purity of the recovery rate of PP and the primary heating temperature in the fractionation of the resin mixture containing PP, PS, and ABS.

図16のように、第1次加熱の温度が40℃以下の場合は、PPが分別部材3に付着しないために、分別部材3にPPを接着保持させることができず、分別回収することができなかった。第1次加熱の温度が60℃以上かつ90℃以下の領域で加熱した場合は、のちの第2次加熱および第3次加熱の操作を行うことで、PPの純度および回収率を100%にすることが可能であった。なお、図16の点線は加圧力40000kgfで30秒間加熱加圧した曲線であり、15℃以上でPPの付着強度が増大するために、PPの純度および回収率を100%にすることが可能であった。   As shown in FIG. 16, when the temperature of the primary heating is 40 ° C. or less, PP does not adhere to the separation member 3, so that the separation member 3 cannot be adhered and held by the separation member 3, and can be collected separately. could not. When the primary heating temperature is 60 ° C. or higher and 90 ° C. or lower, the subsequent secondary heating and tertiary heating operations are performed, so that the purity and recovery rate of PP is 100%. It was possible to do. The dotted line in FIG. 16 is a curve obtained by heating and pressurizing for 30 seconds at a pressure of 40,000 kgf. Since the adhesion strength of PP increases at 15 ° C. or higher, the purity and recovery rate of PP can be made 100%. there were.

また図17より、第1次加熱の温度を100℃以上にすると、PPのガラス転移温度だけでなくPSのガラス転移温度より大きくなるために、PSが第2次加熱により形状を復元せず剥離できなかった。   In addition, as shown in FIG. 17, when the temperature of the primary heating is set to 100 ° C. or higher, not only the glass transition temperature of PP but also the glass transition temperature of PS is exceeded. could not.

以上よりPP、PSおよびABSを含む分別対象物においては、15℃以上かつ90℃以下で第1次加熱を行うことが必要であり、加圧力が20000kgfにおいては、60℃以上かつ90℃以下で第1次加熱を行うことがさらに好ましいことを見出した。   From the above, it is necessary to perform primary heating at 15 ° C. or more and 90 ° C. or less for the separation object including PP, PS and ABS, and when the applied pressure is 20000 kgf, It has been found that it is more preferable to perform the primary heating.

(実施の形態3)
図18は本発明の実施の形態3を示す。
図18(a)〜図18(f)は、実施の形態2と同じようにガラス転移温度および降伏応力の異なる第1の樹脂6,第2の樹脂7および第3の樹脂8の3種類が混在する分別対象物から、樹脂を分別する工程を示している。
(Embodiment 3)
FIG. 18 shows a third embodiment of the present invention.
18 (a) to 18 (f), there are three types of first resin 6, second resin 7 and third resin 8 having different glass transition temperatures and yield stresses as in the second embodiment. The process which sorts resin from the mixed separation subject is shown.

図18(a)では、分別部材3の上に、分別対象物が載置されている。ここでは第1の樹脂6のガラス転移温度は、第2の樹脂7のガラス転移温度よりも低い。第2の樹脂7のガラス転移温度は、第3の樹脂8のガラス転移温度よりも低い。   In FIG. 18 (a), the separation object is placed on the separation member 3. Here, the glass transition temperature of the first resin 6 is lower than the glass transition temperature of the second resin 7. The glass transition temperature of the second resin 7 is lower than the glass transition temperature of the third resin 8.

図18(b)では、第1次加熱する。そのときの加熱温度は第1の樹脂6および第2の樹脂7のガラス転移温度以上であり、かつ第3の樹脂8のガラス転移温度よりも低い温度である。   In FIG. 18B, primary heating is performed. The heating temperature at that time is equal to or higher than the glass transition temperature of the first resin 6 and the second resin 7 and is lower than the glass transition temperature of the third resin 8.

このとき、第1の樹脂6と第2の樹脂7および第3の樹脂8を平板4によって分別部材3に押し付ける。その加圧力の大きさは、第1の樹脂6および第2の樹脂7のうち圧縮降伏応力の高い樹脂の圧縮降伏応力と同じかそれ以上であって、この状態で第1の樹脂6、第2の樹脂7および第3の樹脂8を加熱加圧することで、少なくとも第1の樹脂6および第2の樹脂7が分別部材3に付着する。換言すると、第1の樹脂6および第2の樹脂7は、第1の樹脂6および第2の樹脂7のガラス転移温度以上かつ第1の樹脂6および第2の樹脂7の各々の圧縮降伏応力以上で、加熱加圧されているために、塑性変形して分別部材3に付着する。   At this time, the first resin 6, the second resin 7, and the third resin 8 are pressed against the separation member 3 by the flat plate 4. The magnitude of the applied pressure is equal to or greater than the compressive yield stress of the first resin 6 and the second resin 7 having a high compressive yield stress. In this state, the first resin 6, By heating and pressurizing the second resin 7 and the third resin 8, at least the first resin 6 and the second resin 7 adhere to the separation member 3. In other words, the first resin 6 and the second resin 7 are equal to or higher than the glass transition temperature of the first resin 6 and the second resin 7 and the compressive yield stress of each of the first resin 6 and the second resin 7. As described above, since it is heated and pressurized, it plastically deforms and adheres to the separation member 3.

第3の樹脂8は、前記加熱加圧の圧力が第3の樹脂8の圧縮降伏応力以上の場合は形状変形して前記分別部材3に付着するが、ガラス転移温度より低い温度での加工変形のため、圧力解放後に加圧温度より高い熱履歴を加えると、形状が加圧前の状態に復元し、分別部材3より離脱した。   The third resin 8 is deformed and adheres to the separation member 3 when the pressure of the heating and pressurization is equal to or higher than the compression yield stress of the third resin 8, but is deformed at a temperature lower than the glass transition temperature. Therefore, when a heat history higher than the pressurization temperature was applied after the pressure was released, the shape was restored to the state before pressurization and detached from the separation member 3.

前記加熱加圧の圧力が第3の樹脂8の圧縮降伏応力より小さい場合は、第3の樹脂8は分別部材3に付着しなかった。
次に、図18(c)のように加圧圧力を開放すると、第3の樹脂8が分別部材3に付着していなかった場合には、実施の形態1同様の理由で傾斜または微振動などで、接着している樹脂と分別することが可能であった。
When the pressure of the heating and pressurization was smaller than the compressive yield stress of the third resin 8, the third resin 8 did not adhere to the separation member 3.
Next, when the pressurizing pressure is released as shown in FIG. 18 (c), if the third resin 8 is not attached to the separation member 3, it is inclined or slightly vibrated for the same reason as in the first embodiment. Thus, it was possible to separate from the resin that was adhered.

次に図18(d)では、第2次加熱する。そのときの温度は、第1次加熱の温度より高い温度かつ、第1の樹脂6、第2の樹脂7および第3の樹脂8のうち融点の低い樹脂の融点より低い温度である。これによって第3の樹脂8は、加圧前の状態に形状が復元し、分別部材3に付着していない状態または付着強度が著しく低い状態になるため、分別部材3を傾斜または微振動等させることにより、図18(e)のように、第1の樹脂6および第2の樹脂7と分別できる。   Next, in FIG. 18D, secondary heating is performed. The temperature at that time is a temperature higher than the temperature of the primary heating and a temperature lower than the melting point of the resin having the lower melting point among the first resin 6, the second resin 7 and the third resin 8. As a result, the shape of the third resin 8 is restored to the state before pressurization, and the third resin 8 is not attached to the separation member 3 or is in a state of extremely low adhesion, so that the separation member 3 is inclined or slightly vibrated. Thus, as shown in FIG. 18E, the first resin 6 and the second resin 7 can be separated.

分別部材3の上に付着して保持された第1の樹脂6および第2の樹脂7は、図18(f)のように、ブレード5等で掻き落すことにより回収できる。このとき、第1の樹脂6および第2の樹脂7に対して第3次加熱を行うことにより第1の樹脂6および第2の樹脂7の弾性率を低下させると、第1の樹脂6および第2の樹脂7と分別部材3の分離が容易になる。   The first resin 6 and the second resin 7 adhered and held on the separation member 3 can be recovered by scraping them with a blade 5 or the like as shown in FIG. At this time, if the elastic modulus of the first resin 6 and the second resin 7 is reduced by performing the third heating on the first resin 6 and the second resin 7, the first resin 6 and Separation of the second resin 7 and the separation member 3 is facilitated.

このようにガラス転移温度および降伏応力の異なる3種類の樹脂が混在する場合は、ガラス転移温度の高い樹脂から順番に分別部材3に接着保持させて高純度化する手法が好ましいことを見出した。なお、分別部材3から分離した第1の樹脂6および第2の樹脂7は、同様の操作を繰り返すことにより分別が可能である。   As described above, when three types of resins having different glass transition temperatures and yield stresses coexist, it has been found that a method of increasing the purity by adhering and holding the separation member 3 in order from the resin having the higher glass transition temperature is preferable. The first resin 6 and the second resin 7 separated from the separation member 3 can be separated by repeating the same operation.

− 不純物の存在 −
分別対象物の中に所望の樹脂以外の不純物が含まれる場合においても、同様に、ガラス転移温度および降伏応力の差を利用して分別対象物から所望の樹脂を分別することが可能である。
− Presence of impurities −
Even in the case where impurities other than the desired resin are contained in the separation object, it is possible to similarly separate the desired resin from the separation object using the difference between the glass transition temperature and the yield stress.

不純物の成分にゴム、テープ、低融点樹脂などが含まれる場合、加熱加圧により付着した前記不純物の中には2次加熱で離脱しないものがあり、前記不純物の一部はブレードで掻き落として剥離回収する所望の樹脂に混入し、所望の樹脂の純度が低下する。また不純物の成分に第1次加熱の温度以上のガラス転移温度をもつ不純物が含まれる場合、第2次加熱により、前記不純物の一部は加圧前の状態に形状が復元し離脱するために、第2次加熱により離脱し回収する樹脂の純度が低下する。また不純物の成分に金属、木材、紙などが含まれる場合、前記不純物は分別部材に接着しないために、所望の樹脂と分別ができる。   When rubber, tape, low-melting point resin, etc. are included in the impurity component, some of the impurities attached by heating and pressing may not be removed by secondary heating, and some of the impurities may be scraped off with a blade. It mixes with the desired resin to be peeled and collected, and the purity of the desired resin is lowered. If the impurity component contains an impurity having a glass transition temperature equal to or higher than the temperature of the primary heating, the secondary heating causes a part of the impurity to be restored to its pre-pressurized state and separated. The purity of the resin that is detached and recovered by the secondary heating is lowered. Moreover, when a component of impurities includes metal, wood, paper, and the like, the impurities do not adhere to the separation member, and therefore can be separated from a desired resin.

このように分別対象物中に不純物が含まれる場合、不純物の種類と含有量により、所望の樹脂の純度の変動は起こるが、所望の樹脂を分別することは可能である。従って、本発明のプロセスには多少の不純物が混入していても、所望の樹脂を分別することが可能である。   When impurities are contained in the separation target as described above, the purity of the desired resin varies depending on the type and content of the impurities, but the desired resin can be separated. Therefore, the desired resin can be separated even if some impurities are mixed in the process of the present invention.

PP、PS、ABSおよび不純物を含む廃家電の破砕プラスチック分別対象物をサンプルとし、本発明によるPPの高純度分別の検証実験を行った。前記サンプルは使用済み家電製品である冷蔵庫に対して、まず手選別によりコンプレッサおよび高純度の樹脂部品を含む庫内部品を取り出し、その後、破砕機により粉砕を行い、さらに風力選別、磁力選別、静電分別などの工程を通じて金属などを取り出した最大粒子径が10.0mm程度の破砕屑である。   A verification experiment for high-purity fractionation of PP according to the present invention was performed using samples of crushed plastic fractionation objects of waste home appliances containing PP, PS, ABS and impurities. For the refrigerator, which is a used household electrical appliance, the sample is first hand-sorted and the internal parts including the compressor and high-purity resin parts are taken out, and then crushed by a crusher. It is crushing waste having a maximum particle diameter of about 10.0 mm obtained by taking out metal or the like through a process such as electric separation.

予め前記サンプルの一部を抜き取り、前記サンプル中のPPおよび不純物含有量を公知の赤外吸光分析、比重分析、目視および触診で分析した後に、PPの分別を実施した。前記サンプル中のPPの含有率(%)、前記サンプル中の不純物の含有率(%)、および剥離回収したPPの純度(%)を測定した結果を下記の(表4)に示す。   A part of the sample was extracted in advance, and the PP and impurity contents in the sample were analyzed by known infrared absorption analysis, specific gravity analysis, visual inspection and palpation, and then PP separation was performed. The results of measuring the PP content (%) in the sample, the impurity content (%) in the sample, and the purity (%) of the separated and recovered PP are shown in Table 4 below.

Figure 0004439571
この(表4)より、不純物が混入した場合でも、リサイクル材として再生が可能となる純度を維持することが可能であることを実証できた。
Figure 0004439571
From this (Table 4), it was proved that even when impurities were mixed, it was possible to maintain the purity that could be recycled as a recycled material.

このように本発明は使用済み家電に特に多く含まれているPP、PS、ABSの分別に特に効果的である。従来、比重分別などで分別できないとされているフィラー入りの樹脂や、将来需要が拡大するPLAなどにも効果的である。   As described above, the present invention is particularly effective for sorting PP, PS, and ABS that are particularly abundant in used home appliances. Conventionally, it is also effective for filler-filled resin, which cannot be separated by specific gravity separation, or for PLA that will grow in future demand.

本発明のガラス転移温度の差を利用した分別対象物の分別方法は、廃家電や一般廃棄物に含まれる樹脂の混在片から、特定の樹脂材料の再資源化する分別手法として、樹脂の資源循環に適用できる。   The separation method of the separation object using the difference in glass transition temperature of the present invention is a resin resource as a separation method for recycling a specific resin material from a mixed piece of resin contained in waste home appliances and general waste. Applicable to circulation.

本発明の実施の形態1の樹脂分別方法を示す工程断面図Process sectional drawing which shows the resin classification method of Embodiment 1 of this invention 同実施の形態における各樹脂の温度別圧縮降伏応力の測定結果の説明図Explanatory drawing of the measurement result of the compression yield stress according to temperature of each resin in the embodiment 同実施の形態におけるPPの加圧力と回収率の関係図Relationship diagram between PP pressure and recovery rate in the same embodiment 同実施の形態における分別対象物における第1次加熱とPP回収率の関係図Relationship diagram between primary heating and PP recovery rate in separation object in the embodiment PP、PS分別対象物における第1次加熱とPPの純度の関係図Relationship between primary heating and PP purity in PP and PS separation objects PP、ABS分別対象物における第1次加熱とPPの回収率の関係図Relationship between primary heating and PP recovery rate for PP and ABS separation objects PP、ABS分別対象物における第1次加熱とPPの純度の関係図Relationship between primary heating and PP purity in PP and ABS separation objects PP、PS分別対象物における第2次加熱とPPおよびPSの純度の関係図Relationship between secondary heating and PP and PS purity in PP and PS separation objects PP、PS分別対象物における第2次加熱とPPの回収率の関係図Relationship between secondary heating and PP recovery rate for PP and PS separation objects PPおよびPSを含む分別対象物の分別における第2次加熱時間に対するPPおよびPSの分別部材との接着強度の関係図Relationship diagram of PP and PS separation strength with respect to secondary heating time in separation of separation object including PP and PS PPの赤外線吸収特性図Infrared absorption characteristics of PP PSの赤外線吸収特性図Infrared absorption characteristics of PS 第2次加熱手段の特性図Characteristics of secondary heating means PSとPPの昇温到達温度での加熱時間の差とPPおよびPSの純度の関係図Relationship between the difference in heating time between the temperature at which PS and PP rise in temperature and the purity of PP and PS 本発明の実施の形態2の樹脂分別方法を示す工程断面図Process sectional drawing which shows the resin classification method of Embodiment 2 of this invention PP、PS、ABS分別対象物における第1次加熱とPPの回収率の関係図Relationship between primary heating and PP recovery rate for PP, PS and ABS separation objects PP、PS、ABS分別対象物における第1次加熱とPPの純度の関係図Relationship between primary heating and PP purity in PP, PS, ABS separation objects 本発明の実施の形態3の樹脂分別方法を示す工程断面図Process sectional drawing which shows the resin classification method of Embodiment 3 of this invention

符号の説明Explanation of symbols

1 第1の樹脂
2 第2の樹脂
2a 第1次加熱加圧で付着した第2の樹脂
2b 第1次加熱加圧で付着しなかった第2の樹脂
3 分別部材
4 平板
5 ブレード
6 第1の樹脂
7 第2の樹脂
8 第3の樹脂
DESCRIPTION OF SYMBOLS 1 1st resin 2 2nd resin 2a 2nd resin adhering by 1st heating pressurization 2b 2nd resin not adhering by 1st heating pressurization 3 Sorting member 4 Flat plate 5 Blade 6 1st Resin 7 Second resin 8 Third resin

Claims (14)

ガラス転移温度および降伏応力の異なる2種類以上の樹脂が混在した分別対象物を、分別部材に載置して第1次加熱するとともに加圧し、そのときの第1次加熱の温度を、前記樹脂のうちの1種類以上の樹脂のガラス転移温度よりも低い温度で、かつ1種類以上の樹脂のガラス転移温度よりも高い温度に設定し、そのときの加圧力を、第1次加熱の温度よりも低いガラス転移温度の樹脂のうち、最も圧縮降伏応力の高い樹脂の圧縮降伏応力以上に設定して、前記第1次加熱の温度における圧縮降伏応力が前記加圧力よりも低い樹脂を前記分別部材に付着させ、前記加圧した加圧力を開放した後、前記分別部材に付着していない樹脂または付着力の小さい樹脂を前記分別部材から分離し、
さらに、樹脂が付着した前記分別部材を第2次加熱し、そのときの第2次加熱の温度を、第1次加熱の温度より高温かつ前記分別対象物の最も低い融点の樹脂の融点より低い温度に設定して、第1次加熱の温度よりも低いガラス転移温度の樹脂のみを前記分別部材に付着させ、前記分別部材に付着した樹脂を前記分別部材から分離して分別する
樹脂分別方法。
A separation object in which two or more kinds of resins having different glass transition temperatures and yield stresses are mixed is placed on a separation member and subjected to primary heating and pressurization, and the temperature of the primary heating at that time is set as the resin. The temperature is lower than the glass transition temperature of one or more types of resins and higher than the glass transition temperature of one or more types of resins, and the applied pressure at that time is higher than the temperature of the primary heating. Among the resins having a lower glass transition temperature, the resin is set to be equal to or higher than the compressive yield stress of the resin having the highest compressive yield stress, and the resin whose compressive yield stress at the temperature of the primary heating is lower than the applied pressure is the separating member. After releasing the pressurized pressure force, the resin not attached to the separation member or the resin having a small adhesion force is separated from the separation member,
Furthermore, the separation member to which the resin has adhered is subjected to secondary heating, and the temperature of the secondary heating at that time is lower than the melting point of the resin having a temperature higher than the temperature of the primary heating and the lowest melting point of the separation object. A resin separation method in which only the resin having a glass transition temperature lower than the primary heating temperature is attached to the separation member, and the resin attached to the separation member is separated from the separation member and separated.
第1次加熱の温度を、
前記ガラス転移温度および降伏応力の異なる2種類以上の樹脂のうちの、最もガラス転移温度の低い樹脂と、その次にガラス転移温度の低い樹脂の間の温度に設定する
ことを特徴とする
請求項1に記載の樹脂分別方法。
The primary heating temperature is
The temperature is set between a resin having the lowest glass transition temperature and a resin having the next lowest glass transition temperature among two or more kinds of resins having different glass transition temperatures and yield stresses. 1. The resin fractionation method according to 1.
第1次加熱の温度を、
前記ガラス転移温度および降伏応力の異なる2種類以上の樹脂のうちの、最もガラス転移温度の高い樹脂と、その次にガラス転移温度の高い樹脂の間の温度に設定する
ことを特徴とする
請求項1に記載の樹脂分別方法。
The primary heating temperature is
The temperature is set between a resin having the highest glass transition temperature and a resin having the next highest glass transition temperature among the two or more types of resins having different glass transition temperatures and yield stresses. 1. The resin fractionation method according to 1.
前記加圧力、圧縮降伏応力の1.2倍以上での加圧力である
請求項1〜請求項3の何れかに記載の樹脂分別方法。
The resin fractionation method according to any one of claims 1 to 3, wherein the pressure is a pressure equal to or greater than 1.2 times the compressive yield stress.
分別対象物を分別部材に載置した加圧方向における樹脂の最小厚みに対する最大厚みの差が5.5mm以内である
請求項1〜請求項4の何れかに記載の樹脂分別方法。
The resin separation method according to any one of claims 1 to 4, wherein a difference in maximum thickness with respect to the minimum thickness of the resin in the pressurizing direction in which the object to be separated is placed on the separation member is within 5.5 mm.
分別対象物を分別部材に載置した加圧方向における樹脂の厚みが、0.5mm以上かつ6.0mm以下の範囲である
請求項1〜請求項5の何れかに記載の樹脂分別方法。
The resin separation method according to any one of claims 1 to 5, wherein the thickness of the resin in the pressurizing direction in which the separation object is placed on the separation member is in a range of 0.5 mm or more and 6.0 mm or less.
分別対象物を分別部材に載置した加圧方向における樹脂の厚みが、1.0mm以上かつ6.0mm以下の範囲である
請求項1〜請求項5の何れかに記載の樹脂分別方法。
The resin separation method according to any one of claims 1 to 5, wherein the thickness of the resin in the pressurizing direction in which the separation object is placed on the separation member is in a range of 1.0 mm or more and 6.0 mm or less.
分別対象物を分別部材に載置した加圧方向における樹脂の厚みが、1.0mm以上かつ3.0mm以下の範囲である
請求項1〜請求項5の何れかに記載の樹脂分別方法。
The resin separation method according to any one of claims 1 to 5, wherein the thickness of the resin in the pressurizing direction in which the separation object is placed on the separation member is in a range of 1.0 mm or more and 3.0 mm or less.
第2次加熱における、第1次加熱の温度よりも低いガラス転移温度の樹脂の昇温速度が、第1次加熱の温度よりも高いガラス転移温度の樹脂の昇温速度よりも小さいことを特徴とする
請求項1〜請求項8の何れかに記載の樹脂分別方法。
The temperature rising rate of the resin having a glass transition temperature lower than the temperature of the primary heating in the secondary heating is smaller than the temperature rising rate of the resin having a glass transition temperature higher than the temperature of the primary heating. The resin fractionation method according to any one of claims 1 to 8.
第2次加熱における、第1次加熱の温度よりも低いガラス転移温度の樹脂の昇温速度を、第1次加熱の温度よりも高いガラス転移温度の樹脂の昇温速度よりも小さくすることで、前記第1次加熱の温度よりも低いガラス転移温度の樹脂の昇温到達温度での加熱処理時間を前記第1次加熱の温度よりも高いガラス転移温度の樹脂よりも5秒以上短くし、かつ、前記第1次加熱の温度よりも低いガラス転移温度の樹脂の昇温時間が60秒以下であることを特徴とする
請求項1〜請求項8の何れかに記載の樹脂分別方法。
By making the temperature increase rate of the resin having a glass transition temperature lower than the temperature of the primary heating in the secondary heating smaller than the temperature increase rate of the resin having a glass transition temperature higher than the temperature of the primary heating. , The heat treatment time at the temperature rise reaching temperature of the resin having a glass transition temperature lower than the temperature of the primary heating is shorter than the resin having a glass transition temperature higher than the temperature of the primary heating by 5 seconds or more, The resin fractionation method according to any one of claims 1 to 8, wherein the temperature rise time of the resin having a glass transition temperature lower than the temperature of the primary heating is 60 seconds or less.
分別対象物が、ポリプロピレン、ポリエチレン、ポリ乳酸、ポリ塩化ビニル、ポリスチレン、アクリロニトリルスチレン、アクリロニトリルブタジェンスチレン、ポリカーボネートのうち、少なくともいずれか1種を含む
請求項1〜請求項10の何れかに記載の樹脂分別方法。
The separation object includes at least one of polypropylene, polyethylene, polylactic acid, polyvinyl chloride, polystyrene, acrylonitrile styrene, acrylonitrile butadiene styrene, and polycarbonate, according to any one of claims 1 to 10. Resin separation method.
分別対象物がポリプロピレンと、ポリスチレンまたはアクリロニトリルブタジェンスチレンの少なくとも1種からなる
請求項1〜請求項10の何れかに記載の樹脂分別方法。
The resin separation method according to any one of claims 1 to 10, wherein the separation object is made of polypropylene and at least one of polystyrene or acrylonitrile butadiene styrene.
第1次加熱の温度を、15℃以上かつポリプロピレン以外の全ての分別対象物の樹脂種のガラス転移温度未満に設定し、
第2次加熱の温度を、70℃以上かつ155℃以下で、第1次加熱の温度よりも高く設定する
請求項12に記載の樹脂分別方法。
The temperature of the primary heating is set to 15 ° C. or higher and lower than the glass transition temperature of the resin species of all separation objects other than polypropylene,
The resin fractionation method according to claim 12, wherein the temperature of the secondary heating is set to 70 ° C. or more and 155 ° C. or less and higher than the temperature of the primary heating.
第1次加熱の温度を、15℃以上かつポリプロピレン以外の全ての分別対象物の樹脂種のガラス転移温度未満に設定し、
第2次加熱の温度を、100℃以上かつ155℃以下で、第1次加熱の温度よりも高く設定する
請求項12に記載の樹脂分別方法。
The temperature of the primary heating is set to 15 ° C. or higher and lower than the glass transition temperature of the resin species of all separation objects other than polypropylene,
The resin fractionation method according to claim 12, wherein the temperature of the secondary heating is set to 100 ° C. or more and 155 ° C. or less and higher than the temperature of the primary heating.
JP2008127783A 2007-11-14 2008-05-15 Resin separation method Expired - Fee Related JP4439571B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008127783A JP4439571B2 (en) 2007-11-14 2008-05-15 Resin separation method
CN2008102157168A CN101434112B (en) 2007-11-14 2008-09-02 Method for separating resin
US12/261,091 US7863409B2 (en) 2007-11-14 2008-10-30 Method of separating resin
AT08168491T ATE529198T1 (en) 2007-11-14 2008-11-06 METHOD FOR SEPARATING RESIN
EP20080168491 EP2060330B1 (en) 2007-11-14 2008-11-06 Method of separating resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007294982 2007-11-14
JP2008127783A JP4439571B2 (en) 2007-11-14 2008-05-15 Resin separation method

Publications (2)

Publication Number Publication Date
JP2009137273A JP2009137273A (en) 2009-06-25
JP4439571B2 true JP4439571B2 (en) 2010-03-24

Family

ID=40708824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008127783A Expired - Fee Related JP4439571B2 (en) 2007-11-14 2008-05-15 Resin separation method

Country Status (3)

Country Link
JP (1) JP4439571B2 (en)
CN (1) CN101434112B (en)
AT (1) ATE529198T1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9409318B2 (en) 2012-04-23 2016-08-09 Empire Technology Development Llc Methods and systems for collecting thermoplastic resins
JP7175707B2 (en) * 2018-10-23 2022-11-21 萩原工業株式会社 Method for removing impurities from recycled resin material

Also Published As

Publication number Publication date
JP2009137273A (en) 2009-06-25
CN101434112B (en) 2011-05-04
ATE529198T1 (en) 2011-11-15
CN101434112A (en) 2009-05-20

Similar Documents

Publication Publication Date Title
CN102350429A (en) Method for separation and recovery of metal and nonmetal in waste printed circuit board
CN101417284B (en) Recovery method of waste circuit board value resource
JP5775752B2 (en) Method for recovering valuable metals from home appliances
DE102008056311A1 (en) Process for separating individual valuable substances from mixed, in particular comminuted plastic waste
CN101423898A (en) Recovery method of waste circuit board
JP2012125693A (en) Separation recovery apparatus and recycling method of liquid crystal panel
JP4903808B2 (en) Resin separation method
JP4439571B2 (en) Resin separation method
Bogust et al. Physical separation and beneficiation of end-of-life photovoltaic panel materials: utilizing temperature swings and particle shape
Menad Physical separation processes in waste electrical and electronic equipment recycling
US7863409B2 (en) Method of separating resin
US20100275730A1 (en) Method for recycling precious metal from used printed circuit boards
JP2023554195A (en) How to separate plastic articles
CN108380644A (en) A kind of detachment of worn-out electrical appliances recovery process with display screen and circuit board
EP0044507B1 (en) Method of recycling labelled plastic pieces
KR20130017637A (en) Apparatus and method of recycling resource and collecting waste using sandwich panel waste
JP2011235252A (en) Method of recycling glass substrate
CN109719861B (en) Hard impurity material recycling and regenerating process
CN107900084A (en) A kind of processing method of sanitary waste metal product
JP2011224475A (en) Method of recycling liquid crystal panel and apparatus for separating and recovering glass
JP6712426B2 (en) Method and apparatus for producing feed
JP2001232637A (en) Method and apparatus for molding waste plastic granule for chemical raw material
JP2012239974A (en) Method for recycling glass formed with film
JP2005280197A (en) Method for treating waste plastic composite, its treating device, separated collected plastic, recycled plastic and recycled plastic product
JP2742670B2 (en) How to treat used steel cans

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4439571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees