JP4438562B2 - Method of melting cold iron source in hot metal transfer container - Google Patents

Method of melting cold iron source in hot metal transfer container Download PDF

Info

Publication number
JP4438562B2
JP4438562B2 JP2004240818A JP2004240818A JP4438562B2 JP 4438562 B2 JP4438562 B2 JP 4438562B2 JP 2004240818 A JP2004240818 A JP 2004240818A JP 2004240818 A JP2004240818 A JP 2004240818A JP 4438562 B2 JP4438562 B2 JP 4438562B2
Authority
JP
Japan
Prior art keywords
hot metal
bullion
iron source
cold iron
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004240818A
Other languages
Japanese (ja)
Other versions
JP2006057151A (en
Inventor
智之 上野
尚志 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004240818A priority Critical patent/JP4438562B2/en
Publication of JP2006057151A publication Critical patent/JP2006057151A/en
Application granted granted Critical
Publication of JP4438562B2 publication Critical patent/JP4438562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶銑搬送容器での冷鉄源の溶解方法に係わり、特に溶銑の脱珪処理及び/又は脱燐処理後の排滓時に冷却、回収した地金の再利用技術に関する。   The present invention relates to a method for melting a cold iron source in a hot metal transfer container, and more particularly, to a technique for reusing molten metal cooled and recovered during desiliconization and / or dephosphorization after dephosphorization.

従来より、高炉を有する製鉄所では、鉄スクラップ、型銑等の冷鉄源を製鋼原料の一部として溶銑搬送容器(例えば、混銑車等)内へ前置きしてから高炉で溶製した溶銑を装入することが行われている(特許文献1参照)。この技術は、転炉へ製鋼原料としての溶銑を払い出した後の空の溶銑搬送容器から大気中へ放散される熱を、積極的に有効利用するために開発されたものである。また、溶銑払い出し後の熱間状態の混銑車に、小径の湿潤固体鉄源を投入し、該混銑車を複数回傾転して前記固体鉄源を加熱乾燥した後、溶銑を受銑する技術も開示されている(特許文献2参照)。これは、粒鉄、ダスト等の小径の固体鉄源が、単位重量あたりの表面積が大きく、水分含有量が高いため、熱間の混銑車内でも水分が蒸発せずに残留し、受銑時に水蒸気爆発するのを防止する技術として開発されたものである。従って、これらの技術は、冷鉄源を製鋼原料として利用するので、高炉からの溶銑の供給量が不足する場合には、いずれも有効な技術である。   Conventionally, in a steelworks having a blast furnace, a cold iron source such as iron scrap, mold iron, etc. as a part of the steelmaking raw material is placed in a hot metal transfer container (for example, a kneading car) and then molten iron produced in the blast furnace is used. The charging is performed (see Patent Document 1). This technology has been developed to actively utilize the heat dissipated into the atmosphere from an empty hot metal transfer container after the hot metal as a steelmaking raw material has been delivered to the converter. In addition, a technology of putting a small-diameter wet solid iron source into a hot kneading car after the hot metal is discharged, tilting the kneading car a plurality of times, heating and drying the solid iron source, and then receiving the hot metal. Is also disclosed (see Patent Document 2). This is because small solid iron sources, such as granular iron and dust, have a large surface area per unit weight and a high moisture content, so that moisture does not evaporate even in hot chaos cars, It was developed as a technology to prevent explosion. Therefore, since these techniques use a cold iron source as a steelmaking raw material, they are all effective techniques when the amount of hot metal supplied from the blast furnace is insufficient.

ところで、最近は、溶銑予備処理の普及に伴い、上記した冷鉄源とは別種のものが多量に発生している。例えば、高炉の溶銑樋、傾注樋で行われる脱珪処理、処理容器に混銑車を利用する脱珪、脱燐、脱硫処理、取鍋を利用する脱硫処理を行うと、必然的にヤードへの排滓が行われ、その冷却時に地金(例えば、脱珪滓地金、脱燐滓地金、脱硫滓地金等)が回収されるからである。そして、これら地金を製鉄原料として再使用できれば、前記した高炉からの溶銑の供給量が不足する場合に非常に役立つことになる。そのため、それら地金を混銑車に前置きしてから受銑、溶解し、得られた溶銑を再度脱燐、脱硫する技術も公開されている(特許文献3参照)。   By the way, recently, with the spread of hot metal pretreatment, a large amount of materials different from the above-mentioned cold iron source has been generated. For example, desiliconization treatment using blast furnace hot metal, decanting iron, desiliconization using a kneading vehicle, dephosphorization, desulfurization treatment, and desulfurization treatment using a ladle are inevitable. This is because slag is performed and bullion (for example, desiliconized bullion, dephosphorized bullion, desulfurized bullion, etc.) is recovered during cooling. And if these bullion can be reused as a steelmaking raw material, it will be very useful when the amount of hot metal supplied from the blast furnace is insufficient. For this reason, a technique is also disclosed in which these metal bars are received and melted after being placed in a kneading vehicle, and the obtained hot metal is dephosphorized and desulfurized again (see Patent Document 3).

しかしながら、これら地金は、ヤードでスラグを水冷しているため、水分を多量に内包し、混銑車に前置きしてから受銑すると、水蒸気爆発を引き起こすので、自ずと使用量が制限されるという問題がある。ところが、前記特許文献3には、この問題についての記載が一切見られない。また、対策として、前置き後に混銑車を傾転して予め水分を蒸発除去するという特許文献2の技術を応用することも考えられるが、それでは前置き時間が著しく長くなってしまい、効率良く高生産性を維持したい製鋼工程に支障を与えることになる。
特開昭54−142116号公報 特開平5−239523号公報 特開平8−193210号公報
However, since these bullions are cooled by slag in the yard, if they contain a large amount of moisture and are received after being placed in front of a chaotic vehicle, they cause a steam explosion, so the amount of use is naturally limited. There is. However, Patent Document 3 does not show any description about this problem. Also, as a countermeasure, it is conceivable to apply the technique of Patent Document 2 that evaporates and removes water in advance by tilting the kneading car after the pre-installation, but this will significantly increase the pre-installation time and increase the productivity efficiently. This will interfere with the steelmaking process that is desired to maintain the same.
JP 54-142116 A JP-A-5-239523 JP-A-8-193210

本発明は、かかる事情に鑑み、製鋼工程の操業に支障を与えず、前置きしても水蒸気爆発の恐れがない溶銑搬送容器での冷鉄源の溶解方法を提供することを目的としている。   In view of such circumstances, an object of the present invention is to provide a method for melting a cold iron source in a hot metal transfer container that does not hinder the operation of the steelmaking process and does not cause a steam explosion even if it is placed in advance.

発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。   The inventor has intensively studied to achieve the above object, and the results have been embodied in the present invention.

すなわち、本発明は、溶銑搬送容器に冷鉄源を前置きし、高炉からの溶銑を受銑して該冷鉄源を溶解するに際して、前記冷鉄源として溶銑の脱珪処理及び/又は脱燐処理後の排滓時に冷却、回収した地金を採用すると共に、該地金のサイズを150mm以上、付着スラグの塩基度(=CaO/SiO2)を2.5以下に制限することを特徴とする溶銑搬送容器での冷鉄源の溶解方法である。この場合、前記溶銑搬送容器が混銑車であることが好ましい。 That is, the present invention provides a cold iron source in a hot metal transfer container, receives hot metal from a blast furnace, and melts the cold iron source. It is characterized by adopting a bullion cooled and recovered at the time of draining after treatment, and limiting the size of the bullion to 150 mm or more and the basicity (= CaO / SiO 2 ) of adhered slag to 2.5 or less. This is a melting method of the cold iron source in the hot metal transport container. In this case, it is preferable that the hot metal transport container is a kneading vehicle.

本発明では、冷鉄源として水蒸気爆発を引き起こす原因を包含しない地金を利用するようにしたので、溶銑搬送容器内に前置きしても製鋼工程に支障を及ぼすことなく、安定して円滑な溶解が可能になる。その結果、従来は使用量に制限のあった地金が製鋼原料として有効利用できるようになった。   In the present invention, since a bullion that does not include the cause of the steam explosion as a cold iron source is used, stable and smooth melting without affecting the steelmaking process even if it is placed in the hot metal transfer container in advance. Is possible. As a result, bullion that has been limited in amount of use can be effectively used as a raw material for steelmaking.

以下、発明をなすに至った経緯をまじえ、本発明の最良の実施形態を説明する。   Hereinafter, the best embodiment of the present invention will be described based on the background of the invention.

まず、発明者は、前記したように、溶銑の脱珪処理及び/又は脱燐処理後の排滓時に発生する地金(荒銑とも称される)を溶銑搬送容器内に冷鉄源として前置きし、高炉からの溶銑を受銑して溶解する際に、付着水分により水蒸気爆発等が起きる恐れがあり、その使用量に制限のあることに着眼した(具体的には200t/月程度の使用実績)。このような地金を冷鉄源として多量に利用できれば、その発生量は安定しているので、高炉からの溶銑の供給量が不足する場合には、非常に有効な製鋼原料となるからである。   First, as described above, the inventor preliminarily uses, as a cold iron source, a bullion (also referred to as rough sea) generated at the time of desiliconization of hot metal and / or discharge after dephosphorization. However, when receiving hot metal from the blast furnace and melting it, there was a risk of steam explosion due to the adhering water, and it was noted that the amount of use was limited (specifically, use of about 200 t / month) Performance). If such a bullion can be used in large quantities as a cold iron source, the amount generated will be stable, so if the amount of hot metal supplied from the blast furnace is insufficient, it will be a very effective steelmaking raw material. .

単に、地金の付着水分を減らす技術としては、前述の特許文献2記載の技術があるが、それでは生産性が阻害される。そこで、本発明者は、特にそのような乾燥工程を設け無くても、水蒸気爆発につながるような水分の量を制限できる手段の発見に努力し、該地金のうちサイズ(具体的には、地金の最長部の長さをいう)が150mm以上で、付着スラグの塩基度(=CaO/SiO2)を2.5以下に制限すれば、溶銑搬送容器内に冷鉄源として前置きできることを見出し、この2要件を満たす地金を溶解することを本発明としたのである。これにより、月1000t以上の地金が製鋼原料として利用できるようになった。 There is a technique described in Patent Document 2 described above as a technique for reducing the adhesion moisture of the bare metal, but this impedes productivity. Therefore, the present inventor made an effort to find a means that can limit the amount of water that leads to a steam explosion without providing such a drying step, and the size (specifically, If the basicity of adhering slag (= CaO / SiO 2 ) is limited to 2.5 or less if the length of the longest part of the bullion is 150 mm or more, it can be placed as a cold iron source in the hot metal transfer container. The present invention is to dissolve a bullion that meets these two requirements. As a result, bullion over 1000t per month can be used as a raw material for steelmaking.

ここで、地金のサイズと付着スラグの塩基度を上記のように規定した理由は、以下の通りである。溶銑搬送容器内に投入した地金が溶銑を受銑した際に水蒸気爆発を起こすか否かは、その付着水分量に依存する。地金の水分は、正確には地金の表面に付着している水分であるから、地金の比表面積が大きいほど、すなわち地金のサイズが小さいほど、付着水分量が多くなる。本発明者は、詳細な調査により、水蒸気爆発の起こる限界の最小水分量がおよそ1質量%程度であることを見出した。そして、引き続き、この最小水分量未満に付着水分を制限する具体的な手段の発見に努力し、地金の前記のように定義したサイズを150mm以上にすれば良いことを見出したのである。溶銑搬送容器に投入する地金の一つ一つについて付着水分を分析することは、煩雑であり、実操業では非常に困難であるが、このように単にサイズだけで地金を選別することは、後述のグリズリ等の篩い分け手段を用いれば、容易に実施できる。   Here, the reason for defining the size of the metal and the basicity of the attached slag as described above is as follows. Whether or not a steam explosion occurs when the bullion introduced into the hot metal transport container receives the hot metal depends on the amount of adhering water. Since the moisture of the bullion is precisely the moisture adhering to the surface of the bullion, the larger the specific surface area of the bullion, that is, the smaller the size of the bullion, the greater the amount of adhered moisture. The inventor has found through a detailed investigation that the minimum water content at which steam explosion occurs is about 1% by mass. And he continued to strive for the discovery of a specific means for limiting the adhering moisture below this minimum moisture content, and found that the size of the bullion defined above should be 150 mm or more. Analyzing the adhering moisture of each bullion put into the hot metal transfer container is cumbersome and very difficult in actual operation, but in this way it is not possible to sort bullion simply by size. It can be easily carried out by using a screening means such as grizzly to be described later.

ところが、このようにして、150mm以上のサイズの地金を選んで、溶銑搬送容器に前置きして受銑するようにして試験操業を重ねたところ、地金のサイズが150mm以上であっても、水蒸気爆発が発生する場合があった。そこで、さらに詳細な調査を行ったところ、地金に付着したスラグの塩基度が水蒸気爆発の有無に影響していることが明らかになった。これは、付着スラグの塩基度(=CaO/SiO2:質量比)が高い場合は、スラグ中に未滓化のCaO(「フリーライム」と称される)が存在し、これが地金をヤードに放置している間に、雰囲気中の水分を吸収して水和反応し、Ca(OH)2となって含水量が高まるためである。そこで、本発明者は、水蒸気爆発の発生しない付着スラグの塩基度範囲について検討し、該塩基度が2.5以下であれば良いことを見出し、本発明を完成させたのである。 However, in this way, when selecting a bullion having a size of 150 mm or more and repeating the test operation so as to receive it in front of the hot metal transfer container, even if the size of the bullion is 150 mm or more, In some cases, a steam explosion occurred. Therefore, a more detailed investigation revealed that the basicity of the slag adhering to the metal had an effect on the presence or absence of a steam explosion. This is because when the basicity of the attached slag (= CaO / SiO 2 : mass ratio) is high, unsaturated CaO (referred to as “free lime”) exists in the slag, and this is used to yard the bullion. This is because the moisture in the atmosphere is absorbed and left to hydrate to form Ca (OH) 2 while the water content is increased. Therefore, the present inventor studied the basicity range of the attached slag in which no steam explosion occurred, and found that the basicity should be 2.5 or less, and completed the present invention.

次に、これらの条件を満たす地金を確保する具体的な手段を検討した。サイズを150mm以上にするには、スラグヤードにおいて水冷後に放置されているスラグ等をロングアームのショベルを利用して掬い上げ、グリズリ(間隔が150mmの鋼製格子)に掛けることで選別した。これにより、スラグに含まれていた鉄分の大部分(95%超え)は、塊状の地金として、分離回収される。ただし、この地金には、多量のスラグが付着している(最大で50質量%程度)。そこで、該地金に付着しているスラグから試料を採取し、化学分析により塩基度(CaO/SiO2)を定量する。そして、付着スラグの塩基度が2.5未満である地金を選んで溶銑搬送容器に投入する。なお、一つ一つの地金あるいは地金のロット毎に代表サンプルを選んで上記のようにして塩基度を定量するのが最も確実であるが、分析に手間がかかるという問題がある。そこで、本発明では、簡便に、地金を回収する前の容器(溶銑より脱珪、脱硫あるいは脱燐処理等の溶銑予備処理を行った容器)のスラグの分析値(通常、溶銑の予備処理に際しては、必ず工程的に処理前後のスラグ及び溶銑のサンプルを採取し、分析を行っている)をもって、その地金の付着スラグの分析値に代えても良い。 Next, we examined specific means to secure bullion that satisfies these conditions. In order to increase the size to 150 mm or more, slag or the like left after water cooling in the slag yard was scooped up using a long arm excavator and applied to grizzly (a steel grid with an interval of 150 mm). Thereby, most of the iron content (over 95%) contained in the slag is separated and recovered as a bulk metal. However, a large amount of slag is attached to this bullion (about 50% by mass at maximum). Therefore, a sample is taken from the slag adhering to the metal and the basicity (CaO / SiO 2 ) is quantified by chemical analysis. Then, a bare metal having a basicity of adhering slag of less than 2.5 is selected and put into a hot metal transfer container. Although it is most certain to select a representative sample for each bullion or bullion lot and quantify the basicity as described above, there is a problem that it takes a lot of time for analysis. Therefore, in the present invention, the analytical value of the slag (usually the pretreatment of the hot metal) of the container (the container that has been subjected to the hot metal pretreatment such as desiliconization, desulfurization, or dephosphorization from the hot metal) before recovering the metal in the present invention. In this case, samples of slag and hot metal before and after treatment are always collected and analyzed step by step), and the analysis value of the attached slag of the bare metal may be used.

以下、実施例において、本発明に係る冷鉄源の溶解方法を具体的に説明する。   Hereinafter, in the Examples, the method for melting a cold iron source according to the present invention will be described in detail.

一般に、製鋼工場では、図1に示すように、高炉からの溶銑を脱珪処理し、溶銑搬送容器としての混銑車に受け入れ、脱燐処理してから転炉へ装入して、溶鋼を溶製する。この操業において、通常、溶銑の前記脱珪処理及び脱燐処理で形成されたスラグは、ヤードに排滓され、水冷後に大気中に放置される。それらの放置されたスラグは、前記したように、ショベルを用いて間隔150mmのグリズリに掛けられ、スラグ中で凝固した鉄分は、塊状の地金(粒径150〜750mm)として回収されている。   In general, as shown in FIG. 1, in a steelmaking factory, molten iron from a blast furnace is desiliconized, received in a kneading vehicle as a molten iron transport container, dephosphorized, and charged into a converter to melt molten steel. To make. In this operation, usually, the slag formed by the desiliconization and dephosphorization processes of hot metal is discharged into a yard and left in the atmosphere after water cooling. As described above, the neglected slag is hung on a grizzly with an interval of 150 mm using an excavator, and the iron solidified in the slag is recovered as a bulk metal (particle size 150 to 750 mm).

本発明では、この地金のうち、付着スラグの塩基度(CaO/SiO2)が2.5以下のものを選択し、冷鉄源とした。なお、一部の地金について水分付着量を分析したところ、0.1〜1.0質量%の範囲にあった。そして、脱燐処理された溶銑を取鍋を介して既に転炉へ装入し、空になった混銑車内に、該冷鉄源をリフティング・マグネット(以下、リフマグという)を用いて所定量だけ装入(前置き装入という)した。ここで、混銑車としては、溶銑の収容量が1台あたり300トンのものを利用し、地金の前置き装入量は、1台あたり3トンとした。本発明は、この前置きした地金の上に、通常通り脱珪処理された高炉からの溶銑を297トン受け入れ、その顕熱及び撹拌力を利用して溶解するものであり、従来は200トン程度しか処理されていなかった該地金を、本実施例では、約8ケ月間の操業を行い、累計で11931トン使用できた。 In the present invention, a slag having a basicity (CaO / SiO 2 ) of 2.5 or less is selected as the cold iron source. In addition, when the moisture adhesion amount was analyzed about some bullion, it was in the range of 0.1-1.0 mass%. Then, the dephosphorized hot metal is already charged into the converter through a ladle, and the cold iron source is placed in a emptied kneading car by a predetermined amount using a lifting magnet (hereinafter referred to as a riffmag). It was charged (referred to as front loading). Here, as the kneading vehicle, one having a capacity of 300 tons of molten iron per vehicle was used, and the amount of pre-charged bullion was 3 tons per vehicle. In the present invention, 297 tons of hot metal from a blast furnace that has been desiliconized as usual is received on this bare metal, and is melted by using its sensible heat and stirring force. In this example, the bullion that had only been treated was operated for about 8 months, and a total of 11931 tons could be used.

この実施結果は、下記のように評価された。まず、混銑車に前置きした地金は、スラグを多量に付着しており、通常の溶銑より軽い。そのため、受銑中に溶解しない場合は、その大部分が図1の「脱珪処理発生スラグの排滓」で混銑車より排出される可能性がある。そこで、1ケ月を単位として前置き地金量とヤードで回収される地金量との関係を調査した。もし前置き地金量が溶解せずにそのまま排出していると、該前置き地金量に比例してヤードで回収される地金量が増加するはずである。しかしながら、図2に示すように、そのような傾向は認められず、前置き地金は順調に溶解していると判断された。   The results of this implementation were evaluated as follows. First, the bullion placed in front of the chaotic car has a lot of slag attached and is lighter than ordinary hot metal. Therefore, when it does not melt during receiving, most of it may be discharged from the kneading vehicle by “exhaustion of slag generated by desiliconization” in FIG. Therefore, we investigated the relationship between the amount of prepaid bullion and the amount of bullion collected at the yard in units of one month. If the amount of the front bullion is discharged without being dissolved, the amount of bullion collected in the yard should increase in proportion to the amount of the front bullion. However, as shown in FIG. 2, such a tendency was not recognized, and it was determined that the front metal was dissolved smoothly.

また、図3に前置き地金量と溶銑歩留り(=(製鋼使用溶銑量×100)/(高炉出銑量+混銑車前置き地金量):単位%)との関係を示す。この溶銑歩留りの計算では、前置き地金の全量が溶解していると仮定している。従って、溶解が円滑に行われていない場合には、歩留りの低下となるはずである。しかしながら、図3からは、そのような傾向は見られず、逆に増加傾向があり、円滑溶解が行われていると判断される。   Further, FIG. 3 shows the relationship between the amount of the preceding metal and the hot metal yield (= (the amount of molten steel used for steel making × 100) / (the amount of blast furnace outflow + the amount of metal in front of the mixed car): unit%). In the calculation of the hot metal yield, it is assumed that the entire amount of the front metal is dissolved. Therefore, if the dissolution is not performed smoothly, the yield should be reduced. However, from FIG. 3, such a tendency is not observed, and conversely, there is an increasing tendency, and it is determined that smooth dissolution is performed.

さらに、冷鉄源を多量に溶解する場合、溶銑温度の降下に配慮しなければならい。そこで、高炉出銑から製鋼工場へ到着するまでの温度降下量(ΔT)を調査したところ、0.93℃/(kg/t)であり、金属分100%の鉄スクラップを前置きした場合の降下量0.43℃/(kg/t)に比べて大きかった。そこで、この温度降下量でも良いことを確認するため、混銑車及び転炉のどちらに地金を前置きした方が良いかを調査した。その結果は、図4に示すように、地金を転炉よりも混銑車に前置きして溶解した方が温度降下量が低いことがわかり、この降下量で問題のないことが確認された。   In addition, when melting a large amount of cold iron source, consideration must be given to the drop in hot metal temperature. Therefore, when the amount of temperature drop (ΔT) from the blast furnace tapping to arrival at the steelmaking factory was investigated, it was 0.93 ° C / (kg / t), and the drop when iron scrap with 100% metal content was placed in front. The amount was larger than 0.43 ° C./(kg/t). Therefore, in order to confirm that this amount of temperature drop is acceptable, we investigated whether it is better to place metal in front of the chaotic car or converter. As a result, as shown in FIG. 4, it was found that the amount of temperature drop was lower when the bullion was melted in front of the kneading car than the converter, and it was confirmed that there was no problem with this amount of drop.

加えて、高炉出銑から製鋼工場へ到着するまでの間で、溶銑中の硫黄(S)及び燐(P)に地金の前置きがどのように影響するかも調査した。その結果、地金のSは溶銑と比べて低いので、前置きによる問題は発生しないことが明らかになった。一方、付着スラグにはP25が多いので、Pの増加が懸念されたが、このPについても、大きな影響がないことが判明した。 In addition, it was also investigated how the bullion influencing the sulfur (S) and phosphorus (P) in the hot metal from the blast furnace tapping to arrival at the steel factory. As a result, it became clear that the problem of the pre-position does not occur because the S of the bullion is lower than the hot metal. On the other hand, since there is a large amount of P 2 O 5 in the attached slag, there was a concern about an increase in P, but it was found that this P also has no significant influence.

このように、本発明によれば、製鋼工程に支障を及ぼすことなく、従来は使用量に制限のあった溶銑予備処理スラグから回収した地金を製鋼原料として有効利用できるようになった。   As described above, according to the present invention, the metal recovered from the hot metal pretreatment slag, which has been conventionally limited in amount, can be effectively used as a steelmaking raw material without affecting the steelmaking process.

本発明に係る溶銑搬送容器での冷鉄源の溶解方法を説明するフロー図である。It is a flowchart explaining the melting method of the cold iron source in the hot metal conveyance container which concerns on this invention. 本発明の実施による前置き地金量とヤードで回収される地金量との関係を示す図である。It is a figure which shows the relationship between the amount of front bullion by implementation of this invention, and the amount of bullion collect | recovered by the yard. 本発明の実施による前置き地金量と溶銑歩留り(%)との関係を示す図である。It is a figure which shows the relationship between the amount of front metal by implementation of this invention, and hot metal yield (%). 地金を転炉及び混銑車へ前置きした場合の溶銑の温度降下量を比較した図である。It is the figure which compared the temperature fall amount of the hot metal at the time of placing a metal bar ahead of a converter and a kneading car.

Claims (2)

溶銑搬送容器に冷鉄源を前置きし、高炉からの溶銑を受銑して該冷鉄源を溶解するに際して、
前記冷鉄源として溶銑の脱珪処理及び/又は脱燐処理後の排滓時に冷却、回収した地金を採用すると共に、該地金のサイズを150mm以上、付着スラグの塩基度(=CaO/SiO2)を2.5以下に制限することを特徴とする溶銑搬送容器での冷鉄源の溶解方法。
When the cold iron source is placed in front of the hot metal transfer container and the hot iron from the blast furnace is received to melt the cold iron source,
As the cold iron source, a bare metal cooled and recovered at the time of desiliconization and / or dephosphorization of the molten iron is adopted as the cold iron source, the size of the bare metal is 150 mm or more, and the basicity of the attached slag (= CaO / A method for melting a cold iron source in a hot metal transfer container, wherein SiO 2 ) is limited to 2.5 or less.
前記溶銑搬送容器が混銑車であることを特徴とする請求項1記載の溶銑搬送容器での冷鉄源の溶解方法。   2. The method for melting a cold iron source in a hot metal transport container according to claim 1, wherein the hot metal transport container is a kneading vehicle.
JP2004240818A 2004-08-20 2004-08-20 Method of melting cold iron source in hot metal transfer container Active JP4438562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004240818A JP4438562B2 (en) 2004-08-20 2004-08-20 Method of melting cold iron source in hot metal transfer container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004240818A JP4438562B2 (en) 2004-08-20 2004-08-20 Method of melting cold iron source in hot metal transfer container

Publications (2)

Publication Number Publication Date
JP2006057151A JP2006057151A (en) 2006-03-02
JP4438562B2 true JP4438562B2 (en) 2010-03-24

Family

ID=36104874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004240818A Active JP4438562B2 (en) 2004-08-20 2004-08-20 Method of melting cold iron source in hot metal transfer container

Country Status (1)

Country Link
JP (1) JP4438562B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4795084B2 (en) * 2006-04-10 2011-10-19 新日本製鐵株式会社 Method for melting cold iron source
JP5245340B2 (en) * 2007-09-26 2013-07-24 Jfeスチール株式会社 How to use recovered dust from converter exhaust gas in steelmaking process
JP7115434B2 (en) * 2019-07-31 2022-08-09 Jfeスチール株式会社 Melting method of cold iron source in hot metal transport vessel

Also Published As

Publication number Publication date
JP2006057151A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
WO2016174696A1 (en) Method for reuse of desulfurization slag
AT407644B (en) METHOD FOR SLAG CONDITIONING AND APPARATUS THEREFOR
JP4438562B2 (en) Method of melting cold iron source in hot metal transfer container
WO2018135347A1 (en) Method for suppressing foaming of slag, and converter refining method
JP5017935B2 (en) Hot metal desulfurization treatment method
JP5895887B2 (en) Desulfurization treatment method for molten steel
JP2004076088A (en) Method for recycling desulfurization slag
TWI637062B (en) Method for manufacturing molten steel
JP4972974B2 (en) Hot metal desulfurization method
JP3293383B2 (en) How to use hot metal slag
JP4998677B2 (en) Reuse method of desulfurization slag
JP4442369B2 (en) Method of dissolving solid iron source in hot metal transfer container
JP5058768B2 (en) Utilization of iron source recovered from steelmaking slag
JP4581751B2 (en) Prevention of dust from hot metal transport container
JP4609010B2 (en) Steel manufacturing method
JP2005240145A (en) Method for desulfurizing molten pig iron
JP4442368B2 (en) Melting method of large cold iron source in hot metal transfer container
JP2006274329A (en) Method for decarburize-refining molten iron
JP7243185B2 (en) Hot slag recycling method
JP5494306B2 (en) Heat dissipation suppression method for hot metal
JP2009079256A (en) Method for utilizing recovered dust in waste gas from converter, in iron-making process
JP4218172B2 (en) Method for refining molten iron alloy
JP2007031800A (en) Method for desulfurizing molten iron
JP6565690B2 (en) Pretreatment method of hot metal in chaos car
JP4701752B2 (en) Hot metal pretreatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4438562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250