JP4438148B2 - Production method of foamed propeller fan - Google Patents
Production method of foamed propeller fan Download PDFInfo
- Publication number
- JP4438148B2 JP4438148B2 JP36417899A JP36417899A JP4438148B2 JP 4438148 B2 JP4438148 B2 JP 4438148B2 JP 36417899 A JP36417899 A JP 36417899A JP 36417899 A JP36417899 A JP 36417899A JP 4438148 B2 JP4438148 B2 JP 4438148B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- max
- foamed
- propeller fan
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、送風、冷却、排気等の目的で、自動車用、エアコン用などに幅広く使用される、熱可塑性樹脂製発泡プロペラファンの製造方法に関する。詳しくは、特定形状の金型と特定の射出成形法および射出成形条件との組合せにより得られ、翼部に発泡構造を有し、しかも翼部形状が良好で、剛性、軽量性、および低騒音性に優れた発泡プロペラファンの製造方法に関する。
【0002】
【従来の技術】
従来、熱可塑性樹脂製プロペラファンについて、翼部分を厚肉化して剛性を増し、高風量化、低騒音化する試みが行われている。しかしながら、厚肉化することでプロペラファンの重量が増し、材料コストがアップするばかりか、モーターの消費電力がアップするという問題を抱えている。
【0003】
このため、ショートショット発泡成形法や、ガスインジェクション成形法などによる樹脂製プロペラファンの厚肉軽量化の試みが既に提案されている。
ショートショット発泡成形法とは、発泡性樹脂組成物を、キャビティーの容積より少ない量で射出し(いわゆるショートショット)、該組成物の発泡による容積増加を利用してキャビティー内に充填するというものであり、特開平10-89298号公報等においてショートショット発泡成形法による発泡プロペラファンが提案されている。この方法によれば、理想的な翼形状を有し、軽量化されたプロペラファンを得ることが可能であるが、発泡倍率は高々1.6〜1.7倍程度であって、軽量化という意味では未だ不満足なものであるばかりか、発泡構造であるために翼部の剛性がやや不足しているという問題があった。
また、ガスインジェクション成形法によるプロペラファンとしては、特開平9-112491号公報に提案されている。この方法によっても、理想的な翼形状を有し、軽量化されたプロペラファンを得ることが可能であるが、翼ごとの重量ばらつきが大きく、動バランスが悪化して高回転に耐えられないばかりか、動バランスの悪化に伴い騒音が発生するという問題があった。
また、翼部分を上下貼合わせ構造として中空化してプロペラファンを得る方法も、特開昭61-108898号公報に提案されている。この方法は、軽量化の効果も大きく、重量ばらつきも小さいが、貼合わせの工程が煩雑で生産性が著しく悪化するうえ、貼合わせ時の変形や貼合わせ部分の剥離など、品質上好ましくない問題があった。
一方、特開平9-277335号公報には、長繊維強化熱可塑性樹脂を用いた、特殊型開き発泡成形法が提案されている。この方法を用いれば、軽量性に優れ、および表面固化層の形成により強度、剛性に優れた成形品を得ることができる。しかしながら、この方法をファンに適用しようとすると、翼形状が悪化し、騒音が発生するという問題があった。
【0004】
【発明が解決しようとする課題】
本発明の目的は、上記不都合をすべて解消し、厚肉、軽量で、剛性に優れ、しかも翼形状が良好で低騒音性にも優れた発泡プロペラファンの製造方法を提供することである。
【0005】
【課題を解決するための手段】
本発明者らは上記不都合点を解消した発泡プロペラファンを得るべく鋭意検討の結果、発泡性樹脂組成物を可塑化して特定形状の金型キャビティー内に特定時間で射出充填し、特定時間冷却した後、キャビティーの容積を拡大し、内部に発泡層を形成させるような射出成形方法で得られる発泡プロペラファンが、上記課題の解決に対しきわめて有用であることを見出し、本発明に到達した。
【0006】
すなわち、本発明は、以下に示される構成からなる。
(1) 組成物基準で、熱可塑性樹脂を95〜99.9重量%および化学発泡剤を0.1〜5重量%含有する発泡性樹脂組成物を可塑化する工程(a)、目的とする成形品の容積よりも小さく閉じた金型キャビティー内に該可塑化物を射出する工程(b)、射出充填完了後に金型面に接触する固化層と内部の溶融層が混在する状態まで冷却する工程(c)、金型を開くことによって、目的とする成形品の容積までキャビティーの容積を拡大する工程(d)、さらに冷却を行った後に成形品を取出す工程(e)を経て得られる、少なくとも翼部に発泡構造を有する発泡プロペラファンであって、前記金型として翼部に関し、最小肉厚部の肉厚が1mm以上、最大肉厚部の肉厚が15mm以下および外周が実質的に円弧状末端となっている形状の金型を用い、b工程の時間を5秒以下、かつ、c工程の時間を下記式で定義されるTmin〜Tmaxの範囲内にすることを特徴とする発泡プロペラファンの製造方法。
Tmin=hmax 2×(M/1000) …式1
Tmin : 最小一次冷却時間 [秒]
hmax : 型開き前の翼部の最大肉厚 [mm]
M : 金型温度 [℃]
Tmax=hmin 2×(M/30) …式2
Tmax : 最大一次冷却時間 [秒]
hmin : 型開き前の翼部の最小肉厚 [mm]
M : 金型温度 [℃]
Tmin≦Tmax …式3
(2) 組成物基準で、熱可塑性樹脂を95〜99.9重量%および化学発泡剤を0.1〜5重量%含有する発泡性樹脂組成物を可塑化する工程(a)、翼部の付根と外周を除いた部分を、目的とする成形品の容積よりも小さく閉じた金型キャビティー内に該可塑化物を射出する工程(b)、射出充填完了後に金型面に接触する固化層と内部の溶融層が混在する状態まで冷却する工程(c)、翼部の付根と外周を除いた部分の金型を開くことによって、目的とする成形品の容積までキャビティーの容積を拡大する工程(d)、さらに冷却を行った後に成形品を取出す工程(e)を経て得られる、少なくとも翼部に発泡構造を有する発泡プロペラファンであって、前記金型として翼部に関し、最小肉厚部の肉厚が1mm以上、最大肉厚部の肉厚が15mm以下および外周が実質的に円弧状末端となっている形状の金型を用い、b工程の時間を5秒以下、かつ、c工程の時間を下記式で定義されるTmin〜Tmaxの範囲内にすることを特徴とする発泡プロペラファンの製造方法。
Tmin=h'max 2×(M/1000) …式1
Tmin : 最小一次冷却時間 [秒]
h'max : 容積拡大部分の最大肉厚 [mm]
M : 金型温度 [℃]
Tmax=h'min 2×(M/40) …式4
Tmax : 最大一次冷却時間 [秒]
h'min : 容積拡大部分の最小肉厚 [mm]
M : 金型温度 [℃]
Tmin≦Tmax …式3
(3) 発泡性樹脂組成物が、組成物基準で、熱可塑性樹脂を35〜94.9重量%、化学発泡剤を0.1〜5重量%および無機フィラーを5〜60重量%含有する発泡性樹脂組成物である前記第1項もしくは第2項記載の発泡プロペラファンの製造方法。
(4) 無機フィラーが、長さ2〜50mmのガラス長繊維である前記第3項記載の発泡プロペラファンの製造方法。
(5) 無機フィラーが、ガラス繊維および板状無機フィラーの混合物である前記第3項記載の発泡プロペラファンの製造方法。
(6) 組成物基準で、熱可塑性樹脂を40〜95重量%および長さ2〜50mmのガラス長繊維を5〜60重量%含有する発泡性樹脂組成物を可塑化する工程(a)、目的とする成形品の容積よりも小さく閉じた金型キャビティー内に該可塑化物を射出する工程(b)、射出充填完了後に金型面に接触する固化層と内部の溶融層が混在する状態まで冷却する工程(c)、金型を開くことによって、目的とする成形品の容積までキャビティーの容積を拡大する工程(d)、さらに冷却を行った後に成形品を取出す工程(e)を経て得られる、少なくとも翼部に発泡構造を有する発泡プロペラファンであって、前記金型として翼部に関し、最小肉厚部の肉厚が1mm以上、最大肉厚部の肉厚が15mm以下および外周が実質的に円弧状末端となっている形状の金型を用い、b工程の時間を5秒以下、かつ、c工程の時間を下記式で定義されるTmin〜Tmaxの範囲内にすることを特徴とする発泡プロペラファンの製造方法。
Tmin=hmax 2×(M/1000) …式1
Tmin : 最小一次冷却時間 [秒]
hmax : 型開き前の翼部の最大肉厚 [mm]
M : 金型温度 [℃]
Tmax=hmin 2×(M/30) …式2
Tmax : 最大一次冷却時間 [秒]
hmin : 型開き前の翼部の最小肉厚 [mm]
M : 金型温度 [℃]
Tmin≦Tmax …式3
(7) 組成物基準で、熱可塑性樹脂を40〜95重量%および長さ2〜50mmのガラス長繊維を5〜60重量%含有する発泡性樹脂組成物を可塑化する工程(a)、翼部の付根と外周を除いた部分を、目的とする成形品の容積よりも小さく閉じた金型キャビティー内に該可塑化物を射出する工程(b)、射出充填完了後に金型面に接触する固化層と内部の溶融層が混在する状態まで冷却する工程(c)、翼部の付根と外周を除いた部分の金型を開くことによって、目的とする成形品の容積までキャビティーの容積を拡大する工程(d)、さらに冷却を行った後に成形品を取出す工程(e)を経て得られる、少なくとも翼部に発泡構造を有する発泡プロペラファンであって、前記金型として翼部に関し、最小肉厚部の肉厚が1mm以上、最大肉厚部の肉厚が15mm以下および外周が実質的に円弧状末端となっている形状の金型を用い、b工程の時間を5秒以下、かつ、c工程の時間を下記式で定義されるTmin〜Tmaxの範囲内にすることを特徴とする発泡プロペラファンの製造方法。
Tmin=h'max 2×(M/1000) …式1
Tmin : 最小一次冷却時間 [秒]
h'max : 容積拡大部分の最大肉厚 [mm]
M : 金型温度 [℃]
Tmax=h'min 2×(M/40) …式4
Tmax : 最大一次冷却時間 [秒]
h'min : 容積拡大部分の最小肉厚 [mm]
M : 金型温度 [℃]
Tmin≦Tmax …式3
(8) 発泡性樹脂組成物が、組成物基準で、熱可塑性樹脂を40〜95重量%、長さ2〜50mmのガラス長繊維および板状無機フィラーの混合物を5〜60重量%含有する発泡性樹脂組成物である前記第6項もしくは第7項記載の発泡プロペラファンの製造方法。
(9) 熱可塑性樹脂が、ポリオレフィン系樹脂である前記第1〜8項のいずれか1項記載の発泡プロペラファンの製造方法。
【0007】
【発明の実施の形態】
本発明の発泡性樹脂組成物で用いる熱可塑性樹脂としては特に限定されず、具体例としては、ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂、6ナイロン、66ナイロン等のポリアミド系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、その他、ポリスチレン樹脂、AS樹脂、ABS樹脂、ポリカーボネート樹脂、メタクリル樹脂、ポリ塩化ビニル樹脂などが挙げられる。
上記の熱可塑性樹脂の中でも、取扱いの容易性、および価格等の見地からポリオレフィン系樹脂が好ましい。ポリオレフィン系樹脂とは、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセンなどの炭素数、通常2〜10個程度のα-オレフィンの、結晶性単独重合体もしくはこれらのα-オレフィンの2種以上からなる結晶性共重合体またはこれらの重合体2種以上からなる組成物などを包含する概念である。なかでも、実用的にはポリプロピレン、またはプロピレン含有量が70重量%以上のプロピレンと他のα-オレフィンとの結晶性共重合体が好ましい。
【0008】
また、これらポリオレフィン系樹脂を用い、かつ後述のようにガラス繊維等の補強材を配合する場合には、補強効果の観点から、ポリオレフィン系樹脂に不飽和カルボン酸もしくはその無水物をグラフト反応させた改質ポリオレフィン樹脂、またはポリオレフィン系樹脂とこの改質ポリオレフィン樹脂との混合物を用いることが好ましい。
【0009】
本発明の発泡性樹脂組成物は、必要に応じて、酸化防止剤、耐候剤(光安定剤)、紫外線吸収剤、帯電防止剤、着色剤を添加することができる。さらに、翼部や、翼が取り付けられている円筒形状部、いわゆるハブ部の剛性、強度の観点から、ガラス繊維、マイカ等の無機フィラーを配合することが好ましい。
【0010】
本発明の発泡性樹脂組成物で使用する無機フィラーは特に制限はない。具体例としては、タルク、マイカ、クレー、炭酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、ガラス繊維、カーボン繊維、シリカ、ケイ酸カルシウム、チタン酸カリウム、ウォラストナイトなどが挙げられ、単独で用いても組合せて用いてもよい。補強効果やコストの観点からは、タルク、マイカ、ガラス繊維の使用が好ましい。また、強度面での改良と反り・ひねりの防止を目的として、ガラス繊維とマイカを併用することも好ましい態様である。
無機フィラーの配合量は、発泡性樹脂組成物中、5〜60重量%配合するのが好ましい。さらに好ましくは、10〜50重量%である。また、ガラス繊維(長さ2mm未満のガラス短繊維および長さ2〜50mmのガラス長繊維を包含する)とタルク、マイカ等の板状無機フィラーを併用して用いる場合の配合量は、発泡性樹脂組成物中、ガラス繊維および板状無機フィラーの各配合量が5〜40重量%の範囲内であって、ガラス繊維および板状無機フィラーの混合物の配合量が10〜60重量%となるように調整して配合するのが好ましい。これら無機フィラーは、上述のガラス長繊維の場合を除き、押出機を用いて熱可塑性樹脂と溶融混練することで配合することが可能である。所望の配合量よりも高めの配合量のマスターバッチをつくっておき、ドライブレンド希釈して、上記配合量としてもよい。
【0011】
なお、連続状のガラスロービングに溶融熱可塑性樹脂を含浸させたのち、2〜50mmの長さにペレタイズした、いわゆるガラス長繊維強化熱可塑性樹脂を用いることが、強度の点からも、また、溶融時にガラス長繊維が反発して膨らもうとする現象(いわゆるスプリングバック)によって、特に高発泡倍率において、より均一な発泡ができる点からも好ましい。
【0012】
強化用繊維束に溶融樹脂を含浸させるための方法は、良好な含浸性が得られる方法であれば、公知の方法がいずれも採用できる。強化用繊維束を張力下にスプレダー表面上を接触通過させることによって溶融樹脂を含浸させる方法(特公昭63-37694号公報)、強化用繊維束を、含浸ダイス中に設けられた開繊ピン対の間を非接触で通過させることにより含浸させる方法(国際公開WO97/19805)など、いずれも採用可能であるが、高速引取り時の毛羽発生の問題が少ない点では、後者の方が好ましい方法である。
ガラス長繊維の配合量は、発泡性樹脂組成物中、5〜60重量%配合するのが好ましい。さらに好ましくは、10〜45重量%である。所望の配合量よりも高めの配合量のマスターバッチをつくっておき、ドライブレンド希釈して、上記配合量としてもよい。ドライブレンド希釈後は、押出機を通さず、直接射出成形機に供するのが繊維長を保持する意味で好ましい。
【0013】
本発明に用いる化学発泡剤としては、炭酸アンモニウム、重炭酸ソーダ等の無機化合物、およびアゾ化合物、スルホニルヒドラジド化合物、ニトロソ化合物、アジド化合物等の有機化合物を例示することができる。
アゾ化合物としては、アゾジカルボンアミド(ADCA)、アゾビスイソブチロニトリル(AIBN)、アゾヘキサヒドロベンゾニトリル、ジアゾアミノベンゼン等が挙げられる。スルホニルヒドラジド化合物としては、ベンゼンスルホニルヒドラジド、p-トルエンスルホニルヒドラジド(TSH)、ベンゼン-1,3-ジスルホニルヒドラジド、ジフェニルスルホン-4,4'-ジスルホニルヒドラジド、ジフェニルオキシド-4,4'-ジスルホニルヒドラジド(OBSH)等が挙げられる。ニトロソ化合物としては、N,N'-ジニトロソペンタメチレンテトラミン(DPT)、N,N'-ジメチル-N,N'-ジニトロソテレフタルアミド等が挙げられる。アジド化合物としては、テレフタルアジド、p-tert-ブチルベンズアジド等が挙げられる。
【0014】
添加の方法は、前記熱可塑性樹脂に、タンブラー等を用いて該発泡剤をドライブレンドする方法が好ましい。発泡剤は、そのまま添加してもかまわないし、発泡剤が発泡しない温度条件で熱可塑性樹脂に高濃度に添加してマスターバッチ化したのち、該マスターバッチを所望の発泡剤量になるように熱可塑性樹脂に添加することもできる。
上記発泡剤は、本発明の発泡性樹脂組成物中、0.1〜5重量%、望ましくは0.5〜5重量%配合するのが好ましい。化学発泡剤の添加量が少なすぎると、発泡倍率の大きい成形品の成形が困難である。逆に多すぎる場合は、発泡圧力が過大になり、粗大気泡を生じやすくなるとともに化学発泡剤の分解残渣による成形品の変色等が発生するので好ましくない。ただし、前記ガラス長繊維を含む組成物であって、溶融状態で自己膨張性を有するような場合はこの限りではなく、化学発泡剤を配合しなくてもかまわない。
【0015】
本発明の発泡プロペラファンの製造方法は、発泡性樹脂組成物を可塑化する工程(a)、目的とする成形品の容積よりも小さく閉じた金型キャビティー内に該可塑化物を特定時間で射出する工程(b)、特定時間冷却する工程(c)、金型を開くことによって、目的とする成形品の容積までキャビティーの容積を拡大する工程(d)、さらに冷却を行った後に成形品を取出す工程(e)の各工程からなる。
【0016】
本発明の製造方法で得られる発泡プロペラファンはプロペラ形状のファンであれば翼枚数も特に制約はないが、発泡後の良好な翼形状を得るため、用いる金型の翼部の型構造に関し、最小肉厚部の肉厚が1mm以上、望ましくは1.5mm以上、最大肉厚部の肉厚が15mm以下、望ましくは10mm以下、翼部外周(図1)が、断面でみたとき実質的に円弧状末端(図6)となっていることが好ましい。また、型構造として、金型を開くときに成形品の変形を伴うような形状、いわゆるアンダーカット形状は好ましくない。表面は固化しているとはいえ、内部が溶融状態のまま型を開くため、成形品が損傷を受けやすくなるためである。また、ハブ部については、発泡させてもさせなくてもかまわない。
発泡倍率としては、容積を拡大する部分について、容積で1.3倍〜6倍とするのが好ましい。さらに好ましくは、2〜4倍である。1.3倍未満では軽量化の効果が小さくなり、逆に6倍を超えると、均一な発泡ができなくなって、騒音が大きくなるので好ましくない。
【0017】
b工程時間、すなわち射出にかかる時間(以下、射出時間ということがある。)は、発泡後の良好な翼形状を得る目的から、5秒以下、望ましくは1〜3.5秒とするのが好ましい。いわゆる高速で発泡性樹脂組成物の可塑化物を射出することが好ましい。
また、c工程時間、すなわち金型面に接触する固化層と内部の溶融層が混在する状態までの冷却時間は、同じく発泡後の良好な翼形状を得る目的から、下記式で定義されるTmin〜Tmax秒とすることが好ましい。Tmin未満では、表面固化層の厚みが薄くなるため、発泡時に破裂しやすくなる。逆にTmaxを超えると、固化が進みすぎて翼形状が悪化する。またTmin>Tmax では翼部分の最小肉厚部の肉厚と最大肉厚部の肉厚差がありすぎるため、発泡時に厚肉部分の表面固化層が破裂しやすくなる。c工程の間は、通常の射出成形法において行われる、いわゆる保圧は不要であるが、次のキャビティー容積拡大工程において特に支障のない範囲で保圧をかけることもできる。
Tmin=hmax 2×(M/1000) …式1
Tmin : 最小一次冷却時間 [秒]
hmax : 型開き前の翼部の最大肉厚 [mm]
M : 金型温度 [℃]
Tmax=hmin 2×(M/30) …式2
Tmax : 最大一次冷却時間 [秒]
hmin : 型開き前の翼部の最小肉厚 [mm]
M : 金型温度 [℃]
Tmin≦Tmax …式3
【0018】
良好な翼部形状を得るための別の型構造としては、翼部の、付根と外周を除いた部分(図1)の容積を拡大するようになったものが挙げられる。付根と外周については発泡しないため、翼部分の形状悪化を回避することができる。容積拡大部分と非拡大部分との境界をなめらかにするためには、容積を拡大する部分に関し、容積拡大前の最小肉厚部の肉厚が1mm以上、望ましくは1.5mm以上、最大肉厚部の肉厚が15mm以下、望ましくは10mm以下とするのがよい。
【0019】
b工程時間、すなわち射出時間は、容積拡大部分と非拡大部分との境界をなめらかにする目的から、5秒以下、望ましくは1〜3.5秒とするのが好ましい。いわゆる高速で発泡性樹脂組成物の可塑化物を射出することが好ましい。
また、c工程時間、すなわち金型面に接触する固化層と内部の溶融層が混在する状態までの冷却時間は、同じく容積拡大部分と非拡大部分との境界をなめらかにする目的から、下記式で定義されるTmin〜Tmax秒とすることが好ましい。Tmin未満では、表面固化層の厚みが薄くなるため、発泡時に破裂しやすくなる。逆にTmaxを超えると、固化が進みすぎて翼形状が悪化する。またTmin>Tmax では翼部分の最小肉厚部の肉厚と最大肉厚部の肉厚差がありすぎるため、発泡時に厚肉部分の表面固化層が破裂しやすくなる。c工程の間は、通常の射出成形法において行われる、いわゆる保圧は不要であるが、次のキャビティー容積拡大工程において特に支障のない範囲で保圧をかけることもできる。
Tmin=h'max 2×(M/1000) …式1
Tmin : 最小一次冷却時間 [秒]
h'max : 容積拡大部分の最大肉厚 [mm]
M : 金型温度 [℃]
Tmax=h'min 2×(M/40) …式4
Tmax : 最大一次冷却時間 [秒]
h'min : 容積拡大部分の最小肉厚 [mm]
M : 金型温度 [℃]
Tmin≦Tmax …式3
【0020】
キャビティー容積の拡大は、例えば、射出成形機の型締め機構による金型の移動、または金型に設けられたスライドコアの移動によって行うことができる。このようなキャビティー容積の拡大は、手動操作によっても行うことができるが、成形機または金型の機構自体で制御できることが望ましい。すなわち、射出成形機の型締め機構による金型の移動でキャビティー容積の拡大を行う場合は、成形動作中に金型を任意に移動および停止できるような制御機能を持つことが望ましい。また、キャビティー容積を拡大させる速度は、成形原料である発泡性樹脂組成物もしくは最終成形品である発泡プロペラファンの形状等によっても異なるが、通常、0.1〜10mm/秒の範囲である。さらに、該速度は必ずしも一定にする必要はなく、拡大初期から徐々に速度を速めていってもよい。
以 上
【0021】
【実施例】
以下、実施例にて本発明をさらに具体的に説明するが、本発明はこれらの実施例により制約されるものではない。
(1)材料
下記▲1▼〜▲4▼の材料を、最終組成が後述の割合になるようにドライブレンドし、成形に供した。
▲1▼ガラス長繊維強化樹脂
平均繊維径17μm、テックス番手2310g/kmのガラスロービングを280℃に加熱した含浸槽に導く一方で、該含浸槽内には改質プロピレンホモポリマー[無水マレイン酸改質物、結晶融点(DSC測定):160℃、メルトフローレート(230℃、21.18N):200g/10min]の溶融物を供給した。ガラスロービングにポリプロピレン樹脂を含浸させた後、2.3mm径の円形ノズルを通して引き抜き、冷却後6mmの長さにカットして、ガラス繊維含有量が50重量%のガラス長繊維強化樹脂ペレットを得た。
▲2▼発泡剤マスターバッチ
発泡剤(ADCA)20重量%、及びメルトフローレートが75g/10minの結晶性エチレン-プロピレンランダムコポリマー(エチレン含有量4.5重量%)80重量%の混合物を、押出機中で180℃の条件で溶融混練し、発泡剤マスターバッチペレットを得た。
▲3▼希釈用ポリプロピレン
メルトフローレートが75g/10minのプロピレンホモポリマーペレットを用いた。
▲4▼マイカマスターバッチ
平均粒径20μのマイカ60重量%、及びメルトフローレートが60g/10minのプロピレンホモポリマー40重量%との混合物を、押出機中で240℃の条件で溶融混練し、マイカマスターバッチペレットを得た。
【0022】
(2)プロペラファンの評価方法
▲1▼翼部形状
翼部全体を発泡させた場合には、末端まで充分発泡しているもの、および、翼部の付根と外周を除いた部分を発泡させた場合には、発泡部分と非発泡部分との境界がなめらかに結ばれているものについて、○と判定した(図3)。その他、発泡部分と非発泡部分が段差状になっているもの(図4)や、発泡部分と非発泡部分との境界にくさび状凹部が生じているもの(図5)については、×と判定した。
▲2▼製品重量
プロペラファン成形品5個の重量を測定し、平均重量とした。
▲3▼剛性
プロペラファンを水平にして置き、翼先端部(図1)に3kgの荷重をかけ、その時のたわみ量を測定した。測定はすべての翼について行い、その平均値をとった。
▲4▼騒音
プロペラファンをDCモーターに取り付け、600rpm時の騒音を1m離れた位置から騒音計にて測定した。尚、プロペラファンをはずした状態でのモーターのみの騒音は31dBであった。
【0023】
実施例1
最終組成が、ガラス繊維20重量%、発泡剤1重量%となるよう、材料▲1▼を40重量%、材料▲2▼を5重量%、材料▲3▼を55重量%の割合でドライブレンドし、シリンダー温度200℃に設定した射出成形機に供した。金型は、翼枚数4枚、外径380mm、ハブ直径110mm、翼部分の最小肉厚部の肉厚が1.5mm、最大肉厚部の肉厚が5mm、翼部分の外周が円弧状末端となっているものを用いた。金型温度は40℃とした。シリンダー内で可塑化された溶融樹脂は、射出時間すなわちb工程の時間を2.7秒として金型キャビティー内に射出した。表面固化層を形成するための時間すなわちc工程の時間(以下、一次冷却時間という。)は1.5秒とし、金型の開き量は4mmとした。さらに内部まで充分固化させて、発泡構造を有する厚肉形状の発泡プロペラファン成形品を得た。得られた成形品を評価したところ、軽量性、剛性に優れ、末端形状も良好で低騒音性も良好であった。
【0024】
比較例1
翼部の外周が円弧状末端ではなく矩形状となっているほかは実施例1と同じ金型を用い、実施例1と同様の材料、同様の条件にて発泡プロペラファン成形品を得た。金型の翼部外周が円弧状末端でないために、発泡後の翼部末端形状が段差状となり、騒音が大きくなった。
【0025】
比較例2
一次冷却時間を4秒とするほかは、実施例1と同様にして発泡プロペラファン成形品を得た。発泡後の翼部末端形状が段差状となり、騒音が大きくなった。
【0026】
比較例3
実施例1と同じ金型を用いたが、発泡成形は行わず、通常の射出成形法によって非発泡薄肉プロペラファン成形品を得た。発泡成形品と比べて剛性が劣り、翼のぶれからか、騒音も大きくなった。
【0027】
比較例4
翼枚数4枚、外径380mm、ハブ直径110mm、翼部分の最小厚みが2mm、最大肉厚部の肉厚が9mmの厚肉プロペラファン金型を用い、通常の射出成形法によって非発泡厚肉プロペラファン成形品を得た。得られた成形品は、重量の著しく重いものであった。
【0028】
実施例2、3、比較例5
実施例1と同じ材料を、シリンダー温度200℃に設定した射出成形機に供した。金型は、翼枚数4枚、外径300mm、ハブ直径120mm、翼部分の最小肉厚部の肉厚が2mm、最大肉厚部の肉厚が8mm、翼部分の外周が円弧状末端となっているものを用いた。金型温度は30℃とした。表1記載の条件でそれぞれ発泡成形し、発泡構造を有する厚肉形状の発泡プロペラファン成形品を得た。実施例2、3の成形品は、軽量性、剛性に優れ、末端形状も良好で低騒音性も良好であったが、比較例5の成形品は、発泡後の翼部末端形状が段差状となり、騒音が大きくなった。
【0029】
比較例6
実施例1と同じ材料を、シリンダー温度200℃に設定した射出成形機に供した。翼枚数4枚、外径300mm、ハブ直径120mm、翼部分の最小肉厚部の肉厚が0.5mm、最大肉厚部の肉厚が2mm、翼部分の外周が円弧状末端となっている金型を用い、表1記載の条件で発泡成形を行って、厚肉形状の発泡プロペラファン成形品を得た。一次冷却時間としては適正なものであったが、発泡前の翼部最小肉厚部の肉厚が薄すぎて、発泡後の翼部末端形状が段差状となり、騒音が大きくなったうえ、剛性も不足していた。
【0030】
比較例7
実施例1と同じ材料を、シリンダー温度200℃に設定した射出成形機に供した。翼枚数4枚、外径300mm、ハブ直径120mm、翼部分の最小肉厚部の肉厚が1mm、最大肉厚部の肉厚が10mm、翼部分の外周が円弧状末端となっている金型を用いて発泡成形を行ったが、肉厚差がありすぎて、Tmin≦Tmaxの要件を満たさないため、厚肉部分の表面固化層が破裂して、良好な成形品が得られなかった。
【0031】
比較例8
実施例1と同じ材料を、シリンダー温度200℃に設定した射出成形機に供した。金型は、翼枚数4枚、外径300mm、ハブ直径120mm、翼部分の最小肉厚部の肉厚が2mm、最大肉厚部の肉厚が8mm、翼部分の外周が円弧状末端となっているものを用いた。射出速度を下げ、射出時間を5.5秒とするほかは実施例2と同様にして、発泡構造を有する厚肉形状の発泡プロペラファン成形品を得た。得られた成形品は、発泡後の翼部末端形状が段差状となり、騒音が大きくなった。
【0032】
実施例4
最終組成が、ガラス繊維10重量%、マイカ20重量%、発泡剤1重量%となるよう、材料▲1▼を20重量%、材料▲2▼を5重量%、材料▲3▼を42重量%、材料▲4▼を33重量%の割合でドライブレンドした材料を用い、一次冷却時間を3秒とするほかは、実施例2と同様にして発泡プロペラファン成形品を得た。得られた成形品を評価したところ、軽量性、剛性に優れ、末端形状も良好で低騒音性も良好であった。
【0033】
実施例5、6
実施例1と同じ材料を、シリンダー温度200℃に設定した射出成形機に供した。金型は、翼枚数4枚、外径300mm、ハブ直径120mmであり、翼部分の中央部分、すなわち付根と周辺を除いた部分のみを発泡させる構造のものを用いた。この発泡させる部分の、発泡前の最小肉厚部の肉厚は2mm、最大肉厚部の肉厚が4mm、翼部分の外周が円弧状末端となっているものを用いた。表1記載の条件でそれぞれ発泡成形し、発泡構造を有する厚肉形状の発泡プロペラファン成形品を得たが、いずれも軽量性、剛性に優れ、末端形状も良好で低騒音性も良好であった
【0034】
【表1】
【0035】
【発明の効果】
本発明の発泡プロペラファンの製造方法は、特定形状の金型を用い、特定の射出成形法と特定の射出成形条件によって、翼部の剛性、軽量性に優れる上、かつ翼形状が良好で、低騒音性にも優れる発泡プロペラファンが得られるものである。このため、高回転にも耐えることができ、高風量を得ることが可能である。また、軽量性に優れることから、材料コストが安く済むばかりか、モーターの消費電力も低く抑えることが可能である。
【図面の簡単な説明】
【図1】 本発明の製造方法で得られる発泡プロペラファンの1例を示す(平面図)。
【図2】 本発明の製造方法で得られる発泡プロペラファンの1例を示す(側面図)。
【図3】 本発明の良好な翼形状の1例を示す(断面図)。
【図4】 本発明範囲外の翼形状の1例を示す(断面図)。
【図5】 本発明範囲外の翼形状の1例を示す(断面図)。
【図6】 本発明の容積拡大前の翼形状の1例を示す(断面図)。
【符号の説明】
1…ハブ
2…翼部
3…翼部外周
4…翼部付根
5…翼部先端
6…発泡部分
7…非発泡部分
8…段差
9…くさび状凹部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a foamed propeller fan made of a thermoplastic resin, which is widely used for automobiles, air conditioners and the like for the purpose of blowing, cooling, exhaust and the like. Specifically, it is obtained by combining a mold with a specific shape with a specific injection molding method and injection molding conditions, and has a foam structure in the wing, and has a good wing shape, rigidity, light weight, and low noise. The present invention relates to a method for producing a foamed propeller fan having excellent properties.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, attempts have been made to increase the rigidity of a propeller fan made of a thermoplastic resin by increasing the thickness of a blade to increase the air flow and noise. However, increasing the thickness of the propeller fan increases the weight of the propeller fan, increasing the material cost and increasing the power consumption of the motor.
[0003]
For this reason, attempts have been already made to reduce the thickness and weight of resin propeller fans by a short shot foam molding method or a gas injection molding method.
The short shot foam molding method is to inject a foamable resin composition in an amount smaller than the volume of the cavity (so-called short shot) and fill the cavity by using the increase in volume due to foaming of the composition. In Japanese Patent Laid-Open No. 10-89298, etc., a foamed propeller fan by a short shot foam molding method has been proposed. According to this method, it is possible to obtain a propeller fan having an ideal blade shape and a reduced weight, but the expansion ratio is about 1.6 to 1.7 times at most, which is still unsatisfactory in terms of weight reduction. In addition, the problem was that the rigidity of the wings was slightly insufficient due to the foamed structure.
A propeller fan using a gas injection molding method is proposed in Japanese Patent Laid-Open No. 9-112491. Even with this method, it is possible to obtain a propeller fan that has an ideal blade shape and is lightweight, but there is a large variation in the weight of each blade, and the dynamic balance deteriorates so that it cannot withstand high rotation. Or, there was a problem that noise was generated as the dynamic balance deteriorated.
A method for obtaining a propeller fan by hollowing the wing portion as an upper and lower bonded structure has also been proposed in Japanese Patent Laid-Open No. 61-108898. Although this method has a large weight reduction effect and small weight variation, the bonding process is complicated and the productivity is remarkably deteriorated, and the problems such as deformation at the time of bonding and peeling of the bonded part are unfavorable in terms of quality. was there.
On the other hand, Japanese Patent Application Laid-Open No. 9-277335 proposes a special mold opening foam molding method using a long fiber reinforced thermoplastic resin. By using this method, it is possible to obtain a molded article that is excellent in light weight and excellent in strength and rigidity by forming a surface solidified layer. However, when this method is applied to a fan, there is a problem that the blade shape deteriorates and noise is generated.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a foamed propeller fan that eliminates all the above disadvantages, is thick and lightweight, is excellent in rigidity, has a good wing shape, and is excellent in low noise.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to obtain a foamed propeller fan that has solved the above disadvantages, the present inventors have plasticized the foamable resin composition and injected and filled it into a mold cavity of a specific shape for a specific time, and cooled for a specific time. After that, the inventors have found that a foamed propeller fan obtained by an injection molding method in which the volume of the cavity is enlarged and a foamed layer is formed inside is extremely useful for solving the above problems, and the present invention has been achieved. .
[0006]
That is, this invention consists of a structure shown below.
(1) Foam containing 95-99.9% by weight of thermoplastic resin and 0.1-5% by weight of chemical foaming agent, based on compositionSex treeA step of plasticizing the fat composition (a), a step of injecting the plasticized product into a closed mold cavity smaller than the volume of the target molded product (b), and contacting the mold surface after completion of injection filling Cooling to a state where the solidified layer to be mixed and the molten layer inside are mixed (c), expanding the volume of the cavity to the volume of the target molded product by opening the mold (d), and further cooling A foamed propeller fan having a foamed structure at least on the wing part, obtained through the step (e) of taking out the molded product after being performed, with respect to the wing part as the mold, the thickness of the minimum thickness part is 1 mm or more, Using a mold with a maximum thickness of 15 mm or less and a substantially arc-shaped outer periphery, b process time is 5 seconds or less, and c process time is defined by the following formula Tmin~ TmaxThe manufacturing method of the foaming propeller fan characterized by making it in the range of these.
Tmin= Hmax 2× (M / 1000)…
Tmin : Minimum primary cooling time [sec]
hmax : Maximum thickness of wings before mold opening [mm]
M: Mold temperature [℃]
Tmax= Hmin 2× (M / 30)…
Tmax : Maximum primary cooling time [sec]
hmin : Minimum thickness of wings before mold opening [mm]
M: Mold temperature [℃]
Tmin≦ Tmax ...
(2)Step (a) of plasticizing a foamable resin composition containing 95 to 99.9% by weight of a thermoplastic resin and 0.1 to 5% by weight of a chemical foaming agent on the basis of the composition, a portion excluding the root and outer periphery of the wing A step (b) of injecting the plasticized material into a closed mold cavity smaller than the volume of the target molded product, and a mixture of a solidified layer contacting the mold surface after completion of injection filling and an internal molten layer Cooling to a state (c),The process of expanding the volume of the cavity to the volume of the target molded product by opening the mold of the part excluding the root of the wing and the outer periphery(d) a foamed propeller fan having a foamed structure at least on the wing part, which is obtained through the step (e) of taking out the molded product after further cooling, wherein the minimum thickness part is related to the wing part as the mold Using a mold with a wall thickness of 1 mm or more, a maximum wall thickness of 15 mm or less, and an outer periphery having a substantially arcuate end, and the time of step b is 5 seconds or less, andcProcess timeTheT defined by the following formulamin~ TmaxWithinIt is characterized byA method for producing a foamed propeller fan.
Tmin= H 'max 2× (M / 1000)…
Tmin : Minimum primary cooling time [sec]
h 'max : Maximum thickness of the volume expansion part [mm]
M: Mold temperature [℃]
Tmax= H 'min 2× (M / 40)…
Tmax : Maximum primary cooling time [sec]
h 'min : Minimum wall thickness [mm]
M: Mold temperature [℃]
Tmin≦ Tmax ...
(3) Expandable resin composition containing 35-94.9 wt% thermoplastic resin, 0.1-5 wt% chemical foaming agent, and 5-60 wt% inorganic filler on composition basis The method for producing a foamed propeller fan according to the
(4) The method for producing a foamed propeller fan according to the
(5) The manufacturing method of the foaming propeller fan of the said 3rd term | claim whose inorganic filler is a mixture of glass fiber and a plate-shaped inorganic filler.
(6) Foam containing 40 to 95% by weight of a thermoplastic resin and 5 to 60% by weight of a glass fiber having a length of 2 to 50 mm based on the composition.Sex treeStep (a) of plasticizing the fat composition, step (b) of injecting the plasticized product into a closed mold cavity smaller than the volume of the target molded article, and contacting the mold surface after completion of injection filling (C) cooling to a state where the solidified layer to be melted and the molten layer inside are mixed (c), expanding the volume of the cavity to the volume of the target molded product by opening the mold (d), and further cooling A foamed propeller fan having a foamed structure at least on the wing part, obtained through the step (e) of taking out the molded product after being performed, wherein the thickness of the minimum thickness part is 1 mm or more with respect to the wing part as the mold, Using a mold with a maximum thickness of 15 mm or less and a substantially arc-shaped outer periphery, b process time is 5 seconds or less, and c process time is defined by the following formula Tmin~ TmaxThe manufacturing method of the foaming propeller fan characterized by making it in the range of these.
Tmin= Hmax 2× (M / 1000)…
Tmin : Minimum primary cooling time [sec]
hmax : Maximum thickness of wings before mold opening [mm]
M: Mold temperature [℃]
Tmax= Hmin 2× (M / 30)…
Tmax : Maximum primary cooling time [sec]
hmin : Minimum thickness of wings before mold opening [mm]
M: Mold temperature [℃]
Tmin≦ Tmax ...
(7)A step (a) of plasticizing a foamable resin composition containing 40 to 95% by weight of a thermoplastic resin and 5 to 60% by weight of a glass fiber having a length of 2 to 50 mm based on the composition, And a step (b) of injecting the plasticized product into a closed mold cavity smaller than the volume of the target molded article except for the outer periphery, and a solidified layer that comes into contact with the mold surface after completion of injection filling Step (c) of cooling to a state in which the internal molten layer is mixed,The process of expanding the volume of the cavity to the volume of the target molded product by opening the mold of the part excluding the root of the wing and the outer periphery(d) a foamed propeller fan having a foamed structure at least on the wing portion, obtained through the step (e) of taking out the molded product after further cooling, wherein the minimum thickness portion is related to the wing portion as the mold Using a mold with a wall thickness of 1 mm or more, a maximum wall thickness of 15 mm or less, and an outer periphery having a substantially arcuate end, and the time of step b is 5 seconds or less, andc Process time is defined as Tmin~ TmaxWithinIt is characterized byA method for producing a foamed propeller fan.
Tmin= H 'max 2× (M / 1000)…
Tmin : Minimum primary cooling time [sec]
h 'max : Maximum thickness of the volume expansion part [mm]
M: Mold temperature [℃]
Tmax= H 'min 2× (M / 40)…
Tmax : Maximum primary cooling time [sec]
h 'min : Minimum wall thickness [mm]
M: Mold temperature [℃]
Tmin≦ Tmax ...
(8) Foaming in which the foamable resin composition contains, based on the composition, 40 to 95% by weight of a thermoplastic resin and 5 to 60% by weight of a mixture of long glass fibers having a length of 2 to 50 mm and a plate-like inorganic filler. 8. A method for producing a foamed propeller fan according to
(9) The method for producing a foamed propeller fan according to any one of
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The thermoplastic resin used in the foamable resin composition of the present invention is not particularly limited. Specific examples include polyolefin resins such as polypropylene and polyethylene, polyamide resins such as 6 nylon and 66 nylon, polyethylene terephthalate, and polybutylene. Examples thereof include polyester resins such as terephthalate, polystyrene resins, AS resins, ABS resins, polycarbonate resins, methacrylic resins, and polyvinyl chloride resins.
Among the above thermoplastic resins, polyolefin resins are preferable from the viewpoints of easy handling and price. Polyolefin-based resins are ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, etc. This is a concept including a crystalline homopolymer of olefin, a crystalline copolymer comprising two or more of these α-olefins, or a composition comprising two or more of these polymers. Of these, polypropylene or a crystalline copolymer of propylene having a propylene content of 70% by weight or more and another α-olefin is practically preferred.
[0008]
In addition, when these polyolefin resins are used and a reinforcing material such as glass fiber is blended as described later, an unsaturated carboxylic acid or an anhydride thereof is grafted to the polyolefin resin from the viewpoint of the reinforcing effect. It is preferable to use a modified polyolefin resin or a mixture of a polyolefin-based resin and this modified polyolefin resin.
[0009]
If necessary, the foamable resin composition of the present invention may contain an antioxidant, a weathering agent (light stabilizer), an ultraviolet absorber, an antistatic agent, and a colorant. Furthermore, it is preferable to mix | blend inorganic fillers, such as glass fiber and mica, from a viewpoint of the rigidity and intensity | strength of a wing | blade part and the cylindrical part to which the wing | blade is attached, what is called a hub part.
[0010]
The inorganic filler used in the foamable resin composition of the present invention is not particularly limited. Specific examples include talc, mica, clay, calcium carbonate, aluminum hydroxide, magnesium hydroxide, barium sulfate, glass fiber, carbon fiber, silica, calcium silicate, potassium titanate, wollastonite and the like. Or may be used in combination. From the viewpoint of the reinforcing effect and cost, talc, mica, and glass fiber are preferably used. Moreover, it is also a preferable aspect to use glass fiber and mica in combination for the purpose of improvement in strength and prevention of warping and twisting.
The blending amount of the inorganic filler is preferably 5 to 60% by weight in the foamable resin composition. More preferably, it is 10 to 50% by weight. In addition, when using glass fibers (including short glass fibers with a length of less than 2 mm and long glass fibers with a length of 2 to 50 mm) in combination with plate-like inorganic fillers such as talc and mica, the blending amount is foamable. In the resin composition, each compounding amount of the glass fiber and the plate-like inorganic filler is in the range of 5 to 40% by weight, and the compounding amount of the mixture of the glass fiber and the plate-like inorganic filler is 10 to 60% by weight. It is preferable to adjust and mix. These inorganic fillers can be blended by melt kneading with a thermoplastic resin using an extruder, except for the case of the above-mentioned long glass fibers. A masterbatch having a higher blending amount than the desired blending amount may be prepared, and dry blend dilution may be performed to obtain the above blending amount.
[0011]
In addition, it is also possible to use a so-called long glass fiber reinforced thermoplastic resin that has been impregnated into a continuous glass roving with a molten thermoplastic resin and then pelletized to a length of 2 to 50 mm. Owing to the phenomenon that the long glass fiber sometimes repels and swells (so-called spring back), it is also preferable from the viewpoint that uniform foaming can be achieved particularly at a high expansion ratio.
[0012]
As a method for impregnating the reinforcing fiber bundle with the molten resin, any known method can be adopted as long as good impregnation property can be obtained. A method in which a reinforcing fiber bundle is impregnated with molten resin by passing the reinforcing fiber bundle over the surface of the spreader under tension (Japanese Patent Publication No. 63-37694), and a pair of open pins provided in the impregnation die with the reinforcing fiber bundle Any method can be employed such as impregnation by passing between them in a non-contact manner (International Publication WO97 / 19805), but the latter method is preferred in that there are few problems of fluff generation during high-speed take-up. It is.
The blending amount of the long glass fiber is preferably 5 to 60% by weight in the foamable resin composition. More preferably, it is 10 to 45% by weight. A masterbatch having a higher blending amount than the desired blending amount may be prepared, and dry blend dilution may be performed to obtain the above blending amount. After the dry blend dilution, it is preferable not to pass through the extruder but directly to the injection molding machine in order to maintain the fiber length.
[0013]
Examples of the chemical foaming agent used in the present invention include inorganic compounds such as ammonium carbonate and sodium bicarbonate, and organic compounds such as azo compounds, sulfonyl hydrazide compounds, nitroso compounds, and azide compounds.
Examples of the azo compound include azodicarbonamide (ADCA), azobisisobutyronitrile (AIBN), azohexahydrobenzonitrile, diazoaminobenzene, and the like. Examples of the sulfonyl hydrazide compound include benzenesulfonyl hydrazide, p-toluenesulfonyl hydrazide (TSH), benzene-1,3-disulfonyl hydrazide, diphenylsulfone-4,4′-disulfonylhydrazide, diphenyloxide-4,4′-di And sulfonyl hydrazide (OBSH). Examples of the nitroso compound include N, N′-dinitrosopentamethylenetetramine (DPT), N, N′-dimethyl-N, N′-dinitrosotephthalamide and the like. Examples of the azide compound include terephthalazide and p-tert-butylbenzazide.
[0014]
The method of addition is preferably a method in which the foaming agent is dry blended with the thermoplastic resin using a tumbler or the like. The foaming agent may be added as it is, or after adding a high concentration to the thermoplastic resin under a temperature condition in which the foaming agent does not foam and making a masterbatch, heat the masterbatch to a desired foaming agent amount. It can also be added to a plastic resin.
The foaming agent is preferably blended in the foamable resin composition of the present invention in an amount of 0.1 to 5% by weight, desirably 0.5 to 5% by weight. If the addition amount of the chemical foaming agent is too small, it is difficult to mold a molded product having a large expansion ratio. On the other hand, when the amount is too large, the foaming pressure becomes excessive, which tends to generate coarse bubbles, and discoloration of the molded product due to the decomposition residue of the chemical foaming agent occurs. However, in the case of a composition containing the above-mentioned long glass fiber and having a self-expanding property in a molten state, the composition is not limited to this, and a chemical foaming agent may not be blended.
[0015]
The production method of the foamed propeller fan of the present inventionSex treeA step of plasticizing the fat composition (a), a step of injecting the plasticized product into a closed mold cavity smaller than the volume of the target molded product for a specific time (b), a step of cooling for a specific time ( c) Opening the mold and expanding the volume of the cavity to the target molded product volume (d), and further cooling and removing the molded product (e).
[0016]
The foamed propeller fan obtained by the production method of the present invention is not particularly limited as long as it is a propeller-shaped fan, but in order to obtain a good blade shape after foaming, the mold structure of the wing part of the mold to be used, The minimum wall thickness is 1mm or more, preferably 1.5mm or more, the maximum wall thickness is 15mm or less, preferably 10mm or less, and the outer periphery of the wing part (Fig. 1) is substantially circular when viewed in cross section. It is preferably an arcuate end (FIG. 6). Further, as the mold structure, a shape that causes deformation of the molded product when the mold is opened, that is, a so-called undercut shape is not preferable. This is because although the surface is solidified, the mold is opened while the inside is in a molten state, so that the molded product is easily damaged. Further, the hub portion may be foamed or not.
The expansion ratio is preferably 1.3 to 6 times the volume of the portion where the volume is expanded. More preferably, it is 2 to 4 times. If it is less than 1.3 times, the effect of weight reduction becomes small. Conversely, if it exceeds 6 times, uniform foaming becomes impossible and noise increases, which is not preferable.
[0017]
The time required for the step b, that is, the time required for injection (hereinafter sometimes referred to as injection time) is 5 seconds or less, preferably 1 to 3.5 seconds, for the purpose of obtaining a good wing shape after foaming. So-called foaming at high speedSex treeIt is preferable to inject a plasticized product of the fat composition.
Also, the c process time, that is, the cooling time until the solidified layer in contact with the mold surface and the internal molten layer coexist, is also defined by the following formula for the purpose of obtaining a good blade shape after foaming.min~ TmaxPreferably it is seconds. TminIf it is less than this, since the thickness of the surface solidified layer becomes thin, it tends to burst during foaming. Conversely, TmaxIf it exceeds, solidification proceeds too much and the wing shape deteriorates. Tmin> Tmax However, since there is too much difference between the thickness of the minimum thickness part and the maximum thickness part of the wing part, the surface solidified layer of the thick part tends to burst during foaming. During the step c, so-called holding pressure, which is performed in a normal injection molding method, is not necessary, but holding pressure can be applied in a range where there is no particular problem in the next cavity volume expansion step.
Tmin= Hmax 2× (M / 1000)…
Tmin : Minimum primary cooling time [sec]
hmax : Maximum thickness of wings before mold opening [mm]
M: Mold temperature [℃]
Tmax= Hmin 2× (M / 30)…
Tmax : Maximum primary cooling time [sec]
hmin : Minimum thickness of wings before mold opening [mm]
M: Mold temperature [℃]
Tmin≦ Tmax ...
[0018]
Another mold structure for obtaining a good wing shape is one that expands the volume of the wing, excluding the root and outer circumference (Fig. 1). Since the root and the outer periphery do not foam, it is possible to avoid deterioration of the shape of the wing portion. In order to smooth the boundary between the volume expansion part and the non-expansion part, regarding the part where the volume is expanded, the minimum wall thickness before volume expansion is 1 mm or more, preferably 1.5 mm or more and the maximum wall thickness. The wall thickness is 15 mm or less, preferably 10 mm or less.
[0019]
The b process time, that is, the injection time, is preferably 5 seconds or less, and preferably 1 to 3.5 seconds for the purpose of smoothing the boundary between the volume expansion portion and the non-expansion portion. So-called foaming at high speedSex treeIt is preferable to inject a plasticized product of the fat composition.
In addition, the c process time, that is, the cooling time until the solidified layer contacting the mold surface and the internal molten layer coexist, is also expressed by the following formula for the purpose of smoothing the boundary between the volume expansion part and the non-expansion part. T defined bymin~ TmaxPreferably it is seconds. TminIf it is less than this, since the thickness of the surface solidified layer becomes thin, it tends to burst during foaming. Conversely, TmaxIf it exceeds, solidification proceeds too much and the wing shape deteriorates. Tmin> Tmax However, since there is too much difference between the thickness of the minimum thickness portion and the maximum thickness portion of the wing portion, the surface solidified layer of the thick portion is easily ruptured during foaming. During the step c, so-called holding pressure, which is performed in a normal injection molding method, is not necessary, but holding pressure can be applied in a range where there is no particular problem in the next cavity volume expansion step.
Tmin= H 'max 2× (M / 1000)…
Tmin : Minimum primary cooling time [sec]
h 'max : Maximum thickness of the volume expansion part [mm]
M: Mold temperature [℃]
Tmax= H 'min 2× (M / 40)…
Tmax : Maximum primary cooling time [sec]
h 'min : Minimum wall thickness [mm]
M: Mold temperature [℃]
Tmin≦ Tmax ...
[0020]
The expansion of the cavity volume can be performed, for example, by moving a mold by a mold clamping mechanism of an injection molding machine or moving a slide core provided in the mold. Such enlargement of the cavity volume can be performed by manual operation, but it is desirable that the cavity volume can be controlled by the molding machine or the mold mechanism itself. That is, when the cavity volume is enlarged by moving the mold by the mold clamping mechanism of the injection molding machine, it is desirable to have a control function that can arbitrarily move and stop the mold during the molding operation. Also, the speed of expanding the cavity volume is the foaming materialSex treeUsually, it is in the range of 0.1 to 10 mm / sec, although it varies depending on the shape of the foam propeller fan which is the fat composition or the final molded product. Further, the speed does not necessarily have to be constant, and the speed may be gradually increased from the initial stage of enlargement.
more than
[0021]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by these examples.
(1) Material
The following materials {circle around (1)} to {circle around (4)} were dry blended so that the final composition had the ratio described later, and subjected to molding.
(1) Long glass fiber reinforced resin
A glass roving with an average fiber diameter of 17μm and a tex count of 2310g / km is introduced into an impregnation tank heated to 280 ° C. : 160 ° C., melt flow rate (230 ° C., 21.18 N): 200 g / 10 min] was supplied. After impregnating the glass roving with polypropylene resin, the glass roving was pulled through a 2.3 mm diameter circular nozzle, cut to a length of 6 mm after cooling, and glass long fiber reinforced resin pellets having a glass fiber content of 50% by weight were obtained.
(2) Foaming agent master batch
A mixture of 20% by weight of blowing agent (ADCA) and 80% by weight of crystalline ethylene-propylene random copolymer (ethylene content 4.5% by weight) with a melt flow rate of 75g / 10min was melted in an extruder at 180 ° C. It knead | mixed and the foaming agent masterbatch pellet was obtained.
(3) Polypropylene for dilution
Propylene homopolymer pellets having a melt flow rate of 75 g / 10 min were used.
(4) Mica master batch
A mixture of 60% by weight of mica having an average particle diameter of 20 μm and 40% by weight of a propylene homopolymer having a melt flow rate of 60 g / 10 min was melt-kneaded in an extruder at 240 ° C. to obtain mica master batch pellets. .
[0022]
(2) Propeller fan evaluation method
(1) Wing shape
When the entire wing part is foamed, the boundary between the foamed part and the non-foamed part is the one that is sufficiently foamed to the end and when the part other than the root and outer periphery of the wing part is foamed. For those that were connected smoothly, it was judged as ○ (Fig. 3). Other cases where the foamed part and non-foamed part have a stepped shape (Fig. 4) or a wedge-shaped recess at the boundary between the foamed part and non-foamed part (Fig. 5) are judged as x. did.
(2) Product weight
The weight of five propeller fan molded products was measured and taken as the average weight.
(3) Rigidity
The propeller fan was placed horizontally, a load of 3 kg was applied to the blade tip (Fig. 1), and the amount of deflection at that time was measured. The measurement was performed on all wings, and the average value was taken.
(4) Noise
A propeller fan was attached to the DC motor, and the noise at 600 rpm was measured from a position 1 m away with a noise meter. The noise of the motor alone with the propeller fan removed was 31 dB.
[0023]
Example 1
Dry blending of material (1) 40%, material (2) 5%, and material (3) 55% by weight so that the final composition is 20% glass fiber and 1% foaming agent. Then, it was subjected to an injection molding machine set at a cylinder temperature of 200 ° C. The mold has 4 blades, 380mm outer diameter, 110mm hub diameter, 1.5mm thickness of the minimum thickness part of the wing part, 5mm thickness of the maximum thickness part, and the outer periphery of the wing part has an arcuate end. I used what is. The mold temperature was 40 ° C. The molten resin plasticized in the cylinder was injected into the mold cavity with an injection time, that is, the time of step b being 2.7 seconds. The time for forming the surface solidified layer, that is, the time of step c (hereinafter referred to as primary cooling time) was 1.5 seconds, and the opening amount of the mold was 4 mm. Further, the inside was sufficiently solidified to obtain a thick-walled foamed propeller fan molded product having a foamed structure. As a result of evaluating the obtained molded product, it was excellent in light weight and rigidity, good in the end shape, and good in low noise.
[0024]
Comparative Example 1
A foamed propeller fan molded article was obtained using the same mold and the same conditions as in Example 1 except that the outer periphery of the wing was rectangular instead of the arcuate end. Since the outer periphery of the wing portion of the mold was not an arc-shaped end, the shape of the wing end after foaming became a stepped shape, resulting in increased noise.
[0025]
Comparative Example 2
A foamed propeller fan molded product was obtained in the same manner as in Example 1 except that the primary cooling time was 4 seconds. The wing end shape after foaming became stepped and the noise increased.
[0026]
Comparative Example 3
The same mold as in Example 1 was used, but foam molding was not performed, and a non-foamed thin-walled propeller fan molded product was obtained by a normal injection molding method. Rigidity was inferior compared to foamed molded products, and noise increased due to wing shake.
[0027]
Comparative Example 4
Thick propeller fan mold with 4 blades, outer diameter 380mm, hub diameter 110mm, minimum blade thickness 2mm, maximum wall thickness 9mm, non-foamed thick by normal injection molding method Propeller fan molding was obtained. The obtained molded product was extremely heavy.
[0028]
Examples 2 and 3, Comparative Example 5
The same material as in Example 1 was subjected to an injection molding machine set at a cylinder temperature of 200 ° C. The mold has 4 blades, outer diameter 300mm, hub diameter 120mm, minimum blade thickness 2mm, maximum wall thickness 8mm, outer periphery of the blade has an arcuate end We used what is. The mold temperature was 30 ° C. Each foam molding was performed under the conditions shown in Table 1 to obtain a thick-walled foam propeller fan molded product having a foam structure. The molded products of Examples 2 and 3 were excellent in lightness and rigidity, and the terminal shape was good and the low noise property was good, but the molded product of Comparative Example 5 was a stepped wing end shape after foaming As a result, noise increased.
[0029]
Comparative Example 6
The same material as in Example 1 was subjected to an injection molding machine set at a cylinder temperature of 200 ° C. Gold with 4 blades, 300mm outer diameter, 120mm hub diameter, 0.5mm minimum wall thickness, 2mm maximum wall thickness, and the outer periphery of the blade has an arcuate end Using a mold, foam molding was performed under the conditions shown in Table 1 to obtain a thick-walled foam propeller fan molded product. Although it was appropriate as the primary cooling time, the thickness of the wing minimum wall thickness before foaming was too thin, the wing end shape after foaming was stepped, noise increased, and rigidity Was also lacking.
[0030]
Comparative Example 7
The same material as in Example 1 was subjected to an injection molding machine set at a cylinder temperature of 200 ° C. Mold with 4 blades, outer diameter of 300mm, hub diameter of 120mm, minimum thickness of blade part is 1mm, maximum thickness of 10mm, outer periphery of blade part is arcuate end Foam molding was carried out usingmin≦ TmaxSince the above requirement was not satisfied, the surface solidified layer in the thick part burst and a good molded product could not be obtained.
[0031]
Comparative Example 8
The same material as in Example 1 was subjected to an injection molding machine set at a cylinder temperature of 200 ° C. The mold has 4 blades, outer diameter 300mm, hub diameter 120mm, minimum blade thickness 2mm, maximum wall thickness 8mm, outer periphery of the blade has an arcuate end We used what is. A thick-walled foamed propeller fan molded product having a foamed structure was obtained in the same manner as in Example 2 except that the injection speed was reduced and the injection time was 5.5 seconds. The obtained molded product had a stepped wing end shape after foaming, resulting in increased noise.
[0032]
Example 4
Material 1) is 20% by weight,
[0033]
Examples 5 and 6
The same material as in Example 1 was subjected to an injection molding machine set at a cylinder temperature of 200 ° C. The mold used was one having four blades, an outer diameter of 300 mm, a hub diameter of 120 mm, and a structure in which only the central portion of the wing portion, that is, the portion excluding the root and the periphery was foamed. The foamed portion used had a minimum thickness of 2 mm before foaming, a maximum thickness of 4 mm, and the outer periphery of the wing portion having an arcuate end. Foam molding was carried out under the conditions shown in Table 1 to obtain a thick-walled foamed propeller fan molded product with a foamed structure, all of which were excellent in light weight and rigidity, good in the end shape, and good in low noise. The
[0034]
[Table 1]
[0035]
【The invention's effect】
The method for producing a foamed propeller fan of the present invention uses a mold having a specific shape, and is superior in rigidity and light weight of the wing part and has a good wing shape by a specific injection molding method and specific injection molding conditions. A foamed propeller fan excellent in low noise can be obtained. For this reason, it can endure high rotation and can obtain a high air volume. Moreover, since it is excellent in light weight, not only the material cost can be reduced, but also the power consumption of the motor can be kept low.
[Brief description of the drawings]
FIG. 1 shows an example of a foamed propeller fan obtained by the production method of the present invention (plan view).
FIG. 2 shows an example of a foamed propeller fan obtained by the production method of the present invention (side view).
FIG. 3 shows an example of a good wing shape of the present invention (cross-sectional view).
FIG. 4 shows an example of a blade shape outside the scope of the present invention (cross-sectional view).
FIG. 5 shows an example of a blade shape outside the scope of the present invention (cross-sectional view).
FIG. 6 shows an example of a blade shape before volume expansion according to the present invention (cross-sectional view).
[Explanation of symbols]
1 ... Hub
2 ... Wings
3… Outer wing circumference
4 ... wing root
5 ... tip of wing
6… Foamed part
7… Non-foamed part
8 ... Step
9 ... Wedge-shaped recess
Claims (9)
Tmin=hmax 2×(M/1000) …式1
Tmin : 最小一次冷却時間 [秒]
hmax : 型開き前の翼部の最大肉厚 [mm]
M : 金型温度 [℃]
Tmax=hmin 2×(M/30) …式2
Tmax : 最大一次冷却時間 [秒]
hmin : 型開き前の翼部の最小肉厚 [mm]
M : 金型温度 [℃]
Tmin≦Tmax …式3Based on the composition, the step of plasticizing the foamable resins composition containing a thermoplastic resin 95 to 99.9 wt% and a chemical blowing agent 0.1 to 5 wt% (a), than the volume of the molded article of interest Injecting the plasticized material into a small closed mold cavity (b), cooling to a state where the solidified layer contacting the mold surface and the internal molten layer are mixed after completion of injection filling (c), Foaming at least on the wings obtained by opening the mold (d) to expand the volume of the cavity to the volume of the target molded product, and (e) taking out the molded product after cooling. A foamed propeller fan having a structure in which the minimum thickness of the blade is 1 mm or more, the maximum thickness is 15 mm or less, and the outer periphery is substantially an arc-shaped end. Using the mold having the shape of the process, the time of the process b is 5 seconds or less, and c The method of manufacturing a sparkling propeller fan, characterized in that the extent of time in the range of T min through T max which is defined by the following equation.
T min = h max 2 × (M / 1000)… Formula 1
T min : Minimum primary cooling time [sec]
h max : Maximum thickness of wings before mold opening [mm]
M: Mold temperature [℃]
T max = h min 2 × (M / 30)… Formula 2
T max : Maximum primary cooling time [sec]
h min : Minimum thickness of wings before mold opening [mm]
M: Mold temperature [℃]
T min ≦ T max … Formula 3
Tmin=h'max 2×(M/1000) …式1
Tmin : 最小一次冷却時間 [秒]
h'max : 容積拡大部分の最大肉厚 [mm]
M : 金型温度 [℃]
Tmax=h'min 2×(M/40) …式4
Tmax : 最大一次冷却時間 [秒]
h'min : 容積拡大部分の最小肉厚 [mm]
M : 金型温度 [℃]
Tmin≦Tmax …式3 Step (a) of plasticizing a foamable resin composition containing 95 to 99.9% by weight of a thermoplastic resin and 0.1 to 5% by weight of a chemical foaming agent on the basis of the composition, a portion excluding the root and outer periphery of the wing A step (b) of injecting the plasticized material into a closed mold cavity smaller than the volume of the target molded product, and a mixture of a solidified layer contacting the mold surface after completion of injection filling and an internal molten layer Step (c) of cooling to a state where it can be cooled, step (d) of expanding the volume of the cavity to the volume of the target molded product by opening the mold of the portion excluding the root and outer periphery of the wing , and further cooling A foamed propeller fan having a foamed structure at least on the wing part, which is obtained through the step (e) of taking out the molded product after performing the process, wherein the thickness of the minimum thickness part is 1 mm or more with respect to the wing part as the mold The maximum wall thickness is 15mm or less and the outer periphery is substantially arcuate Foam characterized by using an end-shaped mold, the time of the b step being 5 seconds or less, and the time of the c step being in the range of T min to T max defined by the following formula Propeller fan manufacturing method.
T min = h ' max 2 x (M / 1000) ... Formula 1
T min : Minimum primary cooling time [sec]
h ' max : Maximum thickness of the volume expansion part [mm]
M: Mold temperature [℃]
T max = h ' min 2 x (M / 40) ... Formula 4
T max : Maximum primary cooling time [sec]
h ' min : Minimum wall thickness [mm]
M: Mold temperature [℃]
T min ≦ T max … Formula 3
Tmin=hmax 2×(M/1000) …式1
Tmin : 最小一次冷却時間 [秒]
hmax : 型開き前の翼部の最大肉厚 [mm]
M : 金型温度 [℃]
Tmax=hmin 2×(M/30) …式2
Tmax : 最大一次冷却時間 [秒]
hmin : 型開き前の翼部の最小肉厚 [mm]
M : 金型温度 [℃]
Tmin≦Tmax …式3Based on the composition, the step of plasticizing the foamable resins composition of a thermoplastic resin 40 to 95 wt% and a long glass fiber length 2~50mm containing 5 to 60 wt% (a), the objective A step (b) of injecting the plasticized material into a closed mold cavity smaller than the volume of the molded product, and cooling to a state where a solidified layer contacting the mold surface and an internal molten layer are mixed after completion of injection filling; Obtained through step (c), the step of expanding the volume of the cavity to the volume of the target molded product by opening the mold (d), and the step of removing the molded product after cooling (e) , A foamed propeller fan having a foam structure at least in the wing portion, wherein the die has a minimum thickness of 1 mm or more, a maximum thickness of 15 mm or less, and a substantially outer periphery with respect to the wing. Using a mold with an arcuate end, and the time of step b is 5 seconds or less, One method for producing a foamed propeller fan, characterized in that the time of c steps in the range of T min through T max which is defined by the following equation.
T min = h max 2 × (M / 1000)… Formula 1
T min : Minimum primary cooling time [sec]
h max : Maximum thickness of wings before mold opening [mm]
M: Mold temperature [℃]
T max = h min 2 × (M / 30)… Formula 2
T max : Maximum primary cooling time [sec]
h min : Minimum thickness of wings before mold opening [mm]
M: Mold temperature [℃]
T min ≦ T max … Formula 3
Tmin=h'max 2×(M/1000) …式1
Tmin : 最小一次冷却時間 [秒]
h'max : 容積拡大部分の最大肉厚 [mm]
M : 金型温度 [℃]
Tmax=h'min 2×(M/40) …式4
Tmax : 最大一次冷却時間 [秒]
h'min : 容積拡大部分の最小肉厚 [mm]
M : 金型温度 [℃]
Tmin≦Tmax …式3 A step (a) of plasticizing a foamable resin composition containing 40 to 95% by weight of a thermoplastic resin and 5 to 60% by weight of a glass fiber having a length of 2 to 50 mm, based on the composition; And a step (b) of injecting the plasticized product into a closed mold cavity smaller than the volume of the target molded article except for the outer periphery, and a solidified layer that comes into contact with the mold surface after completion of injection filling Step (c) of cooling to a state where the internal molten layer is mixed , and step of expanding the cavity volume to the volume of the target molded product by opening the mold of the portion excluding the root and outer periphery of the wing. (d) a foamed propeller fan having a foam structure in at least the wing part, obtained through the step (e) of taking out the molded product after further cooling, wherein the minimum thickness part is related to the wing part as the mold The wall thickness is 1mm or more, the maximum wall thickness is 15mm or less, and the outer circumference is substantially Using a mold having a shape which is arcuate ends, the time of step b 5 seconds or less, and characterized by the time of c steps in the range of T min through T max which is defined by the following formula A method for producing a foamed propeller fan.
T min = h ' max 2 x (M / 1000) ... Formula 1
T min : Minimum primary cooling time [sec]
h ' max : Maximum thickness of the volume expansion part [mm]
M: Mold temperature [℃]
T max = h ' min 2 x (M / 40) ... Formula 4
T max : Maximum primary cooling time [sec]
h ' min : Minimum wall thickness [mm]
M: Mold temperature [℃]
T min ≦ T max … Formula 3
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36417899A JP4438148B2 (en) | 1999-12-22 | 1999-12-22 | Production method of foamed propeller fan |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36417899A JP4438148B2 (en) | 1999-12-22 | 1999-12-22 | Production method of foamed propeller fan |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001179764A JP2001179764A (en) | 2001-07-03 |
JP4438148B2 true JP4438148B2 (en) | 2010-03-24 |
Family
ID=18481169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36417899A Expired - Fee Related JP4438148B2 (en) | 1999-12-22 | 1999-12-22 | Production method of foamed propeller fan |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4438148B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5261280B2 (en) * | 2009-05-15 | 2013-08-14 | 太平洋工業株式会社 | Manufacturing method of resin molded parts for automobiles |
-
1999
- 1999-12-22 JP JP36417899A patent/JP4438148B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001179764A (en) | 2001-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1987934B1 (en) | Skin-covered propylene resin foamed molded article | |
CA2718920C (en) | Molded thermoplastic articles | |
JP3814032B2 (en) | Molding | |
WO1997029896A1 (en) | A method of forming a light-weight, fiber-reinforced thermoplastic resin product and a light-weight molded product | |
WO2000003859A1 (en) | Lightweight resin molded product and production method thereof | |
KR20130051478A (en) | Polymer pellets containing supercritical fluid and methods of making and using | |
CA2384968C (en) | Plastic wood fiber foam structure and method of producing same | |
EP2835243B1 (en) | Method for producing skin-covered polyolefin resin foamed molded article | |
KR101731417B1 (en) | Olefin resin foam stretch molded body | |
US10988584B2 (en) | Resin for foam molding, foam molded article, and method for producing same | |
WO1996030180A1 (en) | Foamed rotationally molded articles | |
JP4438148B2 (en) | Production method of foamed propeller fan | |
JP5954105B2 (en) | Propylene-based resin foam stretch-molded body and method for producing the same | |
JP2000006182A (en) | Foam propeller fan | |
JP5126629B2 (en) | Prescription of light weight plastic shoe mold and manufacturing method thereof | |
JP2018141031A (en) | Resin for foam molding, foam molding and method for producing the same | |
JP3831026B2 (en) | Manufacturing method of lightweight molded product of fiber reinforced thermoplastic resin | |
JP2000033627A (en) | Manufacture of lightweight resin molding and lightweight resin molding | |
JPH10138276A (en) | Production of fiber reinforced thermoplastic resin lightweight molded product | |
JPH1119961A (en) | Manufacture of fiber-reinforced, thermoplastic resin light-weight molding | |
JP4278233B2 (en) | Extrusion molding method and extruded product of fiber-containing thermoplastic resin | |
JP2002012690A (en) | Polyolefin resin composition for expansion molding and molded product thereof | |
JPH09277335A (en) | Manufacture of glass fiber reinforced thermoplastic resin lightweight molding and lightweight molding | |
JP2004291858A (en) | Extruding foaming board for loading platforms of vehicle | |
JP3623616B2 (en) | Fiber reinforced thermoplastic resin lightweight storage container and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091215 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091228 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140115 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |