JP4435405B2 - BOLORUSITE INORGANIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND SUBSTRATE FOR ELECTRONIC CIRCUIT - Google Patents

BOLORUSITE INORGANIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND SUBSTRATE FOR ELECTRONIC CIRCUIT Download PDF

Info

Publication number
JP4435405B2
JP4435405B2 JP2000391980A JP2000391980A JP4435405B2 JP 4435405 B2 JP4435405 B2 JP 4435405B2 JP 2000391980 A JP2000391980 A JP 2000391980A JP 2000391980 A JP2000391980 A JP 2000391980A JP 4435405 B2 JP4435405 B2 JP 4435405B2
Authority
JP
Japan
Prior art keywords
borolucite
inorganic composition
based inorganic
crystal
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000391980A
Other languages
Japanese (ja)
Other versions
JP2002193660A (en
Inventor
康雄 越智
靖 印田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2000391980A priority Critical patent/JP4435405B2/en
Publication of JP2002193660A publication Critical patent/JP2002193660A/en
Application granted granted Critical
Publication of JP4435405B2 publication Critical patent/JP4435405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はボロリュウサイト系無機組成物、及びその製造方法、並びにこれらを利用した電子回路用基板に関する。より詳細には、比較的低温で焼成することができる、良焼結性のボロリュウサイト系無機組成物に関する。
【0002】
【従来の技術】
セラミックスは一般に熱応力で比較的容易に破壊してしまう耐熱衝撃性の低い材料とみなされてきた。古くポルサイト(Pollucite、CsAlSi26)は高温X線により格子定数評価され、200乃至1000℃まで温度差による結晶格子の寸法変化が認められない鉱物であったことから低熱膨張性と耐熱衝撃性を期待し注目されてきた鉱物であった(D.Taylor、C.M.B.Henderson:The Am.Min.,Vol.53,pp.1476-88,(1968)、宇田川重和,井川博行:セラミックス,p967-76(1979))。
【0003】
しかしながら、ポルサイトにおいてはその融点が1900-2000℃と高温にあり、耐熱性は良いが難焼結性でり、実用化は困難であった。また作業温度が1000℃を越えると、Cs塩の揮発が激しく、組成を精密に制御することも困難であった。近年、低熱膨張材料が必要とされ、ポルサイトに興味が集中した時期があり、いくつかの特許が出願された(米国特許第3723140号;特願平9-188702)。しかし、出願された技術は焼成手段に関するものであり、依然として高温での生産を要求される。
【0004】
一方、金属並みの大きな熱膨張率を示すことでリュウサイト(Leucite(白瑠石)KAlSi26)が知られている。これまでに歯科材料の金属歯根と陶歯の接着用途に利用されており、近年米国では数多くの特許が権利化されている。国内でも星川らをはじめとする多くの研究開発の成果が報告された(星川武:大阪市立研究所、Vol55;窯業協会大阪支部昭和62年総会特別講演会予稿集pp11-18、(1987))。
【0005】
この両者の結晶は相反する熱膨張を示しながら共に同じ結晶群に帰属される。この結晶群は大きな熱膨張を示す正方晶系結晶(空間群I41/a)から極低膨張の立方晶系結晶(空間群Ia/3d)へと結晶相転移を経て大きく性質が変わることに特徴がある。この結晶群に含まれる鉱物の結晶組成式はMAlSi26、(M=Cs,Rb,K)で表され、相転移温度はCs,Rb,Kに対してそれぞれ−25℃、400℃、605℃にあることが知られる。このような特異的な熱膨張の性質は結晶の骨格構造と結晶格子内の空隙に大きく支配される(日本セラミック協会1997年度年会、公演番号2J06;日本セラミック協会1998年度年会、公演番号1I01)。
【0006】
近年、半導体産業において基板材料と配線材料の熱膨張差がクラックの原因となることが問題になっており、基板の熱膨張率を調整する努力が成されている。従って任意の熱膨張率に設定でき、低温で焼結可能な材料技術を提供することが要求されている。
【0007】
熱膨張率を用途にあわせて適切に調整できる材料は多くの分野で渇望されているが、さらに低温で焼結でき、低誘電性、高電気抵抗をあわせもつ材料はセラミックス基板、積層回路基板、高周波回路基板などの用途に注目が集まっている。高周波用基板材料は低誘電率が要求されているが実用化されているアルミナでは誘電率が高いため高周波信号伝送における信号伝播速度をあげることができない。さらに低誘電率の材料が嘱望されている。積層型の基板材料であるアルミナは焼結温度が高いため貴金属を使用せざるを得なかった。1000℃以下で焼結可能な材料があるならば電極材料として碑金属を使用することができる。基板上にメタライズ配線との同時焼成を実現するために、メタライズ配線を構成するAgの融点(961℃)、Cuの融点(1083℃)、あるいはAuの融点(1064℃)以下で焼成を行う必要がある。
【0008】
【発明が解決しようとする課題】
本発明は、熱膨張率を用途にあわせて適切に調整でき、比較的低温で焼結することのできる新規ボロリュウサイト系無機組成物を提供することを課題とする。更に、本発明は、比較的低温で焼結することができ、低誘電性、高電気抵抗をあわせもつ新規ボロリュウサイト系無機組成物を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を達成するために、ポルサイト、リュウサイトのAlをBに置き代えたCsボロリュウサイト(Cs2a2bSi2a+3b+4)、Kボロリュウサイト(K2a2bSi2a+3b+4)の室温における結晶系は共に立方晶であり、連続固溶体を形成することが期待できること、a=0.5,b=0.5におけるCsボロリュウサイトの線膨張率は35.1ラ10-7/℃、Kボロリュウサイトのそれは273.2ラ10-7/℃と極端に異なる上に、実用的にはこれらの間の熱膨張率が材料に要請されることが多いことに着目し鋭意検討した結果、これら二者のボロリュウサイトを端成分とした固溶体は、連続固溶体であり、比較的低温度で焼成が可能であることを見出し、本願発明を完成した。
【0010】
すなわち、請求項1に記載の発明は、化学組成式a(Csx1-x2O・bB23・2SiO2で示され、a、b、xは、

Figure 0004435405
の範囲であることを特徴とするボロリュウサイト系無機組成物であり、
請求項2記載の発明は、焼結度は60%以上であることを特徴とする、請求項1記載のボロリュウサイト系無機組成物であり、
請求項3記載の発明は、700〜1000℃で焼成し得られることを特徴とする、請求項1又は2記載のボロリュウサイト系無機組成物であり、
請求項4記載の発明は、100〜300℃における線膨張係数が、35×10-7〜280×10-7(/℃)であることを特徴とする、請求項1〜3のうちいずれか一項記載のボロリュウサイト系無機組成物であり、
請求項5記載の発明は、比誘電率が、4.0〜9.3であることを特徴とする、請求項1〜4のうちいずれか一項記載のボロリュウサイト系無機組成物であり、請求項6記載の発明は、Kボロリュウサイト(K2a2bSi2a+3b+4)とCsボロリュウサイト(Cs2a2bSi2a+3b+4)を両端成分とする固溶体であることを特徴とする、請求項1〜5のうちいずれか一項記載のボロリュウサイト系無機組成物であり、
請求項7記載の発明は、酸化物基準で、a(Csx1-x2O・bB23・2SiO2、ただし、a、b、xは、
Figure 0004435405
の範囲の組成を有する原料を、700〜1000℃で焼成することを特徴とする、請求項1〜6のうちいずれか一項記載のボロリュウサイト系無機組成物の製造方法であり、
請求項8記載の発明は、該範囲の組成を有する原料を、1150〜1500℃で溶融し、得られた母ガラスを、700〜1000℃で結晶化することを特徴とする、請求項7記載のボロリュウサイト系無機組成物の製造方法であり、
請求項9記載の発明は、請求項1〜6のうちいずれか一項記載のボロリュウサイト系無機組成物からなる電子回路用基板である。
【0011】
本発明のボロリュウサイト系無機組成物は、化学組成式a(Csx1-x2O・bB23・2SiO2で示され、酸化物組成で、Cs2O、K2O、B23、及びSiO2を必須成分とする。
【0012】
SiO2はB23と共に結晶内のネットワーク構造を形成するのに必須な成分である。
【0013】
23は、結晶構成成分であると同時にフラックス成分としても働く。組成式におけるa又はbの値が0.125より小さいと、1000℃以下の条件では良好に焼結せず、より高温度条件で焼成してもリュウサイト結晶構造を取り得ない。また、aの値が1.0より大きいか、又はbの値が0.75より大きいと、溶融のために焼成が困難となる。より安定なリュウサイト結晶構造を得るために、Cs2O、K2Oのaの値は、0.85以下が好ましい。
【0014】
x及びaの値は相転移温度に関連し、さらに熱膨張係数に大きな影響を与える。x及びaの値を0.125≦a≦1.00、0<x<1の範囲で調整することにより、本発明のボロリュウサイト系無機組成物の100〜300℃における熱膨張係数を35×10-7/℃から280×10-7/℃の範囲で設計することができる。
【0015】
本発明のリュウサイト系無機組成物は、B、Siを配位子とする酸素四面体のネットワークから成るリュウサイト系結晶を有する。それらのネットワークをK,Csのアルカリ金属が静電的に結合して結晶を安定化していると考えられる。
【0016】
本発明のボロリュウサイト系無機組成物の焼結度は、60%以上であることが好ましい。この範囲の焼結度に焼成することによって、所望の強度、線膨張係数、比誘電率の焼結体とすることができる。
【0017】
本発明のボロリュウサイト系無機組成物の比誘電率が、4.0〜9.3であることが好ましい。アルミナの比誘電率が9.4〜9.8であるのに対して、本発明のボロリュウサイト系無機組成物の比誘電率は小さいので、低誘電率が要求されている高周波用基板材料に好適である。
【0018】
本発明の請求項6に係るボロリュウサイト系無機組成物は、Kボロリュウサイト(K2a2bSi2a+3b+4)とCsボロリュウサイト(Cs2a2bSi2a+3b+4)を両端成分とする固溶体である。Csボロリュウサイト(Cs2a2bSi2a+3b+4)の融点はa=0.5、b=0.5において1150℃であり、Kボロリュウサイトの融点は、発明者らが実験により求めたところa=0.5、b=0.5において約1050℃であった。ボロリュウサイト系材料の融点は1050〜1150℃とリュウサイト系材料に比較し大幅に低い。本発明のボロリュウサイト系無機組成物も、リュウサイト系材料に比べて低く、低温条件で溶融が可能となる。Kボロリュウサイト(K2a2bSi2a+3b+4)とCsボロリュウサイト(Cs2a2bSi2a+3b+4)は、何れも高温型リュウサイト結晶構造を示し、これらの中間組成を有する本発明のボロリュウサイト系無機組成物は、両者を端成分とする完全固溶体を形成する。両端成分が難焼結性であるのに対して、中間成分である本発明のボロリュウサイト系無機組成物は、易焼結性を有する。化学組成式a(Csx1-x2O・bB23・2SiO2において、xは、固溶比を示す。
【0019】
本発明のボロリュウサイト系無機組成物は、固溶比xの値が大きくなるほど、すなわちCsの成分量が多くなるほど、線膨張係数は小さくなる。K,Rb,Csの電気陰性度はCsがもっとも強く、Kが最も弱い。熱膨張に差が生じるのはこれらのアルカリ金属がネットワークを束縛する力に差があるためと考えられる。
【0020】
本発明のボロリュウサイト系無機組成物は、酸化物基準で、a(Csx1-x2O・bB23・2SiO2、ただし、a、b、xは、
Figure 0004435405
の範囲の組成を有する原料を調合し、必要に応じてプレスし、700〜1000℃で焼成することにより製造することができる。比較的低温の焼成条件とすることができる点は、コスト低減メリットが大きいだけでなく、メタライズ配線との同時焼成可能な基板材料として、用途拡大のメリットがある。
【0021】
また、本発明のボロリュウサイト系無機組成物は、前述の範囲の組成を有する原料を溶融し、得られた母ガラスを焼成することによっても製造することができる。この際の溶融温度は1150〜1500℃が好ましい。
【0022】
【発明の実施の形態】
本発明のボロリュウサイト系無機組成物は、原料の準備、粉砕、成形、焼結という通常の便宜的な方法で成すことができる。硝酸セシウム、硝酸カリウム、硼酸、シリカの粉体原料を調合したものを原料として用いることができる。これらの粉体原料を700〜850℃で仮焼して得た前駆体、又は、後述のガラスや結晶化ガラスの粉砕物をこれにあてることもできる。あるいはこれらを混合したものを利用することができる。粉体原料調合物にガラスあるいは結晶化ガラスを混合するとそれらがフラックスとして働き、焼結温度を下げたり、焼結時間を短縮する働きを期待できる。
【0023】
前駆体、ガラス及び結晶化ガラスの破砕には、ボールミル、ジェットミル等を用いて、3μm以下に微粉砕してセラミックスの焼結原料とする。粉砕媒体から生じる不純物のおそれがなく3μm以下に粉砕されるならば特に拘りなくどのような方法でも粉砕方法として使うことができる。
【0024】
これら粉砕された原料、又は、粉体原料を秤量・混合したのち、成形金型に入れ、一軸プレスで5.9MPa(60kgf/cm2)以上の圧力で成形し、さらにCIPにより29MPa(300Kgf/cm2)以上の圧力で成形する。得られた成形物を大気下、1000℃以下の焼成炉中で2時間以上焼成することにより、焼成体からなる、本発明のボロリュウサイト系無機組成物を得ることができる。
【0025】
本発明のボロリュウサイト系無機組成物は、所定範囲の組成を有する原料を調合、溶融し、得られた母ガラスを焼成することによっても得ることができる。母ガラスの作成は通常の溶解方法で作成することができる。また、原料調合時に結晶核材を付加することができる。核材は母ガラスの組成により最適なものがあるが、燐酸アルミニウム、酸化セリウム、酸化ジルコニウム、酸化チタン、酸化モリブデン等が適用可能である。
【0026】
はじめに、所定組成の範囲の原料を調合し溶解する。母ガラス作成における溶解温度条件は、好適には1150℃〜1500℃であり、より好適には1350〜1500℃である。溶解時間は30分以上必要だが、溶解時間が長くなるとセシウム、カリウムおよび硼素の揮発が生じて目的の組成からずれてしまう。アニールは550〜700℃の温度で2時間以上が好適である。
【0027】
母ガラス中に微結晶を析出させるために熱処理を行う。この結晶化条件は組成により決まるが、700〜1000℃の温度で1時間以上結晶化熱処理することが好ましい。作業温度と幼核の発生、結晶成長について以下の基本的な反応機構がある。すなわち、結晶化温度付近では幼核の発生・消失が繰り返され結晶核の数は平衡に達している。結晶化温度を越え、結晶化温度からそれほど高くない温度域では結晶の幼核の発生数が消失数を上回り、結晶核が安定して析出する。この温度域では幼核の結晶成長に十分なエネルギーでなく、もっぱらエネルギーは幼核の発生に費やされる。さらに高い温度では核の結晶成長が著しく、小さな幼核は溶解して成長へ費やされ、ガラスと結晶粒子が混在する結晶化ガラスとなる。これらを考慮して熱処理を行うと所望の結晶粒子径、結晶量が制御できよう。
【0028】
本発明のボロリュウサイト系無機組成物の結晶性をフィリップス社製X線回折装置EXPERTにより評価した。40kV,40mAの管駆動条件で発生させたCuKα線を試料に照射し、2次側X線を、モノクロメータを経て受光し記録した。採取したX線回折プロファイルとJCPDSカードを照合し結晶相を同定した。
【0029】
また回折ピーク値をもとに格子定数を算出し格子体積を求め、さらに単位格子の理論重量を計算して、理論密度を求めた。一方アルキメデス法を用いて実測密度を求め、実測密度÷理論密度×100より、焼結度(%)を求めた。
【0030】
線膨張率は長さ既知の試料両端に一定荷重をかけ、温度に対する物質の伸縮を記録する熱機械的分析装置により測定した。試料形状は直径4mmφ長さ20mmに加工して測定した。
【0031】
【実施例】
以下、実施例・比較例により本発明を説明する。ただし、本発明は、これら実施例に限られるものではない。
【0032】
(実施例1)
Cs0.60.4BSi26(a=0.5、b=0.5、x=0.6)
Cs0.60.4BSi26となるように硝酸セシウム、硝酸カリウム、硼酸、シリカを秤量・混合し800℃12時間大気下で焼成してポルサイトと同形の結晶粉末を調整する。この材料を平均粒子径5μm以下に遊星ボールミルで粉砕し、さらにジェットミルで微粉砕して3μm以下の微粉状態にある結晶粉末を準備した。この材料を成形型に入れ、3.2MPa(33kgf/cm2)の圧力の圧力で成形し、さらにCIPにより196MPa(2ton/cm2)の圧力で成形体とし、これを1000℃12時間焼結して固溶体結晶を作成した。
【0033】
得られた試料の構造をX線回折装置で解析したところ、試料は立方晶であるリュウサイトの高温結晶相を示している。試料の焼結度は87.6%であり、線膨張率は80ラ10-7/℃(100〜300℃)であった。
【0034】
(比較例1)
KBSi26となるように硝酸カリウム、硼酸、シリカを秤量・混合し800℃12時間大気下で焼成してKボロリュウサイト結晶粉末を得た。この材料を平均1μm以下に微粉砕したのち、成形型に入れ、3.2MPa(33kgf/cm2)の圧力で成形し、さらにCIPにより196MPa(2ton/cm2)の圧力で圧粉体とし、これを1000℃、12時間焼結して焼結体を作成した。
【0035】
Kボロリュウサイト結晶粉末は微粉砕しても成形性が悪く、これを基にして作成した焼結体はひび割れが多くて脆かった。
【0036】
(比較例2)
CsBSi26となるように硝酸セシウム、硼酸、シリカを秤量・混合し800℃12時間大気下で焼成してCsボロリュウサイト結晶粉末を得た。この材料を1μm以下に微粉砕したのち、成形型に入れ、3.2MPa(33kgf/cm2)の圧力で成形し、さらにCIPにより196MPa(2ton/cm2)の圧力で成形体とし、これを1000℃12時間焼結して焼結体を作成した。
【0037】
Csボロリュウサイト結晶粉末は微粉砕しても成形性が悪く、これを基にして作成した焼結体は焼結性が悪くひび割れが多かった。
【0038】
(実施例2〜実施例5)
(Csx1-x)BSi26(a=0.5、b=0.5)
(Csx1-x)BSi26(x=0.80、0.60、0.40、0.20)となるように硝酸セシウム、硝酸カリウム、硼酸、シリカを秤量・混合した。混合粉体を白金坩堝中に設置し、大気下1400℃で3時間溶融した。この溶融物を急冷してガラスを得た。このガラスを遊星ボールミル、ジェットミルで微粉砕し3μm以下にして焼結用原料粉体とした。
【0039】
この原料を実施例1と同様にして焼結し、物性を評価した。化学組成及び物性の評価結果は表1にまとめて示す。合成した試料の結晶相はすべて高温リュウサイト相であり、単一相であった。この固溶比xに伴う格子定数は表1、図1に示すようにxとともに単純な相関をもって増加し、かつ前述のように単一相であることから、この系は完全固溶体を形成する。固溶体の焼結度は70%以上を示している。
【0040】
なお、格子定数の括弧内の数字は標準偏差を表す。
【0041】
【表1】
Figure 0004435405
【0042】
さらに固溶体結晶の熱膨張は固溶比xと共に143ラ10-7から23ラ10-7へとなめらかな減少を示している。
【0043】
従って、固溶比xを選ぶことにより、この範囲において、所望の熱膨張率の材料を得ることができる。
【0044】
固溶比xと線膨張率の相関を図2に示す。
【0045】
さらに実施例1から5の熱膨張曲線を図3に示す。図3は横軸に測定温度、縦軸に試料の膨張をとり、CsボロリュウサイトからKが固溶するにつれて膨張は大きくなることを示している。
【0046】
(実施例6−13)
(Cs0.50.52a2bSi2(a+3b+4)(x=0.5)
リュウサイト型結晶構造を示す組成域を明確にするために(Cs0.50.5)BSi26附近の組成を検証した。
【0047】
試料の合成は表2の組成式になるように硝酸セシウム、硝酸カリウム、硼酸、シリカを秤量・混合し900℃6時間大気下で焼成して結晶粉末を調整した。相状態図を図4に示す。
【0048】
得られた試料の構造をX線回折装置で解析したところ、(Cs0.50.5)BSi26附近の組成の実施例6〜10では立方晶であるリュウサイト高温結晶相が単独で表われ、やや離れた実施例11〜13ではリュウサイト高温結晶相を主結晶相に、第2相成分として低温石英型結晶相が示されている。なお、本願の請求項1に記載の組成域からはずれる領域について実験したところ、H3BO3の高濃度側(0.75<b)では溶融してガラス化し、またSiO2の高濃度側(a<0.125、b<0.125)では反応温度が高くなり結晶化が不十分であった。
【0049】
実験の結果、得られた相の安定領域をもとに請求項1の組成域を決定した。
【0050】
【表2】
Figure 0004435405
【0051】
CsボロリュウサイトとKボロリュウサイトの間には連続固溶体が形成されることがわかった。これら連続固溶体の熱膨張率は組成と共に連続して変化することが明らかとなった。
【0052】
これまで電気的な物性(高電気抵抗、比誘電率、誘電損失)は知られていない。これら材料組成の技術は電子回路基板等に適用される場合、低誘電性である他に低温での焼結が可能なため碑金属の同時使用も可能となり、生産する上で有利な組成である。電気物性を評価するために表面を研磨したのち金電極をスパッター装置で被覆させ、白金線をリードとして接着して電気物性評価用試料とした。この試料をソーラトロン社製のSI-1260型インピーダンスアナライザーで測定し比誘電率、誘電損失を評価した。
【0053】
(実施例14〜18)
誘電特性を検証するために表3に示すようにx=0.1〜0.9の範囲で原料を調合する他は実施例1と同じ方法で固溶体結晶を作成した。得られた試料の構造をX線回折装置で解析したところ、立方晶であるリュウサイト高温結晶相が単独で示され、連続固溶体を形成していることがわかる。焼結体から2cm角、2mm厚の試料を切り出し、平滑に加工して電気物性の評価に供した。作成された試料の比誘電率、誘電損失を測定し表3に示した。加工した試料は両面、白金コートして電極及びガード電極とした。
【0054】
さらにこの電極に白金線をリードとして銀ペーストで接合した。評価はソーラトロン社製のSI-1260型インピーダンスアナライザーで比誘電率、誘電損失を大気中室温において測定した。これら誘電性と組成との相関を図6に示すが、組成と共に連続で変化している。さらに比誘電率はアルミナよりはるかに低い材料であることがわかる。
【0055】
【表3】
Figure 0004435405
【0056】
【発明の効果】
本発明のボロリュウサイト系無機組成物は、高周波基板、低温焼結基板、積層集積回路基板用の低誘電性、低温焼結性材料として、有用である。
【図面の簡単な説明】
【図1】化学組成式(Csx1-x)BSi26における固溶比xに対する格子定数の相関である。
【図2】線膨張係数と固溶比xの相関である。
【図3】実施例1から5の熱膨張曲線である。
【図4】実施例6から11の組成域を示す三元状態図である。
【図5】実施例6及び10のX線回折図である。
【図6】比誘電率である。
【図7】誘電損失である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a borolucite-based inorganic composition, a method for producing the same, and an electronic circuit substrate using the same. More specifically, the present invention relates to a sinterable borolucite-based inorganic composition that can be fired at a relatively low temperature.
[0002]
[Prior art]
Ceramics has generally been regarded as a material with low thermal shock resistance that is relatively easily destroyed by thermal stress. Old porsite (Pollucite, CsAlSi 2 O 6 ) has been evaluated for its lattice constant by high-temperature X-rays, and has a low thermal expansion and heat resistance because it does not show any dimensional change in crystal lattice due to temperature differences from 200 to 1000 ° C. A mineral that has been attracting attention in anticipation of impact (D. Taylor, CMBHenderson: The Am. Min., Vol. 53, pp. 1746-88, (1968), Shigekazu Udagawa, Hiroyuki Igawa: Ceramics, p967 -76 (1979)).
[0003]
However, the melting point of porcite is as high as 1900-2000 ° C., and it has good heat resistance but is difficult to sinter. When the working temperature exceeded 1000 ° C., the volatilization of the Cs salt was severe and it was difficult to precisely control the composition. In recent years, there has been a time when low thermal expansion materials have been required and interest has been concentrated on porsite, and several patents have been filed (US Pat. No. 3723140; Japanese Patent Application No. 9-188702). However, the applied technology relates to a baking means and still requires production at high temperatures.
[0004]
On the other hand, leucite (Leucite KAlSi 2 O 6 ) is known by showing a coefficient of thermal expansion as large as that of metal. So far, it has been used for bonding dental metal roots and porcelain teeth, and in recent years many patents have been granted in the United States. Many research and development results were reported in Japan, including Hoshikawa et al. (Takeshi Hoshikawa: Osaka City Research Institute, Vol. 55; Ceramic Society of Japan Osaka Section 1987 General Conference Proceedings pp11-18, (1987)) .
[0005]
Both of these crystals belong to the same crystal group while exhibiting opposite thermal expansion. This crystal group is characterized by a large change in properties through a crystal phase transition from a tetragonal crystal (space group I41 / a), which exhibits large thermal expansion, to a very low expansion cubic crystal (space group Ia / 3d). There is. The crystal composition formula of minerals contained in this crystal group is represented by MAlSi 2 O 6 , (M = Cs, Rb, K), and the phase transition temperatures are −25 ° C., 400 ° C. with respect to Cs, Rb, K, respectively. It is known to be at 605 ° C. These specific thermal expansion properties are largely governed by the skeletal structure of the crystal and the voids in the crystal lattice (Japan Ceramic Society 1997 Annual Meeting, Performance No. 2J06; Japan Ceramic Society 1998 Annual Meeting, Performance No. 1I01 ).
[0006]
In recent years, in the semiconductor industry, it has become a problem that a difference in thermal expansion between a substrate material and a wiring material causes a crack, and an effort has been made to adjust the thermal expansion coefficient of the substrate. Therefore, it is required to provide a material technology that can be set to an arbitrary coefficient of thermal expansion and can be sintered at a low temperature.
[0007]
Materials that can adjust the coefficient of thermal expansion appropriately according to the application are craved in many fields, but materials that can be sintered at lower temperatures and have low dielectric properties and high electrical resistance are ceramic substrates, laminated circuit boards, Attention has been focused on applications such as high-frequency circuit boards. A high-frequency substrate material is required to have a low dielectric constant, but alumina that has been put into practical use has a high dielectric constant, and thus cannot increase the signal propagation speed in high-frequency signal transmission. In addition, low dielectric constant materials are desired. Since alumina, which is a laminated substrate material, has a high sintering temperature, noble metals must be used. If there is a material that can be sintered at 1000 ° C. or lower, a stele metal can be used as an electrode material. In order to realize simultaneous firing with metallized wiring on the substrate, it is necessary to perform firing below the melting point of Ag (961 ° C), Cu melting point (1083 ° C), or Au melting point (1064 ° C) constituting the metallized wiring. There is.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel borolucite-based inorganic composition capable of appropriately adjusting the coefficient of thermal expansion according to the application and capable of being sintered at a relatively low temperature. Furthermore, an object of the present invention is to provide a novel borolucite-based inorganic composition that can be sintered at a relatively low temperature and has both low dielectric properties and high electrical resistance.
[0009]
[Means for Solving the Problems]
In order to achieve the above-mentioned problems, the present inventors have made Cs borolucite (Cs 2a B 2b Si 2 O a + 3b + 4 ), K borolucite with Al in porsite and leucite replaced with B. The crystal system at room temperature of (K 2a B 2b Si 2 O a + 3b + 4 ) is both cubic and can be expected to form a continuous solid solution, and the line of Cs borolucite at a = 0.5 and b = 0.5 The coefficient of expansion is 35.1 La 10 -7 / ° C, and that of K Borolousite is 273.2 La 10 -7 / ° C. As a result of diligent study paying attention to many, the inventors found that the solid solution having these two borolucite as an end component is a continuous solid solution and can be fired at a relatively low temperature, thereby completing the present invention.
[0010]
That is, the invention described in claim 1 is represented by the chemical composition formula a (Cs x K 1-x ) 2 O.bB 2 O 3 .2SiO 2 , wherein a, b, x are
Figure 0004435405
It is a borolucite-based inorganic composition characterized by being in the range of
The invention according to claim 2 is a borolucite-based inorganic composition according to claim 1, characterized in that the degree of sintering is 60% or more,
The invention according to claim 3 is a borolucite-based inorganic composition according to claim 1 or 2, characterized by being obtained by firing at 700 to 1000 ° C.
The invention according to claim 4 is characterized in that the linear expansion coefficient at 100 to 300 ° C. is 35 × 10 −7 to 280 × 10 −7 (/ ° C.). It is a borolucite-based inorganic composition according to one item,
The invention according to claim 5 is the borolucite-based inorganic composition according to any one of claims 1 to 4, characterized in that the relative dielectric constant is 4.0 to 9.3. The invention according to claim 6 is characterized in that K borolucite (K 2a B 2b Si 2 O a + 3b + 4 ) and Cs borolucite (Cs 2a B 2b Si 2 O a + 3b + 4 ) It is a borolucite-based inorganic composition according to any one of claims 1 to 5, characterized in that it is a solid solution.
Invention of claim 7, on an oxide basis, a (Cs x K 1- x) 2 O · bB 2 O 3 · 2SiO 2, however, a, b, x is
Figure 0004435405
It is a manufacturing method of the borolucite-type inorganic composition as described in any one of Claims 1-6 characterized by baking the raw material which has a composition of the range of 700-1000 degreeC,
The invention according to claim 8 is characterized in that a raw material having a composition in this range is melted at 1150 to 1500 ° C., and the obtained mother glass is crystallized at 700 to 1000 ° C. Is a method for producing a borolucite-based inorganic composition of
The invention according to claim 9 is an electronic circuit board comprising the borolucite-based inorganic composition according to any one of claims 1 to 6.
[0011]
The borolucite-based inorganic composition of the present invention is represented by the chemical composition formula a (Cs x K 1 -x ) 2 O.bB 2 O 3 .2SiO 2 , and has an oxide composition of Cs 2 O, K 2 O. , B 2 O 3 and SiO 2 are essential components.
[0012]
SiO 2 is an essential component for forming a network structure in the crystal together with B 2 O 3 .
[0013]
B 2 O 3 acts as a flux component as well as a crystal component. When the value of a or b in the composition formula is smaller than 0.125, sintering is not satisfactorily performed at a temperature of 1000 ° C. or lower, and a leucite crystal structure cannot be obtained even when fired at a higher temperature. If the value of a is greater than 1.0 or the value of b is greater than 0.75, firing becomes difficult due to melting. In order to obtain a more stable leucite crystal structure, the value of a in Cs 2 O and K 2 O is preferably 0.85 or less.
[0014]
The values of x and a are related to the phase transition temperature and have a great influence on the thermal expansion coefficient. By adjusting the values of x and a in the range of 0.125 ≦ a ≦ 1.00 and 0 <x <1, the thermal expansion coefficient at 100 to 300 ° C. of the borolucite-based inorganic composition of the present invention is 35 × 10 5. from -7 / ° C. can be designed in a range of 280 × 10 -7 / ℃.
[0015]
The leucite-based inorganic composition of the present invention has a leucite-based crystal composed of an oxygen tetrahedral network having B and Si as ligands. It is considered that the alkali metal of K and Cs is electrostatically coupled to these networks to stabilize the crystal.
[0016]
The degree of sintering of the borolucite-based inorganic composition of the present invention is preferably 60% or more. By firing to a sintering degree in this range, a sintered body having a desired strength, linear expansion coefficient, and relative dielectric constant can be obtained.
[0017]
The dielectric constant of the borolucite-based inorganic composition of the present invention is preferably 4.0 to 9.3. The relative permittivity of alumina is 9.4 to 9.8, whereas the relative permittivity of the borolucite-based inorganic composition of the present invention is small, so that the high-frequency substrate material is required to have a low permittivity. It is suitable for.
[0018]
The borolucite-based inorganic composition according to claim 6 of the present invention includes K borolucite (K 2a B 2b Si 2 O a + 3b + 4 ) and Cs borolucite (Cs 2a B 2b Si 2 O a +). 3b + 4 ) is a solid solution having both end components. The melting point of Cs borolucite (Cs 2a B 2b Si 2 O a + 3b + 4 ) is 1150 ° C. at a = 0.5 and b = 0.5, and the melting point of K borolucite was determined by the inventors through experiments. However, it was about 1050 ° C. at a = 0.5 and b = 0.5. The melting point of borolucite material is 1050-1150 ° C, which is significantly lower than that of leucite material. The borolucite-based inorganic composition of the present invention is also lower than the leucite-based material and can be melted at low temperature conditions. K borolucite (K 2a B 2b Si 2 O a + 3b + 4 ) and Cs borolucite (Cs 2a B 2b Si 2 O a + 3b + 4 ) both show a high-temperature type leucite crystal structure, The borolucite-based inorganic composition of the present invention having these intermediate compositions forms a complete solid solution having both of them as end components. While both-end components are hardly sinterable, the borolucite-based inorganic composition of the present invention which is an intermediate component has sinterability. In the chemical formula a (Cs x K 1-x ) 2 O · bB 2 O 3 · 2SiO 2, x denotes a solid solution ratio.
[0019]
In the borolucite-based inorganic composition of the present invention, the linear expansion coefficient decreases as the value of the solid solution ratio x increases, that is, as the amount of Cs increases. As for the electronegativity of K, Rb, and Cs, Cs is the strongest and K is the weakest. The difference in thermal expansion is thought to be due to the difference in the ability of these alkali metals to bind the network.
[0020]
Boro leucite-based inorganic composition of the present invention, on an oxide basis, a (Cs x K 1- x) 2 O · bB 2 O 3 · 2SiO 2, however, a, b, x is
Figure 0004435405
It can manufacture by mixing the raw material which has a composition of the range of this, pressing as needed, and baking at 700-1000 degreeC. The fact that the firing conditions can be made at a relatively low temperature has not only great cost reduction merit, but also has the merit of expanding applications as a substrate material that can be fired simultaneously with metallized wiring.
[0021]
The borolucite-based inorganic composition of the present invention can also be produced by melting a raw material having a composition in the above-mentioned range and firing the obtained mother glass. The melting temperature at this time is preferably 1150 to 1500 ° C.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The borolucite-based inorganic composition of the present invention can be formed by a usual convenient method such as raw material preparation, pulverization, molding, and sintering. What prepared the powder raw material of cesium nitrate, potassium nitrate, boric acid, and a silica can be used as a raw material. A precursor obtained by calcining these powder raw materials at 700 to 850 ° C. or a pulverized product of glass or crystallized glass described later can be applied thereto. Or what mixed these can be utilized. When glass or crystallized glass is mixed with the powder raw material mixture, they work as fluxes, and it can be expected to lower the sintering temperature or shorten the sintering time.
[0023]
For the crushing of the precursor, glass and crystallized glass, a ball mill, jet mill or the like is used to finely pulverize to 3 μm or less to obtain a ceramic raw material for sintering. Any method can be used as the pulverization method regardless of the particular reason as long as it is pulverized to 3 μm or less without fear of impurities generated from the pulverization medium.
[0024]
After these crushed raw materials or powder raw materials are weighed and mixed, they are put into a molding die, molded with a uniaxial press at a pressure of 5.9 MPa (60 kgf / cm 2 ) or more, and further CIP 29 MPa (300 Kgf / cm 2 ) Mold at the above pressure. The obtained molded product is fired in a firing furnace at 1000 ° C. or lower for 2 hours or more in the atmosphere, whereby the borolucite-based inorganic composition of the present invention comprising a fired body can be obtained.
[0025]
The borolucite-based inorganic composition of the present invention can also be obtained by preparing and melting raw materials having a composition in a predetermined range, and firing the obtained mother glass. The mother glass can be produced by an ordinary melting method. Moreover, a crystal nucleus material can be added at the time of raw material preparation. There are optimum core materials depending on the composition of the mother glass, but aluminum phosphate, cerium oxide, zirconium oxide, titanium oxide, molybdenum oxide and the like are applicable.
[0026]
First, raw materials having a predetermined composition range are prepared and dissolved. The melting temperature condition in the production of the mother glass is preferably 1150 ° C to 1500 ° C, and more preferably 1350-1500 ° C. The dissolution time is required to be 30 minutes or longer. However, if the dissolution time is long, volatilization of cesium, potassium, and boron occurs, resulting in deviation from the target composition. The annealing is preferably performed at a temperature of 550 to 700 ° C. for 2 hours or longer.
[0027]
Heat treatment is performed to precipitate microcrystals in the mother glass. Although the crystallization conditions are determined by the composition, it is preferable to perform a crystallization heat treatment at a temperature of 700 to 1000 ° C. for 1 hour or longer. There are the following basic reaction mechanisms for working temperature, generation of nuclei, and crystal growth. That is, generation and disappearance of nuclei are repeated near the crystallization temperature, and the number of crystal nuclei has reached equilibrium. In the temperature range exceeding the crystallization temperature and not so high from the crystallization temperature, the number of crystal nuclei generated exceeds the number of disappearances, and the crystal nuclei are stably precipitated. In this temperature range, the energy is not sufficient for crystal growth of the nuclei, and the energy is consumed exclusively for the generation of the nuclei. At higher temperatures, the crystal growth of the nuclei is remarkable, and the small nuclei melt and are spent for growth, resulting in a crystallized glass in which glass and crystal particles are mixed. If heat treatment is performed in consideration of these, the desired crystal particle diameter and crystal amount can be controlled.
[0028]
The crystallinity of the borolucite-based inorganic composition of the present invention was evaluated using an X-ray diffractometer EXPERT manufactured by Philips. The sample was irradiated with CuKα rays generated under tube driving conditions of 40 kV and 40 mA, and the secondary side X-rays were received through a monochromator and recorded. The collected X-ray diffraction profile was compared with the JCPDS card to identify the crystal phase.
[0029]
The lattice constant was calculated based on the diffraction peak value to determine the lattice volume, and the theoretical weight of the unit cell was calculated to determine the theoretical density. On the other hand, the measured density was determined using the Archimedes method, and the degree of sintering (%) was determined from measured density ÷ theoretical density × 100.
[0030]
The linear expansion coefficient was measured by a thermomechanical analyzer that applies a constant load to both ends of a sample having a known length and records the expansion and contraction of the substance with respect to temperature. The sample shape was measured after processing to a diameter of 4 mm and a length of 20 mm.
[0031]
【Example】
Hereinafter, the present invention will be described with reference to examples and comparative examples. However, the present invention is not limited to these examples.
[0032]
Example 1
Cs 0.6 K 0.4 BSi 2 O 6 (a = 0.5, b = 0.5, x = 0.6)
Cesium nitrate, potassium nitrate, boric acid, and silica are weighed and mixed so as to be Cs 0.6 K 0.4 BSi 2 O 6, and calcined at 800 ° C. for 12 hours to prepare crystal powder having the same shape as porsite. This material was pulverized with a planetary ball mill to an average particle size of 5 μm or less, and further pulverized with a jet mill to prepare a crystal powder in a fine powder state of 3 μm or less. Put this material into a mold, and molded at a pressure a pressure of 3.2MPa (33kgf / cm 2), further CIP by the shaped body at a pressure of 196MPa (2ton / cm 2), which sintered 1000 ° C. 12 hours Thus, solid solution crystals were prepared.
[0033]
When the structure of the obtained sample was analyzed with an X-ray diffractometer, the sample showed a high-temperature crystalline phase of leucite that is cubic. The degree of sintering of the sample was 87.6%, and the coefficient of linear expansion was 80 × 10 −7 / ° C. (100 to 300 ° C.).
[0034]
(Comparative Example 1)
Potassium nitrate, boric acid, and silica were weighed and mixed so as to be KBSi 2 O 6, and calcined in the atmosphere at 800 ° C. for 12 hours to obtain K borolucite crystal powder. After this material is finely pulverized to an average of 1 μm or less, it is put into a mold, molded at a pressure of 3.2 MPa (33 kgf / cm 2 ), and further compacted at a pressure of 196 MPa ( 2 ton / cm 2 ) by CIP. Was sintered at 1000 ° C. for 12 hours to prepare a sintered body.
[0035]
Even if K borolucite crystal powder was finely pulverized, the moldability was poor, and the sintered body produced based on this was brittle with many cracks.
[0036]
(Comparative Example 2)
CsB nitrate, boric acid, and silica were weighed and mixed so as to be CsBSi 2 O 6, and calcined in the atmosphere at 800 ° C. for 12 hours to obtain Cs borolucite crystal powder. This material is finely pulverized to 1 μm or less, put into a mold, molded at a pressure of 3.2 MPa (33 kgf / cm 2 ), and further formed into a molded body by CIP at a pressure of 196 MPa ( 2 ton / cm 2 ). Sintered at 12 ° C. for 12 hours to prepare a sintered body.
[0037]
Even if the Cs borolucite crystal powder was finely pulverized, the moldability was poor, and the sintered body prepared based on this had poor sinterability and many cracks.
[0038]
(Example 2 to Example 5)
(Cs x K 1-x ) BSi 2 O 6 (a = 0.5, b = 0.5)
Cesium nitrate, potassium nitrate, boric acid, and silica were weighed and mixed so that (Cs x K 1-x ) BSi 2 O 6 (x = 0.80, 0.60, 0.40, 0.20). The mixed powder was placed in a platinum crucible and melted at 1400 ° C. for 3 hours in the atmosphere. This melt was quenched to obtain a glass. This glass was finely pulverized with a planetary ball mill and a jet mill to a particle size of 3 μm or less to obtain a raw material powder for sintering.
[0039]
This raw material was sintered in the same manner as in Example 1 and evaluated for physical properties. The evaluation results of chemical composition and physical properties are summarized in Table 1. All the crystal phases of the synthesized samples were high-temperature leucite phases and single phases. The lattice constant associated with the solid solution ratio x increases with a simple correlation with x as shown in Table 1 and FIG. 1, and since this is a single phase as described above, this system forms a complete solid solution. The degree of sintering of the solid solution shows 70% or more.
[0040]
In addition, the number in the parenthesis of the lattice constant represents the standard deviation .
[0041]
[Table 1]
Figure 0004435405
[0042]
Further, the thermal expansion of the solid solution crystal shows a smooth decrease from 143 ra 10 -7 to 23 ra 10 -7 with the solid solution ratio x.
[0043]
Therefore, by selecting the solid solution ratio x, a material having a desired coefficient of thermal expansion can be obtained in this range.
[0044]
The correlation between the solid solution ratio x and the linear expansion coefficient is shown in FIG.
[0045]
Further, the thermal expansion curves of Examples 1 to 5 are shown in FIG. FIG. 3 shows the measured temperature on the horizontal axis and the expansion of the sample on the vertical axis, and shows that the expansion increases as K dissolves from the Cs borolucite.
[0046]
(Example 6-13)
(Cs 0.5 K 0.5 ) 2a B 2b Si 2 O (a + 3b + 4) (x = 0.5)
In order to clarify the composition range showing the leucite type crystal structure, the composition in the vicinity of (Cs 0.5 K 0.5 ) BSi 2 O 6 was examined.
[0047]
In the synthesis of the sample, cesium nitrate, potassium nitrate, boric acid and silica were weighed and mixed so as to have the composition formula shown in Table 2, and then fired in the atmosphere at 900 ° C. for 6 hours to prepare crystal powder. A phase diagram is shown in FIG .
[0048]
When the structure of the obtained sample was analyzed by an X-ray diffractometer, cubic examples of the leucite high-temperature crystal phase appeared independently in Examples 6 to 10 having a composition near (Cs 0.5 K 0.5 ) BSi 2 O 6. In the somewhat distant Examples 11 to 13, the leucite high-temperature crystal phase is the main crystal phase, and the low-temperature quartz crystal phase is shown as the second phase component. In addition, when an experiment was performed on a region deviating from the composition range described in claim 1 of the present application, it was melted and vitrified on the high concentration side of H 3 BO 3 (0.75 <b), and on the high concentration side of SiO 2 (a < At 0.125 and b <0.125), the reaction temperature was high and crystallization was insufficient.
[0049]
As a result of the experiment, the composition range of claim 1 was determined based on the stable region of the obtained phase.
[0050]
[Table 2]
Figure 0004435405
[0051]
It was found that a continuous solid solution was formed between Cs borolucite and K borolucite. It became clear that the thermal expansion coefficient of these continuous solid solutions changed continuously with the composition.
[0052]
Until now, electrical properties (high electrical resistance, relative permittivity, dielectric loss) have not been known. When these material composition techniques are applied to electronic circuit boards, etc., they have low dielectric properties and can be sintered at a low temperature, so that it is possible to use the monument metal at the same time, which is an advantageous composition for production. . In order to evaluate the electrical properties, the surface was polished, and then the gold electrode was coated with a sputtering device, and a platinum wire was adhered as a lead to obtain a sample for evaluating electrical properties. This sample was measured with a SI-1260 impedance analyzer manufactured by Solartron, and the relative dielectric constant and dielectric loss were evaluated.
[0053]
(Examples 14 to 18)
In order to verify the dielectric properties, solid solution crystals were prepared in the same manner as in Example 1 except that the raw materials were prepared in the range of x = 0.1 to 0.9 as shown in Table 3. When the structure of the obtained sample was analyzed with an X-ray diffractometer, it was found that a cubic leucite high-temperature crystal phase was shown alone, forming a continuous solid solution. A sample of 2 cm square and 2 mm thickness was cut out from the sintered body, processed smoothly, and used for evaluation of electrical properties. The relative permittivity and dielectric loss of the prepared sample were measured and shown in Table 3. The processed sample was coated on both sides with platinum to form an electrode and a guard electrode.
[0054]
Further, a platinum wire as a lead was joined to this electrode with a silver paste. The evaluation was performed by measuring the relative permittivity and dielectric loss at room temperature in the atmosphere with a SI-1260 impedance analyzer manufactured by Solartron. The correlation between the dielectric properties and the composition is shown in FIG. 6 and continuously changes with the composition. Further, it can be seen that the dielectric constant is a material much lower than that of alumina.
[0055]
[Table 3]
Figure 0004435405
[0056]
【The invention's effect】
The borolucite-based inorganic composition of the present invention is useful as a low dielectric and low-temperature sinterable material for high-frequency substrates, low-temperature sintered substrates, and laminated integrated circuit substrates.
[Brief description of the drawings]
FIG. 1 is a correlation of a lattice constant with a solid solution ratio x in a chemical composition formula (Cs x K 1-x ) BSi 2 O 6 .
FIG. 2 is a correlation between a coefficient of linear expansion and a solid solution ratio x.
FIG. 3 is a thermal expansion curve of Examples 1 to 5.
FIG. 4 is a ternary phase diagram showing the composition ranges of Examples 6 to 11.
5 is an X-ray diffraction pattern of Examples 6 and 10. FIG.
FIG. 6 is a relative dielectric constant.
FIG. 7 is a dielectric loss.

Claims (9)

化学組成式a(Csx1-x2O・bB23・2SiO2で示され、a、b、xは、
Figure 0004435405
の範囲であることを特徴とするボロリュウサイト系無機組成物。
Chemical formula a (Cs x K 1-x ) 2 O.bB 2 O 3 .2SiO 2 , a, b, x are
Figure 0004435405
A borolucite-based inorganic composition characterized by being in the range.
焼結度は60%以上であることを特徴とする、請求項1記載のボロリュウサイト系無機組成物。The borolucite-based inorganic composition according to claim 1, wherein the degree of sintering is 60% or more. 700〜1000℃で焼成し得られることを特徴とする、請求項1又は2記載のボロリュウサイト系無機組成物。The borolucite-based inorganic composition according to claim 1 or 2, which is obtained by firing at 700 to 1000 ° C. 100〜300℃における線膨張係数が、35×10-7〜280×10-7(/℃)であることを特徴とする、請求項1〜3のうちいずれか一項記載のボロリュウサイト系無機組成物。Linear expansion coefficient at 100 to 300 ° C., characterized in that a 35 × 10 -7 ~280 × 10 -7 (/ ℃), boro leucite system as claimed in any one of claims 1 to 3 Inorganic composition. 比誘電率が、4.0〜9.3であることを特徴とする、請求項1〜4のうちいずれか一項記載のボロリュウサイト系無機組成物。5. The borolucite-based inorganic composition according to any one of claims 1 to 4, wherein a relative dielectric constant is 4.0 to 9.3. Kボロリュウサイト(K2a2bSi2a+3b+4)とCsボロリュウサイト(Cs2a2bSi2a+3b+4)を両端成分とする固溶体であることを特徴とする、請求項1〜5のうちいずれか一項記載のボロリュウサイト系無機組成物。It is characterized by being a solid solution having both components of K borolucite (K 2a B 2b Si 2 O a + 3b + 4 ) and Cs borolucite (Cs 2a B 2b Si 2 O a + 3b + 4 ). The borolucite-based inorganic composition according to any one of claims 1 to 5. 酸化物基準で、a(Csx1-x2O・bB23・2SiO2、ただし、a、b、xは、
Figure 0004435405
の範囲の組成を有する原料を、700〜1000℃で焼成することを特徴とする、請求項1〜6のうちいずれか一項記載のボロリュウサイト系無機組成物の製造方法。
A (Cs x K 1-x ) 2 O.bB 2 O 3 .2SiO 2 on the oxide basis, where a, b, x are
Figure 0004435405
The method for producing a borolucite-based inorganic composition according to any one of claims 1 to 6, wherein a raw material having a composition in the range of 1 to 6 is fired at 700 to 1000 ° C.
該範囲の組成を有する原料を、1150〜1500℃で溶融し、得られた母ガラスを、700〜1000℃で結晶化することを特徴とする、請求項7記載のボロリュウサイト系無機組成物の製造方法。The raw material having a composition in the above range is melted at 1150 to 1500 ° C, and the obtained mother glass is crystallized at 700 to 1000 ° C. Manufacturing method. 請求項1〜6のうちいずれか一項記載のボロリュウサイト系無機組成物からなる電子回路用基板。The board | substrate for electronic circuits which consists of a borolucite type inorganic composition as described in any one of Claims 1-6.
JP2000391980A 2000-12-25 2000-12-25 BOLORUSITE INORGANIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND SUBSTRATE FOR ELECTRONIC CIRCUIT Expired - Fee Related JP4435405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000391980A JP4435405B2 (en) 2000-12-25 2000-12-25 BOLORUSITE INORGANIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND SUBSTRATE FOR ELECTRONIC CIRCUIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000391980A JP4435405B2 (en) 2000-12-25 2000-12-25 BOLORUSITE INORGANIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND SUBSTRATE FOR ELECTRONIC CIRCUIT

Publications (2)

Publication Number Publication Date
JP2002193660A JP2002193660A (en) 2002-07-10
JP4435405B2 true JP4435405B2 (en) 2010-03-17

Family

ID=18858043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000391980A Expired - Fee Related JP4435405B2 (en) 2000-12-25 2000-12-25 BOLORUSITE INORGANIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND SUBSTRATE FOR ELECTRONIC CIRCUIT

Country Status (1)

Country Link
JP (1) JP4435405B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196526A (en) * 2007-02-08 2008-08-28 Nsk Ltd Rolling device and alternator
JP5803453B2 (en) * 2011-09-07 2015-11-04 日本電気硝子株式会社 Glass ceramic dielectric material and glass ceramic dielectric

Also Published As

Publication number Publication date
JP2002193660A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
JP6852198B2 (en) Boroaluminosilicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and its manufacturing method
CA1142334A (en) Method of making silicon nitride based cutting tools - i
Bansal Solid state synthesis and properties of monoclinic celsian
US20130052438A1 (en) Max-phase oriented ceramic and method for producing the same
CN1142813A (en) A low temperature sintering route for aluminum nitride ceramics
US4272500A (en) Process for forming mullite
JPH0545554B2 (en)
US4013477A (en) Method for preparing dense, β-alumina ceramic bodies
JP6724266B2 (en) Potassium sodium niobate sputtering target and manufacturing method thereof
US5185215A (en) Zirconia toughening of glass-ceramic materials
KR20110020292A (en) Oxide sintered object, sputtering target comprising the sintered object, process for producing the sintered object, and process for producing sputtering target comprising the sintered object
Shyu et al. Sintering, Crystallization, and Properties of B2O3/P2O5‐Doped Li2O· Al2O3· 4SiO2 Glass‐Ceramics
ES2685711T3 (en) Composite material with an aluminosilicate matrix, specifically barium aluminosilicate &#34;BAS&#34;, reinforced with metal oxide reinforcements and its manufacturing process
Zhang et al. Synthesis of BaAl2Si2O8 from Solid Ba‐Al‐Al2O3‐SiO2 Precursors: II, TEM Analyses of Phase Evolution
CN100358833C (en) Method for preparing ceramic material of zirconium phosphate
JP4435405B2 (en) BOLORUSITE INORGANIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND SUBSTRATE FOR ELECTRONIC CIRCUIT
JP4556162B2 (en) Silicon nitride-based sintered body, method for producing the same, and circuit board using the same
JPS61219753A (en) Manufacture of low thermally expansive zirconyl phosphate ceramics
WO1999011583A1 (en) Silicon nitride sinter having high thermal conductivity and process for preparing the same
EP0255023B1 (en) Zirconia toughening of glass-ceramic materials
KR102557205B1 (en) Transparent AlN sintered body and its manufacturing method
Ogiwara et al. Low temperature sintering of α-cordierite ceramics with low thermal expansion using Li2O–Bi2O3 as a sintering additive
Teixeira et al. Sintering behavior of LZS glass-ceramics
US3131073A (en) Ceramic material and method of preparation
JP4220013B2 (en) Composite glass ceramics and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees