JP4432915B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP4432915B2
JP4432915B2 JP2006053289A JP2006053289A JP4432915B2 JP 4432915 B2 JP4432915 B2 JP 4432915B2 JP 2006053289 A JP2006053289 A JP 2006053289A JP 2006053289 A JP2006053289 A JP 2006053289A JP 4432915 B2 JP4432915 B2 JP 4432915B2
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
ratio
combustion
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006053289A
Other languages
Japanese (ja)
Other versions
JP2007231810A (en
Inventor
宏之 北東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006053289A priority Critical patent/JP4432915B2/en
Priority to PCT/IB2007/000449 priority patent/WO2007099425A1/en
Priority to EP07713064.9A priority patent/EP1989430B1/en
Priority to US12/085,833 priority patent/US7653475B2/en
Priority to CN2007800014642A priority patent/CN101365871B/en
Publication of JP2007231810A publication Critical patent/JP2007231810A/en
Application granted granted Critical
Publication of JP4432915B2 publication Critical patent/JP4432915B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/44

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、内燃機関の燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device for an internal combustion engine.

気筒内へ直接的に燃料を噴射する第一燃料噴射弁と、吸気ポートへ燃料を噴射する第二燃料噴射弁とを具備し、これら二つの燃料噴射弁を使用して気筒内へ燃料を供給して均質燃焼を実施する内燃機関が公知である。このような内燃機関において、一般的に、燃焼空燃比は、低負荷側では理論空燃比よりリーンとされ、高負荷側では理論空燃比とされる。また、低負荷側では、均質混合気の均質性をより高めることを意図して、第二燃料噴射弁の燃料噴射割合を第一燃料噴射弁の燃料噴射割合より大きくし、高負荷側では、筒内温度を低下させて充填効率をより高めることを意図して、第一燃料噴射弁の燃料噴射割合を第二燃料噴射弁の燃料噴射割合より大きくしている。   It has a first fuel injection valve that injects fuel directly into the cylinder and a second fuel injection valve that injects fuel into the intake port, and supplies fuel into the cylinder using these two fuel injection valves An internal combustion engine that performs homogeneous combustion is known. In such an internal combustion engine, generally, the combustion air-fuel ratio is leaner than the stoichiometric air-fuel ratio on the low load side, and is the stoichiometric air-fuel ratio on the high load side. Also, on the low load side, the fuel injection ratio of the second fuel injection valve is made larger than the fuel injection ratio of the first fuel injection valve with the intention of increasing the homogeneity of the homogeneous mixture, and on the high load side, The fuel injection ratio of the first fuel injection valve is made larger than the fuel injection ratio of the second fuel injection valve with the intention of lowering the in-cylinder temperature and increasing the charging efficiency.

また、燃焼空燃比を理論空燃比とすると、燃焼温度が高くなって筒内温度を高めるために、気筒内に開口する第一燃料噴射弁の噴孔にはデポジットが生成され易くなる。それにより、第一燃料噴射弁の燃料噴射割合を第二燃料噴射弁の燃料噴射割合より大きくすることは、第一燃料噴射弁の噴孔温度を低下させ、噴孔へのデポジット堆積を抑制するのに有利である。   Further, when the combustion air-fuel ratio is the stoichiometric air-fuel ratio, the combustion temperature rises and the in-cylinder temperature is increased. Therefore, deposits are easily generated in the nozzle holes of the first fuel injection valve that opens in the cylinder. Thereby, making the fuel injection ratio of the first fuel injection valve larger than the fuel injection ratio of the second fuel injection valve reduces the temperature of the injection hole of the first fuel injection valve and suppresses deposit accumulation in the injection hole. Is advantageous.

ところで、気筒内へ供給される燃料量を正確に制御するためには、各燃料噴射弁からの燃料噴射量を補正することが必要である。前述の内燃機関の場合には、常に二つの燃料噴射弁から燃料が噴射されるために、燃料噴射弁毎に異なる燃料噴射補正係数を設定することは困難であり、空燃比センサにより検出される排気ガスの空燃比から実際に気筒内へ供給された燃料量を算出し、必要供給燃料量に対する過不足に基づき、二つの燃料噴射弁に対する同一の燃料噴射補正係数を学習することとなる。   Incidentally, in order to accurately control the amount of fuel supplied into the cylinder, it is necessary to correct the fuel injection amount from each fuel injection valve. In the case of the above-described internal combustion engine, fuel is always injected from the two fuel injection valves. Therefore, it is difficult to set a different fuel injection correction coefficient for each fuel injection valve, which is detected by an air-fuel ratio sensor. The amount of fuel actually supplied into the cylinder is calculated from the air-fuel ratio of the exhaust gas, and the same fuel injection correction coefficient for the two fuel injection valves is learned based on the excess and deficiency with respect to the required amount of fuel supplied.

このように学習された燃料噴射補正係数は、学習時の第一燃料噴射弁及び第二燃料噴射弁の燃料噴射割合と、厳密には、学習時の必要供給燃料量とに対してだけ有効である。それにより、燃料噴射割合が異なる運転領域毎に補正係数を学習することが提案されている(例えば、特許文献1参照)。   The fuel injection correction coefficient learned in this way is effective only for the fuel injection ratios of the first fuel injection valve and the second fuel injection valve at the time of learning and, strictly speaking, the required fuel supply amount at the time of learning. is there. Thus, it has been proposed to learn a correction coefficient for each operation region having a different fuel injection ratio (see, for example, Patent Document 1).

特開平3−185242JP 3-185242 特開2005−315124JP-A-2005-315124

一般的に、空燃比センサは、理論空燃比近傍では正確な空燃比を検出可能であり、理論空燃比の均質燃焼時において、この時の燃料噴射割合に対する燃料噴射補正係数を学習することはできる。しかしながら、空燃比センサは、NOX生成量を抑制したリーン空燃比の均質燃焼時のような約18よりリーンな空燃比を正確に検出することができず、リーン空燃比の均質燃焼時には、この時の燃料噴射割合に対して正確な燃料噴射補正係数を学習することはできない。 In general, an air-fuel ratio sensor can detect an accurate air-fuel ratio in the vicinity of the theoretical air-fuel ratio, and can learn a fuel injection correction coefficient for the fuel injection ratio at this time when the stoichiometric air-fuel ratio is homogeneously combusted. . However, the air-fuel ratio sensor cannot accurately detect an air-fuel ratio leaner than about 18 as in the homogeneous combustion of the lean air-fuel ratio in which the amount of NO x produced is suppressed. It is not possible to learn an accurate fuel injection correction coefficient for the current fuel injection ratio.

それにより、リーン空燃比の均質燃焼時には、燃料噴射量を正確に補正することができず、必要量より多い燃料が気筒内へ供給されてNOX生成量が増大したり、又は、必要量より少ない燃料しか気筒内へ供給されずに、必要トルクを発生させることができなかったりすることがある。 As a result, during homogeneous combustion with a lean air-fuel ratio, the fuel injection amount cannot be accurately corrected, and more fuel than necessary is supplied into the cylinder, resulting in an increase in the amount of NO x generated, or more than necessary. There may be a case where only a small amount of fuel is supplied into the cylinder and the required torque cannot be generated.

従って、本発明の目的は、気筒内へ燃料を噴射する第一燃料噴射弁と吸気ポートへ燃料を噴射する第二燃料噴射弁とを具備し、第一燃料噴射弁と第二燃料噴射弁との両方を使用して気筒内へ燃料を供給し、燃焼空燃比を理論空燃比近傍とし、第一燃料噴射弁及び第二燃料噴射弁の燃料噴射割合を第一燃料噴射割合とする第一燃焼と、燃焼空燃比を理論空燃比近傍よりリーンとし、第一燃料噴射弁及び第二燃料噴射弁の燃料噴射割合を第二燃料噴射割合とする第二燃焼とを切り換えて実施する内燃機関の燃料噴射制御装置において、第二燃焼時の燃料噴射補正係数を学習可能とすることである。   Accordingly, an object of the present invention includes a first fuel injection valve that injects fuel into a cylinder and a second fuel injection valve that injects fuel into an intake port, and the first fuel injection valve, the second fuel injection valve, Both are used to supply fuel into the cylinder, the combustion air-fuel ratio is close to the stoichiometric air-fuel ratio, and the first fuel injection ratio of the first fuel injection valve and the second fuel injection valve is the first fuel injection ratio. And internal combustion engine fuel that is switched between the second combustion mode in which the combustion air-fuel ratio is lean from the vicinity of the theoretical air-fuel ratio and the fuel injection ratio of the first fuel injection valve and the second fuel injection valve is the second fuel injection ratio. In the injection control device, the fuel injection correction coefficient at the time of the second combustion can be learned.

本発明による請求項1に記載の内燃機関の燃料噴射制御装置は、気筒内へ燃料を噴射する第一燃料噴射弁と吸気ポートへ燃料を噴射する第二燃料噴射弁とを具備し、前記第一燃料噴射弁と前記第二燃料噴射弁との両方を使用して気筒内へ燃料を供給し、燃焼空燃比を理論空燃比近傍とし、前記第一燃料噴射弁及び前記第二燃料噴射弁の燃料噴射割合を第一燃料噴射割合とする第一燃焼と、燃焼空燃比を理論空燃比近傍よりリーンとし、前記第一燃料噴射弁及び前記第二燃料噴射弁の燃料噴射割合を第二燃料噴射割合とする第二燃焼とを切り換えて実施する内燃機関の燃料噴射制御装置において、前記第二燃焼における前記第二燃料噴射割合に対する前記第一燃料噴射弁及び前記第二燃料噴射弁の燃料噴射補正係数は、前記第二燃焼の運転領域において機関温度が設定温度以下の時に、燃料噴射割合を前記第二燃料噴射割合として燃焼空燃比を理論空燃比近傍とした燃焼を実施して、気筒内への燃料供給量に基づく学習領域毎に学習されることを特徴とする。 According to a first aspect of the present invention, there is provided a fuel injection control device for an internal combustion engine comprising a first fuel injection valve for injecting fuel into a cylinder and a second fuel injection valve for injecting fuel into an intake port. The fuel is supplied into the cylinder using both the one fuel injection valve and the second fuel injection valve, the combustion air-fuel ratio is made close to the theoretical air-fuel ratio, and the first fuel injection valve and the second fuel injection valve First combustion in which the fuel injection ratio is the first fuel injection ratio, the combustion air-fuel ratio is lean from the vicinity of the theoretical air-fuel ratio, and the fuel injection ratio of the first fuel injection valve and the second fuel injection valve is the second fuel injection In a fuel injection control device for an internal combustion engine that switches between second combustion as a ratio and performs fuel injection correction of the first fuel injection valve and the second fuel injection valve with respect to the second fuel injection ratio in the second combustion The coefficient is the operating range of the second combustion When Oite engine temperature is below the set temperature, the fuel injection rate to implement the combustion was near stoichiometric air-fuel ratio of the combustion air-fuel ratio by said second fuel injection ratio, learning region based on the amount of fuel supplied to the cylinder It is learned every time.

また、本発明による請求項2に記載の内燃機関の燃料噴射制御装置は、請求項1に記載の内燃機関の燃料噴射制御装置において、前記第二燃焼における燃料噴射補正係数が前記学習領域毎に学習されていない場合に、機関温度が設定温度より高い時には、前記第二燃焼の運転領域において燃料噴射割合を前記第一燃料噴射割合とした前記第一燃焼を実施することを特徴とする。   According to a second aspect of the present invention, there is provided the fuel injection control device for an internal combustion engine according to the first aspect, wherein a fuel injection correction coefficient in the second combustion is set for each learning region. When not learned, when the engine temperature is higher than the set temperature, the first combustion is performed with the fuel injection ratio as the first fuel injection ratio in the operation region of the second combustion.

本発明による請求項1に記載の内燃機関の燃料噴射制御装置によれば、空燃比センサにより正確に空燃比を検出することができない第二燃焼時においては、第二燃焼における第二燃料噴射割合に対する第一燃料噴射弁及び第二燃料噴射弁の燃料噴射補正係数を学習することができないために、第二燃焼の運転領域において機関温度が設定温度以下の時に、燃料噴射割合を第二燃焼時の第二燃料噴射割合として、空燃比センサにより正確に空燃比を検出することができるように燃焼空燃比を理論空燃比近傍とした燃焼を実施し、気筒内への燃料供給量に基づく学習領域毎に、第二燃焼における第二燃料噴射割合に対する第一燃料噴射弁及び第二燃料噴射弁の燃料噴射補正係数を学習するようになっている。この時において、燃焼空燃比を理論空燃比近傍とした燃焼の燃焼温度は比較的高くなるが、機関温度が設定温度以下であれば、筒内温度がそれほど高められることはなく、燃料噴射割合が第二燃焼に適した第二燃料噴射割合とされて第一燃料噴射弁の燃料噴射割合が小さくても、第一燃料噴射弁の噴孔にデポジットが堆積することはない。 According to the fuel injection control device for an internal combustion engine according to claim 1 of the present invention, at the time of the second combustion in which the air-fuel ratio cannot be accurately detected by the air-fuel ratio sensor, the second fuel injection ratio in the second combustion. Since the fuel injection correction coefficients of the first fuel injection valve and the second fuel injection valve cannot be learned with respect to the As a second fuel injection ratio, combustion is performed with the combustion air-fuel ratio in the vicinity of the theoretical air-fuel ratio so that the air-fuel ratio can be accurately detected by the air-fuel ratio sensor, and a learning region based on the fuel supply amount into the cylinder Every time, the fuel injection correction coefficient of the first fuel injection valve and the second fuel injection valve with respect to the second fuel injection ratio in the second combustion is learned. At this time, the combustion temperature of combustion with the combustion air-fuel ratio in the vicinity of the stoichiometric air-fuel ratio becomes relatively high, but if the engine temperature is equal to or lower than the set temperature, the in-cylinder temperature is not increased so much, and the fuel injection ratio is Even if the second fuel injection ratio suitable for the second combustion is set to be small and the fuel injection ratio of the first fuel injection valve is small, no deposit is deposited in the injection hole of the first fuel injection valve.

また、本発明による請求項2に記載の内燃機関の燃料噴射制御装置によれば、請求項1に記載の内燃機関の燃料噴射制御装置において、第二燃焼における燃料噴射補正係数が学習領域毎に学習されていない場合に、機関温度が設定温度より高い時には、第二燃焼の運転領域において燃料噴射割合を第一燃料噴射割合とした第一燃焼を実施するようになっている。機関温度が設定温度より高ければ、第二燃焼における燃料噴射補正係数を学習するために、第二燃焼の運転領域において燃料噴射割合を第二燃料噴射割合として燃焼空燃比を理論空燃比近傍とした燃焼を実施すると、筒内温度が高められて第一燃料噴射弁の噴孔にデポジットが堆積する可能性が高いために、この時には、第二燃焼における燃料噴射補正係数の学習を断念し、燃料噴射割合を第一燃料噴射割合とした第一燃焼を実施し、第一燃料噴射弁の噴孔へのデポジットの堆積を抑制すると共に、燃料噴射量の正確な補正が実施されない第二燃焼を実施して排気エミッションが悪化することを防止している。 According to the fuel injection control device for an internal combustion engine according to claim 2 of the present invention, in the fuel injection control device for internal combustion engine according to claim 1, the fuel injection correction coefficient in the second combustion is determined for each learning region. When not learned, when the engine temperature is higher than the set temperature, the first combustion is performed with the fuel injection ratio as the first fuel injection ratio in the operation region of the second combustion. If the engine temperature is higher than the set temperature, in order to learn a fuel injection correction coefficient in the second combustion, the fuel injection ratio to a second fuel injection ratio of the combustion air-fuel ratio to the stoichiometric air-fuel ratio near the operating region of the second combustion Since the in-cylinder temperature is increased and deposits are likely to accumulate in the nozzle holes of the first fuel injection valve when performing the combustion, the learning of the fuel injection correction coefficient in the second combustion is abandoned at this time, The first combustion is performed with the fuel injection ratio as the first fuel injection ratio, and deposit accumulation in the nozzle hole of the first fuel injection valve is suppressed, and the second combustion in which accurate correction of the fuel injection amount is not performed. Implemented to prevent exhaust emissions from deteriorating.

図1は本発明による燃料噴射制御装置が取り付けられる内燃機関を示す概略図である。同図において、1は機関本体であり、2は各気筒共通のサージタンクである。3はサージタンク2と各気筒とを連通する吸気マニホルドであり、4はサージタンク2の上流側の吸気通路である。吸気通路4におけるサージタンク2の直上流側にはスロットル弁5が配置されている。吸気通路4のスロットル弁5より上流側には、吸気量を測定するためのエアフローメータ6が配置され、最上流部にはエアクリーナ7が配置される。   FIG. 1 is a schematic view showing an internal combustion engine to which a fuel injection control device according to the present invention is attached. In the figure, 1 is an engine body, and 2 is a surge tank common to each cylinder. An intake manifold 3 communicates the surge tank 2 and each cylinder, and 4 is an intake passage on the upstream side of the surge tank 2. A throttle valve 5 is disposed in the intake passage 4 immediately upstream of the surge tank 2. An air flow meter 6 for measuring the intake air amount is disposed upstream of the throttle valve 5 in the intake passage 4, and an air cleaner 7 is disposed in the most upstream part.

8は各気筒に連通する排気マニホルドであり、排気マニホルド8の下流側の排気通路9には、上流側のNOX吸蔵還元触媒装置10と、下流側の三元触媒装置11とが直列に配置され、NOX吸蔵還元触媒装置10の上流側には、排気ガスの空燃比を検出可能な空燃比センサ12が配置され、三元触媒装置11の下流側には、排気ガスの空燃比がリッチであるかリーンであるかを検出可能な酸素センサ13が配置されている。酸素センサ13の出力に基づき、空燃比センサ12の出力のリッチ側又はリーン側へのずれを補正するようになっている。14は各気筒内へ直接的に燃料を噴射するための第一燃料噴射弁であり、15は各気筒の吸気ポートへ燃料を噴射するための第二燃料噴射弁である。 An exhaust manifold 8 communicates with each cylinder. An upstream NO x storage reduction catalyst device 10 and a downstream three-way catalyst device 11 are arranged in series in an exhaust passage 9 downstream of the exhaust manifold 8. An air-fuel ratio sensor 12 capable of detecting the air-fuel ratio of the exhaust gas is disposed upstream of the NO x storage reduction catalyst device 10, and the air-fuel ratio of the exhaust gas is rich on the downstream side of the three-way catalyst device 11. An oxygen sensor 13 that can detect whether the sensor is lean or lean is disposed. Based on the output of the oxygen sensor 13, the deviation of the output of the air-fuel ratio sensor 12 to the rich side or the lean side is corrected. 14 is a first fuel injection valve for directly injecting fuel into each cylinder, and 15 is a second fuel injection valve for injecting fuel into the intake port of each cylinder.

本内燃機関は、第一燃料噴射弁14により吸気行程中に燃料を噴射すると共に、第二燃料噴射弁15により吸気行程中(吸気同期)に又は吸気行程以前の排気行程中等(吸気非同期)に燃料を噴射し、これら二つの燃料噴射弁14及び15から噴射された燃料によって気筒内に均質混合気を形成して均質燃焼を実施する。但し、機関負荷が設定負荷以上の高負荷側領域では、均質混合気の空燃比は理論空燃比(又は理論空燃比より僅かにリッチなリッチ空燃比)とし、機関負荷が設定負荷未満の低負荷側領域では、均質混合気の空燃比は理論空燃比よりリーンなリーン空燃比として燃料消費を抑制するようになっている。このリーン空燃比は、NOX生成量が抑制されるように18以上が選択される。以下、理論空燃比での燃焼を第一燃焼とし、リーン空燃比での燃焼を第二燃焼として説明する。 The internal combustion engine injects fuel during the intake stroke by the first fuel injection valve 14 and during the intake stroke (intake synchronization) by the second fuel injection valve 15 or during the exhaust stroke before the intake stroke (intake asynchronous). The fuel is injected, and a homogeneous mixture is formed in the cylinder by the fuel injected from these two fuel injection valves 14 and 15 to perform homogeneous combustion. However, in the high load region where the engine load is equal to or higher than the set load, the air-fuel ratio of the homogeneous mixture is the stoichiometric air-fuel ratio (or a rich air-fuel ratio slightly richer than the stoichiometric air-fuel ratio) and the engine load is less than the set load. In the side region, the air-fuel ratio of the homogeneous mixture is leaner than the stoichiometric air-fuel ratio, so that fuel consumption is suppressed. The lean air-fuel ratio is selected to be 18 or more so that the NO x generation amount is suppressed. Hereinafter, the combustion at the stoichiometric air-fuel ratio will be described as the first combustion, and the combustion at the lean air-fuel ratio will be described as the second combustion.

第一燃料噴射弁14から気筒内へ直接的に噴射された燃料は、気筒内で気化する際に気筒内の温度を十分に低下させるために、吸気充填効率を高めるのに有利である。一方、第二燃料噴射弁15から噴射された燃料は、吸気と共に気筒内へ供給されるために、気筒内での燃料の均質化に有利である。それにより、高い機関出力が必要な第一燃焼においては、必要な各供給燃料量に対して、第二燃料噴射弁15から噴射される燃料量を少なくして、その分、第一燃料噴射弁14から噴射される燃料量を多くすることが好ましく、第一燃料噴射弁14及び第二燃料噴射弁15の燃料噴射割合は、例えば、7:3のように設定される。また、それほど高い機関出力は必要とせずに、均質混合気の均質性を高めて燃焼を安定化させることが必要な第二燃焼においては、必要な各供給燃料量に対して、第一燃料噴射弁14から噴射される燃料量を少なくして、その分、第二燃料噴射弁15から噴射される燃料量を多くすることが好ましく、第一燃料噴射弁14及び第二燃料噴射弁15の燃料噴射割合は、例えば、3:7のように設定される。   The fuel directly injected into the cylinder from the first fuel injection valve 14 is advantageous in increasing the intake charging efficiency in order to sufficiently reduce the temperature in the cylinder when vaporizing in the cylinder. On the other hand, since the fuel injected from the second fuel injection valve 15 is supplied into the cylinder together with the intake air, it is advantageous for homogenizing the fuel in the cylinder. Accordingly, in the first combustion that requires high engine output, the amount of fuel injected from the second fuel injection valve 15 is reduced with respect to each required amount of supplied fuel, and the first fuel injection valve correspondingly. It is preferable to increase the amount of fuel injected from 14, and the fuel injection ratio of the first fuel injection valve 14 and the second fuel injection valve 15 is set to 7: 3, for example. In the second combustion, which does not require a very high engine output and it is necessary to stabilize the combustion by increasing the homogeneity of the homogeneous mixture, the first fuel injection is performed for each required amount of supplied fuel. It is preferable to reduce the amount of fuel injected from the valve 14 and increase the amount of fuel injected from the second fuel injection valve 15 correspondingly, and the fuel of the first fuel injection valve 14 and the second fuel injection valve 15 The injection ratio is set as 3: 7, for example.

第一燃焼においても均質性は必要であり、供給燃料量の30%は第二燃料噴射弁15によって噴射するようになっている。一方、第二燃焼においては、全ての供給燃料量を第二燃料噴射弁15により噴射することが考えられるが、第一燃料噴射弁14の燃料噴射が停止されると、気筒内に開口する第一燃料噴射弁14の噴孔にデポジットが堆積して噴孔が詰まることがある。それにより、第二燃焼において、供給燃料量の30%は第一燃料噴射弁14により噴射するようになっている。   Even in the first combustion, homogeneity is necessary, and 30% of the supplied fuel amount is injected by the second fuel injection valve 15. On the other hand, in the second combustion, it is conceivable that all the supplied fuel amount is injected by the second fuel injection valve 15, but when the fuel injection of the first fuel injection valve 14 is stopped, the second fuel injection valve 14 opens into the cylinder. Deposits may accumulate in the nozzle hole of one fuel injection valve 14 and the nozzle hole may be clogged. Thereby, in the second combustion, 30% of the supplied fuel amount is injected by the first fuel injection valve 14.

燃焼空燃比がリーンな第二燃焼においては、燃焼温度がそれほど高くはならず、筒内温度をそれほど高めることはないために、供給燃料量の30%程度を第一燃料噴射弁14により噴射すれば、第一燃料噴射弁14の噴孔へのデポジット堆積を抑制することができる。しかしながら、燃焼空燃比が理論空燃比である第一燃焼においては、燃焼温度が高く、筒内温度を十分に高めるために、供給燃料量の70%程度を第一燃料噴射弁14により噴射しなければ、第一燃料噴射弁14の噴孔へのデポジット堆積を抑制することができない。   In the second combustion where the combustion air-fuel ratio is lean, the combustion temperature does not increase so much and the in-cylinder temperature does not increase so much, so about 30% of the supplied fuel amount is injected by the first fuel injection valve 14. Thus, deposit accumulation in the nozzle hole of the first fuel injection valve 14 can be suppressed. However, in the first combustion in which the combustion air-fuel ratio is the stoichiometric air-fuel ratio, the combustion temperature is high, and about 70% of the supplied fuel amount must be injected by the first fuel injection valve 14 in order to sufficiently increase the in-cylinder temperature. In this case, deposit accumulation on the injection hole of the first fuel injection valve 14 cannot be suppressed.

ところで、気筒内への供給燃料量を正確に制御するためには、第一燃料噴射弁14及び第二燃料噴射弁15からの燃料噴射量を補正することが必要である。本内燃機関のように、常に二つの燃料噴射弁から燃料が噴射される場合には、第一燃料噴射弁14及び第二燃料噴射弁から実際に噴射されたそれぞれの燃料噴射量を把握することは困難である。それにより、燃料噴射弁毎に異なる燃料噴射補正係数を設定することは難しく、空燃比センサ12により検出される排気ガスの空燃比から実際の気筒内への供給燃料量(第一燃料噴射弁14及び第二燃料噴射弁15から噴射された燃料噴射量の合計)を算出し、この供給燃料量の必要供給燃料量に対する過不足に基づき、第一燃料噴射弁14及び第二燃料噴射弁15に対する同一の燃料噴射補正係数を学習することとなる。   Incidentally, in order to accurately control the amount of fuel supplied into the cylinder, it is necessary to correct the fuel injection amounts from the first fuel injection valve 14 and the second fuel injection valve 15. When fuel is always injected from two fuel injection valves as in this internal combustion engine, the respective fuel injection amounts actually injected from the first fuel injection valve 14 and the second fuel injection valve must be grasped. It is difficult. Accordingly, it is difficult to set a different fuel injection correction coefficient for each fuel injection valve, and the amount of fuel supplied from the air-fuel ratio of the exhaust gas detected by the air-fuel ratio sensor 12 to the actual cylinder (the first fuel injection valve 14). And the total fuel injection amount injected from the second fuel injection valve 15), and based on the excess or deficiency of the supplied fuel amount with respect to the required supply fuel amount, the first fuel injection valve 14 and the second fuel injection valve 15 are calculated. The same fuel injection correction coefficient is learned.

このように学習された燃料噴射補正係数は、学習時の第一燃料噴射弁14及び第二燃料噴射弁15の燃料噴射割合と、厳密には、学習時の必要供給燃料量とに対してだけ有効である。例えば、必要供給燃料量が20mm3である時に、第一燃料噴射弁14及び第二燃料噴射弁15の燃料噴射割合が7:3であれば、第一燃料噴射弁14は14mm3の燃料を噴射することが要求され、第二燃料噴射弁15は6mm3の燃料を噴射することが要求される。また、第一燃料噴射弁14及び第二燃料噴射弁15の燃料噴射割合が3:7であれば、第一燃料噴射弁14は6mm3の燃料を噴射することが要求され、第二燃料噴射弁15は14mm3の燃料を噴射することが要求される。 The fuel injection correction coefficient learned in this way is only for the fuel injection ratios of the first fuel injection valve 14 and the second fuel injection valve 15 at the time of learning and, strictly speaking, the necessary fuel supply amount at the time of learning. It is valid. For example, when the required fuel supply amount is 20 mm 3 and the fuel injection ratio of the first fuel injection valve 14 and the second fuel injection valve 15 is 7: 3, the first fuel injection valve 14 supplies 14 mm 3 of fuel. The second fuel injection valve 15 is required to inject 6 mm 3 of fuel. Further, if the fuel injection ratio of the first fuel injection valve 14 and the second fuel injection valve 15 is 3: 7, the first fuel injection valve 14 is required to inject 6 mm 3 of fuel, and the second fuel injection The valve 15 is required to inject 14 mm 3 of fuel.

このような場合において、もし、第一燃料噴射弁14は要求に対して80%の燃料を噴射することしかできず、また、第二燃料噴射弁15は要求に対して90%の燃料を噴射することしかできないとすれば、燃料噴射割合が7:3の時に算出される燃料噴射補正係数は、20/(14*0.8+6*0.9)=1.20となり、また、燃料噴射割合が3:7の時に算出される燃料噴射補正係数は、20/(6*0.8+14*0.9)=1.15となる。もちろん、これらの燃料噴射補正係数の算出に際して、( )内の値は、空燃比センサ12により検出される排気ガスの実際の空燃比に基づく実際の供給燃料量である。このように、燃料噴射割合が異なれば、第一燃料噴射弁14及び第二燃料噴射弁15の共通の燃料噴射補正係数は明らかに異なる値となり、また、必要供給燃料量が変化しても燃料噴射補正係数は異なる値となる。   In such a case, the first fuel injection valve 14 can only inject 80% of the fuel to the demand, and the second fuel injection valve 15 injects 90% of the fuel to the demand. If it can only be done, the fuel injection correction coefficient calculated when the fuel injection ratio is 7: 3 is 20 / (14 * 0.8 + 6 * 0.9) = 1.20, and the fuel injection ratio The fuel injection correction coefficient calculated when is 3: 7 is 20 / (6 * 0.8 + 14 * 0.9) = 1.15. Of course, when calculating these fuel injection correction coefficients, the value in () is the actual amount of fuel supplied based on the actual air-fuel ratio of the exhaust gas detected by the air-fuel ratio sensor 12. As described above, when the fuel injection ratios are different, the common fuel injection correction coefficient of the first fuel injection valve 14 and the second fuel injection valve 15 is obviously different, and even if the required supply fuel amount changes, the fuel The injection correction coefficient has a different value.

それにより、燃料噴射割合が異なる第一燃焼及び第二燃焼とで、それぞれに必要供給燃料量毎の燃料噴射補正係数を学習することが考えられるが、空燃比センサ12は、第二燃焼のようなリーン空燃比を正確に検出することができず、すなわち、この時の実際の供給燃料量を把握することができず、そのままでは、第二燃焼時において、燃料噴射補正係数を学習することはできない。   Thereby, it is conceivable to learn the fuel injection correction coefficient for each required supply fuel amount in the first combustion and the second combustion with different fuel injection ratios. It is not possible to accurately detect the lean air-fuel ratio, that is, it is impossible to grasp the actual amount of fuel supplied at this time, and as it is, it is not possible to learn the fuel injection correction coefficient during the second combustion. Can not.

本燃料噴射制御装置は、図2に示すフローチャートにより、第二燃焼時の燃料噴射補正係数k2nの学習を可能としている。先ず、ステップ101において、要求機関負荷Lが設定負荷L’以上であるか否かが判断される。この判断が肯定される時には、理論空燃比の第一燃焼の運転領域であり、ステップ111において、機関負荷と機関回転数等とに基づく理論空燃比運転に必要な基本供給燃料量Qbに空燃比センサ12のフィードバック補正係数fと第一燃料噴射補正係数k1nとが乗算されて供給燃料量Qが算出される。次いで、ステップ112において、第一燃焼の第一燃料噴射割合(例えば、7:3)に基づき供給燃料量Qを気筒内へ供給するために、第一燃料噴射弁14及び第二燃料噴射弁15のそれぞれの燃料噴射量が設定され、第一燃焼が実施される。すなわち、基本供給燃料量Qbを第一燃料噴射割合で噴射するための第一燃料噴射弁14及び第二燃料噴射弁15のそれぞれの燃料噴射量が、同一の第一燃料噴射補正係数k1nによって補正されることとなる。ここで、気筒内へ供給されるべき必要供給燃料量は、基本供給燃料量Qbである。   The fuel injection control device can learn the fuel injection correction coefficient k2n at the time of the second combustion according to the flowchart shown in FIG. First, in step 101, it is determined whether or not the requested engine load L is equal to or greater than a set load L '. When this determination is affirmative, it is the first combustion operation region of the stoichiometric air-fuel ratio, and in step 111, the air-fuel ratio is set to the basic supply fuel amount Qb necessary for the stoichiometric air-fuel ratio operation based on the engine load, the engine speed, and the like. The supplied fuel amount Q is calculated by multiplying the feedback correction coefficient f of the sensor 12 and the first fuel injection correction coefficient k1n. Next, in step 112, the first fuel injection valve 14 and the second fuel injection valve 15 are used to supply the supply fuel amount Q into the cylinder based on the first fuel injection ratio (for example, 7: 3) of the first combustion. Each fuel injection amount is set, and the first combustion is performed. That is, the fuel injection amounts of the first fuel injection valve 14 and the second fuel injection valve 15 for injecting the basic supply fuel amount Qb at the first fuel injection ratio are corrected by the same first fuel injection correction coefficient k1n. Will be. Here, the required supply fuel amount to be supplied into the cylinder is the basic supply fuel amount Qb.

第一燃料噴射補正係数k1nは、図3に示すように、第一燃焼の基本供給燃料量Qbの範囲において、例えば、三つに分割された領域毎に設定される。第一燃焼において、空燃比センサ12により検出された排気ガスの空燃比が理論空燃比となるように、第一燃料噴射補正係数k1nにより補正された基本供給燃料量Qbをさらに補正するためのフィードバック補正係数fが算出される。第一燃料噴射補正係数k1nは、各領域の運転時において、算出されたフィードバック補正係数fを1にするように更新される。   As shown in FIG. 3, the first fuel injection correction coefficient k1n is set, for example, for each of the three divided areas in the range of the basic supply fuel amount Qb for the first combustion. In the first combustion, feedback for further correcting the basic supply fuel amount Qb corrected by the first fuel injection correction coefficient k1n so that the air-fuel ratio of the exhaust gas detected by the air-fuel ratio sensor 12 becomes the stoichiometric air-fuel ratio. A correction coefficient f is calculated. The first fuel injection correction coefficient k1n is updated so that the calculated feedback correction coefficient f is set to 1 during operation in each region.

一方、要求機関負荷Lが設定負荷L’未満であれば、リーン空燃比の第二燃焼での運転領域であり、ステップ101の判断が否定されてステップ102へ進む。ステップ102では、機関停止時に0にリセットされるフラグFが1であるか否かが判断される。当初は、フラグFは0であり、ステップ102の判断は否定されてステップ103へ進む。ステップ103では、冷却水温等に代表される機関温度Tが設定温度T’以下であるか否かが判断される。機関始動直後等のように、この判断が肯定される時には、ステップ106に進み、機関負荷と機関回転数等とに基づく理論空燃比運転に必要な基本供給燃料量Qbはそのまま供給燃料量Qとされる。   On the other hand, if the requested engine load L is less than the set load L ′, it is an operating region in the second combustion with a lean air-fuel ratio, the determination in step 101 is negative and the routine proceeds to step 102. In step 102, it is determined whether or not a flag F that is reset to 0 when the engine is stopped is 1. Initially, the flag F is 0, the determination in step 102 is denied, and the process proceeds to step 103. In step 103, it is determined whether or not the engine temperature T represented by the cooling water temperature or the like is equal to or lower than a set temperature T '. When this determination is affirmative, such as immediately after the engine is started, the routine proceeds to step 106, where the basic supply fuel amount Qb necessary for the theoretical air-fuel ratio operation based on the engine load, the engine speed, and the like is the same as the supply fuel amount Q. Is done.

現在は、要求機関負荷Lが設定負荷L’未満である第二燃焼での運転領域であるが、フラグFが0の時、すなわち、機関始動当初は、燃焼空燃比をリーン空燃比とするための基本供給燃料量Qbの減量補正は実施しない。次いで、ステップ107において、第二燃焼の第二燃料噴射割合(例えば、3:7)に基づき供給燃料量Qを気筒内へ供給するために、第一燃料噴射弁14及び第二燃料噴射弁15のそれぞれの燃料噴射量が設定され、理論空燃比の燃焼が実施される。 Currently, it is an operation region in the second combustion in which the required engine load L is less than the set load L ′, but when the flag F is 0, that is, when the engine is started, the combustion air-fuel ratio is made the lean air-fuel ratio. No reduction correction of the basic supply fuel amount Qb is performed. Next, in step 107, the first fuel injection valve 14 and the second fuel injection valve 15 are supplied in order to supply the supplied fuel amount Q into the cylinder based on the second fuel injection ratio (for example, 3: 7) of the second combustion. the set each of the fuel injection quantity, combustion of the stoichiometric air-fuel ratio is performed.

次いで、ステップ108に進み、この時の燃焼において、空燃比センサ12により検出される理論空燃比近傍の排気ガスの空燃比に基づき、実際の供給燃料量Q’を算出し、基本供給燃料量と実際の供給燃料量Q’との比Q/Q’を第二燃料噴射補正係数k2nとして学習する。第二燃料噴射補正係数k2nは、図3に示すように、第二燃焼の基本供給燃料量Qbの範囲において、例えば、五つに分割された領域毎に学習する必要がある。 Then, the process proceeds to step 108, in combustion at this time, based on the air-fuel ratio of the exhaust gas near the stoichiometric air-fuel ratio detected by the air-fuel ratio sensor 12, and calculates the actual supply fuel quantity Q ', basic fuel supply quantity The ratio Q / Q ′ between the actual fuel supply amount Q ′ and the actual fuel supply amount Q ′ is learned as the second fuel injection correction coefficient k2n. As shown in FIG. 3, the second fuel injection correction coefficient k2n needs to be learned, for example, for each of the five divided areas in the range of the basic supply fuel amount Qb for the second combustion.

ステップ109では、五つの第二燃料噴射補正係数k2nが全て学習されたか否かが判断され、この判断が否定される時には、フラグFは0のまま終了する。それにより、第二燃焼の運転領域において、ステップ105からステップ107が繰り返され、その間で、機関負荷及び機関回転数の変化により基本供給燃料量Qが変化して、別の領域の第二燃料噴射補正係数k2nが学習され、遂には、各領域の全ての第二燃料噴射補正係数k2nが学習される。この時には、ステップ109の判断は肯定され、ステップ110において、フラグFは1とされる。   In step 109, it is determined whether or not all of the five second fuel injection correction coefficients k2n have been learned. When this determination is negative, the flag F remains 0. Accordingly, Step 105 to Step 107 are repeated in the operation region of the second combustion, during which the basic supply fuel amount Q changes due to changes in the engine load and the engine speed, and the second fuel injection in another region. The correction coefficient k2n is learned, and finally all the second fuel injection correction coefficients k2n in each region are learned. At this time, the determination at step 109 is affirmed and the flag F is set to 1 at step 110.

その結果、第二燃焼での運転領域において、ステップ102の判断は肯定されるようになり、ステップ104において、機関負荷と機関回転数等とに基づく理論空燃比運転に必要な基本供給燃料量Qbに、燃焼空燃比をリーン空燃比とするための減量補正係数a(1より小さな正値)と第二燃料噴射補正係数k2nとが乗算されて供給燃料量Qが算出される。次いで、ステップ105において、第二燃焼の第二燃料噴射割合(例えば、3:7)に基づき供給燃料量Qを気筒内へ供給するために、第一燃料噴射弁14及び第二燃料噴射弁15のそれぞれの燃料噴射量が設定され、第二燃焼が実施される。すなわち、第二燃焼のために減量補正された基本燃料供給量Qb・aを第二燃料噴射割合で噴射するための第一燃料噴射弁14及び第二燃料噴射弁15のそれぞれの燃料噴射量が、空燃比センサ12の出力に基づきフィードバック補正されることなく、第二燃料噴射補正係数k2nによって補正されることとなる。ここで、気筒内へ供給されるべき必要供給燃料量は、減量補正された基本供給燃料量Qb・aであり、第二燃料噴射補正係数k2nは、減量補正された基本燃料供給量Qb・aに対応する領域の第二燃料噴射補正係数が選択される。   As a result, the determination in step 102 is affirmed in the operation region in the second combustion, and in step 104, the basic supply fuel amount Qb necessary for the theoretical air-fuel ratio operation based on the engine load, the engine speed, and the like. Further, the supply fuel amount Q is calculated by multiplying the reduction correction coefficient a (a positive value smaller than 1) for making the combustion air-fuel ratio a lean air-fuel ratio and the second fuel injection correction coefficient k2n. Next, in step 105, the first fuel injection valve 14 and the second fuel injection valve 15 are supplied in order to supply the supplied fuel amount Q into the cylinder based on the second fuel injection ratio (for example, 3: 7) of the second combustion. The respective fuel injection amounts are set, and the second combustion is performed. That is, the respective fuel injection amounts of the first fuel injection valve 14 and the second fuel injection valve 15 for injecting the basic fuel supply amount Qb · a corrected for reduction for the second combustion at the second fuel injection ratio are as follows. The second fuel injection correction coefficient k2n is corrected without feedback correction based on the output of the air-fuel ratio sensor 12. Here, the required supply fuel amount to be supplied into the cylinder is the basic supply fuel amount Qb · a corrected for reduction, and the second fuel injection correction coefficient k2n is the basic fuel supply amount Qb · a after correction for reduction. The second fuel injection correction coefficient in the region corresponding to is selected.

第二燃料噴射補正係数k2nを学習している間(フラグFが0である間)において、第二燃焼の運転領域では、空燃比センサ12により供給燃料量が検出可能な燃焼が実施され、第二燃焼に比較して燃焼温度が高くなる。この時において、燃料噴射割合は第二燃料噴射割合とされるために、第一燃料噴射弁14の燃料噴射割合が小さくされる。しかしながら、燃焼温度が高くなっても、機関温度Tが設定温度T’以下であるために、筒内温度をそれほど高めることはなく、第一燃料噴射弁14の噴孔にデポジットが堆積することはない。 In while learning a second fuel injection correction coefficient k2n (while the flag F is 0), in the operating region of the second combustion, combustion amount supplied fuel can be detected by the air-fuel ratio sensor 12 is performed, The combustion temperature is higher than in the second combustion. At this time, since the fuel injection ratio is the second fuel injection ratio, the fuel injection ratio of the first fuel injection valve 14 is reduced. However, even if the combustion temperature increases, the engine temperature T is lower than the set temperature T ′, so that the in-cylinder temperature is not increased so much, and deposits accumulate in the nozzle holes of the first fuel injection valve 14. Absent.

一方、機関温度Tが設定温度T’より高い時には、第二燃料噴射割合で理論空燃比の燃焼を実施すると、筒内温度が十分に高められ、第一燃料噴射弁14の噴孔にはデポジットが堆積することがある。それにより、フラグFが0であっても、機関温度Tが設定温度T’より高い時には、ステップ103の判断が否定され、前述したステップ111及び112の第一燃料噴射割合での第一燃焼を実施するようになっている。 On the other hand, when the engine temperature T is higher than the set temperature T ′, if the stoichiometric air-fuel ratio combustion is performed at the second fuel injection rate, the in-cylinder temperature is sufficiently increased, and deposits are formed in the injection holes of the first fuel injection valve 14. May accumulate. Thereby, even if the flag F is 0, when the engine temperature T is higher than the set temperature T ′, the determination in step 103 is denied, and the first combustion at the first fuel injection ratio in steps 111 and 112 is performed. It is supposed to be implemented.

第一燃料噴射割合では、第一燃料噴射弁14の燃料噴射割合が大きく、筒内温度が高まっても、第一燃料噴射弁14の噴孔は、比較的多量の噴射燃料により十分に冷却されるために、噴孔へのデポジット堆積を抑制することができる。この第一燃焼においては、空燃比センサ12の出力に基づき算出されるフィードバック補正係数fにより燃料噴射量の補正が実施されるために、理論空燃比での良好な第一燃焼を実現することができる。この時において、必要ならば、算出されたフィードバック補正係数fに基づき、第二燃焼の運転領域の供給燃料量に対する第一燃料噴射補正係数k1nを算出することもできる。   In the first fuel injection ratio, even if the fuel injection ratio of the first fuel injection valve 14 is large and the in-cylinder temperature increases, the nozzle hole of the first fuel injection valve 14 is sufficiently cooled by a relatively large amount of injected fuel. Therefore, deposit accumulation on the nozzle holes can be suppressed. In this first combustion, since the fuel injection amount is corrected by the feedback correction coefficient f calculated based on the output of the air-fuel ratio sensor 12, it is possible to realize a good first combustion at the stoichiometric air-fuel ratio. it can. At this time, if necessary, the first fuel injection correction coefficient k1n with respect to the amount of fuel supplied in the operation region of the second combustion can be calculated based on the calculated feedback correction coefficient f.

ところで、理論空燃比の第一燃焼時の排気ガスは、三元触媒装置11により良好に浄化される。一方、リーン空燃比の第二燃焼時の排気ガス中のNOXは、NOX吸蔵還元触媒装置10により吸蔵される。しかしながら、NOX吸蔵還元触媒装置10は、無制限にNOXを吸蔵することはできず、NOX吸蔵量が最大吸蔵可能量に達する以前に吸蔵NOXを放出させて還元浄化する再生処理が必要となる。このような再生処理は、排気ガスの空燃比をリッチにすることにより実現され、そのためには、燃焼空燃比を所望リッチ空燃比とするリッチスパイクが実施される。 By the way, the exhaust gas during the first combustion at the stoichiometric air-fuel ratio is well purified by the three-way catalyst device 11. On the other hand, NO X in the exhaust gas at the time of the second combustion with the lean air-fuel ratio is stored by the NO X storage reduction catalyst device 10. However, the NO X storage reduction catalyst device 10 cannot store NO X indefinitely, and a regeneration process for reducing and purifying the stored NO X before the NO X storage amount reaches the maximum storable amount is necessary. It becomes. Such regeneration processing is realized by making the air-fuel ratio of the exhaust gas rich, and for this purpose, rich spike is performed in which the combustion air-fuel ratio is the desired rich air-fuel ratio.

空燃比センサ12は、リッチスパイクのようなリッチ空燃比も正確に検出することはできず、それにより、リッチスパイク時の燃料噴射量に空燃比センサ12の出力に基づくフィードバック補正を実施することはできない。リッチスパイクが実施される時は、NOX吸蔵還元触媒装置10の推定吸蔵NOX量が設定量に達した時であり、リーン空燃比の第二燃焼時であることが多い。こうして、リッチスパイクを実施する時には、ステップ104において、燃焼空燃比をリッチするために、基本供給燃料量Qbには、減量補正係数aに代えて、増量補正係数b(1より大きな値)が乗算されると共に、第二燃料噴射補正係数k2nが乗算されて供給燃料量Qを算出すれば良い。 The air-fuel ratio sensor 12 cannot accurately detect a rich air-fuel ratio such as a rich spike, so that feedback correction based on the output of the air-fuel ratio sensor 12 is performed on the fuel injection amount at the time of the rich spike. Can not. The rich spike is performed when the estimated stored NO X amount of the NO X storage reduction catalyst device 10 reaches a set amount, often during the second combustion of the lean air-fuel ratio. Thus, when the rich spike is performed, in step 104, in order to enrich the combustion air-fuel ratio, the basic supply fuel amount Qb is multiplied by the increase correction coefficient b (a value greater than 1) instead of the decrease correction coefficient a. In addition, the supplied fuel amount Q may be calculated by multiplying by the second fuel injection correction coefficient k2n.

リッチスパイクは、第二燃焼での運転領域において、第二燃焼の第二燃料噴射割合(例えば、3:7)に基づき供給燃料量Qを気筒内へ供給するものであり、第一燃料噴射弁14及び第二燃料噴射弁15のそれぞれの燃料噴射量が設定され、リッチ空燃比での燃焼が実施される。すなわち、リッチ空燃比の燃焼のために増量補正された基本燃料供給量Qb・bを第二燃料噴射割合で噴射するための第一燃料噴射弁14及び第二燃料噴射弁15のそれぞれの燃料噴射量が、空燃比センサ12の出力に基づきフィードバック補正されることなく、第二燃料噴射補正係数k2nによって補正されることとなる。ここで、気筒内へ供給されるべき必要供給燃料量は、増量補正された基本供給燃料量Qb・bであり、第二燃料噴射補正係数k2nは、増量補正された基本燃料供給量Qb・bに対応する領域の第二燃料噴射補正係数が選択される。このように、ステップ108において学習された第二燃料噴射補正係数k2nは、リーン空燃比での第二燃焼時だけでなく、リッチスパイク時にも使用することができる。   The rich spike is for supplying the supplied fuel amount Q into the cylinder based on the second fuel injection ratio (for example, 3: 7) of the second combustion in the operation region of the second combustion. 14 and the second fuel injection valve 15 are set, and combustion at a rich air-fuel ratio is performed. That is, the fuel injection of each of the first fuel injection valve 14 and the second fuel injection valve 15 for injecting the basic fuel supply amount Qb · b that has been increased and corrected for the rich air-fuel ratio combustion at the second fuel injection ratio. The amount is corrected by the second fuel injection correction coefficient k2n without being feedback-corrected based on the output of the air-fuel ratio sensor 12. Here, the required amount of fuel to be supplied into the cylinder is the basic supply fuel amount Qb · b that has been corrected for increase, and the second fuel injection correction coefficient k2n is the basic fuel supply amount Qb · b that has been corrected for increase. The second fuel injection correction coefficient in the region corresponding to is selected. Thus, the second fuel injection correction coefficient k2n learned in step 108 can be used not only during the second combustion at the lean air-fuel ratio but also during the rich spike.

本実施形態において、全ての学習領域の第二燃料噴射補正係数k2nが学習されるまでは、第二燃焼の運転領域において第二燃焼を実施しないようにしたが、もちろん、既に第二燃料噴射補正係数が学習された学習領域においては、学習された第二燃料噴射補正係数を使用して第二燃料噴射割合での第二燃焼を実施するようにしても良い。   In the present embodiment, the second combustion is not performed in the second combustion operation region until the second fuel injection correction coefficient k2n of all the learning regions is learned. In the learning region in which the coefficient is learned, the second combustion at the second fuel injection ratio may be performed using the learned second fuel injection correction coefficient.

本実施形態において、必要供給燃料量に基づく燃料噴射補正係数の学習領域は、第一燃焼の運転領域において三つに、第二燃焼の運転領域において五つに分割したが、これは本発明を限定するものではない。第一燃料噴射弁14及び第二燃料噴射弁15の共通の燃料噴射補正係数は、厳密には、必要供給燃料量毎に異なる値となるために、各運転領域をさらに細分化して学習領域をさらに小さな必要供給燃料量の範囲とすることにより、各燃料噴射補正係数をさらに正確なものとすることができる。   In the present embodiment, the learning region of the fuel injection correction coefficient based on the required supply fuel amount is divided into three in the first combustion operation region and five in the second combustion operation region. It is not limited. Strictly speaking, since the common fuel injection correction coefficient for the first fuel injection valve 14 and the second fuel injection valve 15 has a different value for each required amount of supplied fuel, each operation region is further subdivided into a learning region. Each fuel injection correction coefficient can be made more accurate by setting the required fuel supply amount range to be smaller.

本実施形態において、リッチスパイク時の燃料噴射割合は、第二燃焼時の第二燃料噴射割合と同じとしたために、リッチスパイク時の燃料噴射量の補正に第二燃料噴射割合に対して学習された第二燃料噴射補正係数k2nを使用している。もちろん、リッチスパイク時の第一燃料噴射弁及び第二燃料噴射弁の燃料噴射割合が、第二燃料噴射割合と異なるものであるならば、リッチスパイク時に第二燃料噴射補正係数k2nを使用することはできず、リッチスパイク時の供給燃料量の範囲において、リッチスパイク時の燃料噴射割合により第一燃料噴射弁及び第二燃料噴射弁のそれぞれの燃料噴射量を設定して、理論空燃比の燃焼を実施することにより、要求供給燃料量に基づく学習領域毎にリッチスパイク時の燃料噴射補正係数を学習すれば良い。 In the present embodiment, since the fuel injection ratio at the time of rich spike is the same as the second fuel injection ratio at the time of second combustion, the fuel injection amount at the time of rich spike is corrected with respect to the second fuel injection ratio. The second fuel injection correction coefficient k2n is used. Of course, if the fuel injection ratios of the first fuel injection valve and the second fuel injection valve during the rich spike are different from the second fuel injection ratio, the second fuel injection correction coefficient k2n should be used during the rich spike. The fuel injection amount of the first fuel injection valve and the second fuel injection valve is set according to the fuel injection ratio at the time of the rich spike in the range of the supplied fuel amount at the time of the rich spike, and the combustion of the stoichiometric air-fuel ratio is performed. By performing the above, the fuel injection correction coefficient at the time of rich spike may be learned for each learning region based on the required supply fuel amount.

本発明による燃料噴射制御装置が取り付けられる内燃機関を示す概略図である。It is the schematic which shows the internal combustion engine to which the fuel-injection control apparatus by this invention is attached. 本発明による燃料噴射制御装置により実施される燃料噴射制御を示すフローチャートである。It is a flowchart which shows the fuel-injection control implemented by the fuel-injection control apparatus by this invention. 図2のフローチャートにおいて使用される学習領域のマップである。It is a map of the learning area | region used in the flowchart of FIG.

符号の説明Explanation of symbols

1 機関本体
14 第一燃料噴射弁
15 第二燃料噴射弁
1 Engine Body 14 First Fuel Injection Valve 15 Second Fuel Injection Valve

Claims (2)

気筒内へ燃料を噴射する第一燃料噴射弁と吸気ポートへ燃料を噴射する第二燃料噴射弁とを具備し、前記第一燃料噴射弁と前記第二燃料噴射弁との両方を使用して気筒内へ燃料を供給し、燃焼空燃比を理論空燃比近傍とし、前記第一燃料噴射弁及び前記第二燃料噴射弁の燃料噴射割合を第一燃料噴射割合とする第一燃焼と、燃焼空燃比を理論空燃比近傍よりリーンとし、前記第一燃料噴射弁及び前記第二燃料噴射弁の燃料噴射割合を第二燃料噴射割合とする第二燃焼とを切り換えて実施する内燃機関の燃料噴射制御装置において、前記第二燃焼における前記第二燃料噴射割合に対する前記第一燃料噴射弁及び前記第二燃料噴射弁の燃料噴射補正係数は、前記第二燃焼の運転領域において機関温度が設定温度以下の時に、燃料噴射割合を前記第二燃料噴射割合として燃焼空燃比を理論空燃比近傍とした燃焼を実施して、気筒内への燃料供給量に基づく学習領域毎に学習されることを特徴とする内燃機関の燃料噴射制御装置。 A first fuel injection valve for injecting fuel into the cylinder and a second fuel injection valve for injecting fuel into the intake port, and using both the first fuel injection valve and the second fuel injection valve Fuel is supplied into the cylinder, the combustion air-fuel ratio is in the vicinity of the stoichiometric air-fuel ratio, the first combustion injection ratio of the first fuel injection valve and the second fuel injection valve is the first fuel injection ratio, Fuel injection control for an internal combustion engine, which is performed by switching between the second combustion with the fuel ratio being lean from the vicinity of the stoichiometric air-fuel ratio and the fuel injection ratio of the first fuel injection valve and the second fuel injection valve being the second fuel injection ratio In the apparatus, the fuel injection correction coefficient of the first fuel injection valve and the second fuel injection valve with respect to the second fuel injection ratio in the second combustion is such that the engine temperature is equal to or lower than a set temperature in the operation region of the second combustion. Sometimes the fuel injection rate is The combustion air-fuel ratio and the fuel injection rate by implementing combustion with the stoichiometric air-fuel ratio near the fuel injection control apparatus for an internal combustion engine, characterized in that it is learned for each learning region based on the amount of fuel supplied to the cylinder. 前記第二燃焼における燃料噴射補正係数が前記学習領域毎に学習されていない場合に、機関温度が設定温度より高い時には、前記第二燃焼の運転領域において燃料噴射割合を前記第一燃料噴射割合とした前記第一燃焼を実施することを特徴とする請求項1に記載の内燃機関の燃料噴射制御装置。   When the fuel injection correction coefficient in the second combustion is not learned for each learning region and the engine temperature is higher than a set temperature, the fuel injection ratio in the second combustion operation region is set as the first fuel injection proportion. The fuel injection control device for an internal combustion engine according to claim 1, wherein the first combustion is performed.
JP2006053289A 2006-02-28 2006-02-28 Fuel injection control device for internal combustion engine Expired - Fee Related JP4432915B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006053289A JP4432915B2 (en) 2006-02-28 2006-02-28 Fuel injection control device for internal combustion engine
PCT/IB2007/000449 WO2007099425A1 (en) 2006-02-28 2007-02-26 Fuel injection control apparatus and control method of internal combustion engine
EP07713064.9A EP1989430B1 (en) 2006-02-28 2007-02-26 Fuel injection control apparatus and control method of internal combustion engine
US12/085,833 US7653475B2 (en) 2006-02-28 2007-02-26 Fuel injection control apparatus and control method of internal combustion engine
CN2007800014642A CN101365871B (en) 2006-02-28 2007-02-26 Fuel injection control apparatus and control method of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006053289A JP4432915B2 (en) 2006-02-28 2006-02-28 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007231810A JP2007231810A (en) 2007-09-13
JP4432915B2 true JP4432915B2 (en) 2010-03-17

Family

ID=38552659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053289A Expired - Fee Related JP4432915B2 (en) 2006-02-28 2006-02-28 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4432915B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967064B2 (en) * 2013-12-13 2016-08-10 トヨタ自動車株式会社 Control device for internal combustion engine
CN104265479B (en) * 2014-07-29 2017-02-15 李飞 Vehicle fuel saving controller and control method thereof
JP6507824B2 (en) * 2015-04-27 2019-05-08 三菱自動車工業株式会社 Engine control device
JP6507822B2 (en) * 2015-04-27 2019-05-08 三菱自動車工業株式会社 Engine control device

Also Published As

Publication number Publication date
JP2007231810A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
US7334569B2 (en) Control apparatus for internal combustion engine
EP1989430B1 (en) Fuel injection control apparatus and control method of internal combustion engine
JP2007056730A (en) Engine controller
JP4643323B2 (en) Control device for internal combustion engine
JP2006258037A (en) Control device of internal combustion engine
JP4337831B2 (en) Fuel injection control device for internal combustion engine
JP4432915B2 (en) Fuel injection control device for internal combustion engine
JP4729316B2 (en) Control device for internal combustion engine
JP2007032328A (en) Controller of internal combustion engine
JP4552590B2 (en) Control device for internal combustion engine
JP2005214015A (en) Fuel injection control device of internal combustion engine
JP2009150264A (en) Air-fuel ratio control device for internal combustion engine
JP2006017003A (en) Control device for hydrogen-added internal combustion engine
JP2006258025A (en) Control device of internal combustion engine
JP2006138249A (en) Control device for internal combustion engine
JP2012117472A (en) Control unit of internal combustion engine
JP5273224B2 (en) Air-fuel ratio control device for internal combustion engine
JP2010144573A (en) Fuel injection control device for internal combustion engine
JP2007298002A (en) Fuel injection control method for dual injection type internal combustion engine
JP2007032325A (en) Controller of internal combustion engine
JP2005307756A (en) Fuel injection controller for internal combustion engine
JP4581889B2 (en) Engine control device
JP4367273B2 (en) Control device for internal combustion engine
JP2006258016A (en) Control device of internal combustion engine
JP2010065705A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R151 Written notification of patent or utility model registration

Ref document number: 4432915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees