JP4432330B2 - Fisheye lens - Google Patents
Fisheye lens Download PDFInfo
- Publication number
- JP4432330B2 JP4432330B2 JP2003051432A JP2003051432A JP4432330B2 JP 4432330 B2 JP4432330 B2 JP 4432330B2 JP 2003051432 A JP2003051432 A JP 2003051432A JP 2003051432 A JP2003051432 A JP 2003051432A JP 4432330 B2 JP4432330 B2 JP 4432330B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- negative
- object side
- fisheye
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、小型でありながらレンズ最終面から像面までの空気換算距離を充分に確保した一眼レフカメラ用魚眼レンズに関し、特にデジタル一眼レフカメラに最適な魚眼レンズに関するものである。
【0002】
【従来の技術】
従来、魚眼レンズの殆どは35mmフィルム用の一眼レフカメラに対応したレンズである(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開昭54−32319号公報
【0004】
しかし、特許文献1に開示された35mmフイルム用の一眼レフカメラに対応した魚眼レンズをそのままデジタル一眼レフカメラに用いた場合、イメージサイズの違いによりレンズの焦点距離と画角の関係が従来の銀塩一眼レフカメラとは異なるため、180度の画角を保つことが出来ない。
【0005】
また、一般的にデジタル一眼レフカメラに用いられる撮像素子の面積は、35mmフィルムのフルサイズよりも少し小さめのサイズである。その結果、「35mmフィルムイメージサイズの対角線」を「撮像素子のイメージサイズの対角線」で割った値をレンズの焦点距離に掛けた値がデジタル一眼レフカメラにおける焦点距離になってしまう。従って、銀塩一眼レフカメラで180度の画角を持っていた魚眼レンズをそのままデジタル一眼レフカメラに使用すると単なる超広角レンズの効果しか得られない。
【0006】
【発明が解決しようとする課題】
撮影画面が35mmフィルムのフルサイズよりも少し小さいデジタル一眼レフカメラ用レンズの焦点距離は上述した理由から必然的に短くなる。その上、魚眼レンズのように広い範囲を写し込もうとすると焦点距離をより短く設定しなければならない。その結果、バックフォーカスは焦点距離の3倍以上必要になるため、物体側に極端に強い発散系を配置する必要が生じる。魚眼レンズにおいては主点を後方へ出すレトロフォーカスタイプが用いられるが、上記理由から物体側に強い発散系を配置することにより、像面湾曲および非点収差による性能劣化を招きやすい。さらにレトロフォーカスタイプは、前群の負レンズの外径が大きくなる傾向があり、魚眼レンズの大形化、重量化を伴うという問題がある。
【0007】
本発明は、上記問題に鑑みて行われたものであり、バックフォーカスを充分に確保し、像面湾曲が良好に補正され優れた光学性能を有する明るくコンパクトなデジタルカメラに適した魚眼レンズを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明にかかる魚眼レンズは、物体側より複数の負レンズ成分と、一組の接合レンズ成分を有し全体として負の屈折力の前群と、軸上間隔をあけて配置され全体として正の屈折力の後群とから構成され、前記後群は一組の接合レンズ成分を有し、以下の条件(1)、(2)、(4)を満足することを特徴とする。
(1)Bf/f ≧ 3.45
(2) 4.0 ≦ Σd/f ≦ 6.39
(4) 0.5<d1/f<2.0
但し、
Bf:前記魚眼レンズのバックフォーカス,
f :前記魚眼レンズ全系の焦点距離,
Σd:前記魚眼レンズの最も物体側のレンズ面から最も像側のレンズ面までの距離,
d1:前記前群の最も像側のレンズ面から前記後群の最も物体側のレンズ面までの間隔.
【0009】
また、本発明の魚眼レンズでは、前記前群は、物体側より順に、物体側に凸面を向けた負メニスカス形状の第1レンズと、物体側に凸面を向けた負メニスカス形状の第2レンズと、負レンズと正レンズとの接合からなる第3レンズ成分とから構成されていることが望ましい。
【0010】
また、本発明の魚眼レンズ群では、前記前群は、物体側より順に、物体側に凸面を向けた負メニスカス形状の第1レンズと、物体側に凸面を向けた負メニスカス形状の第2レンズと、負レンズのみからなる第3レンズ成分と、正レンズと負レンズとの接合からなる第4レンズ成分とから構成されていることが望ましい。
【0011】
また、本発明の魚眼レンズでは、前記前群は、物体側より順に、物体側に凸面を向けた負メニスカス形状の第1レンズ成分と、物体側に凸面を向けた負メニスカス形状の第2レンズ成分と、正レンズのみからなる第3レンズ成分と、正レンズと負レンズとの接合からなる第4レンズ成分とから構成されていることが望ましい。
【0012】
また、本発明の魚眼レンズでは、前記後群は、物体側から順に、正レンズと、負レンズと正レンズとから成る前記接合レンズ成分と、正レンズとから構成されていることが望ましい。
【0013】
また、本発明の魚眼レンズは、以下の条件(3)を満足することが望ましい。
(3)1.5≦f2/f≦4.0
但し、
f2:前記後群の焦点距離である。
【0014】
また、本発明の魚眼レンズでは、前記後群中の前記接合レンズ成分は、以下の条件(5)を満足することが望ましい。
(5) 30 ≦ νRp−νRn ≦ 60
但し、
νRp:前記接合レンズ成分中の正レンズのアッベ数の平均値、
νRn:前記接合レンズ成分中の負レンズのアッベ数の平均値である。
【0015】
また、本発明の魚眼レンズでは、前記後群中の前記接合レンズ成分は、以下の条件(6)を満足することが望ましい。
(6)0.2≦nRn−nRp≦0.45
但し、
nRn:前記接合レンズ成分中の負レンズのd線の屈折率の平均値、
nRp:前記接合レンズ成分中の正レンズのd線の屈折率の平均値である。
【0016】
また、本発明の魚眼レンズでは、前記前群および前記後群の各レンズ面は、球面のみ、または球面および平面のみで構成されていることが望ましい。
また、本発明の魚眼レンズでは、以下の条件を満足することが望ましい。
1.15 ≦ d1/f <2.0
【0017】
【発明の実施の形態】
以下、本発明にかかる魚眼レンズの実施の形態に付いて説明する。
【0018】
本発明にかかる魚眼レンズは、物体側より複数の負レンズ成分と一組の接合レンズ成分を有し全体として負の屈折力の前群と、軸上間隔をあけて配置され全体として正の屈折力の後群とから構成されている。そして、後群は一組の接合レンズ成分を有し、前述の条件式(1)及び(2)を満足している。
【0019】
前群は、180度という大きな角度から入射する光束を光軸と平行な方向へ大きく曲げる働きを行う強い発散作用の負レンズを有し、複数の負レンズで構成することにより、負レンズによって発生する収差を分散させることが可能になる。また前群に1組の接合レンズを有することにより、倍率色収差の発生を緩和することが可能になる。
【0020】
以下、各条件式について説明する。
【0021】
条件式(1)は、本発明にかかる魚眼レンズにおいて、魚眼レンズ全系の焦点距離と魚眼レンズのバックフォーカスとの関係を定めた条件である。この条件を外れると一眼レフカメラに用いることが不可能になり好ましくない。
【0022】
条件式(2)は、本発明にかかる魚眼レンズにおいて、魚眼レンズのバックフォーカスを十分に保ちながら軸外収差を補正しつつ魚眼レンズ全系の大型化、重量化を抑えるための条件である。上限値を超えると魚眼レンズのバックフォーカスが短くなりすぎるため、一眼レフカメラ用に使用できない。さらに180度の光束を通すためには最も物体側に配置されたレンズの直径(前玉径)が極端に大形化してしまい魚眼レンズ全系の大型化、重量化を招いてしまう。より効果をあげるには上限値を8.0にするのが良い。下限値を超えると魚眼レンズのバックフォーカスは十分に取ることは可能になるが、180度の画角を保つことが不可能になるため好ましくない。本条件においてより効果をあげるには下限値を5.0にするのが良い。
【0023】
条件式(3)は、本発明にかかる魚眼レンズにおいて、魚眼レンズのバックフォーカスを十分に保ちながら軸外収差を補正するために、後群の焦点距離を規定した条件である。上限値を超えると非点収差及びコマ収差の補正が困難になるばかりか180度の画角を保つことも困難になり好ましくない。下限値を超えると魚眼レンズのバックフォーカスが短くなりすぎるため、一眼レフカメラ用に使用できない。
【0024】
条件式(4)は、本発明にかかる魚眼レンズにおいて、前群と後群との間隔を規定したものである。上限値を超えると倍率色収差が過大になりすぎて補正するのが難しくなる。また魚眼レンズのバックフォーカスが短くなりすぎるため一眼レフカメラ用に使用できない。下限値を超えると非点収差及びコマ収差の補正が困難になるばかりか180度の画角を保つことも困難になり好ましくない。より好ましくは下限値を0.6にすることが良い。
【0025】
上記構成において、前群で補正しきれなかった倍率色収差を後群に1組の接合レンズを配することにより、倍率色収差の発生を緩和することが可能になる。そして、本発明にかかる魚眼レンズでは、条件式(5)を満足するのが良い。
【0026】
条件式(5)は、本発明にかかる魚眼レンズにおいて、前群で発生した倍率色収差及び軸上色収差を補正するため後群中に設けられた接合レンズ成分中の正レンズと負レンズのアッベ数の差を規定したものである。上限値を超えると軸上色収差の補正が困難になるばかりか実在する硝材での構成が困難になる。下限値を超えると前群の負レンズによる倍率色収差を後群で補正しきれなくなりg線(λ=485.8nm)の倍率色収差がマイナス傾向になり好ましくない。
【0027】
条件式(6)は、本発明にかかる魚眼レンズにおいて、像面湾曲及び非点収差を補正するための条件である。後群中に設けられた接合レンズ成分中の負レンズをできる限り高い屈折率、正レンズを低い屈折率とすることにより、魚眼レンズ全系のペッツバール和を小さくすることができ、像面湾曲及び非点収差を小さく抑えることが可能になる。上限値を超えると、負レンズと正レンズのアッベ数の差を大きく付けなければならなくなり、前群で発生する軸上の色収差の補正が困難になる。下限値を超えると魚眼レンズ全系のペッツバール和が大きくなり像面湾曲が大きく発生するため好ましくない。
【0028】
上記構成において、前群および後群の各レンズ面は、非球面を使用しないで球面または平面で構成するのが良い。それによって、レンズ加工が容易になり、また組立て調整も容易になり、製造コストを低減できる。
【0029】
「実施例」
以下に本発明にかかる魚眼レンズの各実施例を示す。
【0030】
図1、図3、図5、および図7は、それぞれ本発明にかかる魚眼レンズの第1実施例から第4実施例のレンズ構成図を示している。レンズ構成図中の符号Sは開口絞りを、符号Pはフィルタを表している。フィルタは光学系中のどこに挿入しても性能に影響はない。また光学系中にフィルタの挿入がなくても基本的な性能に影響は及ばさない。
【0031】
図2、図4、図6、および図8は、それぞれ本発明にかかる魚眼レンズの第1実施例から第4実施例の諸収差図を示している。各収差図中のdはd線(λ=587.6nm)における収差、gはg線(λ=435.8nm)における収差をそれぞれ表している。非点収差図において、実線はメリジオナル像面、破線はサジタル像面をそれぞれ表している。FNOはFナンバー、2ωは画角(単位:度)をそれぞれ示している。非球面収差では最大口径に対応するFナンバーの値を示し、非点収差図、歪曲収差図では画角2ωの最大値をそれぞれ示している。歪曲収差は等立体角射影y=2fsin(ω/2) からのズレ量を示している。そして各収差図とも、収差が良好に補正されていることが分かる。
【0032】
以下の表1から表4に、第1実施例から第4実施例の諸元の値をそれぞれ示す。各表中における、左端の数値は面番号、rは曲率半径(mm)、dは面間隔(mm)、ndはd線(λ=587.6nm)に対する屈折率、νdはアッベ数、fは魚眼レンズ全系の焦点距離(mm)、FNはFナンバー、2ωは画角(単位:度)、Bfはバックフォーカス(mm)、TLは魚眼レンズの全長(mm)をそれぞれ表している。
【0033】
なお、以下の全ての実施例の表において、掲載されている焦点距離f、曲率半径r、面間隔dその他の長さは、特記の無い場合一般に「mm」が使われるが、光学系は比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されること無く他の適当な単位を用いることもできる。
【0034】
(第1実施例)
図1は、本発明の第1実施例にかかる魚眼レンズのレンズ構成図を示す。
【0035】
図1において、本第1実施例の魚眼レンズは、物体側より順に、物体側に凸面を向けた負メニスカス形状の第1レンズL1と、同じく物体側に凸面を向けた負メニスカス形状の第2レンズL2と、負レンズと正レンズとの接合からなり全体として正屈折力を有する第3レンズ成分L3とからなる全体として負屈折力を有する前群G1と、軸上間隔をあけて配置され像側により強い凸面を向けた両凸形状の第4レンズL4と、負レンズと正レンズとの接合からなり全体として正屈折力を有する第5レンズ成分L5と、両凸形状の正屈折力の第6レンズL6とからなる全体として正屈折力を有する後群G2とから構成されている。前群および後群の各レンズ面は全て球面で構成されている。
【0036】
【表1】
(第2実施例)
図3は、本発明の第2実施例にかかる魚眼レンズのレンズ構成図を示す。
【0037】
図3において、本第2実施例の魚眼レンズは、物体側より順に、物体側に凸面を向けた負メニスカス形状の第1レンズL1と、同じく物体側に凸面を向けた負メニスカス形状の第2レンズL2と、両凹形状の第3レンズL3と、正レンズと負レンズとの接合からなり全体として正屈折力を有する第4レンズ成分L4とからなり全体として負屈折力を有する前群G1と、軸上間隔をあけて配置され像側により強い凸面を向けた正メニスカス形状の第5レンズL5と、負レンズと正レンズとの接合からなり全体として負屈折力を有する第6レンズ成分L6と、両凸形状の正屈折力の第7レンズL7とからなる全体として正屈折力を有する後群G2とから構成されている。前群および後群の各レンズ面は全て球面で構成されている。
【0038】
【表2】
(第3実施例)
図5は、本発明の第3実施例にかかる魚眼レンズのレンズ構成図を示す。
【0039】
図5において、本第3実施例の魚眼レンズは、物体側より順に、物体側に凸面を向けた負メニスカス形状の第1レンズL1と、同じく物体側に凸面を向けた負メニスカス形状の第2レンズL2と、両凸形状の正屈折力の第3レンズL3と、正レンズと負レンズとの接合からなり全体として負屈折力を有する第4レンズ成分L4とからなり全体として負屈折力を有する前群G1と、軸上間隔をあけて配置され両凸形状の正屈折力の第5レンズL5と、負レンズと正レンズとの接合からなり全体として負屈折力を有する第6レンズ成分L6と、両凸形状の正屈折力の第7レンズL7とからなる全体として正屈折力を有する後群G2とから構成されている。前群および後群の各レンズ面は全て球面で構成されている。
【0040】
【表3】
(第4実施例)
図7は、本発明の第4実施例にかかる魚眼レンズのレンズ構成図を示す。
【0041】
図7において、本第4実施例の魚眼レンズは、物体側より順に、物体側に凸面を向けた負メニスカス形状の第1レンズL1と、同じく物体側に凸面を向けた負メニスカス形状の第2レンズL2と、両凸形状の正屈折力の第3レンズL3と、正レンズと負レンズとの接合からなり全体として負屈折力を有する第4レンズ成分L4とからなり全体として負屈折力を有する前群G1と、軸上間隔をあけて配置され両凸形状の第5レンズL5と、負レンズと正レンズとの接合からなり全体として負屈折力を有する第6レンズ成分L6と、両凸形状の正屈折力の第7レンズL7とからなる全体として正屈折力を有する後群G2とから構成されている。前群および後群の各レンズ面は全て球面で構成されている。なお、以上の各実施例において、任意のレンズ面を平面としても構わない。
【0042】
【表4】
本発明の第1実施例から第4実施例にかかる魚眼レンズにおける条件式対応値を表5に掲げる。
【0043】
【表5】
【0044】
【発明の効果】
上述のように、本発明によれば、充分なバックフォーカスを確保しながら画角が180°を有しつつFナンバー2.8と明るくコンパクトなデジタルカメラに適した魚眼レンズを提供することが出来る。
【図面の簡単な説明】
【図1】本発明の第1実施例にかかる魚眼レンズのレンズ構成図である。
【図2】本発明の第1実施例にかかる魚眼レンズの諸収差図である。
【図3】本発明の第2実施例にかかる魚眼レンズのレンズ構成図である。
【図4】本発明の第2実施例にかかる魚眼レンズの諸収差図である。
【図5】本発明の第3実施例にかかる魚眼レンズのレンズ構成図である。
【図6】本発明の第3実施例にかかる魚眼レンズの諸収差図である。
【図7】本発明の第4実施例にかかる魚眼レンズのレンズ構成図である。
【図8】本発明の第4実施例にかかる魚眼レンズの諸収差図である。
【符号の説明】
G1 前群
G2 後群
S 開口絞り
P フィルタ
I 像面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fish-eye lens for a single-lens reflex camera that has a sufficiently small air conversion distance from the final lens surface to the image plane, and particularly relates to a fish-eye lens that is optimal for a digital single-lens reflex camera.
[0002]
[Prior art]
Conventionally, most fisheye lenses are lenses compatible with single-lens reflex cameras for 35 mm film (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
JP 54-32319 A [0004]
However, when the fish-eye lens corresponding to the single-lens reflex camera for 35 mm film disclosed in Patent Document 1 is used as it is in a digital single-lens reflex camera, the relationship between the focal length of the lens and the angle of view is a conventional silver salt due to the difference in image size. Since it is different from a single-lens reflex camera, the angle of view of 180 degrees cannot be maintained.
[0005]
In general, the area of an image sensor used in a digital single-lens reflex camera is slightly smaller than the full size of a 35 mm film. As a result, a value obtained by dividing the “diagonal line of the 35 mm film image size” by the “diagonal line of the image size of the imaging device” and the focal length of the lens is the focal length in the digital single-lens reflex camera. Therefore, when a fish-eye lens having a field angle of 180 degrees with a silver salt single-lens reflex camera is used as it is in a digital single-lens reflex camera, the effect of a mere super wide-angle lens can be obtained.
[0006]
[Problems to be solved by the invention]
The focal length of the lens for a digital single lens reflex camera whose shooting screen is slightly smaller than the full size of 35 mm film is inevitably shortened for the reasons described above. In addition, the focal length must be set shorter when attempting to capture a wide range like a fisheye lens. As a result, since the back focus is required to be three times or more the focal length, an extremely strong divergence system needs to be disposed on the object side. In the fisheye lens, a retrofocus type in which the principal point is rearward is used. However, for the above reason, a strong divergence system is arranged on the object side, which tends to cause performance deterioration due to field curvature and astigmatism. Furthermore, the retrofocus type has a problem that the outer diameter of the negative lens in the front group tends to be large, which increases the size and weight of the fisheye lens.
[0007]
The present invention has been made in view of the above problems, and provides a fish-eye lens suitable for a bright and compact digital camera having a sufficient back focus, a well-corrected field curvature, and excellent optical performance. For the purpose.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the fisheye lens according to the present invention has a plurality of negative lens components and a pair of cemented lens components from the object side, and has a negative refractive power front group as a whole and an axial interval. And a rear group having a positive refractive power as a whole, the rear group having a pair of cemented lens components and satisfying the following conditions (1), (2), (4) Features.
(1) Bf / f ≧ 3.45
(2) 4.0 ≦ Σd / f ≦ 6.39
(4) 0.5 <d1 / f <2.0
However,
Bf: Back focus of the fisheye lens,
f: focal length of the whole fisheye lens system,
Σd: distance from the most object-side lens surface to the most image-side lens surface of the fisheye lens,
d1: Distance from the most image side lens surface of the front group to the most object side lens surface of the rear group.
[0009]
In the fisheye lens of the present invention, the front group includes, in order from the object side, a negative meniscus first lens having a convex surface facing the object side, a negative meniscus second lens having a convex surface facing the object side, It is desirable that the lens is composed of a third lens component formed by joining a negative lens and a positive lens.
[0010]
In the fisheye lens group of the present invention, the front group includes, in order from the object side, a negative meniscus first lens having a convex surface facing the object side, and a negative meniscus second lens having a convex surface facing the object side. The third lens component is preferably composed of only a negative lens and a fourth lens component composed of a positive lens and a negative lens.
[0011]
In the fisheye lens of the present invention, the front group includes, in order from the object side, a negative meniscus first lens component having a convex surface facing the object side and a negative meniscus second lens component having a convex surface facing the object side. And a third lens component composed only of a positive lens and a fourth lens component composed of a cemented positive lens and negative lens.
[0012]
Also, the fisheye lens of the present invention, the rear group includes, in order from the object side, a positive lens, and the cemented lens component consisting of a negative lens and a positive lens, it is preferable that is composed of a positive lens.
[0013]
Moreover, it is desirable that the fisheye lens of the present invention satisfies the following condition (3).
(3) 1.5 ≦ f2 / f ≦ 4.0
However,
f2: focal length of the rear group.
[0014]
In the fisheye lens of the present invention, it is desirable that the cemented lens component in the rear group satisfies the following condition (5).
(5) 30 ≦ νRp−νRn ≦ 60
However,
νRp: average value of the Abbe number of the positive lens in the cemented lens component,
νRn: an average value of the Abbe number of the negative lens in the cemented lens component.
[0015]
In the fisheye lens of the present invention, it is desirable that the cemented lens component in the rear group satisfies the following condition (6).
(6) 0.2 ≦ nRn−nRp ≦ 0.45
However,
nRn: average value of the refractive index of d-line of the negative lens in the cemented lens component,
nRp: an average value of the refractive index of the d-line of the positive lens in the cemented lens component.
[0016]
In the fisheye lens of the present invention, it is preferable that the lens surfaces of the front group and the rear group are composed of only a spherical surface or only a spherical surface and a flat surface.
In the fisheye lens of the present invention, it is desirable to satisfy the following conditions.
1.15 ≦ d1 / f <2.0
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the fisheye lens according to the present invention will be described.
[0018]
The fish-eye lens according to the present invention has a plurality of negative lens components and a pair of cemented lens components from the object side, and is arranged with a front group of negative refractive power as a whole at an axial interval and as a whole positive refractive power. It consists of the rear group. The rear group has a pair of cemented lens components and satisfies the conditional expressions (1) and (2).
[0019]
The front group has a negative lens with a strong divergence that works to bend the light beam incident from a large angle of 180 degrees in a direction parallel to the optical axis. It is possible to disperse aberrations that occur. In addition, by having a pair of cemented lenses in the front group, it is possible to reduce the occurrence of lateral chromatic aberration.
[0020]
Hereinafter, each conditional expression will be described.
[0021]
Conditional expression (1) is a condition that defines the relationship between the focal length of the entire fisheye lens system and the back focus of the fisheye lens in the fisheye lens according to the present invention. Exceeding this condition is not preferable because it cannot be used in a single-lens reflex camera.
[0022]
Conditional expression (2) is a condition for suppressing an increase in size and weight of the whole fisheye lens system while correcting off-axis aberrations while maintaining a back focus of the fisheye lens sufficiently in the fisheye lens according to the present invention. If the upper limit is exceeded, the back focus of the fisheye lens becomes too short, so it cannot be used for a single-lens reflex camera. Furthermore, in order to pass a light beam of 180 degrees, the diameter (front lens diameter) of the lens arranged closest to the object side becomes extremely large, leading to an increase in size and weight of the entire fisheye lens system. In order to improve the effect, the upper limit value should be set to 8.0. If the lower limit is exceeded, it is possible to obtain a sufficient back focus of the fisheye lens, but it is not preferable because it is impossible to maintain a field angle of 180 degrees. In order to obtain a more effective effect under this condition, the lower limit value should be set to 5.0.
[0023]
Conditional expression (3) is a condition that defines the focal length of the rear group in order to correct off-axis aberrations while keeping the back focus of the fisheye lens sufficiently in the fisheye lens according to the present invention. Exceeding the upper limit is not preferable because correction of astigmatism and coma becomes difficult, and it becomes difficult to maintain an angle of view of 180 degrees. If the lower limit is exceeded, the back focus of the fisheye lens becomes too short, so it cannot be used for a single-lens reflex camera.
[0024]
Conditional expression (4) defines the distance between the front group and the rear group in the fisheye lens according to the present invention. If the upper limit is exceeded, the lateral chromatic aberration will be excessive, making it difficult to correct. Moreover, since the back focus of a fisheye lens becomes too short, it cannot be used for a single-lens reflex camera. Exceeding the lower limit is not preferable because correction of astigmatism and coma becomes difficult, and it becomes difficult to maintain a field angle of 180 degrees. More preferably, the lower limit is 0.6.
[0025]
In the above configuration, it is possible to alleviate the occurrence of lateral chromatic aberration by arranging a pair of cemented lenses in the rear group for lateral chromatic aberration that could not be corrected by the front group. And in the fisheye lens concerning this invention, it is good to satisfy conditional expression (5).
[0026]
Conditional expression (5) is a fish-eye lens according to the present invention in which the Abbe numbers of the positive lens and the negative lens in the cemented lens component provided in the rear group in order to correct the lateral chromatic aberration and the axial chromatic aberration generated in the front group. It defines the difference. Exceeding the upper limit makes it difficult to correct axial chromatic aberration and makes it difficult to construct with existing glass materials. If the lower limit is exceeded, the lateral chromatic aberration due to the negative lens in the front group cannot be corrected in the rear group, and the lateral chromatic aberration of the g-line (λ = 485.8 nm) tends to be negative, which is not preferable.
[0027]
Conditional expression (6) is a condition for correcting curvature of field and astigmatism in the fisheye lens according to the present invention. By making the negative lens in the cemented lens component provided in the rear group as high a refractive index as possible and the positive lens as low as possible, the Petzval sum of the whole fisheye lens system can be reduced, and the curvature of field and non-reflection are reduced. It becomes possible to reduce the point aberration. If the upper limit is exceeded, the difference between the Abbe numbers of the negative lens and the positive lens must be increased, and correction of axial chromatic aberration occurring in the front group becomes difficult. Exceeding the lower limit is not preferable because the Petzval sum of the entire fish-eye lens system becomes large and a large curvature of field occurs.
[0028]
In the above-described configuration, the lens surfaces of the front group and the rear group are preferably configured as spherical surfaces or flat surfaces without using aspheric surfaces. This facilitates lens processing, facilitates assembly and adjustment, and reduces manufacturing costs.
[0029]
"Example"
Examples of the fisheye lens according to the present invention are shown below.
[0030]
1, FIG. 3, FIG. 5, and FIG. 7 show lens configuration diagrams of the first to fourth embodiments of the fisheye lens according to the present invention, respectively. In the lens configuration diagram, symbol S represents an aperture stop, and symbol P represents a filter. The filter does not affect the performance regardless of where it is inserted in the optical system. Even if no filter is inserted in the optical system, the basic performance is not affected.
[0031]
2, 4, 6, and 8 show various aberration diagrams of the first to fourth examples of the fisheye lens according to the present invention. In each aberration diagram, d represents the aberration at the d-line (λ = 587.6 nm), and g represents the aberration at the g-line (λ = 435.8 nm). In the astigmatism diagram, the solid line represents the meridional image plane, and the broken line represents the sagittal image plane. FNO represents an F number, and 2ω represents an angle of view (unit: degree). The aspherical aberration indicates the F-number value corresponding to the maximum aperture, and the astigmatism diagram and the distortion aberration diagram indicate the maximum value of the field angle 2ω. The distortion aberration indicates the amount of deviation from the equisolid angle projection y = 2fsin (ω / 2). In each aberration diagram, it can be seen that the aberration is corrected satisfactorily.
[0032]
Tables 1 to 4 below show values of specifications of the first to fourth embodiments, respectively. In each table, the numerical value at the left end is the surface number, r is the radius of curvature (mm), d is the surface interval (mm), nd is the refractive index with respect to the d-line (λ = 587.6 nm), νd is the Abbe number, and f is The focal length (mm) of the entire fisheye lens system, FN is the F number, 2ω is the angle of view (unit: degree), Bf is the back focus (mm), and TL is the total length (mm) of the fisheye lens.
[0033]
In the tables of all the following examples, “mm” is generally used as the focal length f, radius of curvature r, surface interval d and other lengths unless otherwise specified, but the optical system is proportional. Even if it is enlarged or proportionally reduced, the same optical performance can be obtained. Further, the unit is not limited to “mm”, and other appropriate units may be used.
[0034]
(First embodiment)
FIG. 1 is a lens configuration diagram of a fisheye lens according to a first embodiment of the present invention.
[0035]
In FIG. 1, the fish-eye lens of the first embodiment includes, in order from the object side, a negative meniscus first lens L1 having a convex surface facing the object side, and a negative meniscus second lens having a convex surface facing the object side. A front group G1 having a negative refractive power as a whole consisting of L2 and a third lens component L3 having a positive refractive power as a whole consisting of a cemented negative lens and a positive lens, and arranged on the image side at an axial interval A biconvex fourth lens L4 having a stronger convex surface, a fifth lens component L5 having a positive refractive power as a whole, which is formed by joining a negative lens and a positive lens, and a sixth birefringent positive refractive power. It consists of a rear group G2 having a positive refractive power as a whole consisting of a lens L6. The lens surfaces of the front group and the rear group are all spherical.
[0036]
[Table 1]
(Second embodiment)
FIG. 3 is a lens configuration diagram of a fish-eye lens according to a second embodiment of the present invention.
[0037]
In FIG. 3, the fish-eye lens of the second embodiment includes, in order from the object side, a negative meniscus first lens L1 having a convex surface facing the object side, and a negative meniscus second lens having a convex surface facing the object side. A front lens group G1 having a negative refracting power as a whole, comprising L2, a biconcave third lens L3, and a fourth lens component L4 having a positive refracting power as a whole, which is formed by joining a positive lens and a negative lens; A positive meniscus fifth lens L5 arranged on the axis and having a stronger convex surface on the image side; and a sixth lens component L6 having a negative refractive power as a whole consisting of a cemented negative lens and positive lens; A rear group G2 having a positive refractive power as a whole is composed of a biconvex seventh lens L7 having a positive refractive power. The lens surfaces of the front group and the rear group are all spherical.
[0038]
[Table 2]
(Third embodiment)
FIG. 5 is a lens configuration diagram of a fisheye lens according to a third embodiment of the present invention.
[0039]
In FIG. 5, the fish-eye lens of the third embodiment includes, in order from the object side, a negative meniscus first lens L1 having a convex surface facing the object side, and a negative meniscus second lens having a convex surface facing the object side. Before the lens L2 has a negative refractive power as a whole, which is composed of a biconvex third lens L3 having a positive refractive power and a fourth lens component L4 having a negative refractive power as a whole. A group G1, a biconvex fifth lens L5 having a positive refracting power arranged at an axial interval, and a sixth lens component L6 having a negative refracting power as a whole consisting of a cemented negative lens and a positive lens; A rear group G2 having a positive refractive power as a whole is composed of a biconvex seventh lens L7 having a positive refractive power. The lens surfaces of the front group and the rear group are all spherical.
[0040]
[Table 3]
(Fourth embodiment)
FIG. 7 is a lens configuration diagram of a fisheye lens according to a fourth example of the present invention.
[0041]
In FIG. 7, the fish-eye lens of the fourth embodiment includes, in order from the object side, a negative meniscus first lens L1 with a convex surface facing the object side, and a negative meniscus second lens with a convex surface facing the object side. Before the lens L2 has a negative refractive power as a whole, which is composed of a biconvex third lens L3 having a positive refractive power and a fourth lens component L4 having a negative refractive power as a whole. A group G1, a biconvex fifth lens L5 arranged at an axial interval, a sixth lens component L6 having a negative refracting power as a whole, formed of a cemented negative lens and a positive lens, and a biconvex shape The rear lens unit G2 includes the seventh lens L7 having positive refractive power and the rear group G2 having positive refractive power as a whole. The lens surfaces of the front group and the rear group are all spherical. In each of the above embodiments, any lens surface may be a flat surface.
[0042]
[Table 4]
Table 5 shows values corresponding to the conditional expressions in the fish-eye lens according to the first to fourth examples of the present invention.
[0043]
[Table 5]
[0044]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a fisheye lens suitable for a bright and compact digital camera having an F number of 2.8 and an angle of view of 180 ° while ensuring a sufficient back focus.
[Brief description of the drawings]
FIG. 1 is a lens configuration diagram of a fisheye lens according to a first example of the present invention.
FIG. 2 is a diagram illustrating various aberrations of the fisheye lens according to the first example of the present invention.
FIG. 3 is a lens configuration diagram of a fish-eye lens according to a second example of the present invention.
FIG. 4 is a diagram illustrating all aberrations of the fisheye lens according to Example 2 of the present invention.
FIG. 5 is a lens configuration diagram of a fish-eye lens according to a third example of the present invention.
FIG. 6 is a diagram illustrating all aberrations of the fisheye lens according to Example 3 of the present invention.
FIG. 7 is a lens configuration diagram of a fish-eye lens according to a fourth example of the present invention.
FIG. 8 is a diagram illustrating all aberrations of the fisheye lens according to Example 4 of the invention.
[Explanation of symbols]
G1 Front group G2 Rear group S Aperture stop P Filter I Image plane
Claims (10)
(1) Bf/f ≧ 3.45
(2) 4.0 ≦ Σd/f ≦ 6.39
(4) 0.5<d1/f<2.0
但し、
Bf:前記魚眼レンズのバックフォーカス,
f :前記魚眼レンズ全系の焦点距離,
Σd:前記魚眼レンズの最も物体側のレンズ面から最も像側のレンズ面までの距離,
d1:前記前群の最も像側のレンズ面から前記後群の最も物体側のレンズ面までの間隔.From the object side, it has a plurality of negative lens components and a pair of cemented lens components as a whole, a front group of negative refractive power as a whole, and a rear group of positive refractive power as a whole arranged at an axial interval. The fish-eye lens is configured so that the rear group has a pair of cemented lens components and satisfies the following conditions.
(1) Bf / f ≧ 3.45
(2) 4.0 ≦ Σd / f ≦ 6.39
(4) 0.5 <d1 / f <2.0
However,
Bf: Back focus of the fisheye lens,
f: focal length of the whole fisheye lens system,
Σd: distance from the most object-side lens surface to the most image-side lens surface of the fisheye lens,
d1: Distance from the most image side lens surface of the front group to the most object side lens surface of the rear group.
(3) 1.5 ≦ f2/f ≦ 4.0
但し、
f2:前記後群の焦点距離.Fisheye lens according to claim 1, any one of 5, characterized by satisfying the following conditions:.
(3) 1.5 ≦ f2 / f ≦ 4.0
However,
f2: Focal length of the rear group.
(5) 30 ≦ νRp−νRn ≦ 60
但し、
νRp:前記接合レンズ成分中の正レンズのアッベ数の平均値,
νRn:前記接合レンズ成分中の負レンズのアッベ数の平均値.The cemented lens component in front Symbol rear group, fisheye lens according to any one of claims 1 to 6, characterized in that the following condition is satisfied.
(5) 30 ≦ νRp−νRn ≦ 60
However,
νRp: average value of the Abbe number of the positive lens in the cemented lens component,
νRn: an average value of the Abbe number of the negative lens in the cemented lens component.
(6) 0.2 ≦ nRn−nRp ≦ 0.45
但し、
nRn:前記接合レンズ成分中の負レンズのd線の屈折率の平均値,
nRp:前記接合レンズ成分中の正レンズのd線の屈折率の平均値.The cemented lens component in front Symbol rear group, fisheye lens according to any one of claims 1 7, characterized in that the following condition is satisfied.
(6) 0.2 ≦ nRn−nRp ≦ 0.45
However,
nRn: average value of the refractive index of d-line of the negative lens in the cemented lens component,
nRp: Average value of the refractive index of d-line of the positive lens in the cemented lens component.
1.15 ≦ d1/f <2.01.15 ≦ d1 / f <2.0
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003051432A JP4432330B2 (en) | 2003-02-27 | 2003-02-27 | Fisheye lens |
US10/631,760 US6844991B2 (en) | 2002-08-01 | 2003-08-01 | Fisheye lens |
US11/008,169 US7161746B2 (en) | 2002-08-01 | 2004-12-10 | Fisheye lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003051432A JP4432330B2 (en) | 2003-02-27 | 2003-02-27 | Fisheye lens |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004258515A JP2004258515A (en) | 2004-09-16 |
JP2004258515A5 JP2004258515A5 (en) | 2006-08-17 |
JP4432330B2 true JP4432330B2 (en) | 2010-03-17 |
Family
ID=33116577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003051432A Expired - Fee Related JP4432330B2 (en) | 2002-08-01 | 2003-02-27 | Fisheye lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4432330B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4819203B2 (en) * | 2009-12-07 | 2011-11-24 | オリンパスメディカルシステムズ株式会社 | Objective lens and endoscope apparatus |
EP3627100B1 (en) * | 2018-09-20 | 2021-12-01 | Hexagon Technology Center GmbH | Retro reflector with fisheye lens |
-
2003
- 2003-02-27 JP JP2003051432A patent/JP4432330B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004258515A (en) | 2004-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6844991B2 (en) | Fisheye lens | |
JP5751084B2 (en) | Super wide-angle lens system | |
JP3547103B2 (en) | Wide-angle imaging lens | |
US8970968B2 (en) | Photographing lens system | |
JPH1152228A (en) | Wide angle lens | |
JP4565262B2 (en) | Fisheye lens | |
JP4337352B2 (en) | Rear converter lens | |
JP3033149B2 (en) | Compact zoom lens | |
JPH09113799A (en) | Retrofocus type photographic lens | |
JP4217040B2 (en) | Large aperture wide angle lens | |
JPH06300965A (en) | Wide-angle lens | |
JP4929902B2 (en) | Single focus lens and imaging apparatus having the same | |
JP4098586B2 (en) | Zoom lens | |
JP2909958B2 (en) | Super wide-angle lens system | |
JP2000028919A (en) | Middle telephotographic lens | |
JP2000002835A (en) | Image-formation optical system | |
JP4337314B2 (en) | Fisheye lens | |
JP2701344B2 (en) | Retro-focus wide-angle lens | |
JP3033148B2 (en) | Compact zoom lens | |
JP3752025B2 (en) | Large aperture ultra wide angle lens system | |
JP4674407B2 (en) | Wide converter lens | |
CN115220180A (en) | Optical system and image pickup apparatus having the same | |
JP5006627B2 (en) | Optical system and optical apparatus having the same | |
JP4434596B2 (en) | Retro focus lens | |
JP7195608B2 (en) | rear conversion lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060705 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090414 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090610 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4432330 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |