JP4430037B2 - Solar cell module and mounting structure of solar cell module on folding roof - Google Patents

Solar cell module and mounting structure of solar cell module on folding roof Download PDF

Info

Publication number
JP4430037B2
JP4430037B2 JP2006143016A JP2006143016A JP4430037B2 JP 4430037 B2 JP4430037 B2 JP 4430037B2 JP 2006143016 A JP2006143016 A JP 2006143016A JP 2006143016 A JP2006143016 A JP 2006143016A JP 4430037 B2 JP4430037 B2 JP 4430037B2
Authority
JP
Japan
Prior art keywords
fastening
wall
solar cell
cell module
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006143016A
Other languages
Japanese (ja)
Other versions
JP2007314955A (en
Inventor
康寛 井上
Original Assignee
株式会社淀川製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社淀川製鋼所 filed Critical 株式会社淀川製鋼所
Priority to JP2006143016A priority Critical patent/JP4430037B2/en
Publication of JP2007314955A publication Critical patent/JP2007314955A/en
Application granted granted Critical
Publication of JP4430037B2 publication Critical patent/JP4430037B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/16Arrangement of interconnected standing structures; Standing structures having separate supporting portions for adjacent modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S25/61Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for fixing to the ground or to building structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S25/61Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for fixing to the ground or to building structures
    • F24S25/615Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for fixing to the ground or to building structures for fixing to protruding parts of buildings, e.g. to corrugations or to standing seams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Description

本発明は屋根設置用の太陽電池モジュールと、太陽電池モジュールの折版屋根用への取り付け構造に関する。   The present invention relates to a solar cell module for roof installation and a structure for attaching the solar cell module to a folded roof.

屋根上に太陽電池を設置する形態には、表面に太陽電池が一体化してある屋根材を葺きあげる形態と、既存の屋根の上面に太陽電池モジュールを設置する形態(以下、単に据置き型と言う)とがある。据置き型の設置形態においては、屋根上に架台を構築したうえで、その上面に太陽電池モジュールを配置する。折版屋根材で葺きあげた屋根においては、山部と谷部とが交互に連続するので、山部の上面に先の架台と同様の支持枠を組んだうえで、その上面に太陽電池モジュールを配置し、各種の金具で固定している(特許文献1、2、3参照)。   In the form of installing solar cells on the roof, a form in which the roof material in which the solar cells are integrated on the surface is rolled up, and a form in which the solar cell module is installed on the upper surface of the existing roof (hereinafter simply referred to as a stationary type) Say). In the stationary type installation form, a pedestal is constructed on the roof, and a solar cell module is arranged on the upper surface thereof. On roofs that have been sculpted with folding roofing materials, the mountain and valleys are alternately continuous, so a support frame similar to the previous frame is built on the top of the mountain, and the solar cell module on the top. Are fixed with various metal fittings (see Patent Documents 1, 2, and 3).

特開2003−155803号公報(段落番号0009、図2、図3)JP 2003-155803 A (paragraph number 0009, FIGS. 2 and 3) 特許第3352647号公報(段落番号0013、図3)Japanese Patent No. 3352647 (paragraph number 0013, FIG. 3) 特開2002−294955号公報(段落番号0051、図3)JP 2002-294955 A (paragraph number 0051, FIG. 3)

据置き形の従来の太陽電池モジュールは、殆どが結晶系太陽電池で構成されていて、全体が硬質パネル化されているので、個々の太陽電池モジュールの重量が大きいうえ、設置するのに支持枠や取付金具等を多用しなければならない。そのため、太陽電池を設置した後の屋根全体の重量が大きくなり、建物躯体に対する荷重負荷が増加するのを避けられない。また、製造メーカによって太陽電池モジュールの大きさに違いがあり、しかも、太陽電池モジュールの縦横のサイズと折版屋根材の働き幅とが一致しないため、太陽電池モジュールの大きさや、屋根材の働き幅に応じて専用の支持枠や取付金具等を用意する必要があり、太陽電池モジュールの設置コストが嵩む。   Most conventional solar cell modules of stationary type are composed of crystalline solar cells, and the whole is a rigid panel, so the weight of each solar cell module is large and a supporting frame is required for installation. And mounting brackets must be used frequently. Therefore, the weight of the entire roof after installing the solar cell increases, and it is inevitable that the load on the building frame increases. In addition, the size of the solar cell module varies depending on the manufacturer, and the vertical and horizontal sizes of the solar cell module and the working width of the folding roof material do not match, so the size of the solar cell module and the function of the roof material Depending on the width, it is necessary to prepare a dedicated support frame, mounting bracket, and the like, which increases the installation cost of the solar cell module.

太陽電池モジュールを連続して列状に設置する場合には、隣接する太陽電池モジュールどうしを繋ぐための連結金具などを別途用意する必要があり、その分だけ設置の手間やコストがさらに増加する。隣接するモジュールどうしの連結を容易化するためのフレームや連結構造を備えている太陽電池モジュールがあるが、その場合でも、連結専用の支持枠や支持レールを用意する必要があり、設置コストや屋根重量が増加するのを避けられない。   When installing solar cell modules continuously in a row, it is necessary to separately prepare a connecting metal fitting for connecting adjacent solar cell modules, and the installation effort and cost are further increased by that amount. There are solar cell modules equipped with a frame and a connection structure for facilitating the connection between adjacent modules, but even in that case, it is necessary to prepare a support frame and a support rail dedicated to the connection, installation costs and roof Inevitable increase in weight.

折版屋根の屋根面の向きによっては、太陽電池モジュールを棟側へ向かって上り傾斜させて、太陽光の電池表面に対する入射角を大きくする必要があるが、折版屋根の山部に直接載置固定される太陽電池モジュールの場合には、折版屋根の平均的な勾配が百分の三前後しかないため、太陽電池モジュールを大きく傾斜させることができず、発電効率を向上させるのが難しい。たとえば、屋根面に設けた傾斜スタンドに太陽電池モジュールを設置すると、太陽光の入射角度を大きくできるが、専用の傾斜スタンドが余分に必要となり、その分だけコストと重量が嵩む。   Depending on the orientation of the roof surface of the folding roof, it may be necessary to increase the incident angle of the solar cell module on the cell surface by inclining the solar cell module toward the building side. In the case of a fixed solar cell module, the average gradient of the folded roof is only around three hundredths, so the solar cell module cannot be largely inclined and it is difficult to improve the power generation efficiency. . For example, if a solar cell module is installed on an inclined stand provided on the roof surface, the incident angle of sunlight can be increased, but an extra dedicated inclined stand is required, and the cost and weight increase accordingly.

本発明の太陽電池モジュールは、ベース体と、ベース体の支持壁に貼り付けられるシート状の電池本体とで構成されており、ベース体は、一対の締結壁と、締結壁に連続して上向きに立ち上がる一対の脚壁と、両脚壁どうしを繋ぐ支持壁とで構成するが、この種のベース体において、棟側の脚壁の上下寸法を軒側の脚壁より大きくすると、支持壁および電池本体を棟側へ向かって上り傾斜させることができる。しかし、棟側の脚壁寸法が大きい分だけ太陽電池モジュールが大形化し嵩張るため、運搬や保管に大きなスペースを必要とし不経済である。生産性の点でも難がある。   The solar cell module of the present invention is composed of a base body and a sheet-like battery body that is attached to a support wall of the base body, and the base body faces the pair of fastening walls and the fastening walls continuously upward. In this type of base body, if the vertical dimension of the ridge side leg wall is larger than the eave side leg wall, the support wall and the battery The main body can be inclined upward toward the building. However, since the solar cell module becomes large and bulky by the size of the leg wall on the ridge side, a large space is required for transportation and storage, which is uneconomical. There is also a difficulty in productivity.

本発明の目的は、結晶系の太陽電池モジュールに比べて、構造が簡単で軽量化できるうえ、その設置に要するコストが少なくて済む太陽電池モジュールを提供することにある。本発明の目的は、太陽電池モジュールの屋根面への設置構造を簡素化して、従来の設置構造に比べて施工コストを大幅に削減でき、しかも設置構造が簡単な分だけ屋根の全体重量を削減して建物躯体に対する負荷重量を減少できる、太陽電池モジュールの折版屋根用への取り付け構造を提供することにある。本発明の目的は、折版屋根の屋根面に直接固定される太陽電池モジュールでありながら、太陽電池モジュールを棟側へ向かって上り傾斜する状態で設置でき、したがって太陽光の電池表面に対する入射角を大きくし発電効率を向上できる、太陽電池モジュールの折版屋根用への取り付け構造を提供することにある。   An object of the present invention is to provide a solar cell module that has a simple structure and can be reduced in weight as compared with a crystalline solar cell module, and that requires less cost for installation. The purpose of the present invention is to simplify the installation structure of the solar cell module on the roof surface, greatly reducing the construction cost compared to the conventional installation structure, and reducing the total weight of the roof by the amount of simple installation structure. Another object of the present invention is to provide a structure for mounting a solar cell module on a folded roof that can reduce the load weight on the building frame. The object of the present invention is a solar cell module that is directly fixed to the roof surface of the folded roof, but the solar cell module can be installed in an upwardly inclined manner toward the ridge side, and therefore the incident angle of sunlight with respect to the cell surface An object of the present invention is to provide a structure for mounting a solar cell module to a folded roof that can increase the power generation efficiency and increase the power generation efficiency.

本発明の太陽電池モジュールは、交互に連続する山部分11と谷部分12とを備えた折版屋根材10の屋根面に設置される太陽電池モジュールMを適用対象とする。太陽電池モジュールMは、折版屋根材10の屋根面で支持されるベース体1と、ベース体1に貼付固定されるシート状の電池本体2とからなる。電池本体2は、プラスチックフィルム基板20の表面に太陽電池層21を形成してなるフィルム型アモルファス太陽電池で構成されている。ベース体1は、折版屋根材10の山部分11に固定した上下の締結金具25で固定される軒側締結壁3Eおよび棟側締結壁3Rと、両締結壁3E・3Rに連続して上向きに立ち上がる一対の脚壁4と、両脚壁4どうしを繋ぐ支持壁5とを備えている。以て、軒側締結壁3Eと棟側締結壁3Rとを段違い平行状に折り曲げて、支持壁5が棟側へ向かって上り傾斜させてあることを特徴とする。   The solar cell module of the present invention is applied to a solar cell module M that is installed on the roof surface of the folded roofing material 10 that includes alternately continuous mountain portions 11 and valley portions 12. The solar cell module M includes a base body 1 that is supported by the roof surface of the folded roofing material 10 and a sheet-like battery body 2 that is attached and fixed to the base body 1. The battery body 2 is constituted by a film-type amorphous solar cell in which a solar cell layer 21 is formed on the surface of a plastic film substrate 20. The base body 1 faces the eaves-side fastening wall 3E and the ridge-side fastening wall 3R fixed by the upper and lower fastening brackets 25 fixed to the mountain portion 11 of the folded roofing material 10, and continuously upwards from both the fastening walls 3E and 3R. A pair of leg walls 4 standing up and a support wall 5 connecting the two leg walls 4 to each other. Thus, the eaves-side fastening wall 3E and the ridge-side fastening wall 3R are bent stepwise in parallel so that the support wall 5 is inclined upward toward the ridge side.

棟側締結壁3Rに連続する脚壁4と支持壁5との隣接縁C1、および軒側締結壁3Eと脚壁4との隣接縁C2のそれぞれを鋭角に折り曲げて、支持壁5を棟側へ向かって上り傾斜させる。   Each of the adjacent edge C1 between the leg wall 4 and the support wall 5 continuous to the ridge-side fastening wall 3R and the adjacent edge C2 between the eave-side fastening wall 3E and the leg wall 4 is bent at an acute angle, so that the support wall 5 is Incline upward toward.

隣接する折版屋根材10どうしが、山部分11の上面上方に突出するはぜ締め構造13で連結してある屋根に適用される太陽電池モジュールMにおいては、ベース体1の軒側締結壁3Eおよび脚壁4に、はぜ締め構造13を跨ぐ溝6を切り欠き形成する。ベース体1の棟側締結壁3Rに、締結金具25に締結固定するためのボルト穴8を形成する。   In the solar cell module M applied to the roof in which the adjacent folded roofing materials 10 are connected to each other by a fastening structure 13 protruding above the upper surface of the mountain portion 11, the eave side fastening wall 3E of the base body 1 is used. In the leg wall 4, the groove 6 is formed by notching the straddle structure 13. Bolt holes 8 for fastening and fixing to the fastening hardware 25 are formed in the ridge side fastening wall 3R of the base body 1.

隣接する折版屋根材10の山部分11どうしがボルト43で締結固定してある屋根に適用される太陽電池モジュールMにおいては、ベース体1の軒側締結壁3Eにボルト43・47を挿通するためのボルト穴46を形成する。ベース体1の棟側締結壁3Rに、締結金具25に締結固定するためのボルト穴8を形成する。   In the solar cell module M applied to the roof in which the mountain portions 11 of the adjacent folded roofing material 10 are fastened and fixed by the bolts 43, the bolts 43 and 47 are inserted into the eaves side fastening wall 3E of the base body 1. Bolt holes 46 are formed. Bolt holes 8 for fastening and fixing to the fastening hardware 25 are formed in the ridge side fastening wall 3R of the base body 1.

本発明に係る太陽電池モジュールの折版屋根への取り付け構造においては、交互に連続する山部分11と谷部分12とを備えた折版屋根材10どうしが、山部分11の上方に突出するはぜ締め構造13を介して連結され、山部分11の上面に太陽電池モジュールMが設置される。太陽電池モジュールMは、折版屋根材10で支持されるベース体1と、ベース体1に貼付固定されるシート状の電池本体2とからなる。ベース体1は、山部分11に固定した締結金具25で固定される軒側締結壁3Eおよび棟側締結壁3Rと、両締結壁3E・3Rに連続して上向きに立ち上がる一対の脚壁4と、両脚壁4どうしを繋ぐ支持壁5とを備えていて、軒側締結壁3Eおよび脚壁4にはぜ締め構造13を跨ぐ溝6が切り欠き形成されている。締結金具25は、金具本体26と、一対の取付脚30を引き寄せ固定するボルト27とを含む。金具本体26は、はぜ締め構造13の首部分17を挟持する一対の取付脚30と、軒側締結壁3Eを山部分11と協同して上下に挟持する一対の押え壁33と、棟側締結壁3Rを支持する締結座32とを備えている。ベース体1の棟側締結壁3Rを締結座32に締結固定し、軒側締結壁3Eを締結金具25の下側に締結固定して、太陽電池モジュールMを棟側へ向かって上り傾斜する状態で固定する。   In the structure for attaching the solar cell module to the folded roof according to the present invention, the folded roof materials 10 having the alternately continuous peak portions 11 and valley portions 12 protrude above the peak portions 11. The solar cell module M is installed on the upper surface of the mountain portion 11 by being connected via a fastening structure 13. The solar cell module M includes a base body 1 supported by the folded roofing material 10 and a sheet-like battery body 2 attached and fixed to the base body 1. The base body 1 includes an eaves-side fastening wall 3E and a ridge-side fastening wall 3R that are fixed by fastening brackets 25 that are fixed to the mountain portion 11, and a pair of leg walls 4 that rises upward continuously from the fastening walls 3E and 3R. And a support wall 5 that connects the leg walls 4 to each other, and the eaves side fastening wall 3 </ b> E and the leg wall 4 are formed with a groove 6 that straddles the fastening structure 13. The fastening fitting 25 includes a fitting body 26 and a bolt 27 that pulls and fixes the pair of mounting legs 30. The metal fitting body 26 includes a pair of mounting legs 30 that sandwich the neck portion 17 of the fastening structure 13, a pair of pressing walls 33 that sandwich the eave side fastening wall 3 </ b> E in cooperation with the mountain portion 11, and a ridge side A fastening seat 32 that supports the fastening wall 3R is provided. The ridge side fastening wall 3R of the base body 1 is fastened and fixed to the fastening seat 32, the eaves side fastening wall 3E is fastened and fixed to the lower side of the fastening bracket 25, and the solar cell module M is inclined upward toward the ridge side. Secure with.

金具本体26の締結座32の上面に、棟側締結壁3Rを締結固定するボルト29を固定する。取付脚30の下部に軒側の脚壁4と支持壁5との折曲縁を受け止める段部41を形成する。   A bolt 29 for fastening and fixing the ridge side fastening wall 3R is fixed to the upper surface of the fastening seat 32 of the metal fitting body 26. A step portion 41 is formed in the lower portion of the mounting leg 30 to receive the bent edge between the eave-side leg wall 4 and the support wall 5.

金具本体26の締結座32の上面に、棟側締結壁3Rを締結固定するボルト29を固定する。前記ボルト29にねじ込んだ一対のナット38・39で、ベース体1の棟側締結壁3Rを締結固定することにより、下側のナット39で棟側締結壁3Rを受け止める。   A bolt 29 for fastening and fixing the ridge side fastening wall 3R is fixed to the upper surface of the fastening seat 32 of the metal fitting body 26. The ridge side fastening wall 3R of the base body 1 is fastened and fixed by a pair of nuts 38 and 39 screwed into the bolt 29, and the ridge side fastening wall 3R is received by the lower nut 39.

本発明に係る太陽電池モジュールの折版屋根への取り付け構造においては、交互に連続する山部分11と谷部分12とを備えた折版屋根材10の山部分11どうしをボルト43で連結固定し、太陽電池モジュールMを山部分11に固定した締結金具25で固定する。太陽電池モジュールMは、折版屋根材10で支持されるベース体1と、ベース体1に貼付固定されるシート状の電池本体2とからなる。ベース体1は、山部分11に固定した締結金具25で固定される軒側締結壁3Eおよび棟側締結壁3Rと、両締結壁3E・3Rに連続して上向きに立ち上がる一対の脚壁4と、両脚壁4どうしを繋ぐ支持壁5とを備えている。締結金具25は、軒側締結壁3Eを山部分11と協同して上下に挟持する下締結座51と、棟側締結壁3Rを支持する締結座32とを備えている。ベース体1の棟側締結壁3Rを締結座32に締結固定し、軒側締結壁3Eを、締結金具25の下締結座51に締結固定して、太陽電池モジュールMを棟側へ向かって上り傾斜する状態で固定する。   In the structure for attaching the solar cell module to the folding roof according to the present invention, the mountain portions 11 of the folding roof material 10 having alternately continuous mountain portions 11 and valley portions 12 are connected and fixed by bolts 43. The solar cell module M is fixed with the fastening bracket 25 fixed to the mountain portion 11. The solar cell module M includes a base body 1 supported by the folded roofing material 10 and a sheet-like battery body 2 attached and fixed to the base body 1. The base body 1 includes an eaves-side fastening wall 3E and a ridge-side fastening wall 3R that are fixed by fastening brackets 25 that are fixed to the mountain portion 11, and a pair of leg walls 4 that rises upward continuously from the fastening walls 3E and 3R. , And a support wall 5 that connects the two leg walls 4 to each other. The fastening bracket 25 includes a lower fastening seat 51 that clamps the eaves-side fastening wall 3E in the vertical direction in cooperation with the mountain portion 11, and a fastening seat 32 that supports the ridge-side fastening wall 3R. The ridge side fastening wall 3R of the base body 1 is fastened and fixed to the fastening seat 32, the eave side fastening wall 3E is fastened to the lower fastening seat 51 of the fastening bracket 25, and the solar cell module M is raised toward the ridge side. Fix in an inclined state.

本発明においては、折版屋根材10の屋根面に装着されるベース体1と、フィルム型アモルファス太陽電池からなる電池本体2とで太陽電池モジュールMを構成するので、従来の結晶系の太陽電池モジュールに比べてモジュール重量を大幅に軽量化できる。フィルム型アモルファス太陽電池で電池本体2を構成するので、従来の結晶系モジュールに比べて太陽電池モジュールMを容易に長尺化でき、その分だけ太陽電池モジュールの生産効率を向上できるうえ、施工の手間を軽減できる。   In the present invention, since the solar cell module M is composed of the base body 1 mounted on the roof surface of the folded roofing material 10 and the battery body 2 made of a film type amorphous solar cell, a conventional crystalline solar cell is used. Module weight can be significantly reduced compared to modules. Since the battery body 2 is composed of a film-type amorphous solar cell, the solar cell module M can be easily lengthened as compared with the conventional crystal module, and the production efficiency of the solar cell module can be improved by that much, and the construction Can save time and effort.

さらに、軒側締結壁3E、棟側締結壁3R、脚壁4、支持壁5などでベース体1を構成し、上下の締結金具25で軒側締結壁3Eおよび棟側締結壁3Rを固定するので、太陽電池モジュールMを設置するのに必要な金具や枠体などを最小限化でき、太陽電池モジュールMの軽量化と併せて、屋根および建物躯体に対する太陽電池システムの負荷重量を小さくできる。軒側締結壁3Eと棟側締結壁3Rとを段違い平行状に折り曲げて、支持壁5を棟側へ向かって上り傾斜させるので、軒側締結壁3Eや棟側締結壁3Rを屋根面と平行に締結でき、したがって施工時の手間を軽減し、設置に要するコストを削減できる。   Further, the eaves side fastening wall 3E, the ridge side fastening wall 3R, the leg wall 4, the support wall 5 and the like constitute the base body 1, and the eaves side fastening wall 3E and the ridge side fastening wall 3R are fixed by the upper and lower fastening brackets 25. Therefore, metal fittings, frames, and the like necessary for installing the solar cell module M can be minimized, and the load weight of the solar cell system on the roof and the building frame can be reduced along with the weight reduction of the solar cell module M. The eaves side fastening wall 3E and the ridge side fastening wall 3R are bent in parallel to each other and the support wall 5 is inclined upward toward the ridge side, so that the eaves side fastening wall 3E and the ridge side fastening wall 3R are parallel to the roof surface. Therefore, it is possible to reduce the time and labor required for installation and the cost required for installation.

棟側締結壁3Rに連続する脚壁4と支持壁5との隣接縁C1、および軒側締結壁3Eと脚壁4との隣接縁C2のそれぞれを鋭角に折り曲げて、支持壁5を棟側へ向かって上り傾斜させる太陽電池モジュールMによれば、両隣接縁C1・C2が直角、あるいは鈍角に形成してある場合に比べてベース体1の構造強度を向上して、使用状態におけるベース体1曲げ強度や座屈強度を増強できる。   Each of the adjacent edge C1 between the leg wall 4 and the support wall 5 continuous to the ridge-side fastening wall 3R and the adjacent edge C2 between the eave-side fastening wall 3E and the leg wall 4 is bent at an acute angle, so that the support wall 5 is According to the solar cell module M that is inclined upward, the structural strength of the base body 1 is improved as compared with the case where both adjacent edges C1 and C2 are formed at right angles or obtuse angles, and the base body in the use state 1 Bending strength and buckling strength can be increased.

ベース体1の軒側締結壁3Eおよび脚壁4に、はぜ締め構造13を跨ぐ溝6を切り欠き形成し、ベース体1の棟側締結壁3Rに、締結金具25に締結固定するためのボルト穴8を形成した太陽電池モジュールMによれば、隣接する折版屋根材10どうしが、山部分11の上面上方に突出するはぜ締め構造13で連結してある屋根において、溝6がはぜ締め構造13を跨ぐ状態でベース体1を載置することにより、軒側締結壁3Eおよび棟側締結壁3Rを、上下に隣接する締結金具25の下部と上部とに固定して、ベース体1を棟側へ向かって上り傾斜できるので、従来の太陽電池モジュールの設置構造に比べて、より簡単な構造で太陽電池モジュールMを折版屋根材10に設置できる。   A groove 6 is formed in the eaves-side fastening wall 3E and the leg wall 4 of the base body 1 so as to straddle the fastening structure 13, and is fastened to the fastening bracket 25 on the ridge-side fastening wall 3R of the base body 1. According to the solar cell module M in which the bolt holes 8 are formed, in the roof in which the adjacent folded roofing materials 10 are connected by the fastening structure 13 protruding above the upper surface of the mountain portion 11, the groove 6 is formed. By mounting the base body 1 so as to straddle the fastening structure 13, the eaves side fastening wall 3E and the ridge side fastening wall 3R are fixed to the lower part and the upper part of the fasteners 25 adjacent to each other in the vertical direction. Since 1 can be tilted up toward the building side, the solar cell module M can be installed on the folded roofing material 10 with a simpler structure than the conventional solar cell module installation structure.

ベース体1の軒側締結壁3Eに前記ボルト43を挿通するためのボルト穴46を形成し、ベース体1の棟側締結壁3Rに、締結金具25に締結固定するためのボルト穴8を形成した太陽電池モジュールMによれば、隣接する折版屋根材10どうしがボルト43で締結固定してある屋根において、ボルト43・47で軒側締結壁3Eおよび締結金具25を折版屋根材10に固定し、棟側締結壁3Rを締結金具25に上部に締結することにより、ベース体1を棟側へ向かって上り傾斜できるので、従来の太陽電池モジュールの設置構造に比べて、より簡単な構造で太陽電池モジュールMを折版屋根材10に設置できる。軒側締結壁3Eに溝6が形成してある太陽電池モジュールMに比べて、ベース体1の構造強度を向上できる。   A bolt hole 46 for inserting the bolt 43 is formed in the eaves side fastening wall 3E of the base body 1, and a bolt hole 8 for fastening and fixing to the fastening bracket 25 is formed in the ridge side fastening wall 3R of the base body 1. According to the solar cell module M, the eaves-side fastening wall 3E and the fastening bracket 25 are connected to the folded roofing material 10 by the bolts 43 and 47 in the roof in which the adjacent folded roofing materials 10 are fastened and fixed by the bolts 43. By fixing and fastening the ridge side fastening wall 3R to the upper part of the fastening bracket 25, the base body 1 can be inclined upward toward the ridge side, so that the structure is simpler than the conventional solar cell module installation structure. Thus, the solar cell module M can be installed on the folded plate roofing material 10. Compared with the solar cell module M in which the groove 6 is formed in the eaves side fastening wall 3E, the structural strength of the base body 1 can be improved.

本発明に係る太陽電池モジュールの取り付け構造では、ベース体1と、ベース体1に装着されるシート状の電池本体2とで太陽電池モジュールMを構成し、ベース体1を折版屋根材10の山部分11に締結金具25で固定するので、従来の結晶系の太陽電池モジュールで構成した太陽電池システムに比べて全体重量を大幅に軽量化できる。   In the solar cell module mounting structure according to the present invention, the base body 1 and the sheet-shaped battery body 2 attached to the base body 1 constitute a solar cell module M, and the base body 1 is made of the folded roofing material 10. Since the fastener 11 is fixed to the mountain portion 11, the overall weight can be greatly reduced as compared with a solar cell system constituted by a conventional crystalline solar cell module.

さらに、ベース体1に設けた軒側締結壁3Eを、はぜ締め構造13に締結した締結金具25で折版屋根材10の山部分11に対して締結固定して、折版屋根材10自体を太陽電池モジュールM用の架台として利用するので、従来のこの種構造において不可欠であった架台や、架台を固定するための金具などを省略して、太陽電池モジュールMを設置するのに必要な金具などを最小限化でき、太陽電池モジュールMの軽量化と併せて、屋根および建物躯体に対する太陽電池システムの負荷重量を小さくできる。もちろん、架台、金具、および枠体などを省略できる分だけ施工の手間や設置コストを大幅に削減できる。   Further, the eaves-side fastening wall 3E provided on the base body 1 is fastened and fixed to the mountain portion 11 of the folded roofing material 10 with the fastening bracket 25 fastened to the screw fastening structure 13, and the folded roofing material 10 itself. Is used as a gantry for the solar cell module M. Therefore, it is necessary to install the solar cell module M by omitting the gantry and the metal fitting for fixing the gantry, which are indispensable in the conventional structure of this type. A metal fitting etc. can be minimized and the load weight of the solar cell system with respect to a roof and a building frame can be made small with the weight reduction of the solar cell module M. Of course, construction work and installation costs can be greatly reduced by the amount that can be omitted.

太陽電池モジュールMを、上下に隣接する締結金具25で支持して、棟側へ向かって上り傾斜する状態で設置できるので、太陽電池モジュールMを屋根面と平行に設置する場合に比べて、太陽光の電池表面に対する入射角を大きくして発電効率を向上できる。専用の傾斜スタンドを設ける場合に比べて、より簡単な構造で太陽電池モジュールMを傾斜支持できる。   Since the solar cell module M can be installed in a state where the solar cell module M is supported by the upper and lower fastening brackets 25 and is inclined upward toward the ridge side, the solar cell module M can be installed in the solar cell module in parallel with the roof surface. The power generation efficiency can be improved by increasing the incident angle of light to the battery surface. The solar cell module M can be tilted and supported with a simpler structure than when a dedicated tilt stand is provided.

金具本体26の締結座32の上面に、棟側締結壁3Rを締結固定するボルト29が固定してあると、棟側締結壁3Rを締結座32に組むとき、ボルト穴8をボルト29に掛止することにより、ベース体1を締結金具25に対してずれ動き不能に仮組みできるので、太陽電池モジュールMの設置作業を能率よく行うことができる。さらに、取付脚30の下部に段部41を形成し、この段部41で軒側の脚壁4と支持壁5との折曲縁を受け止めるようにすると、軒側締結壁3Eの締結構造に加えて、段部41によっても太陽電池モジュールMの浮き上がりを確実に防止できるので、太陽電池モジュールMの屋根面に対する取り付け強度をさらに向上して、例えば暴風時に太陽電池モジュールMが吹き飛ばされるのをよく防止できる。   When the bolt 29 for fastening and fixing the ridge side fastening wall 3R is fixed to the upper surface of the fastening seat 32 of the metal fitting body 26, the bolt hole 8 is hooked on the bolt 29 when the ridge side fastening wall 3R is assembled to the fastening seat 32. By stopping, the base body 1 can be temporarily assembled with respect to the fastening bracket 25 so that the base body 1 cannot be displaced, so that the installation work of the solar cell module M can be performed efficiently. Furthermore, if the step part 41 is formed in the lower part of the attachment leg 30, and the bent edge of the eaves side leg wall 4 and the support wall 5 is received by this step part 41, the fastening structure of the eaves side fastening wall 3E will be obtained. In addition, since the solar cell module M can be reliably prevented from being lifted by the stepped portion 41, the mounting strength of the solar cell module M to the roof surface can be further improved, and for example, the solar cell module M can be blown off during a storm. Can be prevented.

金具本体26の締結座32の上面にボルト29を固定し、ボルト29にねじ込んだ一対のナット38・39でベース体1の棟側締結壁3Rを締結固定すると、ボルト29に形成したねじ山の範囲内で両ナット38・39の固定位置を上下に変動することにより、下側のナット39で棟側締結壁3Rを受け止めて太陽電池モジュールMの傾斜角度を大小に変更することができる。   When the bolt 29 is fixed to the upper surface of the fastening seat 32 of the metal fitting body 26 and the ridge side fastening wall 3R of the base body 1 is fastened and fixed with a pair of nuts 38 and 39 screwed into the bolt 29, the thread formed on the bolt 29 is fixed. By changing the fixing positions of the nuts 38 and 39 up and down within the range, the ridge side fastening wall 3R can be received by the lower nut 39 and the inclination angle of the solar cell module M can be changed to large or small.

本発明に係る太陽電池モジュールの取り付け構造では、ベース体1と、ベース体1に装着されるシート状の電池本体2とで太陽電池モジュールMを構成し、ベース体1を折版屋根材10の山部分11に対してボルト43・47で直接固定するので、従来の結晶系の太陽電池モジュールMで構成した太陽電池システムに比べて全体重量を大幅に軽量化できる。   In the solar cell module mounting structure according to the present invention, the base body 1 and the sheet-shaped battery body 2 attached to the base body 1 constitute a solar cell module M, and the base body 1 is made of the folded roofing material 10. Since the bolts 43 and 47 are directly fixed to the mountain portion 11, the overall weight can be greatly reduced as compared with the solar cell system configured by the conventional crystalline solar cell module M.

さらに、ベース体1に設けた軒側締結壁3Eを、折版屋根材10の山部分11と締結金具25とにボルト43・47で締結固定し、棟側締結壁3Rを締結金具25の上部に締結固定すると、折版屋根材10自体を太陽電池モジュールM用の架台として利用できるので、従来のこの種構造において不可欠であった架台や、架台を固定するための金具などを省略して、太陽電池モジュールMを設置するのに必要な金具を省略でき、先の太陽電池モジュールMの軽量化と併せて、屋根および建物躯体に対する太陽電池システムの負荷重量を小さくできる。もちろん、架台、金具、および枠体などを省略できる分だけ施工の手間や設置コストを大幅に削減できる。   Further, the eaves side fastening wall 3E provided on the base body 1 is fastened and fixed to the mountain portion 11 of the folding roof material 10 and the fastening bracket 25 with bolts 43 and 47, and the ridge side fastening wall 3R is fixed to the upper portion of the fastening bracket 25. Since the folded roofing material 10 itself can be used as a gantry for the solar cell module M, the gantry that is indispensable in the conventional structure of this kind and the metal fittings for fixing the gantry are omitted. The metal fitting required for installing the solar cell module M can be omitted, and the load weight of the solar cell system with respect to the roof and the building frame can be reduced together with the weight reduction of the solar cell module M. Of course, construction work and installation costs can be greatly reduced by the amount that can be omitted.

太陽電池モジュールMを、上下に隣接する締結金具25で支持して、棟側へ向かって上り傾斜する状態で設置できるので、太陽電池モジュールMを屋根面と平行に設置する場合に比べて、太陽光の電池表面に対する入射角を大きくして発電効率を向上できる。専用の傾斜スタンドを設ける場合に比べて、より簡単な構造で太陽電池モジュールMを傾斜支持できる。軒側締結壁3Eに溝6を形成する必要がないので、その分だけベース体1の構造強度を向上できる利点もある。   Since the solar cell module M can be installed in a state where the solar cell module M is supported by the upper and lower fastening brackets 25 and is inclined upward toward the ridge side, the solar cell module M can be installed in the solar cell module in parallel with the roof surface. The power generation efficiency can be improved by increasing the incident angle of light to the battery surface. The solar cell module M can be tilted and supported with a simpler structure than when a dedicated tilt stand is provided. Since it is not necessary to form the groove 6 in the eaves side fastening wall 3E, there is also an advantage that the structural strength of the base body 1 can be improved accordingly.

(実施例) 図1ないし図6は本発明に係る太陽電池モジュールと、その折版屋根への取り付け構造の実施例を示す。図5において太陽電池モジュールMは、ベース体1と、ベース体1に貼付固定されるシート状の電池本体2とで構成する。ベース体1は軒側締結壁3Eおよび棟側締結壁3Rと、両締結壁3E・3Rに連続して上向きに立ち上がる一対の脚壁4と、両脚壁4どうしを繋ぐ支持壁5とを一体に備えた横長のパネル体からなり、鋼板をロール成形して、あるいはベンダー成型により形成する。支持壁5の両端には側端壁が下向きに折り曲げてある。 (Example) FIG. 1 thru | or FIG. 6 shows the Example of the solar cell module which concerns on this invention, and the attachment structure to the folding plate roof. In FIG. 5, the solar cell module M includes a base body 1 and a sheet-like battery body 2 that is attached and fixed to the base body 1. The base body 1 integrally includes an eave-side fastening wall 3E and a ridge-side fastening wall 3R, a pair of leg walls 4 that rises upward continuously from the fastening walls 3E and 3R, and a support wall 5 that connects the leg walls 4 together. It consists of a horizontally long panel body provided, and is formed by roll forming or bender forming of a steel plate. Side end walls are bent downward at both ends of the support wall 5.

ベース体1の軒側締結壁3Eおよび脚壁4には、後述するはぜ締め構造13を跨ぐ溝6が一定間隔置きに切り欠き形成され、棟側締結壁3Rには締結金具25に固定するためのボルト穴8が形成してある。溝6およびボルト穴8の隣接ピッチは、はぜ締め構造13の横方向の隣接ピッチに一致させてある。軒側の脚壁4の上下寸法は、はぜ締め構造13を斜めに跨ぐ必要上、棟側の脚壁4より僅かに長く設定してある。溝6の形成個所では、軒側締結壁3Eおよび脚壁4が切り欠かれた分だけベース体1の曲げ強度が低下するが、ベース体1の軒側に限って溝6を形成するので、例えば、棟側締結壁3Rおよび脚壁4にも溝6が形成してある場合に比べて、ベース体1の取り扱い時に支持壁5が折れ曲がるのを確実に防止できる。   The eaves side fastening wall 3E and the leg wall 4 of the base body 1 are formed with notches formed at regular intervals in a groove 6 straddling the helical fastening structure 13 to be described later, and fixed to the fastening bracket 25 on the ridge side fastening wall 3R. Bolt holes 8 are formed. The adjacent pitches of the grooves 6 and the bolt holes 8 are made to coincide with the adjacent pitches in the lateral direction of the fastening structure 13. The vertical dimension of the eaves-side leg wall 4 is set slightly longer than that of the ridge-side leg wall 4 in order to obliquely straddle the fastening structure 13. At the location where the groove 6 is formed, the bending strength of the base body 1 is reduced by the amount of the cutout of the eaves side fastening wall 3E and the leg wall 4, but the groove 6 is formed only on the eave side of the base body 1, For example, it is possible to reliably prevent the support wall 5 from being bent when the base body 1 is handled, as compared with the case where the groove 6 is also formed in the ridge side fastening wall 3R and the leg wall 4.

図1に示すように、太陽電池モジュールMは、ベース体1の軒側締結壁3Eおよび棟側締結壁3Rを上下に隣接する締結金具25で固定することにより、棟側へ向かって上り傾斜した状態で設置される。このように、傾斜配置されるベース体1の構造、および締結構造を簡素化し、さらにベース体1の構造強度を充分なものとするために、図6に示すように軒側締結壁3Eと棟側締結壁3Rを水平基準にして、両締結壁3E・3Rを水平で段違い平行状に折り曲げ、さらに、ベース体1の棟側の脚壁4と支持壁5との隣接縁C1、および軒側締結壁3Eと脚壁4との隣接縁C2のそれぞれを鋭角(75度)に折り曲げている。   As shown in FIG. 1, the solar cell module M is inclined upward toward the ridge side by fixing the eave side fastening wall 3 </ b> E and the ridge side fastening wall 3 </ b> R of the base body 1 with upper and lower adjacent fastening brackets 25. Installed in a state. In this way, in order to simplify the structure of the base body 1 and the fastening structure that are inclined and to make the structure of the base body 1 sufficiently strong, as shown in FIG. With the side fastening wall 3R as a horizontal reference, both fastening walls 3E and 3R are folded horizontally and in parallel, and further, the adjacent edge C1 of the ridge side leg wall 4 and the support wall 5 of the base body 1, and the eave side Each of the adjacent edges C2 of the fastening wall 3E and the leg wall 4 is bent at an acute angle (75 degrees).

換言すると、支持壁5を水平基準とするとき、棟側の脚壁4と支持壁5とで挟む角度が75度となり、棟側締結壁3Rと棟側の脚壁4とが直角となるように、棟側締結壁3Rと棟側の脚壁4を折り曲げる。また、軒側締結壁3Eと軒側の脚壁4とで挟む角度が75度となり、軒側の脚壁4と支持壁5とが直角となるように、軒側締結壁3Eと軒側の脚壁4を折り曲げる。このように構成したベース体1によれば、図6に示すように軒側締結壁3Eを水平姿勢で固定することにより、支持壁5が棟側へ向かって上り傾斜し、傾斜上端において棟側締結壁3Rが水平となる。   In other words, when the support wall 5 is used as a horizontal reference, the angle between the ridge-side leg wall 4 and the support wall 5 is 75 degrees, and the ridge-side fastening wall 3R and the ridge-side leg wall 4 are at right angles. The ridge side fastening wall 3R and the ridge side leg wall 4 are bent. In addition, the angle between the eaves side fastening wall 3E and the eaves side leg wall 4 is 75 degrees, and the eaves side fastening wall 3E and the eaves side are set so that the leg wall 4 and the support wall 5 are at right angles. The leg wall 4 is bent. According to the base body 1 configured in this manner, as shown in FIG. 6, by fixing the eaves side fastening wall 3 </ b> E in a horizontal posture, the support wall 5 is inclined upward toward the ridge side, and at the upper end of the ridge side The fastening wall 3R becomes horizontal.

図1に示すように、電池本体2は、プラスチックフィルム基板20の表面に太陽電池層21を形成したフィルム型のアモルファス太陽電池からなる。フィルム型のアモルファス太陽電池は、ガラス基板の表面に太陽電池層を形成した結晶系太陽電池に比べて、単位面積あたりの重量を軽量化できるうえ、湾曲変形できるので曲面に沿って配置できる特長を有する。因みに、この実施例の電池本体2は、1平方m当り1kgの重量しかなく、従来の結晶系太陽電池に比べて10分の1にまで軽量化できる。   As shown in FIG. 1, the battery body 2 is a film-type amorphous solar cell in which a solar cell layer 21 is formed on the surface of a plastic film substrate 20. Film-type amorphous solar cells can reduce the weight per unit area compared to crystalline solar cells with a solar cell layer formed on the surface of a glass substrate, and can be curved and deformed. Have. Incidentally, the battery body 2 of this embodiment has a weight of only 1 kg per square meter, and can be reduced to 1/10 of the weight of the conventional crystalline solar battery.

プラスチックフィルム基板20は、耐候性、なかでも紫外線によって劣化しにくいプラスチック材、例えばフッ素樹脂などを素材にして形成してあり、その片面に太陽電池層21がプラズマCVD法で形成される。電池本体2は、プラスチックフィルム基板20を先の支持壁5に接着することにより、ベース体1と一体化する。図1における符号22は接着剤層を示す。   The plastic film substrate 20 is formed of a weather resistant material, in particular, a plastic material that is not easily deteriorated by ultraviolet rays, such as a fluororesin, and a solar cell layer 21 is formed on one surface thereof by a plasma CVD method. The battery body 2 is integrated with the base body 1 by adhering the plastic film substrate 20 to the previous support wall 5. Reference numeral 22 in FIG. 1 indicates an adhesive layer.

図2および図3に示すように、太陽電池モジュールMが設置される屋根の折版屋根材10は、逆台形状の谷部分12の両端に山部分11が形成され、山部分11の端部にはぜ継手13a・13bが折り曲げ形成してある。隣接する折版屋根材10の山部分11を、屋根下地に固定したタイトフレーム15の上面に載置し、タイトフレーム15に固定した吊子16にはぜ継手13a・13bを巻き締めることにより、隣接する折版屋根材10どうしを連結固定できる。   As shown in FIGS. 2 and 3, the folded roofing material 10 of the roof on which the solar cell module M is installed has mountain portions 11 formed at both ends of the inverted trapezoidal valley portion 12, and ends of the mountain portions 11. The joints 13a and 13b are bent and formed. By placing the mountain portion 11 of the adjacent folding roof material 10 on the upper surface of the tight frame 15 fixed to the roof base, and tightening the joints 13a and 13b around the suspension 16 fixed to the tight frame 15, Adjacent folded plate roofing materials 10 can be connected and fixed.

太陽電池モジュールMを棟側へ向かって上り傾斜する状態で設置しその発電効率を向上するために、締結金具25の一群をはぜ締め構造13部分に縦横に固定する。この実施例では、横方向に隣接する2個のはぜ締め構造13ごとに3個の締結金具25を固定し、さらに軒棟方向へ一定間隔を隔てた位置に3個の締結金具25を固定して、合計6個の締結金具25で1個の太陽電池モジュールMを固定している。なお、締結金具25の軒棟方向の締結位置は、タイトフレーム15の配置位置に一致させるのが好ましいが、両者の隣接ピッチは必ずしも一致しないので、締結金具25の締結位置とタイトフレーム15の配置位置とはずれていてもよい。同様にして、太陽電池モジュールMを横方向および軒棟方向へ隣接設置することにより、一群の太陽電池モジュールMを屋根面に整然と設置することができる。   In order to improve the power generation efficiency by installing the solar cell module M in an upwardly inclined manner toward the ridge side, a group of fastening members 25 are fixed vertically and horizontally to the fastening structure 13 portion. In this embodiment, three fastening brackets 25 are fixed to each of the two fastening structures 13 that are adjacent in the lateral direction, and further, the three fastening brackets 25 are fixed at positions spaced apart in the eaves-ridge direction. Thus, one solar cell module M is fixed by a total of six fastening brackets 25. Although the fastening position of the fastening bracket 25 in the eaves ridge direction is preferably matched with the arrangement position of the tight frame 15, the adjacent pitch of the two does not necessarily match, so the fastening position of the fastening bracket 25 and the arrangement of the tight frame 15 are not necessarily the same. It may be out of position. Similarly, a group of solar cell modules M can be neatly installed on the roof surface by installing the solar cell modules M adjacent to each other in the lateral direction and the eaves direction.

図3および図4において締結金具25は、クリップ状の金具本体26と、金具本体26をはぜ締め構造13に締結するボルト27およびナット28と、金具本体26の上面に固定されるボルト29とで構成する。金具本体26は、はぜ締め構造13の首部17を挟持する一対の取付脚30と、両取付脚30の上部で対向するボルト27用の締結壁31と、両締結壁31の上端どうしを繋ぐ締結座32と、取付脚30の下端に連続して横向きに折り曲げられる押え壁33を一体に備えており、厚みが2mm強の鋼材を折り曲げて形成する。   3 and 4, the fastening bracket 25 includes a clip-shaped bracket body 26, bolts 27 and nuts 28 that fasten the bracket body 26 to the fastening structure 13, and bolts 29 that are fixed to the upper surface of the bracket body 26. Consists of. The metal fitting body 26 connects the pair of mounting legs 30 that sandwich the neck portion 17 of the fastening structure 13, the fastening walls 31 for the bolts 27 that are opposed to each other at the upper part of the mounting legs 30, and the upper ends of the fastening walls 31. The fastening seat 32 and a presser wall 33 that is continuously bent laterally at the lower end of the mounting leg 30 are integrally provided, and is formed by bending a steel material having a thickness of more than 2 mm.

垂直の締結壁31に連続する一対の取付脚30は、部分円弧状に形成されて下すぼまり状に折り曲げられており、その下端に押え壁33が横向きに張り出してある。自由状態における締結金具25は、取付脚30と押え壁33との間の屈折部35の対向間隔が、はぜ締め構造13の左右幅より僅かに大きく設定してあるが、図3に示すように、対向する締結壁31をボルト27とナット28で締め付けて固定した状態では、屈折部35がはぜ締め構造13の首部17を左右に挟持する。同時に、押え壁33が軒側締結壁3Eを山部11と協同して上下に挟持固定する。   A pair of attachment legs 30 continuing to the vertical fastening wall 31 is formed in a partial arc shape and is bent in a downward concavity, and a presser wall 33 projects laterally at the lower end thereof. The fastening bracket 25 in the free state is set such that the facing distance of the refracting portion 35 between the mounting leg 30 and the holding wall 33 is set slightly larger than the left and right width of the hose fastening structure 13 as shown in FIG. In addition, in a state where the opposing fastening walls 31 are fastened and fixed with bolts 27 and nuts 28, the refracting portion 35 holds the neck portion 17 of the fastening structure 13 to the left and right. At the same time, the presser wall 33 clamps and fixes the eaves side fastening wall 3 </ b> E up and down in cooperation with the mountain portion 11.

ボルト27の引き寄せ締結力を利用して、押え壁33を軒側締結壁3Eに強固に押し付けるために、取付脚30の下半部分に傾斜壁36を設けている。締結金具25をはぜ締め構造13に上方から係止したのちボルト27を締め付けると、傾斜壁36がはぜ締め構造13の下あご部分に接当し、下あご部分から受ける締め付け反力によって、締結金具25の全体が徐々に下向きに押し下げられる。その結果、押え壁33が軒側締結壁3Eに密着して、溝6に臨む軒側締結壁3Eを山部分11およびタイトフレーム15と協同して強固に挟持固定できる。   In order to firmly press the holding wall 33 against the eaves side fastening wall 3E using the pulling fastening force of the bolt 27, an inclined wall 36 is provided in the lower half portion of the mounting leg 30. When the bolt 27 is tightened after the fastening member 25 is locked to the fastening structure 13 from above, the inclined wall 36 contacts the lower jaw portion of the fastening structure 13 and the fastening reaction force received from the lower jaw portion The entire fastening bracket 25 is gradually pushed downward. As a result, the presser wall 33 comes into close contact with the eaves side fastening wall 3E, and the eaves side fastening wall 3E facing the groove 6 can be firmly clamped and fixed in cooperation with the mountain portion 11 and the tight frame 15.

施工時には、一群の締結金具25をはぜ締め構造13に仮組みした状態で、溝6がはぜ締め構造13を跨ぐようにして、軒側締結壁3Eを軒側の締結金具25の押え壁33と山部11との間に差し込み、ボルト穴8を締結金具25のボルト29に掛止して、棟側締結壁3Rを締結座32に載置する。この状態でナット28を完全に締め込むことにより、各締結金具25と軒側締結壁3Eを固定する。この締結状態において、軒側の脚壁4と支持壁5との折曲縁は、図4に示すように締結金具25の取付脚30で受け止められている。   At the time of construction, the eaves side fastening wall 3E is pressed against the eave side fastening bracket 25 with the groove 6 straddling the fastening structure 13 in a state where the group of fastening brackets 25 is temporarily assembled to the fastening structure 13. The bolt hole 8 is hooked on the bolt 29 of the fastening bracket 25, and the ridge side fastening wall 3 </ b> R is placed on the fastening seat 32. By completely tightening the nut 28 in this state, each fastening bracket 25 and the eaves side fastening wall 3E are fixed. In this fastened state, the bent edges of the eaves-side leg wall 4 and the support wall 5 are received by the mounting legs 30 of the fastening hardware 25 as shown in FIG.

さらに、ボルト29に座金を介してナット38をねじ込むことにより、棟側締結壁3Rを締結座32に締結固定して、支持壁5を棟側へ向かって上り傾斜させる。同様にして、一群の太陽電池モジュールMを設置することにより、図2に示すように合計面積が大きく、発電電力量が大きな太陽光発電システムを構築することができる。なお、この実施例では、ベース体1の支持壁5が屋根面に対して15度傾くように締結金具25を形成した。太陽電池モジュールMを設置した状態における締結金具25は、屋根面と直交する状態で起立しており、起立中心軸線は屋根の勾配分だけ傾斜している。図示していないが、個々の太陽電池モジュールMで発電された電力は、個々のモジュールから導出された出力ケーブルを介して出力調整器へ出力され、そこで電圧を調整したのち交流電流に変換されて商用電源などに供給される。   Furthermore, the ridge side fastening wall 3R is fastened and fixed to the fastening seat 32 by screwing the nut 38 into the bolt 29 via a washer, and the support wall 5 is inclined upward toward the ridge side. Similarly, by installing a group of solar cell modules M, a solar power generation system having a large total area and a large amount of generated power can be constructed as shown in FIG. In this embodiment, the fastening bracket 25 is formed so that the support wall 5 of the base body 1 is inclined by 15 degrees with respect to the roof surface. The fastening bracket 25 in a state where the solar cell module M is installed is erected in a state orthogonal to the roof surface, and the erection center axis is inclined by the slope of the roof. Although not shown, the electric power generated by each solar cell module M is output to an output regulator via an output cable derived from each module, where the voltage is adjusted and then converted into an alternating current. Supplied to commercial power.

折版屋根材10の山部分11の隣接ピッチやはぜ締め構造13の違いにもよるが、はぜ締め構造13の隣接ピッチが比較的小さい場合には、先に説明したようにはぜ締め構造13の隣接ピッチの2ピッチ(あるいは3ピッチ)おきに、締結金具25をはぜ締め構造13に締結すればよく、また、隣接するはぜ締め構造13の隣接ピッチが大きい場合には、全てのはぜ締め構造13に締結金具25を締結して、ベース体1を支持するとよい。   Depending on the adjacent pitch of the peak portion 11 of the folded roofing material 10 and the fastening structure 13, if the adjacent pitch of the fastening structure 13 is relatively small, the fastening is performed as described above. The fastening bracket 25 may be fastened to the screw fastening structure 13 every two pitches (or three pitches) of the adjacent pitch of the structure 13, and when the adjacent pitch of the adjacent screw fastening structure 13 is large, all It is preferable that the base body 1 is supported by fastening the fastening bracket 25 to the top fastening structure 13.

上記の実施例では、隣接する折版屋根材10どうしが丸はぜ構造のはぜ締め構造13で連結してある場合について説明したが、折版屋根材10どうしを角はぜ構造のはぜ締め構造13で連結する場合には、図7に示す金具本体26を使用する。角はぜ構造のはぜ締め構造13では、はぜ締め部分が吊子16の一側方においてかしめ変形される。そのため、金具本体26の一方の取付脚30は、締結壁31に連続して垂直に形成し、他方の取付脚30に限って傾斜壁36を形成する。他は先の実施例と同じであるので、同じ部材に同じ符号を付してその説明を省略する。以下の実施例についても同様に扱う。   In the above embodiment, the case where adjacent folding roof materials 10 are connected by the round-tightening structure 13 has been described. However, the folding roof materials 10 have a corner-winding structure. When connecting with the fastening structure 13, the metal fitting body 26 shown in FIG. 7 is used. In the corner tightening structure 13, the bolting portion is caulked and deformed on one side of the hanging member 16. Therefore, one mounting leg 30 of the metal fitting body 26 is formed perpendicular to the fastening wall 31 and the inclined wall 36 is formed only on the other mounting leg 30. Since others are the same as the previous embodiment, the same reference numerals are assigned to the same members, and descriptions thereof are omitted. The following examples are similarly treated.

金具本体26をボルト27ではぜ締め構造13に締結した状態においては、垂直の取付脚30と傾斜壁36とではぜ締め構造13が挟持固定される。このとき、屈曲部35は首部17と接当しない。ボルト27を完全に締結した状態では、先の実施例と同様に、傾斜壁36がはぜ締め構造13の下あご部分から締め付け反力を受けるので、押え壁33を軒側締結壁3Eに密着させて、溝6に臨む軒側締結壁3Eを山部分11およびタイトフレーム15と協同して強固に挟持固定できる。   In a state where the metal fitting body 26 is fastened to the fastening structure 13 with the bolts 27, the fastening structure 13 is sandwiched and fixed between the vertical mounting legs 30 and the inclined walls 36. At this time, the bent portion 35 does not contact the neck portion 17. In the state where the bolts 27 are completely fastened, the inclined wall 36 receives a fastening reaction force from the lower jaw portion of the fastening structure 13 in the same manner as in the previous embodiment, so that the presser wall 33 is in close contact with the eaves side fastening wall 3E. Thus, the eaves side fastening wall 3E facing the groove 6 can be firmly held and fixed in cooperation with the mountain portion 11 and the tight frame 15.

図8は締結金具25の別の実施例を示す。そこでは、金具本体26の上下寸法を小さくする代りに、締結座32に固定されるボルト29の上下寸法を大きくし、しかもねじ軸の全体にねじ山を形成して、ボルト29にねじ込んだ2個のナット38・39で棟側締結壁3Rを上下に挟み固定できるようにした。この締結金具25によれば、ボルト29のねじ山が形成してある範囲内で、ナット38・39のねじ込み高さを変化させることによって、太陽電池モジュールMの傾斜角度を変更することができる。なお、下側のナット39は、先の実施例における締結座32と同様に、棟側締結壁3Rを支持する機能を発揮する。   FIG. 8 shows another embodiment of the fastener 25. In this case, instead of reducing the vertical dimension of the metal fitting body 26, the vertical dimension of the bolt 29 fixed to the fastening seat 32 is increased, and a screw thread is formed on the entire screw shaft and screwed into the bolt 29. The ridge side fastening wall 3R can be sandwiched and fixed by the individual nuts 38 and 39. According to the fastener 25, the inclination angle of the solar cell module M can be changed by changing the screwing height of the nuts 38 and 39 within a range where the thread of the bolt 29 is formed. The lower nut 39 exhibits the function of supporting the ridge-side fastening wall 3R, like the fastening seat 32 in the previous embodiment.

図9は締結金具25のさらに別の実施例を示す。そこでは、取付脚30の下部に段部41を形成し、この段部41で軒側の脚壁4と支持壁5との折曲縁を受け止めるようにした。このように、軒側締結壁3Eを締結金具25で固定し、さらに脚壁4と支持壁5との折曲縁を段部41で受け止めると、太陽電池モジュールMが下面側から吹き上げられる場合の取り付け強度をさらに向上して、暴風時に太陽電池モジュールMが吹き飛ばされるのをよく防止できる。図9(a)に示すように、段部41は取付脚30の下部に鋸刃状の凹凸を形成して形成でき、あるいは図9(b)に示すように、取付脚30の下部を切り欠いて段部41を形成することができる。   FIG. 9 shows still another embodiment of the fastener 25. In this case, a step portion 41 is formed in the lower portion of the mounting leg 30, and the step portion 41 receives a bent edge between the eave-side leg wall 4 and the support wall 5. Thus, when the eaves side fastening wall 3E is fixed with the fastening bracket 25, and the bent edge between the leg wall 4 and the support wall 5 is received by the step portion 41, the solar cell module M is blown from the lower surface side. The mounting strength can be further improved and the solar cell module M can be well prevented from being blown off during a storm. As shown in FIG. 9 (a), the step portion 41 can be formed by forming sawtooth-shaped irregularities in the lower portion of the mounting leg 30, or, as shown in FIG. 9 (b), the lower portion of the mounting leg 30 is cut. The step 41 can be formed by lacking.

図10ないし図12は、隣接する折版屋根材10の山部分11どうしがボルト(剣先ボルト)43で連結固定してある場合の太陽電池モジュールMの設置構造を示す。この場合には、タイトフレーム15の上面で上下に重ねた山部分11を、ボルト43、ナット44、および座金45などで締結して、隣接する折版屋根材10どうしを連結するので、ボルト43、ナット44、および座金45をそのまま利用して、軒側締結壁3Eを折版屋根材10に締結固定する。そのために、軒側締結壁3Eにボルト43を挿通するためのボルト穴46を一定間隔置きに形成する。   FIGS. 10 to 12 show the installation structure of the solar cell module M in the case where the mountain portions 11 of adjacent folding roof materials 10 are connected and fixed by bolts (sword tip bolts) 43. In this case, the mountain portion 11 that is vertically stacked on the upper surface of the tight frame 15 is fastened with the bolt 43, the nut 44, the washer 45, and the like, and the adjacent folded roofing materials 10 are connected to each other. The eaves side fastening wall 3E is fastened and fixed to the folded plate roofing material 10 using the nut 44 and the washer 45 as they are. Therefore, bolt holes 46 for inserting the bolts 43 through the eaves side fastening wall 3E are formed at regular intervals.

図11に示すように、締結金具25の金具本体26は、棟側締結壁3Rを支持する締結座32と、ボルト43に締結される下締結座51と、これら両者32の一側縁を繋ぐ縦壁52とを一体に備えたプレス金具からなり、締結座32にボルト29が固定してある。下締結座51にはボルト43に外嵌するボルト穴53が形成してある。   As shown in FIG. 11, the metal fitting body 26 of the fastening metal fitting 25 connects the fastening seat 32 that supports the ridge-side fastening wall 3 </ b> R, the lower fastening seat 51 fastened to the bolt 43, and one side edge of both 32. The bolt 29 is fixed to the fastening seat 32 and is made of a press fitting integrally provided with the vertical wall 52. The lower fastening seat 51 is formed with a bolt hole 53 that fits around the bolt 43.

既存の屋根においては、ナット44および座金45をボルト43から取り外したのち、ベース体1のボルト穴46がボルト43に外嵌する状態で、軒側締結壁3Eを山部分11に載置し、さらに下締結座51のボルト穴53をボルト43に外嵌装着する。この状態でボルト43に座金45を組み、ナット44をボルト43にねじ込み、さらに棟側締結壁3Rを締結金具25の締結壁32に締結することにより、太陽電池モジュールMを、その支持壁5が棟側へ向かって上り傾斜する状態で折版屋根10に設置できる。   In the existing roof, after removing the nut 44 and the washer 45 from the bolt 43, the eaves side fastening wall 3E is placed on the mountain portion 11 in a state where the bolt hole 46 of the base body 1 is fitted to the bolt 43, Further, the bolt hole 53 of the lower fastening seat 51 is fitted on the bolt 43. In this state, the washer 45 is assembled to the bolt 43, the nut 44 is screwed into the bolt 43, and the ridge side fastening wall 3R is fastened to the fastening wall 32 of the fastening bracket 25, so that the solar cell module M is supported by the support wall 5 thereof. It can be installed on the folded roof 10 in a state where it is inclined upward toward the ridge side.

図10に示すように、ベース体1に設けたボルト穴46の軒棟方向の隣接ピッチと、タイトフレーム15の軒棟方向の隣接ピッチは必ずしも一致しないので、軒棟方向に隣接するタイトフレーム15の間では先のボルト43を利用できない。そのため、太陽電池モジュールMを屋根の軒棟方向に隣接配置する場合には、軒側締結壁3Eおよび締結金具25をワンサイドボルト(ボルト)47で山部分11に締結固定する。   As shown in FIG. 10, the adjacent pitch in the eave building direction of the bolt holes 46 provided in the base body 1 and the adjacent pitch in the eave building direction of the tight frame 15 do not necessarily coincide with each other. The previous bolt 43 cannot be used in between. Therefore, when the solar cell module M is disposed adjacent to the eave ridge direction of the roof, the eaves side fastening wall 3E and the fastening fitting 25 are fastened and fixed to the mountain portion 11 by the one side bolt (bolt) 47.

詳しくは、山部分11にワンサイドボルト47用の締結穴48をドリルで形成したうえで、図10に示すように軒側締結壁3Eと締結金具25の下締結座51とを重ねて位置あわせする。この状態でワンサイドボルト47をボルト穴53、46、および締結穴48に上方から差し込み、全体を押さえ込んだ状態でナット49をねじ込み操作することにより、図10に示すようにねじ軸に外嵌するスリーブ50の下半側を拡開変形させて、軒側締結壁3Eを山部分11に締結固定する。   Specifically, after a fastening hole 48 for the one-side bolt 47 is formed in the mountain portion 11 by a drill, the eave side fastening wall 3E and the lower fastening seat 51 of the fastening bracket 25 are overlapped and aligned as shown in FIG. To do. In this state, the one-side bolt 47 is inserted into the bolt holes 53, 46 and the fastening hole 48 from above, and the nut 49 is screwed in with the whole pressed down, so that the screw shaft is externally fitted to the screw shaft as shown in FIG. The lower half side of the sleeve 50 is expanded and deformed, and the eaves side fastening wall 3E is fastened and fixed to the mountain portion 11.

以後、ベース体1の棟側締結壁3Rを締結金具25の締結座32に締結固定することにより、太陽電池モジュールMを棟側へ向かって上り傾斜する状態で軒棟方向に隣接でき、その側方に同様のモジュール列を設置することにより、大面積の太陽光発電システムを構築することができる。   Thereafter, by fixing the ridge side fastening wall 3R of the base body 1 to the fastening seat 32 of the fastening bracket 25, the solar cell module M can be adjacent in the eaves ridge direction while being inclined upward toward the ridge side. By installing a similar module row on the side, a large-area photovoltaic power generation system can be constructed.

折版屋根材10によっては、両端の山部分11の間に複数の谷部分12と山部分11を形成することがある。こうした場合には、ワンサイドボルト47を使用する締結構造によって、中間に位置する山部分11にベース体1の軒側締結壁3Eをワンサイドボルト47で締結することができる。   Depending on the folded roof material 10, a plurality of valley portions 12 and mountain portions 11 may be formed between the mountain portions 11 at both ends. In such a case, the eaves side fastening wall 3 </ b> E of the base body 1 can be fastened with the one side bolt 47 to the mountain portion 11 located in the middle by the fastening structure using the one side bolt 47.

締結金具25のボルト29は別体化することができ、その場合の棟側締結壁3Rは、既存のボルトを締結座32にねじ込むことによって締結することができる。最下段の太陽電池モジュールMの軒側締結壁3Eは、上下寸法が小さな専用の締結金具で固定することができる。棟側締結壁3Rに連続する脚壁4と支持壁5との隣接縁C1、および軒側締結壁3Eと脚壁4との隣接縁C2は、ベース体1の構造強度を向上できる点で、それぞれ鋭角に折り曲げることが好ましいが、必要があれば直角ないしは鈍角に形成することができる。但し、いずれの場合にも棟側締結壁3Rと軒側締結壁3Eとは段違い平行状に形成する。   The bolt 29 of the fastening bracket 25 can be separated, and the ridge side fastening wall 3 </ b> R in that case can be fastened by screwing an existing bolt into the fastening seat 32. The eaves side fastening wall 3E of the lowermost solar cell module M can be fixed with a dedicated fastening bracket having a small vertical dimension. The adjacent edge C1 between the leg wall 4 and the support wall 5 continuous to the ridge-side fastening wall 3R and the adjacent edge C2 between the eaves-side fastening wall 3E and the leg wall 4 can improve the structural strength of the base body 1, Each of them is preferably bent at an acute angle, but if necessary, it can be formed at a right angle or an obtuse angle. However, in any case, the ridge-side fastening wall 3R and the eaves-side fastening wall 3E are formed in a stepped parallel shape.

上記以外に、ベース体1はアルミニウム板材やステンレス板材で形成することができる。溝6ははぜ締め構造13を跨ぐことが可能であればよく、その形状や溝高さは実施例で説明した構造には限定しない。ボルト穴46は、軒側締結壁3Eの端縁で開口する切欠として形成することができる。金具本体26は、それぞれ取付脚30と締結壁31と締結座32と押え壁33とを一体に備えた一対の金具で構成することができる。   In addition to the above, the base body 1 can be formed of an aluminum plate material or a stainless steel plate material. The groove 6 only needs to be able to straddle the fastening structure 13, and its shape and groove height are not limited to the structures described in the embodiments. The bolt hole 46 can be formed as a notch opened at the edge of the eaves side fastening wall 3E. The metal fitting body 26 can be constituted by a pair of metal fittings each integrally provided with a mounting leg 30, a fastening wall 31, a fastening seat 32, and a pressing wall 33.

太陽電池モジュールの設置構造を示す縦断側面図である。It is a vertical side view which shows the installation structure of a solar cell module. 太陽電池モジュールの設置例を示す斜視図である。It is a perspective view which shows the example of installation of a solar cell module. 図4におけるA−A線断面図である。It is the sectional view on the AA line in FIG. 締結金具の周辺構造を示す縦断側面図である。It is a vertical side view which shows the periphery structure of a fastening metal fitting. 太陽電池モジュールの斜視図である。It is a perspective view of a solar cell module. 太陽電池モジュールの縦断側面図である。It is a vertical side view of a solar cell module. 締結金具の別の実施例を示す縦断正面図である。It is a vertical front view which shows another Example of a fastener. 締結金具のさらに別の実施例を示す縦断側面図である。It is a vertical side view which shows another Example of a fastener. 締結金具のさらに別の実施例を示す側面図である。It is a side view which shows another Example of a fastener. 太陽電池モジュールの別の設置構造を示す縦断側面図である。It is a vertical side view which shows another installation structure of a solar cell module. 太陽電池モジュールの別の設置構造を示す縦断正面図である。It is a vertical front view which shows another installation structure of a solar cell module. 太陽電池モジュールの締結構造を示す縦断側面図である。It is a vertical side view which shows the fastening structure of a solar cell module.

符号の説明Explanation of symbols

1 ベース体
2 電池本体
3E 軒側締結壁
3R 棟側締結壁
4 脚壁
5 支持壁
6 溝
25 締結金具
26 金具本体
27 ボルト
30 取付脚
31 締結壁
32 締結座
33 押え壁
M 太陽電池モジュール
1 Base body 2 Battery body 3E Eave side fastening wall 3R Building side fastening wall 4 Leg wall 5 Support wall 6 Groove 25 Fastening bracket 26 Bracket body 27 Bolt 30 Mounting leg 31 Fastening wall 32 Fastening seat 33 Pressing wall M Solar cell module

Claims (7)

交互に連続する山部分(11)と谷部分(12)とを備えた折版屋根材(10)の屋根面に設置される太陽電池モジュール(M)であって、
太陽電池モジュール(M)は、折版屋根材(10)の屋根面で支持されるベース体(1)と、ベース体(1)に貼付固定されるシート状の電池本体(2)とからなり、
電池本体(2)は、プラスチックフィルム基板(20)の表面に太陽電池層(21)を形成してなるフィルム型アモルファス太陽電池で構成されており、
ベース体(1)は、折版屋根材(10)の山部分(11)に固定した上下の締結金具(25)で固定される軒側締結壁(3E)および棟側締結壁(3R)と、両締結壁(3E・3R)に連続して上向きに立ち上がる一対の脚壁(4)と、両脚壁(4)どうしを繋ぐ支持壁(5)とを備えており、
軒側締結壁(3E)と棟側締結壁(3R)と段違い平行状になるように、棟側締結壁(3R)に連続する脚壁(4)と支持壁(5)との隣接縁(C1)、および軒側締結壁(3E)と脚壁(4)との隣接縁(C2)のそれぞれを鋭角に折り曲げて、支持壁(5)が棟側へ向かって上り傾斜させてある太陽電池モジュール。
It is a solar cell module (M) installed on the roof surface of the folding plate roof material (10) provided with alternately continuous mountain portions (11) and valley portions (12),
The solar cell module (M) includes a base body (1) supported by the roof surface of the folded roofing material (10) and a sheet-like battery body (2) attached and fixed to the base body (1). ,
The battery body (2) is composed of a film-type amorphous solar cell in which a solar cell layer (21) is formed on the surface of a plastic film substrate (20).
The base body (1) includes an eave side fastening wall (3E) and a ridge side fastening wall (3R) fixed by upper and lower fastening brackets (25) fixed to a mountain portion (11) of the folded roofing material (10). , A pair of leg walls (4) that rises upward continuously from both fastening walls (3E, 3R), and a support wall (5) that connects the two leg walls (4),
Adjacent edges of the leg wall (4) and the support wall (5) that are continuous to the ridge-side fastening wall (3R) so that the eave-side fastening wall (3E) and the ridge-side fastening wall (3R) are parallel to each other. (C1) and the sun in which each of the adjacent edges (C2) of the eaves side fastening wall (3E) and the leg wall (4) is bent at an acute angle, and the support wall (5) is inclined upward toward the ridge side. Battery module.
隣接する折版屋根材(10)どうしが、山部分(11)の上面上方に突出するはぜ締め構造(13)で連結してある屋根に適用される太陽電池モジュール(M)であって、
ベース体(1)の軒側締結壁(3E)および脚壁(4)に、はぜ締め構造(13)を跨ぐ溝(6)が切り欠き形成されており、
ベース体(1)の棟側締結壁(3R)に、締結金具(25)に締結固定するためのボルト穴(8)が形成してある請求項1記載の太陽電池モジュール。
A solar cell module (M) that is applied to a roof in which adjacent folded roofing materials (10) are connected to each other by a fastening structure (13) protruding above the upper surface of the mountain portion (11),
The eaves side fastening wall (3E) and the leg wall (4) of the base body (1) are notched and formed with a groove (6) straddling the fastening structure (13).
The solar cell module according to claim 1, wherein a bolt hole (8) for fastening and fixing to the fastening bracket (25) is formed in the ridge side fastening wall (3R) of the base body (1) .
隣接する折版屋根材(10)の山部分(11)どうしが、ボルト(43)で締結固定してある屋根に適用される太陽電池モジュール(M)であって、
ベース体(1)の軒側締結壁(3E)にボルト(43・47)を挿通するためのボルト穴(46)が形成されており、
ベース体(1)の棟側締結壁(3R)に、締結金具(25)に締結固定するためのボルト穴(8)が形成してある請求項1記載の太陽電池モジュール。
The solar cell module (M) applied to the roof where the mountain portions (11) of the adjacent folding roof materials (10) are fastened and fixed with bolts (43),
Bolt holes (46) for inserting bolts (43, 47) are formed in the eaves side fastening wall (3E) of the base body (1),
The ridge side fastening wall of the base body (1) (3R), a solar cell module according to claim 1 Symbol mounting bolt hole (8) is formed for fastening fixed to the fastening bracket (25).
交互に連続する山部分(11)と谷部分(12)とを備えた折版屋根材(10)どうしが、山部分(11)の上方に突出するはぜ締め構造(13)を介して連結され、山部分(11)の上面に太陽電池モジュール(M)が設置されており、
太陽電池モジュール(M)は、折版屋根材(10)で支持されるベース体(1)と、ベース体(1)に貼付固定されるシート状の電池本体(2)とからなり、
ベース体(1)は、山部分(11)に固定した締結金具(25)で固定される軒側締結壁(3E)および棟側締結壁(3R)と、両締結壁(3E・3R)に連続して上向きに立ち上がる一対の脚壁(4)と、両脚壁(4)どうしを繋ぐ支持壁(5)とを備えていて、軒側締結壁(3E)および脚壁(4)にはぜ締め構造(13)を跨ぐ溝(6)が切り欠き形成されており、
締結金具(25)は、金具本体(26)と、一対の取付脚(30)を引き寄せ固定するボルト(27)とを含み、
金具本体(26)は、はぜ締め構造(13)の首部分(17)を挟持する一対の取付脚(30)と、軒側締結壁(3E)を山部分(11)と協同して上下に挟持する一対の押え壁(33)と、棟側締結壁(3R)を支持する締結座(32)とを備えており、
ベース体(1)の棟側締結壁(3R)を締結座(32)に締結固定し、軒側締結壁(3E)を締結金具(25)の下側に締結固定して、太陽電池モジュール(M)が棟側へ向かって上り傾斜する状態で固定してあることを特徴とする太陽電池モジュールの折版屋根への取り付け構造。
The folding roof materials (10) having alternately continuous mountain portions (11) and valley portions (12) are connected to each other via a fastening structure (13) protruding above the mountain portions (11). The solar cell module (M) is installed on the upper surface of the mountain portion (11),
The solar cell module (M) includes a base body (1) supported by the folded roofing material (10) and a sheet-like battery body (2) attached and fixed to the base body (1).
The base body (1) is attached to the eaves side fastening wall (3E) and the ridge side fastening wall (3R) fixed by the fastening bracket (25) fixed to the mountain portion (11), and both fastening walls (3E, 3R). It has a pair of leg walls (4) that rises continuously and a support wall (5) that connects the leg walls (4), and the eave side fastening wall (3E) and the leg wall (4) The groove (6) straddling the fastening structure (13) is cut out and formed,
The fastening bracket (25) includes a bracket body (26) and a bolt (27) that pulls and fixes the pair of mounting legs (30).
The metal fitting body (26) has a pair of mounting legs (30) sandwiching the neck portion (17) of the fastening structure (13) and an eave side fastening wall (3E) in cooperation with the mountain portion (11). A pair of presser walls (33) sandwiched between and a fastening seat (32) for supporting the ridge side fastening wall (3R),
The ridge-side fastening wall (3R) of the base body (1) is fastened and fixed to the fastening seat (32), and the eaves-side fastening wall (3E) is fastened and fixed to the lower side of the fastening fitting (25). M) is fixed in a state of being inclined upward toward the ridge side, and the solar cell module mounting structure on the folding roof.
金具本体(26)の締結座(32)の上面に、棟側締結壁(3R)を締結固定するボルト(29)が固定されており、
取付脚(30)の下部に軒側の脚壁(4)と支持壁(5)との折曲縁を受け止める段部(41)が形成してある請求項4記載の太陽電池モジュールの折版屋根への取り付け構造。
A bolt (29) for fastening and fixing the ridge side fastening wall (3R) is fixed to the upper surface of the fastening seat (32) of the metal fitting body (26),
The folding plate of the solar cell module according to claim 4, wherein a step (41) for receiving a bent edge between the eave-side leg wall (4) and the support wall (5) is formed at a lower portion of the mounting leg (30). Mounting structure on the roof.
金具本体(26)の締結座(32)の上面に、棟側締結壁(3R)を締結固定するボルト(29)が固定されており、
前記ボルト(29)にねじ込んだ一対のナット(38・39)で、ベース体(1)の棟側締結壁(3R)が締結固定されていて、下側のナット(39)で棟側締結壁(3R)が受け止められている請求項記載の太陽電池モジュールの折版屋根への取り付け構造。
A bolt (29) for fastening and fixing the ridge side fastening wall (3R) is fixed to the upper surface of the fastening seat (32) of the metal fitting body (26),
The ridge side fastening wall (3R) of the base body (1) is fastened and fixed by a pair of nuts (38, 39) screwed into the bolt (29), and the ridge side fastening wall is secured by the lower nut (39). The structure for attaching the solar cell module to the folded roof according to claim 4, wherein (3R) is received .
交互に連続する山部分(11)と谷部分(12)とを備えた折版屋根材(10)の山部分(11)どうしがボルト(43)で連結固定され、太陽電池モジュール(M)が山部分(11)に固定した締結金具(25)で固定されており、
太陽電池モジュール(M)は、折版屋根材(10)で支持されるベース体(1)と、ベース体(1)に貼付固定されるシート状の電池本体(2)とからなり、
ベース体(1)は、山部分(11)に固定した締結金具(25)で固定される軒側締結壁(3E)および棟側締結壁(3R)と、両締結壁(3E・3R)に連続して上向きに立ち上がる一対の脚壁(4)と、両脚壁(4)どうしを繋ぐ支持壁(5)とを備えており、
締結金具(25)は、軒側締結壁(3E)を山部分(11)と協同して上下に挟持する下締結座(51)と、棟側締結壁(3R)を支持する締結座(32)とを備えており、
ベース体(1)の棟側締結壁(3R)を締結座(32)に締結固定し、軒側締結壁(3E)を、締結金具(25)の下締結座(51)に固定して、太陽電池モジュール(M)が棟側へ向かって上り傾斜する状態で固定してあることを特徴とする太陽電池モジュールの折版屋根への取り付け構造
The mountain portions (11) of the stencil roofing material (10) having alternately continuous mountain portions (11) and valley portions (12) are connected and fixed by bolts (43), and the solar cell module (M) is connected. It is fixed with the fastener (25) fixed to the mountain part (11),
The solar cell module (M) includes a base body (1) supported by the folded roofing material (10) and a sheet-like battery body (2) attached and fixed to the base body (1).
The base body (1) is attached to the eaves side fastening wall (3E) and the ridge side fastening wall (3R) fixed by the fastening bracket (25) fixed to the mountain portion (11), and both fastening walls (3E, 3R). A pair of leg walls (4) rising up continuously and a support wall (5) connecting the two leg walls (4),
The fastening bracket (25) includes a lower fastening seat (51) that clamps the eave side fastening wall (3E) in cooperation with the mountain portion (11) and a fastening seat (32) that supports the ridge side fastening wall (3R). ) And
The ridge side fastening wall (3R) of the base body (1) is fastened and fixed to the fastening seat (32), and the eaves side fastening wall (3E) is fastened to the lower fastening seat (51) of the fastening fitting (25), The solar cell module (M) is fixed in a state where the solar cell module (M) is inclined upward toward the ridge side .
JP2006143016A 2006-05-23 2006-05-23 Solar cell module and mounting structure of solar cell module on folding roof Expired - Fee Related JP4430037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006143016A JP4430037B2 (en) 2006-05-23 2006-05-23 Solar cell module and mounting structure of solar cell module on folding roof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143016A JP4430037B2 (en) 2006-05-23 2006-05-23 Solar cell module and mounting structure of solar cell module on folding roof

Publications (2)

Publication Number Publication Date
JP2007314955A JP2007314955A (en) 2007-12-06
JP4430037B2 true JP4430037B2 (en) 2010-03-10

Family

ID=38849069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143016A Expired - Fee Related JP4430037B2 (en) 2006-05-23 2006-05-23 Solar cell module and mounting structure of solar cell module on folding roof

Country Status (1)

Country Link
JP (1) JP4430037B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092629A (en) * 2010-10-29 2012-05-17 Lonseal Corp Supporting base for object and mounting structure of the same
JP5731203B2 (en) * 2011-01-12 2015-06-10 三晃金属工業株式会社 Solar power unit mounting device
JP5731221B2 (en) * 2011-02-10 2015-06-10 三晃金属工業株式会社 Solar power unit mounting device
JP6085822B2 (en) * 2013-04-22 2017-03-01 株式会社サカタ製作所 Panel mounting structure
JP5923535B2 (en) * 2014-02-25 2016-05-24 株式会社相川プレス工業 Solar panel mounting structure

Also Published As

Publication number Publication date
JP2007314955A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4726878B2 (en) Mounting structure for solar cell module and exterior panel
JP4430019B2 (en) Solar cell module and mounting structure of solar cell module on folding roof
US9551510B2 (en) Slider clip and photovoltaic structure mounting system
EP2167755B1 (en) Adjustable mounting assembly for standing seam panels
US9145685B2 (en) Panel mounting bracket for standing seam roof and related methods
US9478688B2 (en) Attachment member and solar cell array using same
JP2001140416A (en) Metal fitting of solar battery module on roof, the mounting structure, and roof mounting the solar battery module
US20140311553A1 (en) Corrugated panel mounting bracket
JP2000303638A (en) Mounting structure of solar panel in panel for construction
WO2012116223A2 (en) Trapezoidal rib mounting bracket
JP4430037B2 (en) Solar cell module and mounting structure of solar cell module on folding roof
JP3173601U (en) Support bracket for solar cell panel support structure and solar cell panel support structure using the support bracket
US8763321B1 (en) Universal non-penetrating roof solar panel mounting system
JP5313408B1 (en) Solar cell module mounting device
JP2015074903A (en) Building plate material and solar cell module fixing structure using building plate material
JP2009293374A (en) Structure for mounting solar cell module onto folded plate roof
JP5686771B2 (en) Solar cell module fixing structure and solar cell module fixing method
JP7493789B2 (en) Solar panel installation structure and its fixings
CN212427849U (en) Fixing part of integrated water tank bracket of photovoltaic panel
JP5522754B2 (en) Mounting structure for exterior structure and installation device
AU2015255286B2 (en) Trapezoidal rib mounting bracket
CN114614741A (en) Photovoltaic module structure and installation method applying same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees