JP4429644B2 - Power transmission device - Google Patents

Power transmission device Download PDF

Info

Publication number
JP4429644B2
JP4429644B2 JP2003188104A JP2003188104A JP4429644B2 JP 4429644 B2 JP4429644 B2 JP 4429644B2 JP 2003188104 A JP2003188104 A JP 2003188104A JP 2003188104 A JP2003188104 A JP 2003188104A JP 4429644 B2 JP4429644 B2 JP 4429644B2
Authority
JP
Japan
Prior art keywords
rotating member
input
system rotating
rotation
way clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003188104A
Other languages
Japanese (ja)
Other versions
JP2004084946A (en
Inventor
弘二 佐橋
博海 野尻
正明 戸田
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2003188104A priority Critical patent/JP4429644B2/en
Publication of JP2004084946A publication Critical patent/JP2004084946A/en
Application granted granted Critical
Publication of JP4429644B2 publication Critical patent/JP4429644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Friction Gearing (AREA)
  • Retarders (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は動力伝達装置に関し、詳しくは、一方の回転部材からの回転入力を、例えば遊星歯車機構により所定の減速比でもって他方の回転部材へ出力する動力伝達装置に関する。
【0002】
【従来の技術】
従来の動力伝達装置の一例として、遊星歯車機構を用いた減速装置がある(例えば特許文献1参照)。このような減速装置は、例えば電気自動車において、車両の推進力を出力する電動発電機の下流側に設置されて必要な駆動力を得るようにしている。
【0003】
この種の減速装置は、ハウジングに固定された内歯車と、その内側に内歯車と軸心を一致させて配置された太陽歯車と、その太陽歯車と内歯車の間に形成された空間に配置された複数個の遊星歯車と、それら遊星歯車を円周方向に等間隔かつ回転自在に保持するキャリアとを備えている。太陽歯車には、ハウジングに対して回転自在に支持された入力回転軸が同軸的に設けられ、キャリアには、ハウジングに対して回転自在に支持された出力回転軸が設けられている。太陽歯車と内歯車との間に位置する複数個の遊星歯車は、太陽歯車と内歯車にそれぞれ噛合した状態で配設されている。
【0004】
この減速装置では、入力回転軸からの回転入力に基づいて、その入力回転軸に設けられた太陽歯車が回転し、キャリアに対して回転自在に支持された遊星歯車が自転しつつ太陽歯車の回りを公転することにより、入力回転軸の回転が所定の減速比でもって出力回転軸に伝達される。
【0005】
【特許文献1】
特開平10−153242号公報
【0006】
【発明が解決しようとする課題】
ところで、前述したように遊星歯車機構を用いた従来の減速装置では、入力回転軸の回転が1/X倍に減速されて出力回転軸に伝達されるが、仮に、何等かの原因により出力回転軸からの回転逆入力があった場合には、その出力回転軸の回転がX倍に増速されて入力回転軸に伝達されることになる。その結果、入力回転軸の駆動源における許容回転数が低い場合に、出力回転軸から入力回転軸への逆入力により、その駆動源の許容回転数を超えることがあり、駆動源に悪影響を与える等の問題が生じる可能性があった。
【0007】
この問題を解消するため、本出願人は、出力回転軸から入力回転軸への逆入力があっても、入力回転軸の駆動源における許容回転数を超えないようにした減速装置とし得る動力伝達装置を先に提案している(特願2002−23803)。
【0008】
この動力伝達装置は、図11および図12に示すように駆動源(図示せず)により回転駆動される入力系回転部材1と、その入力系回転部材1から伝達された回転トルクを外部へ取り出すための出力系回転部材2と、入力系回転部材1からの回転を減速する遊星機構3と出力系回転部材2との間に設けられ、その遊星機構3から出力系回転部材2への回転入力をトルク伝達部材の係合により伝達し、出力系回転部材2から遊星機構3への回転逆入力をトルク伝達部材の離脱により遮断する第一のワンウェイクラッチ4と、入力系回転部材1と出力系回転部材2との間に設けられ、入力系回転部材1から出力系回転部材2への回転入力をトルク伝達部材の離脱により遮断し、出力系回転部材2から入力系回転部材1への回転逆入力をトルク伝達部材の係合により伝達する第二のワンウェイクラッチ5とを主要部として構成されている。
【0009】
なお、遊星機構3としては、例えば、静止系部材7に設けられた内歯車8と、その内側に入力系回転部材1と同軸上に配設された太陽歯車6と、この太陽歯車6と内歯車8との間にそれら両者と噛合するように介装された複数の遊星歯車9と、これら遊星歯車9を円周方向等間隔に支持軸10により回転自在に保持するキャリア11とで構成された遊星歯車機構がある。
【0010】
この動力伝達装置では、第一のワンウェイクラッチ4のトルク伝達部材の係合方向と第二のワンウェイクラッチ5のトルク伝達部材の係合方向とを逆向きとしている。その結果、入力系回転部材1からの回転入力は、第一のワンウェイクラッチ4のトルク伝達部材の係合により伝達し得るため、遊星機構3により所定の減速比でもって減速した上で第一のワンウェイクラッチ4を介して出力系回転部材2に伝達される(図11の破線矢印参照)。
【0011】
このとき、第二のワンウェイクラッチ5は、そのトルク伝達部材の係合方向が第一のワンウェイクラッチ4と逆向きであるために空転可能な状態にあり、入力系回転部材1と出力系回転部材2との間は、第二のワンウェイクラッチ5を介して離脱した状態にあるため、入力系回転部材1からの回転が第二のワンウェイクラッチ5を介して出力系回転部材2へ伝達されることはない。
【0012】
一方、出力系回転部材2からの回転逆入力は、第二のワンウェイクラッチ5のトルク伝達部材の係合により伝達し得るため、その第二のワンウェイクラッチ5を介して入力系回転部材1に伝達される(図12の破線矢印参照)。
【0013】
このとき、第一のワンウェイクラッチ4は、そのトルク伝達部材の係合方向が第二のワンウェイクラッチ5と逆向きであるために空転可能な状態にあり、入力系回転部材1と出力系回転部材2との間は、第一のワンウェイクラッチ4を介して離脱した状態にあることから、出力系回転部材2からの回転逆入力は、遊星機構3を介さないので入力系回転部材1の回転は増速されることなく、第二のワンウェイクラッチ5を介して1:1で入力系回転部材1に伝達される。
【0014】
ところで、この動力伝達装置では、出力系回転部材2から入力系回転部材1への回転逆入力時、その出力系回転部材2から第一のワンウェイクラッチ4を介して遊星機構3に回転が入力されることはないが、入力系回転部材1に遊星機構3が連設されているため、入力系回転部材1の回転と共に遊星機構3も連動して回転することになる。従って、出力系回転部材2から入力系回転部材1への回転逆入力が高速となる場合、遊星機構3の連動回転が困難となって動力伝達装置としての実用可能範囲を逸脱する可能性がある。
【0015】
そこで、本発明は前述した点を改善するために提案されたもので、その目的とするところは、出力系回転部材からの回転逆入力が高速であっても、実用可能範囲を逸脱することがない実用性に富んだ動力伝達装置を提供することにある。
【0016】
【課題を解決するための手段】
前記目的を達成するための技術的手段として、本発明に係る動力伝達装置は、駆動源により回転駆動される入力系回転部材と、その入力系回転部材から伝達された回転トルクを外部へ取り出すための出力系回転部材と、前記入力系回転部材からの回転を減速する遊星機構と出力系回転部材との間に設けられ、遊星機構から出力系回転部材への回転入力をトルク伝達部材の係合により伝達し、出力系回転部材から遊星機構への回転逆入力を前記トルク伝達部材の前記係合状態からの離脱でもって遮断することにより空転可能な状態になる第一のワンウェイクラッチと、前記入力系回転部材と出力系回転部材との間に設けられ、入力系回転部材から出力系回転部材への回転入力をトルク伝達部材の前記係合状態からの離脱でもって遮断することにより空転可能な状態になり、出力系回転部材から入力系回転部材への回転逆入力を前記トルク伝達部材の係合により伝達する第二のワンウェイクラッチと、前記入力系回転部材と遊星機構との間に設けられ、入力系回転部材から遊星機構への回転入力をトルク伝達部材の係合により伝達し、出力系回転部材から入力系回転部材への回転逆入力時、その入力系回転部材から遊星機構への回転入力を前記トルク伝達部材の前記係合状態からの離脱でもって遮断することにより空転可能な状態になる第三のワンウェイクラッチとを具備し、前記遊星機構は、静止系部材に設けられた内歯車(固定輪)と、その内側に前記入力系回転部材と同軸上に配設された太陽歯車(太陽ローラ)と、この太陽歯車(太陽ローラ)と前記内歯車(固定輪)との間にそれら両者と噛合(圧接)するように介装された複数の遊星歯車(遊星ローラ)と、これら遊星歯車(遊星ローラ)を円周方向等間隔に回転自在に保持するキャリアとで構成され、前記キャリアを第一のワンウェイクラッチで前記出力系回転部材に連結していることを特徴とする。なお、この動力伝達装置は、電気自動車用電動発電機の下流側に設置する用途が好適である。
【0017】
本発明の動力伝達装置では、第一のワンウェイクラッチのトルク伝達部材の係合方向と第二のワンウェイクラッチのトルク伝達部材の係合方向とを逆向きとしている。その結果、入力系回転部材からの回転入力は、第一のワンウェイクラッチのトルク伝達部材の係合により伝達し得るため、遊星機構により所定の減速比でもって減速した上で第一のワンウェイクラッチを介して出力系回転部材に伝達される。このとき、第二のワンウェイクラッチは、そのトルク伝達部材の係合方向が第一のワンウェイクラッチと逆向きであるために空転可能な状態にあり、入力系回転部材と出力系回転部材との間は、第二のワンウェイクラッチを介して離脱した状態にある。
【0018】
一方、出力系回転部材からの回転逆入力は、第二のワンウェイクラッチのトルク伝達部材の係合により伝達し得るため、その第二のワンウェイクラッチを介して入力系回転部材に伝達される。このとき、第一のワンウェイクラッチは、そのトルク伝達部材の係合方向が第二のワンウェイクラッチと逆向きであるために空転可能な状態にあり、入力系回転部材と出力系回転部材との間は、第一のワンウェイクラッチを介して離脱した状態にあることから、出力系回転部材からの回転逆入力は、遊星機構を介さないので入力系回転部材の回転は増速されることなく、第二のワンウェイクラッチを介して1:1で入力系回転部材に伝達される。
【0019】
この出力系回転部材からの回転逆入力時、第三のワンウェイクラッチのトルク伝達部材の係合方向が空転可能な状態にあり、入力系回転部材と遊星機構との間が第三のワンウェイクラッチを介して離脱した状態にあることから、入力系回転部材から遊星機構への回転入力は遮断されるので、入力系回転部材からの回転が第三のワンウェイクラッチを介して遊星機構へ伝達されることはなく、遊星機構が連動回転することはない。
【0020】
出力系回転部材からの回転逆入力時、第三のワンウェイクラッチのトルク伝達部材の係合方向を空転可能な状態にするため、本発明における第三のワンウェイクラッチは、入力系回転部材と遊星機構間に配設されたトルク伝達部材を保持し、前記トルク伝達部材の係合・離脱を切り替える保持器を備え、前記入力系回転部材から前記遊星機構への回転入力により前記保持器でもってトルク伝達部材を係合させて前記入力系回転部材から前記遊星機構への回転入力を伝達し、出力系回転部材から入力系回転部材への回転逆入力時、入力系回転部材に対して保持器を先行して回転させ、その入力系回転部材に先行する保持器の回転でもってトルク伝達部材が前記係合状態から離脱して空転状態となる構造とする。
【0021】
また、本発明における第一のワンウェイクラッチと第三のワンウェイクラッチは、出力系回転部材から入力系回転部材への回転逆入力時、その回転遠心力によりトルク伝達部材が、前記遊星機構に形成されたカム面に非接触可能な構造とすることが望ましい。このようにすれば、出力系回転部材からの回転逆入力が高速であっても、トルク伝達部材と遊星機構のカム面との摺接による発熱で早期に焼き付け等が生じることを未然に防止できる。
【0024】
【発明の実施の形態】
図1乃至図10は本発明に係る動力伝達装置の実施形態を示す。なお、図11および図12と同一部分には同一参照符号を付す。
【0025】
図1および図2は遊星歯車機構を利用した減速装置の概略構成を示す。この減速装置は、図3に示すように例えば電気自動車において、車両の推進力を出力する電動発電機の下流側に設置されて必要な駆動力を得るものとして適用され、バッテリ等の電源供給貯蓄源からの電力供給により電動発電機を駆動し、その電動発電機の回転力を減速装置で減速して駆動部材を動作させる。
【0026】
この実施形態の減速装置は、図1および図2に示すように電動発電機により回転駆動される入力系回転部材1と、その入力系回転部材1から伝達された回転トルクを外部へ取り出すための出力系回転部材2と、入力系回転部材1からの回転を減速する遊星歯車機構3と出力系回転部材2との間に設けられ、遊星歯車機構3から出力系回転部材2への回転入力をトルク伝達部材(図示せず)の係合により伝達し、出力系回転部材2から遊星歯車機構3への回転逆入力をトルク伝達部材の離脱により遮断する第一のワンウェイクラッチ4と、入力系回転部材1と出力系回転部材2との間に設けられ、入力系回転部材1から出力系回転部材2への回転入力をトルク伝達部材(図示せず)の離脱により遮断し、出力系回転部材2から入力系回転部材1への回転逆入力をトルク伝達部材の係合により伝達する第二のワンウェイクラッチ5と、入力系回転部材1と遊星歯車機構3との間に設けられ、入力系回転部材1から遊星歯車機構3への回転入力をトルク伝達部材(図示せず)の係合により伝達し、出力系回転部材2から入力系回転部材1への回転逆入力時、その入力系回転部材1から遊星歯車機構3への回転入力をトルク伝達部材の離脱により遮断する第三のワンウェイクラッチ12とを主要部として構成されている。
【0027】
入力系回転部材1は、その中心軸部1aから拡径して軸方向に延在させた外輪部1bを有する。その入力系回転部材1の外輪部1bと、遊星歯車機構3の太陽歯車6の内径を軸方向に延在させた筒状の内輪部13とを第三のワンウェイクラッチ12で連結している。この第三のワンウェイクラッチ12は、入力系回転部材1と遊星歯車機構3間に配設されたトルク伝達部材を保持し、入力系回転部材1に対する相対回転を通じてトルク伝達部材の係合・離脱を切り替える保持器14を有する。この保持器14は、入力系回転部材1に回転伝達部材15を介して固定された基部を拡径して軸方向に延在させ、入力系回転部材1の外輪部1bと太陽歯車6の内輪部13との間に挿入配置された形状を有する。
【0028】
また、入力系回転部材1と同軸上に配置された出力系回転部材2は、その中心軸部2aから拡径して軸方向に延在させた第一の外輪部2bと、その第一の外輪部2bから拡径して軸方向に延在させた第二の外輪部2cを有する。第一の外輪部2bと入力系回転部材1の中心軸部1aとを第二のワンウェイクラッチ5で連結し、第二の外輪部2cと遊星歯車機構3のキャリア11とを第一のワンウェイクラッチ4で連結している。
【0029】
図1の減速装置において、入力系回転部材1と出力系回転部材2との間に設けられた遊星歯車機構3は、静止系部材であるハウジング7に固定された内歯車8と、その内側に入力系回転部材1と同軸上に配設された太陽歯車6と、この太陽歯車6と内歯車8との間にそれら両者と噛合するように介装された複数の遊星歯車9と、これら遊星歯車9を円周方向等間隔に支持軸10により回転自在に保持するキャリア11とで構成されている(図4参照)。
【0030】
なお、この実施形態では、遊星歯車機構3を利用した場合について説明するが、遊星機構の他例として、図5に示す遊星ローラ機構3’でも可能である。この遊星ローラ機構3’は、ハウジング7に設けられた固定輪8’と、その内側に入力系回転部材1と同軸上に配設された太陽ローラ6’と、この太陽ローラ6’と固定輪8’との間にそれら両者と圧接する状態で介装された複数の遊星ローラ9’と、これら遊星ローラ9’を円周方向等間隔に支持軸10により回転自在に保持するキャリア11とで構成されている。
【0031】
次に、図1および図2に示す実施形態の減速装置の動作例を同図を参照しながら以下に詳述する。
【0032】
まず、入力系回転部材1からの回転を、第三のワンウェイクラッチ12、遊星歯車機構3および第一のワンウェイクラッチ4を介して出力系回転部材2に伝達する。入力系回転部材1からの回転は、第三のワンウェイクラッチ12のトルク伝達部材の係合により伝達し得るため、入力系回転部材1の外輪部1bおよび遊星歯車機構3の内輪部13を介して太陽歯車6に伝達される。遊星歯車機構3では、第三のワンウェイクラッチ12を介して伝達される入力系回転部材1からの回転入力に基づいて太陽歯車6が回転し、キャリア11に対して回転自在に支持された遊星歯車9が自転しつつ太陽歯車6の回りを公転することにより、入力系回転部材1の回転が所定の減速比でもってキャリア11に伝達される。
【0033】
さらに、遊星歯車機構3のキャリア11を介して、入力系回転部材1からの回転は、第一のワンウェイクラッチ4のトルク伝達部材の係合により伝達し得るため、遊星歯車機構3により所定の減速比でもって減速した上で第一のワンウェイクラッチ4により出力系回転部材2の第二の外輪部2cおよび第一の外輪部2bを介して中心軸部2aに伝達される(図1の破線矢印参照)。
【0034】
このとき、第二のワンウェイクラッチ5は、そのトルク伝達部材の係合方向が第一のワンウェイクラッチ4と逆向きであるために空転可能な状態にあり、入力系回転部材1と出力系回転部材2との間は、第二のワンウェイクラッチ5を介して離脱した状態にあるため、入力系回転部材1からの回転が第二のワンウェイクラッチ5を介して出力系回転部材2へ伝達されることはない。
【0035】
一方、出力系回転部材2からの回転逆入力があった場合には、その出力系回転部材2からの回転は、第二のワンウェイクラッチ5のトルク伝達部材の係合により伝達し得るため、出力系回転部材2の第一の外輪部2bから第二のワンウェイクラッチ5を介して入力系回転部材1に伝達される(図2の破線矢印参照)。
【0036】
このとき、第一のワンウェイクラッチ4は、そのトルク伝達部材の係合方向が第二のワンウェイクラッチ5と逆向きであるために空転可能な状態にあり、入力系回転部材1と出力系回転部材2との間は、第一のワンウェイクラッチ4を介して離脱した状態にあることから、出力系回転部材2からの回転逆入力は、第一のワンウェイクラッチ4を介して入力系回転部材1へ伝達されることはない。つまり、出力系回転部材2の回転は、遊星歯車機構3を介さないので増速されることなく、第二のワンウェイクラッチ5を介して1:1で入力系回転部材1に伝達される。
【0037】
この出力系回転部材2からの回転逆入力時、第三のワンウェイクラッチ12のトルク伝達部材の係合方向が空転可能な状態にあり、入力系回転部材1と遊星歯車機構3との間が第三のワンウェイクラッチ12を介して離脱した状態にあることから、入力系回転部材1から遊星歯車機構3への回転入力は遮断されるので、入力系回転部材1からの回転が第三のワンウェイクラッチ12を介して遊星歯車機構3へ伝達されることはなく、遊星歯車機構3が連動回転することはない。このように出力系回転部材2からの回転逆入力時に遊星歯車機構3が連動して回転しないので、その回転逆入力が高速であっても、動力伝達装置としての実用可能範囲を逸脱することはない。
【0038】
出力系回転部材2からの回転逆入力時、第三のワンウェイクラッチ12では、入力系回転部材1の外輪部1bと太陽歯車6の内輪部13の間に配置された保持器14の作用により、トルク伝達部材の係合方向を空転可能な状態にしている。この保持器14の動作を図6乃至図8に示す減速装置の具体的構成に基づいて説明する。
【0039】
図6の減速装置は、図1および図2の概略構成で説明したように入力系回転部材1、遊星歯車機構3、出力系回転部材2、第一のワンウェイクラッチ4、第二のワンウェイクラッチ5および第三のワンウェイクラッチ12で主要部が構成されている。
【0040】
入力系回転部材1は、電動発電機により回転駆動される第一の中心軸部1aと、その第一の中心軸部1aに同軸的に回転伝達部材15を介して装着された外輪部1bと、その外輪部1bに同軸的に回転伝達部材16を介して装着された第二の中心軸部1a’とからなる。なお、外輪部1bは、入力系回転部材1の中心軸部1aに回転伝達部材15を介して固定された基部を拡径して軸方向に延在させた形状を有する。
【0041】
第一の中心軸部1aと外輪部1bは、回転伝達部材15により円周方向にガタがない状態で固定されている(図7および図8参照)。一方、第二の中心軸部1a’と外輪部1bは、回転伝達部材16により円周方向にガタがある状態で嵌合されている。つまり、外輪部1bに固着された回転伝達部材16に対して、その回転伝達部材16が円周方向に微小量移動可能なクリアランスを有する凹部17を第二の中心軸部1a’の内径面に形成している(図7および図8参照)。
【0042】
遊星歯車機構3は、ハウジング7に固定された内歯車8と、その内側に入力系回転部材1の第一と第二の中心軸部1a,1a’と同軸上に配設された太陽歯車6と、この太陽歯車6と内歯車8との間にそれら両者と噛合するように介装された複数の遊星歯車9と、これら遊星歯車9を円周方向等間隔に支持軸10により回転自在に保持するキャリア11とで構成されている。なお、太陽歯車6の内径には、軸方向に延在した筒状の内輪部13が一体的に形成されている。
【0043】
出力系回転部材2は、遊星歯車機構3のキャリア11に転がり軸受18を介して回転自在に支承された第二の外輪部2cの内径を第一のワンウェイクラッチ4を介して遊星歯車機構3のキャリア11と連結し、第二の外輪部2cの内側に配置された第一の外輪部2bの内径を第二のワンウェイクラッチ5を介して入力系回転部材1の第二の中心軸部1a’と連結する。また、第二の外輪部2cの一端は、ハウジング7に転がり軸受19を介して回転自在に支承されている。この転がり軸受19は、第二の外輪部2cに軸受押え20をボルト21にて取り付けた構造であるが、その他の構造としては、図9に示すように転がり軸受19の外径面と第二の外輪部2cの内径面に溝22,23を設けて止め輪24を嵌合させるようにしてもよい。
【0044】
入力系回転部材1と遊星歯車機構3との間に設けられた第三のワンウェイクラッチ12は、入力系回転部材1の第一の中心軸部1aに回転伝達部材15を介して装着された外輪部1bと、遊星歯車機構3の太陽歯車6に一体的に形成された内輪部13との間に配設された保持器14を有する。この保持器14は、第二の中心軸部1a’に凹凸嵌合部32(図7および図8参照)を介して固定された基部を拡径して軸方向に延在させ、入力系回転部材1の外輪部1bと太陽歯車6の内輪部13との間に挿入配置された形状を有する。また、外輪部1bと内輪部13間で保持器14のポケット25内に収容されたトルク伝達部材であるローラ26と、外輪部1bと保持器14との間に設けられた弾性部材であるばね27とを有する。なお、外輪部1bは、ハウジング7に対して転がり軸受28により回転自在に支承され、内輪部13は、第二の中心軸部1a’に対して転がり軸受29により相対的に回転自在に支承されている。
【0045】
保持器14は、円周方向等間隔に複数のポケット25が形成され、各ポケット25にローラ26が回転自在に収容されている。この保持器14のポケット25は、その円周方向に所定のクリアランスを有する。また、外輪部1bと保持器14間のばね27はC字形状を有し、その端部27a,27bに軸方向に延在させ、一方の端部27aを外輪部1bに固定し、他方の端部27bを保持器14の一部に固定することにより、外輪部1bに対して保持器14に円周方向の弾性力を作用させる。外輪部1bの内周面には、ローラ26が配置された楔形凹所30が形成されている。
【0046】
前記構成を具備した第三のワンウェイクラッチ12では、図7に示すように入力系回転部材1からの回転入力時には、前記ばね27の弾性力により外輪部1bに対して保持器14でローラ26を円周方向(図中左側方向)に押圧し、そのローラ26を楔形凹所30の狭まる方向へ移動させて係合させる。これにより、入力系回転部材1からの回転は、第三のワンウェイクラッチ12のローラ26の係合により伝達し得るため、その第三のワンウェイクラッチ12を介して遊星歯車機構3に伝達される。
【0047】
一方、出力系回転部材2からの回転逆入力時には、その出力系回転部材2の第一の外輪部2bからの回転が第二のワンウェイクラッチ5を介して入力系回転部材1の第二の中心軸部1a’に伝達される。この第二の中心軸部1a’に対して保持器14は凹凸嵌合部32(図7および図8参照)により円周方向にガタつきなしに固定され、外輪部1bは回転伝達部材16および凹部17(図7および図8参照)により円周方向にがたつきありで固定されている。このことから、図8に示すようにばね27の弾性力に抗して、外輪部1bに先行する保持器14の回転でもってローラ26を円周方向(図中右側方向)に押圧し、そのローラ26を楔形凹所30の広まる方向へ移動させて離脱させる。これにより、外輪部1bから内輪部13への回転入力は遮断されるので、入力系回転部材1からの回転が第三のワンウェイクラッチ12を介して遊星歯車機構3へ伝達されることはなく、遊星歯車機構3が連動回転することはない。
【0048】
前述した第三のワンウェイクラッチ12は、ローラ26をトルク伝達部材とした構造のものであるが、第一のワンウェイクラッチ4および第二のワンウェイクラッチ5も、ローラをトルク伝達部材とした構造のものが可能である。そのクラッチ構造は、出力系回転部材2の内周面に楔形凹所30を設け、遊星歯車機構3のキャリア11または入力系回転部材1と出力系回転部材2との間に配置した保持器14のポケット25にローラ26を収容し、ばね27の弾性力によりローラ26を楔形凹所30の狭まる方向へ付勢するものである。
【0049】
このワンウェイクラッチでは、通常の状態でローラ26は、ばね27によりポケット25の楔形空所30の狭い方向に付勢され、その付勢方向に出力系回転部材2と遊星歯車機構3のキャリア11または入力系回転部材1との間でローラ26が係合することにより回転が伝達される。逆方向の回転入力があると、ローラ26がばね27を圧縮しながら楔形空所30の広い方に移動するため、遊星歯車機構3のキャリア11または入力系回転部材1と出力系回転部材2との間でローラ26が離脱して空転状態となって回転が伝達されない。なお、第一のワンウェイクラッチ4のローラの係合方向は、第二のワンウェイクラッチ5と逆向きに設定されている。
【0050】
また、第一のワンウェイクラッチ4、第二のワンウェイクラッチ5および第三のワンウェイクラッチ12は、ローラ26以外にスプラグをトルク伝達部材とした構造のものであってもよい。このクラッチ構造は、出力系回転部材2と遊星歯車機構3のキャリア11または入力系回転部材1との間に、内側保持器と外側保持器とによってスプラグを保持し、その内外側保持器の間に配置されたばねの弾性力によりスプラグを出力系回転部材2と遊星歯車機構3のキャリア11または入力系回転部材1との間で係合・離脱可能とした構造である。
【0051】
このワンウェイクラッチでは、出力系回転部材2と遊星歯車機構3のキャリア11または入力系回転部材1とが係合方向に相対回転し、内側保持器と外側保持器が相対回転すると、各スプラグが傾いて出力系回転部材2と遊星歯車機構3のキャリア11または入力系回転部材1との間で係合することにより回転が伝達される。また、出力系回転部材2と遊星歯車機構3のキャリア11または入力系回転部材1とが前述とは逆方向に回転すると、内外側保持器の相対回転によってスプラグが係合状態から外れて出力系回転部材2と遊星歯車機構3のキャリア11または入力系回転部材1との間で離脱して空転状態となって回転が伝達されない。この場合も、第一のワンウェイクラッチ4のスプラグの係合方向と第二のワンウェイクラッチ5のスプラグの係合方向とは逆向きに設定されている。
【0052】
特に、第一のワンウェイクラッチ4と第三のワンウェイクラッチ12は、出力系回転部材2から入力系回転部材1への回転逆入力時、その回転遠心力によりトルク伝達部材が遊星歯車機構3(第一のワンウェイクラッチ4ではキャリア11であり、第三のワンウェイクラッチ12では太陽歯車6の内輪部13である)と非接触状態となるディスエンゲージ構造とする。このディスエンゲージ構造では、トルク伝達部材がスプラグの場合、図10に示すようにスプラグ31の重心Gが外輪1bとの接点Aよりも左側にあると、回転により遠心力が作用した時にスプラグ31は外輪部1bとの接点Aを中心として時計方向に傾動する。そのため、スプラグ31の高さが低くなり、スプラグ31の内輪側カム面31aが内輪部13のカム面13aが離隔する。
【0053】
図示しないが、トルク伝達部材がローラの場合、カム面を外輪側に形成しており、ローラはばねの弾性力により保持器で外輪に形成された楔形凹所に押し込まれるが、外輪の回転数が所定値に達すると、ローラに作用した遠心力分力が大きくなり、ばねの弾性力に抗してカム面に沿ってローラが内輪から離隔する。
【0054】
このようにすれば、出力系回転部材2からの回転逆入力が高速であっても、トルク伝達部材と内輪13との摺接による発熱で早期に焼き付け等が生じることを未然に防止できる。
【0055】
【発明の効果】
本発明によれば、出力系回転部材からの回転逆入力があっても、入力系回転部材の回転が増速してしまうことはないので、入力系回転部材の駆動源における許容回転数を超えることを未然に防止でき、安全性が大幅に向上し、しかも、出力系回転部材からの回転逆入力時、入力系回転部材と遊星機構との間が第三のワンウェイクラッチを介して離脱した状態にあることから、入力系回転部材から遊星機構への回転入力は遮断されるので、入力系回転部材からの回転が第三のワンウェイクラッチを介して遊星機構へ伝達されることはなく、遊星機構が連動回転することはないので、出力系回転部材からの回転逆入力が高速であっても、実用可能範囲を逸脱することがない実用性に富んだ動力伝達装置を提供できる。
【図面の簡単な説明】
【図1】本発明に係る動力伝達装置の実施形態で、遊星歯車機構を利用した減速装置の概略構成を示す断面図である。
【図2】図1の減速装置において、出力系回転部材から入力系回転部材への回転逆入力状態を示す概略構成図である。
【図3】図1の減速装置を電気自動車用電動発電機の下流側に設置した構成を示すブロック図である。
【図4】図1の減速装置に組み込まれた遊星歯車機構を示す構成図である。
【図5】図1の減速装置に組み込まれた遊星ローラ機構を示す構成図である。
【図6】図1の概略構成で示した減速装置の具体的構成例を示す断面図である。
【図7】図6の第三のワンウェイクラッチで、トルク伝達部材が係合した状態を示す側断面図である。
【図8】図6の第三のワンウェイクラッチで、トルク伝達部材が離脱した状態を示す側断面図である。
【図9】図6の出力系回転部材とハウジング間に介設された転がり軸受の固定構造の他例を示す断面図である。
【図10】スプラグのディスエンゲージ構造を示す要部拡大断面図である。
【図11】本発明の前提となる動力伝達装置で、遊星歯車機構を利用した減速装置の概略構成を示す断面図である。
【図12】図11の減速装置において、出力系回転部材から入力系回転部材への回転逆入力状態を示す概略構成図である。
【符号の説明】
1 入力系回転部材
2 出力系回転部材
3 遊星機構(遊星歯車機構)
4 第一のワンウェイクラッチ
5 第二のワンウェイクラッチ
6 太陽歯車
7 静止部材(ハウジング)
8 内歯車
9 遊星歯車
11 キャリア
12 第三のワンウェイクラッチ
14 保持器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power transmission device, and more particularly to a power transmission device that outputs a rotational input from one rotary member to the other rotary member with a predetermined reduction ratio by, for example, a planetary gear mechanism.
[0002]
[Prior art]
As an example of a conventional power transmission device, there is a reduction gear using a planetary gear mechanism (see, for example, Patent Document 1). Such a reduction gear is installed on the downstream side of the motor generator that outputs the driving force of the vehicle, for example, in an electric vehicle so as to obtain a necessary driving force.
[0003]
This type of speed reducer is arranged in an internal gear fixed to the housing, a sun gear arranged on the inner side thereof so that the axis of the internal gear coincides with the axis, and a space formed between the sun gear and the internal gear. A plurality of planetary gears, and a carrier that holds the planetary gears in the circumferential direction at regular intervals and rotatably. The sun gear is coaxially provided with an input rotation shaft that is rotatably supported with respect to the housing, and the carrier is provided with an output rotation shaft that is rotatably supported with respect to the housing. The plurality of planetary gears positioned between the sun gear and the internal gear are disposed in mesh with the sun gear and the internal gear, respectively.
[0004]
In this speed reducer, the sun gear provided on the input rotation shaft rotates based on the rotation input from the input rotation shaft, and the planetary gear rotatably supported by the carrier rotates and rotates around the sun gear. , The rotation of the input rotation shaft is transmitted to the output rotation shaft with a predetermined reduction ratio.
[0005]
[Patent Document 1]
JP-A-10-153242
[0006]
[Problems to be solved by the invention]
By the way, in the conventional speed reducer using the planetary gear mechanism as described above, the rotation of the input rotation shaft is reduced to 1 / X times and transmitted to the output rotation shaft. When there is a reverse rotation input from the shaft, the rotation of the output rotation shaft is increased X times and transmitted to the input rotation shaft. As a result, when the allowable rotational speed at the drive source of the input rotary shaft is low, the allowable rotational speed of the drive source may be exceeded due to reverse input from the output rotary shaft to the input rotary shaft, adversely affecting the drive source. Such a problem may occur.
[0007]
In order to solve this problem, the applicant of the present application has proposed a power transmission that can be used as a reduction gear that does not exceed the allowable rotational speed of the drive source of the input rotary shaft even if there is reverse input from the output rotary shaft to the input rotary shaft. An apparatus has been proposed previously (Japanese Patent Application No. 2002-23803).
[0008]
As shown in FIGS. 11 and 12, this power transmission device takes out an input system rotating member 1 rotated by a driving source (not shown) and the rotational torque transmitted from the input system rotating member 1 to the outside. Output system rotating member 2, planetary mechanism 3 that decelerates rotation from input system rotating member 1, and output system rotating member 2, and rotation input from planetary mechanism 3 to output system rotating member 2. Is transmitted by engagement of the torque transmission member, and the first one-way clutch 4 that blocks the reverse rotation input from the output system rotating member 2 to the planetary mechanism 3 by detachment of the torque transmitting member, the input system rotating member 1 and the output system Provided between the rotating member 2, the rotational input from the input system rotating member 1 to the output system rotating member 2 is blocked by the separation of the torque transmission member, and the reverse rotation from the output system rotating member 2 to the input system rotating member 1 is performed. Torque transmission to input It is configured and the second one-way clutch 5 that transmits the main unit by engagement of the wood.
[0009]
As the planetary mechanism 3, for example, an internal gear 8 provided on the stationary system member 7, a sun gear 6 disposed coaxially with the input system rotating member 1 on the inner side, and the sun gear 6 and the internal gear A plurality of planetary gears 9 interposed between the gears 8 so as to mesh with both of them, and a carrier 11 that rotatably holds the planetary gears 9 at equal intervals in the circumferential direction by a support shaft 10. There is a planetary gear mechanism.
[0010]
In this power transmission device, the direction of engagement of the torque transmission member of the first one-way clutch 4 and the direction of engagement of the torque transmission member of the second one-way clutch 5 are reversed. As a result, the rotational input from the input system rotating member 1 can be transmitted by the engagement of the torque transmitting member of the first one-way clutch 4, so that the first planetary mechanism 3 decelerates with a predetermined reduction ratio and then the first It is transmitted to the output system rotating member 2 via the one-way clutch 4 (see broken line arrow in FIG. 11).
[0011]
At this time, the second one-way clutch 5 is in an idling state because the engagement direction of the torque transmission member is opposite to that of the first one-way clutch 4, and the input system rotating member 1 and the output system rotating member 2 is disengaged through the second one-way clutch 5, so that the rotation from the input system rotating member 1 is transmitted to the output system rotating member 2 through the second one-way clutch 5. There is no.
[0012]
On the other hand, since the reverse rotation input from the output system rotating member 2 can be transmitted by the engagement of the torque transmitting member of the second one-way clutch 5, it is transmitted to the input system rotating member 1 via the second one-way clutch 5. (See the broken line arrow in FIG. 12).
[0013]
At this time, the first one-way clutch 4 is in an idle state because the engagement direction of the torque transmission member is opposite to that of the second one-way clutch 5, and the input system rotating member 1 and the output system rotating member 2 is disengaged through the first one-way clutch 4, and therefore, the rotation reverse input from the output system rotating member 2 does not go through the planetary mechanism 3, so the rotation of the input system rotating member 1 is It is transmitted to the input system rotating member 1 through the second one-way clutch 5 at 1: 1 without being accelerated.
[0014]
By the way, in this power transmission device, at the time of reverse rotation input from the output system rotating member 2 to the input system rotating member 1, rotation is input from the output system rotating member 2 to the planetary mechanism 3 via the first one-way clutch 4. However, since the planetary mechanism 3 is connected to the input system rotating member 1, the planetary mechanism 3 rotates in conjunction with the rotation of the input system rotating member 1. Therefore, when the rotational reverse input from the output system rotating member 2 to the input system rotating member 1 becomes high speed, the planetary mechanism 3 is difficult to rotate in an interlocking manner and may deviate from the practical range as a power transmission device. .
[0015]
Therefore, the present invention has been proposed to improve the above-described points, and the object of the present invention is to deviate from the practical range even if the rotational reverse input from the output system rotating member is high speed. The object is to provide a power transmission device that is not practical.
[0016]
[Means for Solving the Problems]
As a technical means for achieving the above object, a power transmission device according to the present invention is configured to extract an input system rotating member that is rotationally driven by a drive source and rotational torque transmitted from the input system rotating member to the outside. An output system rotating member, a planetary mechanism that decelerates rotation from the input system rotating member, and an output system rotating member, and the rotational input from the planetary mechanism to the output system rotating member is engaged with the torque transmission member. The rotation reverse input from the output system rotating member to the planetary mechanism is transmitted by the torque transmitting member. From the engaged state Withdrawal Because Shut off It becomes possible to idle The first one-way clutch is provided between the input system rotating member and the output system rotating member, and the rotational input from the input system rotating member to the output system rotating member is transmitted to the torque transmitting member. From the engaged state Withdrawal Because Shut off It becomes possible to idle A second one-way clutch for transmitting a reverse rotation input from the output system rotating member to the input system rotating member by engagement of the torque transmitting member; and between the input system rotating member and the planetary mechanism. The rotation input from the rotating member to the planetary mechanism is transmitted by the engagement of the torque transmission member, and when the rotation reverse input from the output system rotating member to the input system rotating member, the rotation input from the input system rotating member to the planetary mechanism is Torque transmission member From the engaged state Withdrawal Because Shut off It becomes possible to idle A third one-way clutch, and the planetary mechanism includes an internal gear (fixed ring) provided on a stationary system member, and a sun gear (sunlight) disposed coaxially with the input system rotating member on the inner side. Rollers), a plurality of planetary gears (planetary rollers) interposed between the sun gear (sunroller) and the internal gear (fixed ring) so as to be engaged (pressure contact) with both, and the planetary gears. And a carrier that rotatably holds the (planetary roller) at equal intervals in the circumferential direction, and the carrier is connected to the output system rotating member by a first one-way clutch. Note that this power transmission device is preferably used on the downstream side of a motor generator for an electric vehicle.
[0017]
In the power transmission device of the present invention, the direction of engagement of the torque transmission member of the first one-way clutch is opposite to the direction of engagement of the torque transmission member of the second one-way clutch. As a result, since the rotation input from the input system rotating member can be transmitted by the engagement of the torque transmitting member of the first one-way clutch, the planetary mechanism decelerates at a predetermined reduction ratio, and then the first one-way clutch is To the output system rotating member. At this time, the second one-way clutch is in an idling state because the direction of engagement of the torque transmission member is opposite to that of the first one-way clutch, and the second one-way clutch is in a state where it can idle. Is disengaged via the second one-way clutch.
[0018]
On the other hand, since the reverse rotation input from the output system rotation member can be transmitted by the engagement of the torque transmission member of the second one-way clutch, it is transmitted to the input system rotation member via the second one-way clutch. At this time, the first one-way clutch is in an idling state because the direction of engagement of the torque transmission member is opposite to that of the second one-way clutch, and the first one-way clutch is in an idle state between the input rotation member and the output rotation member. Is in a state of being disengaged via the first one-way clutch, and therefore, the rotation reverse input from the output system rotating member does not go through the planetary mechanism, so that the rotation of the input system rotating member is not accelerated. It is transmitted to the input system rotating member at 1: 1 via the two one-way clutches.
[0019]
At the time of reverse rotation input from the output system rotating member, the engagement direction of the torque transmission member of the third one-way clutch is in a state where idling is possible, and the third one-way clutch is connected between the input system rotating member and the planetary mechanism. Since the rotation input from the input system rotating member to the planetary mechanism is cut off, the rotation from the input system rotating member is transmitted to the planetary mechanism via the third one-way clutch. No, the planetary mechanism does not rotate in conjunction.
[0020]
In order to make the engagement direction of the torque transmission member of the third one-way clutch idle when the rotation reverse input from the output system rotating member, the third one-way clutch in the present invention includes the input system rotating member and the planetary mechanism. Holding the torque transmission member arranged between ,in front A retainer that switches between engagement and disengagement of the torque transmission member; Rotation input from the input system rotation member to the planetary mechanism engages a torque transmission member with the cage to transmit rotation input from the input system rotation member to the planetary mechanism, At the time of reverse rotation input from the output system rotating member to the input system rotating member, the cage is attached to the input system rotating member. In advance The torque transmission member is rotated by the rotation of the cage preceding the rotation member of the input system. From the engaged state Withdrawal And become idle Structure.
[0021]
In the first one-way clutch and the third one-way clutch in the present invention, the torque transmission member is formed in the planetary mechanism by the rotational centrifugal force at the time of reverse rotation input from the output system rotation member to the input system rotation member. It is desirable to have a structure that is non-contactable with the cam surface. In this way, even if the rotational reverse input from the output system rotating member is high speed, it is possible to prevent the occurrence of early seizure or the like due to heat generated by the sliding contact between the torque transmission member and the cam surface of the planetary mechanism. .
[0024]
DETAILED DESCRIPTION OF THE INVENTION
1 to 10 show an embodiment of a power transmission device according to the present invention. 11 and 12 are denoted by the same reference numerals.
[0025]
1 and 2 show a schematic configuration of a reduction gear using a planetary gear mechanism. As shown in FIG. 3, for example, in an electric vehicle, this speed reduction device is applied as a device that is installed downstream of a motor generator that outputs a driving force of a vehicle to obtain a necessary driving force. The motor generator is driven by supplying power from the source, and the rotational force of the motor generator is reduced by a reduction device to operate the drive member.
[0026]
As shown in FIGS. 1 and 2, the speed reducer of this embodiment is an input system rotating member 1 that is rotationally driven by a motor generator, and for extracting the rotational torque transmitted from the input system rotating member 1 to the outside. Provided between the output system rotating member 2, the planetary gear mechanism 3 that decelerates the rotation from the input system rotating member 1, and the output system rotating member 2, and receives rotational input from the planetary gear mechanism 3 to the output system rotating member 2. A first one-way clutch 4 that is transmitted by engagement of a torque transmission member (not shown), and blocks reverse rotation input from the output system rotation member 2 to the planetary gear mechanism 3 by detachment of the torque transmission member; Provided between the member 1 and the output system rotating member 2, the rotational input from the input system rotating member 1 to the output system rotating member 2 is blocked by the separation of the torque transmission member (not shown), and the output system rotating member 2 To input system rotating member 1 Is provided between the input system rotating member 1 and the planetary gear mechanism 3, and is transmitted from the input system rotating member 1 to the planetary gear mechanism 3. Is transmitted by engagement of a torque transmission member (not shown), and at the time of reverse rotation input from the output system rotary member 2 to the input system rotary member 1, the input system rotary member 1 to the planetary gear mechanism 3 is transmitted. The third one-way clutch 12 that cuts off the rotation input by detaching the torque transmitting member is configured as a main part.
[0027]
The input system rotating member 1 has an outer ring portion 1b that is expanded in diameter from the central shaft portion 1a and extends in the axial direction. A third one-way clutch 12 connects the outer ring portion 1 b of the input system rotating member 1 and a cylindrical inner ring portion 13 in which the inner diameter of the sun gear 6 of the planetary gear mechanism 3 extends in the axial direction. The third one-way clutch 12 holds a torque transmission member disposed between the input system rotating member 1 and the planetary gear mechanism 3, and engages and disengages the torque transmitting member through relative rotation with respect to the input system rotating member 1. It has the holder | retainer 14 to switch. The cage 14 expands the diameter of a base portion fixed to the input system rotating member 1 via the rotation transmission member 15 and extends in the axial direction. The outer ring portion 1b of the input system rotating member 1 and the inner ring of the sun gear 6 It has a shape inserted and arranged between the portion 13.
[0028]
Further, the output system rotating member 2 arranged coaxially with the input system rotating member 1 includes a first outer ring portion 2b having a diameter expanded from the central shaft portion 2a and extending in the axial direction, and a first It has the 2nd outer ring | wheel part 2c expanded from the outer ring | wheel part 2b and extended in the axial direction. The first outer ring portion 2b and the center shaft portion 1a of the input system rotating member 1 are connected by the second one-way clutch 5, and the second outer ring portion 2c and the carrier 11 of the planetary gear mechanism 3 are connected to the first one-way clutch. 4 are connected.
[0029]
1, the planetary gear mechanism 3 provided between the input system rotating member 1 and the output system rotating member 2 includes an internal gear 8 fixed to a housing 7 which is a stationary system member, and an inner side thereof. A sun gear 6 disposed coaxially with the input system rotating member 1, a plurality of planetary gears 9 interposed between the sun gear 6 and the internal gear 8 so as to mesh with both, and the planetary gears It is comprised with the carrier 11 which hold | maintains the gearwheel 9 rotatably by the support shaft 10 at the circumferential direction equal intervals (refer FIG. 4).
[0030]
In this embodiment, the case where the planetary gear mechanism 3 is used will be described. However, as another example of the planetary mechanism, a planetary roller mechanism 3 ′ shown in FIG. 5 is also possible. The planetary roller mechanism 3 ′ includes a fixed ring 8 ′ provided in the housing 7, a sun roller 6 ′ disposed coaxially with the input system rotating member 1 inside, and the sun roller 6 ′ and the fixed ring. And a plurality of planetary rollers 9 ′ interposed between them and a carrier 11 that rotatably holds the planetary rollers 9 ′ at equal intervals in the circumferential direction by a support shaft 10. It is configured.
[0031]
Next, an example of the operation of the speed reducer according to the embodiment shown in FIGS.
[0032]
First, the rotation from the input system rotating member 1 is transmitted to the output system rotating member 2 via the third one-way clutch 12, the planetary gear mechanism 3 and the first one-way clutch 4. Since the rotation from the input system rotating member 1 can be transmitted by the engagement of the torque transmitting member of the third one-way clutch 12, the rotation through the outer ring portion 1 b of the input system rotating member 1 and the inner ring portion 13 of the planetary gear mechanism 3. It is transmitted to the sun gear 6. In the planetary gear mechanism 3, the sun gear 6 rotates based on the rotation input from the input system rotating member 1 transmitted through the third one-way clutch 12, and the planetary gear is rotatably supported with respect to the carrier 11. As 9 revolves around the sun gear 6 while rotating, the rotation of the input system rotating member 1 is transmitted to the carrier 11 with a predetermined reduction ratio.
[0033]
Further, since the rotation from the input system rotating member 1 can be transmitted through the carrier 11 of the planetary gear mechanism 3 by the engagement of the torque transmitting member of the first one-way clutch 4, the planetary gear mechanism 3 performs a predetermined deceleration. After being decelerated by a ratio, the first one-way clutch 4 is transmitted to the central shaft portion 2a via the second outer ring portion 2c and the first outer ring portion 2b of the output system rotating member 2 (broken arrows in FIG. 1). reference).
[0034]
At this time, the second one-way clutch 5 is in an idling state because the engagement direction of the torque transmission member is opposite to that of the first one-way clutch 4, and the input system rotating member 1 and the output system rotating member 2 is disengaged through the second one-way clutch 5, so that the rotation from the input system rotating member 1 is transmitted to the output system rotating member 2 through the second one-way clutch 5. There is no.
[0035]
On the other hand, when there is a reverse rotation input from the output system rotating member 2, the rotation from the output system rotating member 2 can be transmitted by the engagement of the torque transmitting member of the second one-way clutch 5. It is transmitted from the first outer ring portion 2b of the system rotating member 2 to the input system rotating member 1 via the second one-way clutch 5 (see broken line arrow in FIG. 2).
[0036]
At this time, the first one-way clutch 4 is in an idle state because the engagement direction of the torque transmission member is opposite to that of the second one-way clutch 5, and the input system rotating member 1 and the output system rotating member 2 is disengaged via the first one-way clutch 4, so that the reverse rotation input from the output system rotating member 2 is input to the input system rotating member 1 via the first one-way clutch 4. It is never transmitted. That is, the rotation of the output system rotating member 2 is transmitted to the input system rotating member 1 at 1: 1 via the second one-way clutch 5 without being accelerated because the planetary gear mechanism 3 is not used.
[0037]
At the time of reverse rotation input from the output system rotating member 2, the engagement direction of the torque transmission member of the third one-way clutch 12 is in an idling state, and there is a gap between the input system rotating member 1 and the planetary gear mechanism 3. Since it is in a state of being disengaged via the three one-way clutch 12, the rotation input from the input system rotating member 1 to the planetary gear mechanism 3 is interrupted, so that the rotation from the input system rotating member 1 is the third one-way clutch. 12 is not transmitted to the planetary gear mechanism 3 via 12, and the planetary gear mechanism 3 does not rotate in conjunction. As described above, since the planetary gear mechanism 3 does not rotate in conjunction with the reverse rotation input from the output system rotating member 2, even if the reverse rotation input is high speed, it is not possible to deviate from the practical range as a power transmission device. Absent.
[0038]
At the time of reverse rotation input from the output system rotating member 2, in the third one-way clutch 12, due to the action of the cage 14 arranged between the outer ring portion 1b of the input system rotating member 1 and the inner ring portion 13 of the sun gear 6, The engaging direction of the torque transmitting member is in a state where it can idle. The operation of the cage 14 will be described based on the specific configuration of the reduction gear shown in FIGS.
[0039]
6 has the input system rotating member 1, the planetary gear mechanism 3, the output system rotating member 2, the first one-way clutch 4, and the second one-way clutch 5 as described in the schematic configuration of FIGS. The main part is constituted by the third one-way clutch 12.
[0040]
The input system rotating member 1 includes a first central shaft portion 1a that is rotationally driven by a motor generator, and an outer ring portion 1b that is coaxially mounted on the first central shaft portion 1a via a rotation transmission member 15. The second center shaft portion 1a ′ is coaxially mounted on the outer ring portion 1b via the rotation transmission member 16. The outer ring portion 1b has a shape in which a base portion fixed to the central shaft portion 1a of the input system rotating member 1 via the rotation transmission member 15 is expanded and extended in the axial direction.
[0041]
The first central shaft portion 1a and the outer ring portion 1b are fixed by the rotation transmission member 15 without any play in the circumferential direction (see FIGS. 7 and 8). On the other hand, the second central shaft portion 1a ′ and the outer ring portion 1b are fitted by the rotation transmitting member 16 in a state where there is a backlash in the circumferential direction. That is, with respect to the rotation transmission member 16 fixed to the outer ring portion 1b, the concave portion 17 having a clearance that allows the rotation transmission member 16 to move a minute amount in the circumferential direction is formed on the inner diameter surface of the second central shaft portion 1a ′. (See FIGS. 7 and 8).
[0042]
The planetary gear mechanism 3 includes an internal gear 8 fixed to a housing 7 and a sun gear 6 disposed coaxially with the first and second central shaft portions 1a and 1a ′ of the input system rotating member 1 inside thereof. A plurality of planetary gears 9 interposed between the sun gear 6 and the internal gear 8 so as to mesh with both of them, and the planetary gears 9 can be freely rotated by the support shaft 10 at equal intervals in the circumferential direction. It is comprised with the carrier 11 to hold | maintain. A cylindrical inner ring portion 13 extending in the axial direction is integrally formed on the inner diameter of the sun gear 6.
[0043]
The output system rotating member 2 is configured such that the inner diameter of the second outer ring portion 2c rotatably supported by the carrier 11 of the planetary gear mechanism 3 via the rolling bearing 18 is changed to that of the planetary gear mechanism 3 via the first one-way clutch 4. The inner diameter of the first outer ring portion 2b connected to the carrier 11 and arranged inside the second outer ring portion 2c is set to the second central shaft portion 1a ′ of the input system rotating member 1 via the second one-way clutch 5. Concatenate with Further, one end of the second outer ring portion 2 c is rotatably supported on the housing 7 via a rolling bearing 19. This rolling bearing 19 has a structure in which a bearing retainer 20 is attached to the second outer ring portion 2c with bolts 21, but other structures include an outer diameter surface of the rolling bearing 19 and the second outer ring surface as shown in FIG. The retaining ring 24 may be fitted by providing grooves 22 and 23 on the inner diameter surface of the outer ring portion 2c.
[0044]
A third one-way clutch 12 provided between the input system rotating member 1 and the planetary gear mechanism 3 is an outer ring mounted on the first central shaft portion 1 a of the input system rotating member 1 via a rotation transmission member 15. The cage 14 is disposed between the portion 1 b and the inner ring portion 13 formed integrally with the sun gear 6 of the planetary gear mechanism 3. This cage 14 expands the diameter of the base fixed to the second central shaft portion 1a ′ via the concave-convex fitting portion 32 (see FIGS. 7 and 8) and extends in the axial direction, thereby rotating the input system. It has a shape inserted and arranged between the outer ring portion 1 b of the member 1 and the inner ring portion 13 of the sun gear 6. Further, a roller 26 that is a torque transmission member housed in a pocket 25 of the cage 14 between the outer ring portion 1b and the inner ring portion 13 and a spring that is an elastic member provided between the outer ring portion 1b and the cage 14. 27. The outer ring portion 1b is rotatably supported by the rolling bearing 28 with respect to the housing 7, and the inner ring portion 13 is rotatably supported by the rolling bearing 29 with respect to the second central shaft portion 1a '. ing.
[0045]
The cage 14 has a plurality of pockets 25 formed at equal intervals in the circumferential direction, and a roller 26 is rotatably accommodated in each pocket 25. The pocket 25 of the cage 14 has a predetermined clearance in the circumferential direction. Further, the spring 27 between the outer ring portion 1b and the cage 14 has a C-shape, extends axially at its end portions 27a and 27b, and fixes one end portion 27a to the outer ring portion 1b, By fixing the end portion 27b to a part of the retainer 14, a circumferential elastic force is applied to the retainer 14 with respect to the outer ring portion 1b. A wedge-shaped recess 30 in which the roller 26 is disposed is formed on the inner peripheral surface of the outer ring portion 1b.
[0046]
In the third one-way clutch 12 having the above-described configuration, when the rotation is input from the input system rotating member 1, the roller 26 is moved by the cage 14 with respect to the outer ring portion 1b by the elastic force of the spring 27 as shown in FIG. The roller 26 is pressed in the circumferential direction (left direction in the figure) and moved in the direction in which the wedge-shaped recess 30 is narrowed to be engaged. Thereby, the rotation from the input system rotating member 1 can be transmitted by the engagement of the roller 26 of the third one-way clutch 12, and therefore is transmitted to the planetary gear mechanism 3 through the third one-way clutch 12.
[0047]
On the other hand, at the time of reverse rotation input from the output system rotating member 2, the rotation of the output system rotating member 2 from the first outer ring portion 2 b is transmitted through the second one-way clutch 5 to the second center of the input system rotating member 1. It is transmitted to the shaft portion 1a ′. With respect to the second central shaft portion 1a ′, the retainer 14 is fixed without backlash in the circumferential direction by an uneven fitting portion 32 (see FIGS. 7 and 8), and the outer ring portion 1b is connected to the rotation transmitting member 16 and The recess 17 (see FIGS. 7 and 8) is fixed with rattling in the circumferential direction. From this, as shown in FIG. 8, the roller 26 is pressed in the circumferential direction (right direction in the figure) by the rotation of the retainer 14 preceding the outer ring portion 1b against the elastic force of the spring 27. The roller 26 is moved in the direction in which the wedge-shaped recess 30 is widened and separated. Thereby, the rotation input from the outer ring portion 1b to the inner ring portion 13 is interrupted, so that the rotation from the input system rotating member 1 is not transmitted to the planetary gear mechanism 3 via the third one-way clutch 12. The planetary gear mechanism 3 does not rotate together.
[0048]
The above-described third one-way clutch 12 has a structure in which the roller 26 is a torque transmission member, but the first one-way clutch 4 and the second one-way clutch 5 have a structure in which the roller is a torque transmission member. Is possible. In the clutch structure, a wedge-shaped recess 30 is provided on the inner peripheral surface of the output system rotating member 2, and the cage 14 disposed between the carrier 11 of the planetary gear mechanism 3 or the input system rotating member 1 and the output system rotating member 2. The roller 26 is accommodated in the pocket 25, and the elastic force of the spring 27 biases the roller 26 in the direction in which the wedge-shaped recess 30 is narrowed.
[0049]
In this one-way clutch, in a normal state, the roller 26 is urged by a spring 27 in a narrow direction of the wedge-shaped cavity 30 of the pocket 25, and the carrier 11 of the output system rotating member 2 and the planetary gear mechanism 3 or The rotation is transmitted by the roller 26 engaging with the input system rotating member 1. When there is a rotation input in the reverse direction, the roller 26 moves to the wider side of the wedge-shaped cavity 30 while compressing the spring 27, so that the carrier 11 of the planetary gear mechanism 3 or the input system rotating member 1 and the output system rotating member 2 During this time, the roller 26 is detached and becomes idle, so that the rotation is not transmitted. The roller engagement direction of the first one-way clutch 4 is set opposite to that of the second one-way clutch 5.
[0050]
Further, the first one-way clutch 4, the second one-way clutch 5, and the third one-way clutch 12 may have a structure in which a sprag is used as a torque transmission member in addition to the roller 26. In this clutch structure, a sprag is held between the output system rotating member 2 and the carrier 11 of the planetary gear mechanism 3 or the input system rotating member 1 by an inner cage and an outer cage, and between the inner and outer cages. The sprags can be engaged and disengaged between the output system rotating member 2 and the carrier 11 of the planetary gear mechanism 3 or the input system rotating member 1 by the elastic force of the spring disposed in the.
[0051]
In this one-way clutch, when the output system rotating member 2 and the carrier 11 of the planetary gear mechanism 3 or the input system rotating member 1 are relatively rotated in the engagement direction, and the inner cage and the outer cage are relatively rotated, each sprag is inclined. The rotation is transmitted by engaging between the output system rotating member 2 and the carrier 11 of the planetary gear mechanism 3 or the input system rotating member 1. Further, when the output system rotating member 2 and the carrier 11 of the planetary gear mechanism 3 or the input system rotating member 1 rotate in the opposite direction, the sprags are disengaged from the engaged state by the relative rotation of the inner and outer cages. Separation between the rotating member 2 and the carrier 11 of the planetary gear mechanism 3 or the input system rotating member 1 results in an idling state and rotation is not transmitted. Also in this case, the sprag engagement direction of the first one-way clutch 4 and the sprag engagement direction of the second one-way clutch 5 are set in opposite directions.
[0052]
In particular, the first one-way clutch 4 and the third one-way clutch 12 are configured such that when the rotation reverse input from the output system rotating member 2 to the input system rotating member 1 is performed, the torque transmission member causes the planetary gear mechanism 3 (first gear) to rotate. The one-way clutch 4 is the carrier 11 and the third one-way clutch 12 is the inner ring portion 13 of the sun gear 6). In this disengagement structure, when the torque transmitting member is a sprag, as shown in FIG. 10, if the center of gravity G of the sprag 31 is on the left side of the contact point A with the outer ring 1b, the sprag 31 It tilts clockwise around the contact point A with the outer ring portion 1b. Therefore, the height of the sprag 31 is lowered, and the inner ring side cam surface 31a of the sprag 31 is separated from the cam surface 13a of the inner ring portion 13.
[0053]
Although not shown, when the torque transmission member is a roller, the cam surface is formed on the outer ring side, and the roller is pushed into the wedge-shaped recess formed on the outer ring by the elastic force of the spring. Reaches a predetermined value, the centrifugal force acting on the roller increases, and the roller separates from the inner ring along the cam surface against the elastic force of the spring.
[0054]
In this way, even if the rotational reverse input from the output system rotating member 2 is at a high speed, it is possible to prevent the occurrence of early seizure or the like due to heat generated by the sliding contact between the torque transmission member and the inner ring 13.
[0055]
【The invention's effect】
According to the present invention, even if there is a reverse rotation input from the output system rotating member, the rotation of the input system rotating member does not increase, so that the allowable rotational speed in the drive source of the input system rotating member is exceeded. This can be prevented in advance, the safety is greatly improved, and when the rotation reverse input from the output system rotating member, the state where the input system rotating member and the planetary mechanism are separated via the third one-way clutch Therefore, the rotation input from the input system rotating member to the planetary mechanism is interrupted, so that the rotation from the input system rotating member is not transmitted to the planetary mechanism via the third one-way clutch, and the planetary mechanism Therefore, even if the rotational reverse input from the output system rotating member is at a high speed, a power transmission device with high practicality that does not deviate from the practical range can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic configuration of a reduction gear using a planetary gear mechanism in an embodiment of a power transmission device according to the present invention.
2 is a schematic configuration diagram showing a reverse rotation input state from an output system rotating member to an input system rotating member in the reduction gear of FIG. 1; FIG.
FIG. 3 is a block diagram showing a configuration in which the reduction gear of FIG. 1 is installed on the downstream side of a motor generator for an electric vehicle.
4 is a configuration diagram showing a planetary gear mechanism incorporated in the speed reducer of FIG. 1. FIG.
FIG. 5 is a configuration diagram showing a planetary roller mechanism incorporated in the speed reducer of FIG. 1;
6 is a cross-sectional view showing a specific configuration example of the speed reducer shown in the schematic configuration of FIG. 1;
7 is a side sectional view showing a state in which a torque transmission member is engaged in the third one-way clutch of FIG. 6;
8 is a side cross-sectional view showing a state where the torque transmission member is detached in the third one-way clutch shown in FIG. 6;
9 is a cross-sectional view showing another example of the fixing structure of the rolling bearing interposed between the output system rotating member and the housing of FIG. 6. FIG.
FIG. 10 is an enlarged sectional view of a main part showing a disengage structure of sprags.
FIG. 11 is a cross-sectional view showing a schematic configuration of a reduction gear using a planetary gear mechanism in a power transmission device as a premise of the present invention.
12 is a schematic configuration diagram showing a reverse rotation input state from an output system rotating member to an input system rotating member in the reduction gear of FIG.
[Explanation of symbols]
1 Input system rotating member
2 Output system rotating member
3 Planetary mechanism (Planetary gear mechanism)
4 First one-way clutch
5 Second one-way clutch
6 Sun gear
7 Stationary member (housing)
8 Internal gear
9 Planetary gear
11 Career
12 Third one-way clutch
14 Cage

Claims (5)

駆動源により回転駆動される入力系回転部材と、
その入力系回転部材から伝達された回転トルクを外部へ取り出すための出力系回転部材と、
前記入力系回転部材からの回転を減速する遊星機構と出力系回転部材との間に設けられ、遊星機構から出力系回転部材への回転入力をトルク伝達部材の係合により伝達し、出力系回転部材から遊星機構への回転逆入力を前記トルク伝達部材の前記係合状態からの離脱でもって遮断することにより空転可能な状態になる第一のワンウェイクラッチと、
前記入力系回転部材と出力系回転部材との間に設けられ、入力系回転部材から出力系回転部材への回転入力をトルク伝達部材の前記係合状態からの離脱でもって遮断することにより空転可能な状態になり、出力系回転部材から入力系回転部材への回転逆入力を前記トルク伝達部材の係合により伝達する第二のワンウェイクラッチと、
前記入力系回転部材と遊星機構との間に設けられ、入力系回転部材から遊星機構への回転入力をトルク伝達部材の係合により伝達し、出力系回転部材から入力系回転部材への回転逆入力時、その入力系回転部材から遊星機構への回転入力を前記トルク伝達部材の前記係合状態からの離脱でもって遮断することにより空転可能な状態になる第三のワンウェイクラッチとを具備し、
前記遊星機構は、静止系部材に設けられた内歯車と、その内側に前記入力系回転部材と同軸上に配設された太陽歯車と、この太陽歯車と前記内歯車との間にそれら両者と噛合するように介装された複数の遊星歯車と、これら遊星歯車を円周方向等間隔に回転自在に保持するキャリアとで構成され、前記キャリアを第一のワンウェイクラッチで前記出力系回転部材に連結していることを特徴とする動力伝達装置。
An input system rotating member that is rotationally driven by a driving source;
An output system rotating member for extracting the rotational torque transmitted from the input system rotating member to the outside;
Provided between the planetary mechanism that decelerates the rotation from the input system rotating member and the output system rotating member, and the rotation input from the planetary mechanism to the output system rotating member is transmitted by the engagement of the torque transmission member, and the output system rotates. a first one-way clutch to be capable of idling state by blocking with rotation reverse input to the planetary mechanism disengaged from the engagement of the torque transmitting member from member,
It is provided between the output system rotating member and said input system rotating member, can idle by blocking with rotation input from the input system rotating member to the output system rotating member disengaged from the engagement of the torque transmitting member A second one-way clutch that transmits the reverse rotation input from the output system rotating member to the input system rotating member by the engagement of the torque transmitting member,
Provided between the input system rotating member and the planetary mechanism, the rotational input from the input system rotating member to the planetary mechanism is transmitted by the engagement of the torque transmission member, and the reverse rotation from the output system rotating member to the input system rotating member is performed. on input, comprising a third one-way clutch to be capable of idling state by blocking with rotation input from the input system rotating member to the planetary mechanism disengaged from the engagement of the torque transmitting member,
The planetary mechanism includes an internal gear provided in a stationary system member, a sun gear disposed coaxially with the input system rotation member on the inside thereof, and both of them between the sun gear and the internal gear. A plurality of planetary gears interposed so as to mesh with each other and a carrier that rotatably holds these planetary gears at equal intervals in the circumferential direction. A power transmission device characterized by being connected.
駆動源により回転駆動される入力系回転部材と、
その入力系回転部材から伝達された回転トルクを外部へ取り出すための出力系回転部材と、
前記入力系回転部材からの回転を減速する遊星機構と出力系回転部材との間に設けられ、遊星機構から出力系回転部材への回転入力をトルク伝達部材の係合により伝達し、出力系回転部材から遊星機構への回転逆入力を前記トルク伝達部材の前記係合状態からの離脱でもって遮断することにより空転可能な状態になる第一のワンウェイクラッチと、
前記入力系回転部材と出力系回転部材との間に設けられ、入力系回転部材から出力系回転部材への回転入力をトルク伝達部材の前記係合状態からの離脱でもって遮断することにより空転可能な状態になり、出力系回転部材から入力系回転部材への回転逆入力を前記トルク伝達部材の係合により伝達する第二のワンウェイクラッチと、
前記入力系回転部材と遊星機構との間に設けられ、入力系回転部材から遊星機構への回転入力をトルク伝達部材の係合により伝達し、出力系回転部材から入力系回転部材への回転逆入力時、その入力系回転部材から遊星機構への回転入力を前記トルク伝達部材の前記係合状態からの離脱でもって遮断することにより空転可能な状態になる第三のワンウェイクラッチとを具備し、
前記遊星機構は、静止系部材に設けられた固定輪と、その内側に前記入力系回転部材と同軸上に配設された太陽ローラと、この太陽ローラと前記固定輪との間にそれら両者と圧接する状態で介装された複数の遊星ローラと、これら遊星ローラを円周方向等間隔に回転自在に保持するキャリアとで構成され、前記キャリアを第一のワンウェイクラッチで前記出力系回転部材に連結していることを特徴とする動力伝達装置。
An input system rotating member that is rotationally driven by a driving source;
An output system rotating member for extracting the rotational torque transmitted from the input system rotating member to the outside;
Provided between the planetary mechanism that decelerates the rotation from the input system rotating member and the output system rotating member, and the rotation input from the planetary mechanism to the output system rotating member is transmitted by the engagement of the torque transmission member, and the output system rotates. a first one-way clutch to be capable of idling state by blocking with rotation reverse input to the planetary mechanism disengaged from the engagement of the torque transmitting member from member,
It is provided between the output system rotating member and said input system rotating member, can idle by blocking with rotation input from the input system rotating member to the output system rotating member disengaged from the engagement of the torque transmitting member A second one-way clutch that transmits the reverse rotation input from the output system rotating member to the input system rotating member by the engagement of the torque transmitting member,
Provided between the input system rotating member and the planetary mechanism, the rotational input from the input system rotating member to the planetary mechanism is transmitted by the engagement of the torque transmission member, and the reverse rotation from the output system rotating member to the input system rotating member is performed. on input, comprising a third one-way clutch to be capable of idling state by blocking with rotation input from the input system rotating member to the planetary mechanism disengaged from the engagement of the torque transmitting member,
The planetary mechanism includes a stationary ring provided on a stationary system member, a sun roller disposed coaxially with the input system rotating member on the inside thereof, and both of them between the sun roller and the stationary ring. A plurality of planetary rollers interposed in pressure contact with each other and a carrier that rotatably holds these planetary rollers at regular intervals in the circumferential direction. The carrier is used as the output system rotating member by a first one-way clutch. A power transmission device characterized by being connected.
前記第三のワンウェイクラッチは、入力系回転部材と遊星機構間に配設されたトルク伝達部材を保持し、前記トルク伝達部材の係合・離脱を切り替える保持器を備え、
前記入力系回転部材から前記遊星機構への回転入力により前記保持器でもってトルク伝達部材を係合させて前記入力系回転部材から前記遊星機構への回転入力を伝達し、出力系回転部材から入力系回転部材への回転逆入力時、入力系回転部材に対して保持器を先行して回転させ、その入力系回転部材に先行する保持器の回転でもってトルク伝達部材が前記係合状態から離脱して空転状態となることを特徴とする請求項1又は2に記載の動力伝達装置。
The third one-way clutch holds the torque transmitting member disposed between the input system rotating member and a planetary mechanism includes a retainer for switching the engagement and disengagement of the previous SL torque transmission member,
The torque transmission member is engaged with the cage by the rotation input from the input system rotation member to the planetary mechanism, and the rotation input from the input system rotation member to the planetary mechanism is transmitted, and input from the output system rotation member. At the time of reverse rotation input to the system rotation member, the cage is rotated in advance with respect to the input system rotation member, and the torque transmission member is released from the engaged state by the rotation of the cage preceding the input system rotation member. The power transmission device according to claim 1, wherein the power transmission device is in an idling state .
前記第一のワンウェイクラッチと第三のワンウェイクラッチは、出力系回転部材から入力系回転部材への回転逆入力時、その回転遠心力によりトルク伝達部材が、前記遊星機構に形成されたカム面に非接触可能としたことを特徴とする請求項1乃至3のいずれか一項に記載の動力伝達装置。  In the first one-way clutch and the third one-way clutch, when the rotation reverse input from the output system rotating member to the input system rotating member is performed, the torque transmission member is brought into contact with the cam surface formed in the planetary mechanism by the rotational centrifugal force. The power transmission device according to any one of claims 1 to 3, wherein the power transmission device is non-contactable. 電気自動車用電動発電機の下流側に設置されていることを特徴とする請求項1乃至4のいずれか一項に記載の動力伝達装置。  The power transmission device according to any one of claims 1 to 4, wherein the power transmission device is installed downstream of a motor generator for an electric vehicle.
JP2003188104A 2002-07-04 2003-06-30 Power transmission device Expired - Fee Related JP4429644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188104A JP4429644B2 (en) 2002-07-04 2003-06-30 Power transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002196079 2002-07-04
JP2003188104A JP4429644B2 (en) 2002-07-04 2003-06-30 Power transmission device

Publications (2)

Publication Number Publication Date
JP2004084946A JP2004084946A (en) 2004-03-18
JP4429644B2 true JP4429644B2 (en) 2010-03-10

Family

ID=32071996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188104A Expired - Fee Related JP4429644B2 (en) 2002-07-04 2003-06-30 Power transmission device

Country Status (1)

Country Link
JP (1) JP4429644B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298245A (en) * 2007-06-01 2008-12-11 Advics:Kk Vehicular parking brake device
JP2010077819A (en) * 2008-09-24 2010-04-08 Honda Motor Co Ltd Starting and power generation device for motorcycle

Also Published As

Publication number Publication date
JP2004084946A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
EP0436270B1 (en) Bidirectional differential clutch
JPH0650358A (en) Torque limitter equipped with automatic reset function
JP2010106957A (en) Belt-type continuously variable transmission
JP2003032806A (en) In-wheel motor driving unit and hybrid system
JP4429644B2 (en) Power transmission device
JP2009101723A (en) Oil supply device for driving force transmitting device of hybrid vehicle
JP2010127382A (en) Belt type continuously variable transmission
JPH03264771A (en) Starter device
JP2010018101A (en) Driving force transmission device for hybrid vehicle
JP2004308778A (en) Power transmission device
JP6427199B2 (en) Torque converter
JP2003222204A (en) Power transmission device
JP2009078598A (en) Driving force transmission device of hybrid vehicle
JP2004263760A (en) Power transmission device
JP2000318674A (en) Driving force auxiliary device for bicycle
JP2004263762A (en) One-way clutch unit and one-way clutch
JP2004257536A (en) Power transmission
JP2006342876A (en) Reverse input shutting-off clutch
JP3567592B2 (en) One-way clutch and starter having the same
JP2007162814A (en) One-way clutch built-in type pulley device
CN220570415U (en) Double-speed hub motor capable of tensioning and unlocking
CN114321208B (en) Bidirectional controllable clutch, power assembly and automobile
JP7109356B2 (en) oil pump drive
JPH0384222A (en) Two-way clutch
JP2661667B2 (en) Clutch device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees