JP4429640B2 - Appearance inspection method for weld marks - Google Patents

Appearance inspection method for weld marks Download PDF

Info

Publication number
JP4429640B2
JP4429640B2 JP2003166059A JP2003166059A JP4429640B2 JP 4429640 B2 JP4429640 B2 JP 4429640B2 JP 2003166059 A JP2003166059 A JP 2003166059A JP 2003166059 A JP2003166059 A JP 2003166059A JP 4429640 B2 JP4429640 B2 JP 4429640B2
Authority
JP
Japan
Prior art keywords
metal plate
welding
marks
weld
plate surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003166059A
Other languages
Japanese (ja)
Other versions
JP2005003473A (en
Inventor
偉銘 周
浩巳 広野
泰志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2003166059A priority Critical patent/JP4429640B2/en
Publication of JP2005003473A publication Critical patent/JP2005003473A/en
Application granted granted Critical
Publication of JP4429640B2 publication Critical patent/JP4429640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、金属板(金属箔を含む)同士を重ねて複数箇所の溶接を施して両者を一体化した金属板において、その表面の溶接痕の外観を検査する、溶接痕の外観検査方法に関するものである。
【0002】
【従来の技術】
二枚の金属板(以下、金属箔を含む)を重ね、これをレーザーや超音波等により溶接する方法が種々の分野で使用されている。具体的には、金属箔からなる導体同士を電気的に接続する場合、接続する導体(金属箔)同士の端末を一部重ね合わせ、これにレーザー溶接機や超音波溶接機等により複数点の溶接を施し、両者を接続している。通常、この溶接は碁盤の目状に複数箇所同時に溶接される。
このようにして得られる金属板表面の溶接状態を検査する場合、溶接痕の間隔が極めて狭いため、目視で検査することは不可能である。そこで従来から、これら溶接の状態、すなわち溶接痕全体を例えばカメラなどの撮像手段で撮影し、これをコンピューターで画像処理して良否を判定する方法が種々検討されている。
【0003】
ところで画像処理に際しては、この種の溶接痕がカメラの視野内のどこにくるかは必ずしも一定でないため、まずその溶接痕の位置を見つける必要がある。
【0004】
そこでこの位置を見つける方法の提案として、例えば特許文献1がある。この特許文献1に記載のものは、溶接時に生成される溶接痕の生成位置を、溶接痕を撮影する入力装置により記憶装置に蓄積された濃淡画像に対して3値化処理を行い、垂直方向軸への輝度の度数投影及び水平方向軸への輝度の度数投影を行い、ある度数以上になる位置(範囲)を求めることにより見つける方法である。
【0005】
特許文献1:特開平11−10373号公報
【0006】
しかしながらこの方法の場合、溶接痕の形状が一定でないためパターンの位置を正確に合わせることが難しい。また溶接痕が複数存在する場合には、射影データが積み重なってしまい、正確な溶接痕のパターン位置情報を得ることができない、という問題がある。
【0007】
前述の問題に鑑み本発明の目的は、撮像手段の視野内における溶接痕の位置を合わせる必要がなく、すなわち短時間で検査でき、かつ精度よく溶接痕の外観を検査することのできる、溶接痕の外観検査方法を提供することにある。
【0008】
【課題を解決するための手段】
前記目的を達成すべく本発明は、縦方向及び横方向においてそれぞれ一定のピッチで碁盤の目状に複数の溶接痕が形成されてなる金属板表面にあって、前記溶接痕の外観検査を画像処理を用いて行う溶接痕の外観検査方法において、読み取った金属板表面の画像において、隣接する前記複数の溶接痕の各々の中心を結んで形成される三角形または矩形の領域を単位ブロックとし、前記単位ブロックで前記金属板表面のすべての溶接痕に対して連続的に単位ブロック分割処理を施して前記金属板表面を複数のブロックに分割し、前記分割された前記各ブロック内の画素輝度値の平均値及び積分値を求め、該平均値及び積分値を前記金属板表面の各ブロックの並び順に並べた数列とし、該数列の変化を前記金属板表面の特徴量として抽出する抽出手順を含み前記抽出手順を用いて、予め用意された金属板表面の溶接状態が良好である複数の金属板について金属板表面の前記特徴量を抽出し抽出した前記溶接状態が良好な金属板の前記特徴量の集合体を用いてマハラノビス空間を設定し、前記抽出手順を用いて、検査対象となる前記金属板表面の前記特徴量を抽出し、前記検査対象製品毎に前記特徴量を用いて前記マハラノビス空間とのマハラノビス距離を計算し、該計算されたマハラノビス距離を所定の閾値と比較することにより、前記検査対象である金属板表面の溶接痕の良否を判定することを特徴とする溶接痕の外観判定方法である
【0009】
このようにしてなる本発明によれば、複数の溶接痕の各々の中心を結んで形成される領域を単位ブロックとし、該単位ブロックで前記金属板表面のすべての溶接痕に対して連続的に単位ブロック分割処理を施して複数のブロックに分割しているので、各ブロック内には一定個数の溶接痕が存在するため、背景(ブロック内の溶接痕以外の部分)が一定の特徴を示すと仮定すればブロック全体の特徴を把握することにより溶接痕の特徴を把握することが可能であり、ブロックのサイズで溶接痕の画素ズレによる影響を吸収することができ、従来の方法のもののように溶接痕の正確な位置合わせが不要となる。
【0011】
【発明の実施の形態】
以下に本発明の溶接痕の外観検査方法を図面を参照して詳細に説明する。尚、各図は、金属板1と金属板2を重ねて、これに複数箇所の溶接を施した例を示しているが、いずれも金属板2が下で金属板1が上であることを示している。
【0012】
図1(a)は本発明で基礎となる単位ブロックの形と大きさを示している。2枚重ねた金属板1及び金属板2に対して碁盤の目状に複数の溶接痕3が存在している。ここで碁盤の目状に複数の溶接痕が存在する、とは、横方向及び縦方向に所定のピッチで溶接痕が存在する状態をいい、横方向のピッチと縦方向のピッチは同じであってもよいし、異なるピッチであってもよい。
さていまこの溶接痕3を仮にa、b、c、d、e、f、g・・・・とする。金属板1の表面にあってこれらの溶接痕3のうち横方向の隣接する2つの溶接痕e,fと、この2つの溶接痕e、fのうちの一つ、いまこれを溶接痕eとすると、この溶接痕eを含む縦方向の隣接する2つの溶接痕e、gからなる3つの溶接痕e、f、gの各々の中心を結んで形成される直角三角形、または横方向の隣接する2つの溶接痕a、bとこれら2つの溶接痕a、bと隣接する縦方向の2つの溶接痕c、dとからなる4つの溶接痕a、b、c、dの各々の中心を結んで形成される矩形(この場合は長方形)のいずれかを単位ブロック4とする。
【0013】
前記直角三角形か矩形のいずれを単位ブロック4としてもよいが、以下の実施例では溶接痕a、b、c、dの中心を結んで形成される矩形を単位ブロック4として、金属板1の表面のすべての溶接痕3に対して連続的に単位ブロック分割処理を施し、複数のブロックに分割した。これを図1(b)に示す。
【0014】
ここで図2により本発明では溶接痕3の位置合わせを正確に行う必要がない理由を説明する。
図2が示すように、いま仮に単位ブロック4Aにおいて溶接痕3の画素数を9個とする。この単位ブロック4Aから矢印方向に数画素離れた単位ブロック4Bでの溶接痕3の画素数も9個である。換言すると単位ブロック4Aと単位ブロック4Bは溶接痕3(ここでは溶接痕T)に対して、溶接痕3の画素ズレによる影響がない。すなわちブロックのサイズで溶接痕3の画素ズレを吸収している。尚、図2で小さな升目(図2左辺部の升目5)が1画素を示している。
【0015】
本発明ではこのような原理を利用して、溶接痕3の画像の中から画素と形状のズレによる影響に強い特徴量を抽出して、予め溶接状態が良好のものを基準にして溶接痕3の外観の良否の判定基準を作成し、この判定基準と検査対象製品の特徴量とを比較することで検査対象製品の溶接状態の良否を判定する。
【0016】
図3に溶接状態を判定する溶接痕3のモデル画像を示す。前述したように金属板1と金属板2を重ねて溶接した際形成された複数の溶接痕3が金属板1の表面に碁盤の目状に存在している。これを図1(a)で示したような矩形を単位ブロック4として、この単位ブロック4により金属板1の表面上のすべての溶接痕3に対して連続的に単位ブロック分割処理を施し、複数のブロックに分割した。
【0017】
しかる後、単位ブロック4毎に画素輝度値の平均値と積分値を求めた。求めた平均値と積分値を任意の順番で組み合わせて数列を形成し、この数列の形状を検査対象製品の金属板1表面の特徴量とした。この特徴量抽出の作業の流れを図4のフローチャートに示す。
【0018】
一方、金属板1の表面の溶接状態を判定する場合、予め溶接状態が良好である金属板1を複数枚用意しておき、図5(a)のフローチャートに示す手順に従って溶接状態が良好な製品の特徴量の集合体を形成する。
図5(a)が示すように、これら複数枚の良品の金属板1の表面画像をカメラで撮影してその画像を取り込んで、前述した図4の手順と同様にして矩形の単位ブロック4を用いて、金属板1の表面のすべての溶接痕3に対して連続的に単位ブロック分割処理を施し、各ブロック毎に画素輝度値の平均値と積分値を求めた。求めたこれらの値を図3に示す順番で組み合わせて数列を形成し、この数列の形状を溶接状態が良好な金属板1表面の特徴量の集合体とした。
【0019】
そして前記溶接状態が良好な製品の特徴量の集合体を用いてマハラノビス空間を設定した。
しかる後、図5(b)のフローチャートが示すように、検査対象製品の金属板1の表面から読み取った画像により作成した特徴量、すなわち、図4に示すフローチャートに従って求めた各検査対象製品毎の特徴量を用いて、マハラノビス空間とのマハラノビス距離を計算する。計算したマハラノビス距離を所定の閾値と比較することで金属板1の表面の溶接状態についてその良否を判定する。
【0020】
具体的には、ある検査対象の金属板1の表面画像から得たマハラノビス距離が設定した閾値より大きかった場合には、これを溶接不良と判定し、逆に小さかった場合には、これを良品と判定する。
【0021】
具体的に種々の溶接不良状態に本発明の方法を適用し、その精度を確認した例を図6〜図11で説明する。
まず溶接状態が良好な製品を複数枚用意し、図5(a)のフローチャートに従って溶接状態が良好な製品の特徴量の集合体を形成し、マハラノビス空間を作成した。一方図6〜図11が示すように、溶接状態が良好と思われる製品及び意識的に種々の溶接不良状態を作り出した製品を各々8枚づつ用意した。
【0022】
具体的には図6は溶接状態が良好な製品(事例1)で、図7〜図11は溶接状態が不良な製品である。
因みに、図7は金属板1が一部10が欠けていたため溶接不良を起こした製品(事例2)を示しており、図8は金属板1の表面下方に異物11が付着しているため不良を起こした製品(事例3)を示している。また図9は金属板1の右上方部分に溶接漏れ12が発生した製品(事例4)の状態を示し、図10は全体的に溶接不足の状態を起こした製品(事例5)を示している。
そして図11は金属板1全体が完全に存在しない状態(事例6)、すなわちなんらかの理由で金属板1が金属板2上に乗っていず、金属板2上に溶接をしてしまった状態を示している。
【0023】
前記各事例を示す製品各々8枚について、図5のフローチャートに従って良否判定を行った。その結果を図12に示す。図12が示すように溶接状態が良好な製品を示す事例1は、そのマハラノビス距離が閾値よりも小さいが、溶接不良製品を示す図7〜図11の各事例2〜事例6のものは、いずれもマハラノビス距離が閾値より遥かに大きな値を示していた。このように本発明によれば種々の溶接不良製品を確実に不良と判定できることが確認された。
【0024】
上記実施例では、金属板1表面の溶接の良否判定をマハラノビス空間を設定し、各検査対象製品におけるマハラノビス距離を計算し、その値が閾値より大きいか小さいかで判定を行っているが、例えば図4のフローチャートに従って求めた特徴量を用いて良品のそれとの相関の程度を計算することで溶接状態の良否判定を行ってもよいし、あるいはまた各製品毎にマハラノビス距離を計算することで、求めた値と閾値を比較して溶接状態の良否を判定することもできる。
【0025】
尚、上記実施例で用いた方法、すなわちマハラノビス距離を計算する方法は、通常MTS法(田口メソッド)と呼ばれているものである。
【0026】
尚、前記実施例では隣接する3個または4個の溶接痕の各々の中心を結んで形成される直角三角形または矩形を単位ブロックとしたが、例えば、隣接する6個の溶接痕3の中心を結んで形成される矩形、あるいはそれ以上の溶接痕の各中心を結んで形成される領域を単位ブロックとすることもできる。
【0027】
【発明の効果】
以上述べたように本発明の溶接痕の外観検査方法によれば、撮像手段内の溶接痕の位置を合わせる必要がない。それ故短時間で溶接痕の外観検査ができ、しかも精度よく溶接痕の外観検査、すなわち溶接状態の良否判定をすることができる。
【図面の簡単な説明】
【図1】 本発明の溶接痕の外観検査方法において使用する、単位ブロックの形状及び単位ブロック分割方法の一実施例を示すもので、(a)は単位ブロックの形状を、(b)は単位ブロックによる分割方法を示す図である。
【図2】 本発明において、溶接痕の位置合わせが不要である理由を説明するための図である。
【図3】本発明により溶接状態を判定する溶接痕のモデル画像である。
【図4】本発明に用いる検査対象製品の特徴量抽出の作業の流れを示すフローチャートである。
【図5】本発明による溶接状態の良否を判定する手順を示すフローチャートで、(a)は基準となる溶接状態が良好な製品の特徴量の集合体を形成するフローチャートを、(b)は各検査対象製品の溶接状態を(a)で形成したものと比較することで判定を行う手順を示すフローチャートである。
【図6】本発明の判定精度を確認するために使用した溶接状態が良好な製品の平面図である。
【図7】本発明の判定精度を確認するために使用した溶接状態が不良な製品の一例を示す平面図である。
【図8】本発明の判定精度を確認するために使用した溶接状態が不良な製品の一例を示す平面図である。
【図9】本発明の判定精度を確認するために使用した溶接状態が不良な製品の一例を示す平面図である。
【図10】本発明の判定精度を確認するために使用した溶接状態が不良な製品の一例を示す平面図である。
【図11】本発明の判定精度を確認するために使用した溶接状態が不良な製品の一例を示す平面図である。
【図12】前記図6〜図11の各製品についてマハラノビス距離を計算した結果を示すグラフである。
【符号の説明】
1 金属板
2 金属板
3 溶接痕
4 単位ブロック
11 異物
12 溶接漏れ
[0001]
BACKGROUND OF THE INVENTION
The present invention, for example, inspects the appearance of the weld mark on the surface of a metal plate (including metal foil) that is overlapped with each other and welded at a plurality of locations to integrate the two, and inspects the appearance of the weld mark on the surface. It is about the method.
[0002]
[Prior art]
A method in which two metal plates (hereinafter, including metal foil) are overlapped and welded by laser, ultrasonic waves, or the like is used in various fields. Specifically, when electrically connecting conductors made of metal foil, the terminals of the conductors (metal foil) to be connected are partially overlapped, and a plurality of points are connected to this by a laser welding machine, an ultrasonic welding machine, or the like. Welding and connecting both. Normally, this welding is performed simultaneously at a plurality of locations in a grid pattern.
When inspecting the welded state of the surface of the metal plate thus obtained, the interval between the welding marks is extremely narrow, so that it is impossible to visually inspect. Therefore, various methods have been studied in the past in which these welding states, that is, the entire welding mark is photographed by an imaging means such as a camera, and the quality is judged by image processing using a computer.
[0003]
By the way, in image processing, where this kind of welding mark comes in the field of view of the camera is not always constant, it is necessary to first find the position of the welding mark.
[0004]
Thus, for example, there is Patent Document 1 as a proposal of a method for finding this position. The one described in Patent Document 1 performs a ternarization process on a grayscale image accumulated in a storage device by an input device that captures a welding mark, and generates a welding mark generated at the time of welding in a vertical direction. This is a method of finding a position (range) where a certain frequency or more is obtained by performing luminance frequency projection on the axis and luminance frequency projection on the horizontal axis.
[0005]
Patent Document 1: Japanese Patent Application Laid-Open No. 11-10373
However, in this method, since the shape of the weld mark is not constant, it is difficult to accurately align the position of the pattern. Further, when there are a plurality of welding traces, projection data is accumulated, and there is a problem that accurate pattern position information of the welding traces cannot be obtained.
[0007]
In view of the foregoing problems, the object of the present invention is to eliminate the need to align the position of the welding mark within the field of view of the imaging means, that is, the welding mark that can be inspected in a short time and can accurately inspect the appearance of the welding mark. It is to provide a visual inspection method.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an image of visual inspection of a welding mark on a surface of a metal plate in which a plurality of welding marks are formed in a grid pattern at constant pitches in the vertical and horizontal directions. in appearance inspection method of welding mark performed using processing, the image of the read surface of the metal plate, triangular or rectangular region formed by connecting the centers of each of the plurality of welding marks adjacent to the unit block, said a unit block subjected to continuous unit block division processing for all the welding marks of the metal plate surface by dividing the surface of the metal plate into a plurality of blocks, of the divided pixel intensity values in said each block the average value and the integral value, the average value and the integral value as a sequence of numbers arranged in order of each block of the metal plate surface, to extract the change of said numerical sequence as a feature of the metal plate surface extraction Comprises sequentially using the extraction procedure to extract the feature quantity of the metal sheet surface with a plurality of metal plates welded state of the previously prepared surface of the metal plate is good, a good extracted the welded state set the Mahalanobis space using a set of the feature amount of the metal plate, by using the extraction procedure to extract the feature quantity of the metal plate surface to be inspected, the characteristic amount for each of the inspected products the Mahalanobis distance between the Mahalanobis space is calculated using, by comparing the Mahalanobis distances said calculated with a predetermined threshold, and wherein determining the quality of the weld marks of the metal plate surface is said object This is a method for determining the appearance of weld marks .
[0009]
According to the present invention thus configured, a region formed by connecting the centers of each of the plurality of welding marks is defined as a unit block, and the unit block continuously applies to all the welding marks on the surface of the metal plate. Since the unit block division processing is performed to divide the block into multiple blocks, there is a certain number of welding marks in each block, so the background (the part other than the welding marks in the block) shows certain characteristics. Assuming that it is possible to grasp the characteristics of the welding marks by grasping the characteristics of the entire block, the influence of pixel displacement of the welding marks can be absorbed by the block size, as in the conventional method Accurate alignment of welding marks is not necessary.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The welding mark appearance inspection method of the present invention will be described below in detail with reference to the drawings. In addition, each figure has shown the example which piled up the metal plate 1 and the metal plate 2, and performed the welding of several places to this, but all are that the metal plate 2 is down and the metal plate 1 is up. Show.
[0012]
FIG. 1A shows the shape and size of a unit block that is the basis of the present invention. A plurality of weld marks 3 exist in a grid pattern with respect to the two metal plates 1 and 2 stacked. Here, the presence of a plurality of welding marks in the grid pattern means that there are welding marks at a predetermined pitch in the horizontal and vertical directions, and the horizontal pitch and the vertical pitch are the same. It may be a different pitch.
Let us say that the welding marks 3 are a, b, c, d, e, f, g,. Two welding marks e and f which are adjacent to each other on the surface of the metal plate 1 in the lateral direction among these welding marks 3 and one of the two welding marks e and f, which is now called a welding mark e Then, a right triangle formed by connecting the centers of three welding marks e, f, and g, each consisting of two adjacent welding marks e and g in the vertical direction including the welding mark e, or adjacent in the horizontal direction. The center of each of the four welding marks a, b, c, d, which is composed of the two welding marks a, b and the two welding marks c, d in the longitudinal direction adjacent to the two welding marks a, b, is connected. One of the formed rectangles (in this case, a rectangle) is defined as a unit block 4.
[0013]
Either the right triangle or the rectangle may be used as the unit block 4, but in the following embodiments, the surface of the metal plate 1 is formed by using the rectangle formed by connecting the centers of the welding marks a, b, c and d as the unit block 4. The unit block division processing was continuously performed on all the welding marks 3 of the above and divided into a plurality of blocks. This is shown in FIG.
[0014]
Here, the reason why it is not necessary to accurately align the welding marks 3 in the present invention will be described with reference to FIG.
As shown in FIG. 2, it is assumed that the number of pixels of the welding mark 3 is nine in the unit block 4A. The number of pixels of the welding mark 3 in the unit block 4B that is several pixels away from the unit block 4A in the direction of the arrow is also nine. In other words, the unit block 4 </ b> A and the unit block 4 </ b> B are not affected by the pixel shift of the welding mark 3 with respect to the welding mark 3 (here, the welding mark T). That is, the pixel shift of the welding mark 3 is absorbed by the block size. In FIG. 2, a small cell (a cell 5 on the left side of FIG. 2) indicates one pixel.
[0015]
In the present invention, using such a principle, a feature quantity that is strong against the influence of the pixel and shape deviation is extracted from the image of the weld mark 3, and the weld mark 3 is preliminarily based on a good weld state. A judgment criterion for the quality of the appearance of the product is created, and the quality of the welded state of the product to be inspected is judged by comparing this criterion with the feature quantity of the product to be inspected.
[0016]
FIG. 3 shows a model image of the welding mark 3 for determining the welding state. As described above, a plurality of welding marks 3 formed when the metal plate 1 and the metal plate 2 are overlapped and welded exist on the surface of the metal plate 1 in a grid pattern. A rectangular unit as shown in FIG. 1 (a) is used as a unit block 4, and unit blocks 4 are continuously subjected to unit block division processing for all welding marks 3 on the surface of the metal plate 1 by the unit block 4. Divided into blocks.
[0017]
Thereafter, an average value and an integral value of the pixel luminance values were obtained for each unit block 4. The obtained average value and integrated value were combined in an arbitrary order to form a number sequence, and the shape of this number sequence was used as the feature amount on the surface of the metal plate 1 of the product to be inspected. The flow of this feature amount extraction work is shown in the flowchart of FIG.
[0018]
On the other hand, when determining the welding state of the surface of the metal plate 1, a plurality of metal plates 1 having a good welding state are prepared in advance, and the product having a good welding state in accordance with the procedure shown in the flowchart of FIG. A set of feature quantities is formed.
As shown in FIG. 5A, the surface images of the plurality of non-defective metal plates 1 are taken with a camera and the images are taken in, and the rectangular unit block 4 is formed in the same manner as the procedure of FIG. The unit block division process was continuously performed on all the welding marks 3 on the surface of the metal plate 1 to obtain an average value and an integral value of pixel luminance values for each block. These values thus obtained are combined in the order shown in FIG. 3 to form a number sequence, and the shape of the number sequence is used as an aggregate of feature amounts on the surface of the metal plate 1 in a good welded state.
[0019]
Then, a Mahalanobis space was set by using an assembly of feature quantities of products having a good welded state.
Thereafter, as shown in the flowchart of FIG. 5 (b), the feature amount created from the image read from the surface of the metal plate 1 of the inspection target product, that is, each inspection target product obtained according to the flowchart shown in FIG. The Mahalanobis distance from the Mahalanobis space is calculated using the feature quantity. The quality of the welded state of the surface of the metal plate 1 is determined by comparing the calculated Mahalanobis distance with a predetermined threshold value.
[0020]
Specifically, when the Mahalanobis distance obtained from the surface image of a certain metal plate 1 to be inspected is larger than a set threshold value, it is determined that the welding is defective. Is determined.
[0021]
Specific examples of applying the method of the present invention to various welding defects and confirming the accuracy will be described with reference to FIGS.
First, a plurality of products with good welding conditions were prepared, and an assembly of feature quantities of products with good welding conditions was formed according to the flowchart of FIG. 5 (a) to create a Mahalanobis space. On the other hand, as shown in FIGS. 6 to 11, 8 products each having a product that seems to be in a good welding state and products that consciously created various welding failure states were prepared.
[0022]
Specifically, FIG. 6 shows a product with good welding (case 1), and FIGS. 7 to 11 show products with poor welding.
Incidentally, FIG. 7 shows a product (case 2) in which the metal plate 1 lacked a part 10 and caused poor welding, and FIG. 8 shows a defect because the foreign material 11 is attached below the surface of the metal plate 1. The product (example 3) that caused the problem is shown. FIG. 9 shows the state of a product (case 4) in which a welding leak 12 has occurred in the upper right portion of the metal plate 1, and FIG. 10 shows the product (case 5) in which an overall poor weld state has occurred. .
FIG. 11 shows a state where the entire metal plate 1 does not exist completely (case 6), that is, a state where the metal plate 1 is not on the metal plate 2 for some reason and is welded onto the metal plate 2. ing.
[0023]
A pass / fail judgment was made on each of the eight products showing each case according to the flowchart of FIG. The result is shown in FIG. As shown in FIG. 12, Case 1 showing a product with a good welded state has a Mahalanobis distance smaller than a threshold value, but each of Examples 2 to 6 in FIGS. The Mahalanobis distance was much larger than the threshold. Thus, according to the present invention, it was confirmed that various poorly welded products can be reliably determined as defective.
[0024]
In the above embodiment, whether or not the surface of the metal plate 1 is welded is determined by setting the Mahalanobis space, calculating the Mahalanobis distance in each inspection target product, and determining whether the value is larger or smaller than the threshold. For example, the quality of the welded state may be determined by calculating the degree of correlation with the non-defective product using the feature amount obtained in accordance with the flowchart of FIG. 4, or by calculating the Mahalanobis distance for each product. The quality of the welding state can also be determined by comparing the obtained value with a threshold value.
[0025]
Note that the method used in the above embodiment, that is, the method of calculating the Mahalanobis distance is usually called the MTS method (Taguchi method).
[0026]
In the above embodiment, the unit block is a right triangle or rectangle formed by connecting the centers of the adjacent three or four welding marks, but for example, the centers of the six adjacent welding marks 3 are defined as the unit block. A rectangular block formed by tying, or a region formed by linking the centers of more than one welding mark, can be used as a unit block.
[0027]
【The invention's effect】
As described above, according to the welding mark appearance inspection method of the present invention, it is not necessary to align the position of the welding mark in the imaging means. Therefore, the appearance inspection of the welding mark can be performed in a short time, and the appearance inspection of the welding mark can be accurately performed, that is, the quality of the welding state can be determined.
[Brief description of the drawings]
FIG. 1 shows one embodiment of a unit block shape and a unit block dividing method used in the welding mark appearance inspection method of the present invention, where (a) shows the unit block shape and (b) shows the unit block. It is a figure which shows the division | segmentation method by a block.
FIG. 2 is a diagram for explaining the reason why alignment of welding marks is unnecessary in the present invention.
FIG. 3 is a model image of a welding mark for determining a welding state according to the present invention.
FIG. 4 is a flowchart showing a flow of work for extracting feature quantities of a product to be inspected used in the present invention.
FIG. 5 is a flowchart showing a procedure for determining the quality of a welding state according to the present invention, wherein (a) is a flowchart for forming a set of feature quantities of products having a good welding state as a reference; It is a flowchart which shows the procedure which determines by comparing the welding state of a test object product with what was formed by (a).
FIG. 6 is a plan view of a product having a good welding state used for confirming the determination accuracy of the present invention.
FIG. 7 is a plan view showing an example of a product with a poor welding state used for confirming the determination accuracy of the present invention.
FIG. 8 is a plan view showing an example of a product with a poor welding state used for confirming the determination accuracy of the present invention.
FIG. 9 is a plan view showing an example of a product with a poor weld state used to confirm the determination accuracy of the present invention.
FIG. 10 is a plan view showing an example of a product with a poor welding state used for confirming the determination accuracy of the present invention.
FIG. 11 is a plan view showing an example of a product with a poor weld state used for confirming the determination accuracy of the present invention.
12 is a graph showing the result of calculating the Mahalanobis distance for each product of FIGS. 6 to 11; FIG.
[Explanation of symbols]
1 Metal plate 2 Metal plate 3 Weld mark 4 Unit block 11 Foreign material 12 Weld leakage

Claims (1)

縦方向及び横方向においてそれぞれ一定のピッチで碁盤の目状に複数の溶接痕が形成されてなる金属板表面にあって、前記溶接痕の外観検査を画像処理を用いて行う溶接痕の外観検査方法において、
読み取った金属板表面の画像において、隣接する前記複数の溶接痕の各々の中心を結んで形成される三角形または矩形の領域を単位ブロックとし、
前記単位ブロックで前記金属板表面のすべての溶接痕に対して連続的に単位ブロック分割処理を施して前記金属板表面を複数のブロックに分割し、
前記分割された前記各ブロック内の画素輝度値の平均値及び積分値を求め、該平均値及び積分値を前記金属板表面の各ブロックの並び順に並べた数列とし、該数列の変化を前記金属板表面の特徴量として抽出する抽出手順を含み
前記抽出手順を用いて、予め用意された金属板表面の溶接状態が良好である複数の金属板について金属板表面の前記特徴量を抽出し
抽出した前記溶接状態が良好な金属板の前記特徴量の集合体を用いてマハラノビス空間を設定し、
前記抽出手順を用いて、検査対象となる前記金属板表面の前記特徴量を抽出し、
前記検査対象製品毎に前記特徴量を用いて前記マハラノビス空間とのマハラノビス距離を計算し、該計算されたマハラノビス距離を所定の閾値と比較することにより、前記検査対象である金属板表面の溶接痕の良否を判定する溶接痕の外観判定方法。
Visual inspection of weld marks on the surface of a metal plate in which a plurality of weld marks are formed in a grid pattern at constant pitches in the vertical direction and the horizontal direction, and visual inspection of the weld marks is performed using image processing In the method
In the read image of the surface of the metal plate , a unit block is a triangular or rectangular area formed by connecting the centers of the plurality of adjacent welding marks,
Subjected to continuous unit block division processing for all the welding marks of the metal plate surface in the unit blocks by dividing the metal plate surface into a plurality of blocks,
The average value and the integral value of the divided pixel intensity values in said each block, the mean value and the integral value as a sequence of numbers arranged in order of each block of the metal plate surface, the metal changes in said numerical sequence Including an extraction procedure for extracting as a feature quantity of the plate surface
Using the extraction procedure to extract the feature quantity of previously prepared weld state of the metal plate surface with a plurality of metal plates is good metal plate surface,
It extracted the welding condition to set the Mahalanobis space using a set of the feature amount of good metal plate,
Using the extraction procedure, extract the feature quantity of the surface of the metal plate to be inspected,
Using the feature value for each of the test products to calculate the Mahalanobis distance between the Mahalanobis space, by comparing the Mahalanobis distances said calculated with a predetermined threshold value, weld marks of the metal plate surface is said object A method for determining the appearance of a weld mark for determining the quality of a weld.
JP2003166059A 2003-06-11 2003-06-11 Appearance inspection method for weld marks Expired - Fee Related JP4429640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166059A JP4429640B2 (en) 2003-06-11 2003-06-11 Appearance inspection method for weld marks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003166059A JP4429640B2 (en) 2003-06-11 2003-06-11 Appearance inspection method for weld marks

Publications (2)

Publication Number Publication Date
JP2005003473A JP2005003473A (en) 2005-01-06
JP4429640B2 true JP4429640B2 (en) 2010-03-10

Family

ID=34092315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166059A Expired - Fee Related JP4429640B2 (en) 2003-06-11 2003-06-11 Appearance inspection method for weld marks

Country Status (1)

Country Link
JP (1) JP4429640B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814116B2 (en) * 2007-01-29 2011-11-16 三菱重工業株式会社 Mounting board appearance inspection method
JP5470789B2 (en) * 2007-10-04 2014-04-16 日産自動車株式会社 Ultrasonic bonding monitoring apparatus and method
JP2011232303A (en) * 2010-04-30 2011-11-17 Ricoh Elemex Corp Image inspection method and image inspection device
JP2011232302A (en) * 2010-04-30 2011-11-17 Ricoh Elemex Corp Image inspection method and image inspection device
JP5595247B2 (en) * 2010-11-30 2014-09-24 リコーエレメックス株式会社 Mahalanobis reference space generation method and inspection device
JP5479309B2 (en) * 2010-11-30 2014-04-23 リコーエレメックス株式会社 Mahalanobis reference space generation method, inspection method and inspection apparatus
KR101284852B1 (en) 2011-04-07 2013-07-09 삼성중공업 주식회사 Apparatus for inspecting weld toe grinding and methord thereof
JP6765788B2 (en) * 2015-06-04 2020-10-07 リコーエレメックス株式会社 Image inspection equipment

Also Published As

Publication number Publication date
JP2005003473A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
US6771807B2 (en) Method and system for detecting defects on a printed circuit board
JP7479389B2 (en) Compensating for reference misalignment during component inspection
US20160321797A1 (en) Imaging-based methods for detecting and measuring defects in extruded cellular ceramic articles
JP4429640B2 (en) Appearance inspection method for weld marks
JP4954469B2 (en) Appearance inspection method
JP2005121546A (en) Defect inspection method
JP2006170922A (en) Visual inspection method and its apparatus
JP6960252B2 (en) Maintenance management method for image analyzers and railway equipment parts
JP3443083B2 (en) Method of evaluating dangerous spot information of semiconductor device pattern
JP2006049347A (en) Method and program for detecting component edge and inspection apparatus
US20100044004A1 (en) Fin inspection method of a heat exchanger
JP2010091360A (en) Method and device for inspecting image
JP3857668B2 (en) Pattern alignment method
JP2982617B2 (en) Inspection method of print amount of cream solder
JP2000022326A (en) Apparatus and method for inspecting solder
JP4434116B2 (en) Inspection method for metal foil laminates
JPH0774730B2 (en) Appearance inspection method for soldered parts
JP2536745B2 (en) PCB cut condition inspection method
JP2006329679A (en) Method and device for inspecting product pattern
CN117611528A (en) PCB image detection method and device
CA2397382A1 (en) Method and system for detecting defects on a printed circuit board
JP4130848B2 (en) Pixel inspection method and pixel inspection apparatus
CN116309467A (en) Wafer bonding pad pin point detection method and device, electronic equipment and medium
JPS61288106A (en) Inspecting method for pattern cut width
JPH06265321A (en) Outer shape inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees