JP4429126B2 - Radar equipment - Google Patents

Radar equipment Download PDF

Info

Publication number
JP4429126B2
JP4429126B2 JP2004266726A JP2004266726A JP4429126B2 JP 4429126 B2 JP4429126 B2 JP 4429126B2 JP 2004266726 A JP2004266726 A JP 2004266726A JP 2004266726 A JP2004266726 A JP 2004266726A JP 4429126 B2 JP4429126 B2 JP 4429126B2
Authority
JP
Japan
Prior art keywords
signal
antennas
switch
beat signal
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004266726A
Other languages
Japanese (ja)
Other versions
JP2006084202A5 (en
JP2006084202A (en
Inventor
加奈子 本田
雅夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP2004266726A priority Critical patent/JP4429126B2/en
Publication of JP2006084202A publication Critical patent/JP2006084202A/en
Publication of JP2006084202A5 publication Critical patent/JP2006084202A5/ja
Application granted granted Critical
Publication of JP4429126B2 publication Critical patent/JP4429126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、位相モノパルス方式のレーダ装置における高周波部品の削減および測定精度の向上に関する。   The present invention relates to a reduction in high-frequency components and an improvement in measurement accuracy in a phase monopulse radar device.

ターゲットの方位を決定する手法として、2つのアンテナにおいて受信される反射波の位相差からターゲットの方位を算出する位相モノパルス方式が知られている。位相モノパルス方式などの複数の受信アンテナを用いるレーダ装置では、受信アンテナごとに受信増幅器、ミキサなどの高価な高周波部品を必要とするので、この高周波部品の部品数の削減が求められている。   As a method for determining the azimuth of the target, a phase monopulse method is known in which the azimuth of the target is calculated from the phase difference between reflected waves received by two antennas. In a radar apparatus using a plurality of receiving antennas such as a phase monopulse method, expensive high-frequency components such as a receiving amplifier and a mixer are required for each receiving antenna, and therefore, the number of high-frequency components is required to be reduced.

一方で、位相モノパルス方式では2つのアンテナの受信波の位相比較を行うことから、これらを同時並列的に処理することが求められている。   On the other hand, in the phase monopulse system, since the phase comparison of the received waves of two antennas is performed, it is required to process them simultaneously and in parallel.

したがって本発明の目的は、位相モノパルス方式のレーダ装置の高周波部品の数を削減し、かつ測定精度を向上することにある。   Accordingly, an object of the present invention is to reduce the number of high-frequency components of a phase monopulse radar device and to improve measurement accuracy.

本発明によれば、複数の期間のそれぞれにおいて複数のアンテナのうちの2つのアンテナで受信された受信信号を交互に選択する第1のスイッチと、該第1のスイッチで選択された受信信号に送信信号の一部を混合してビート信号を生成するミキサと、該2つのアンテナの受信信号から生成されたビート信号を2つの処理系へそれぞれ振り分ける第2のスイッチとを具備し、各アンテナの受信信号から生成されたビート信号は、前記複数の期間にわたって双方の処理系へ等しく振り分けられるレーダ装置において、前記複数の期間の各期間毎に、2つの処理系に振り分けられたビート信号に基づいてターゲットの方位を演算する演算手段を備え、該演算手段は、複数の期間の各期間毎に演算されたターゲットの方位の平均値を当該複数の期間におけるターゲットの真の方位とする事を特徴とするレーダ装置が提供される。 According to the present invention, the first switch that alternately selects reception signals received by two of the plurality of antennas in each of the plurality of periods, and the reception signal selected by the first switch A mixer that mixes a part of the transmission signal to generate a beat signal, and a second switch that distributes the beat signal generated from the reception signals of the two antennas to the two processing systems. beat signal generated from the received signal, in equal distribution is the radar device to both of the processing system over a plurality of periods, each period of the plurality of periods, based on the beat signals distributed into two processing systems Computation means for computing the azimuth of the target, the computation means calculates the average value of the azimuth of the target calculated for each period of the plurality of periods Radar apparatus is provided, characterized in that the true azimuth of the definitive target.

図1は本発明の一実施形態に係る車載用FM−CWレーダ装置の構成を示すブロック図である。図1において、電圧制御発振器(VCO)10から出力される、三角波でFM変調された送信信号は送信増幅器14で増幅されサーキュレータ16を経て、アンテナAT0,AT1,AT2のうちスイッチ22で選択されたものから送出される。受信も同様に、3本のアンテナAT0,AT1,AT2のうちスイッチ22で選択されたものが用いられる。   FIG. 1 is a block diagram showing a configuration of an in-vehicle FM-CW radar apparatus according to an embodiment of the present invention. In FIG. 1, a transmission signal which is output from a voltage controlled oscillator (VCO) 10 and is FM-modulated with a triangular wave is amplified by a transmission amplifier 14, passes through a circulator 16, and is selected by a switch 22 among antennas AT 0, AT 1 and AT 2. Sent from things. Similarly, for reception, the antenna selected from the three antennas AT0, AT1, AT2 by the switch 22 is used.

選択されたアンテナで受信された受信信号はサーキュレータ16を経て受信増幅器26で増幅され、ミキサ28において送信波の一部と混合されて、ビート信号が生成される。ミキサ28において生成されたビート信号は、スイッチ30により図中上下の2つの系のいずれかに振り分けられ、A/Dコンバータ32においてディジタル信号に変換され、高速フーリエ変換されて(34)CPU36へ入力される。ミキサ31は、信号SWRで送受をスイッチングしているためにビート信号に重畳される周波数を同じ周波数と混合することでキャンセルするために設けられている。   The reception signal received by the selected antenna is amplified by the reception amplifier 26 via the circulator 16 and mixed with a part of the transmission wave in the mixer 28 to generate a beat signal. The beat signal generated in the mixer 28 is distributed to one of the two upper and lower systems in the figure by the switch 30, converted into a digital signal by the A / D converter 32, fast Fourier transformed (34), and input to the CPU 36. Is done. The mixer 31 is provided for canceling the frequency superimposed on the beat signal by mixing it with the same frequency because the transmission / reception is switched by the signal SWR.

図2は図1の電圧制御発振器10へ入力される三角波の波形を示し、図3の(A)〜(C)欄はそれぞれ、図2のA〜Cで示す区間における制御信号SWT,SWR,SW0,SW1,SW2の波形を示し、図3の(D)欄はスイッチ30の制御信号CHの波形を(A)〜(C)欄と同じタイムスケール、同じタイミングで示す。なお、図2の横軸のタイムスケールは図3と比べて著しく圧縮されている。   FIG. 2 shows a waveform of a triangular wave input to the voltage controlled oscillator 10 of FIG. 1, and columns (A) to (C) in FIG. 3 respectively show control signals SWT, SWR, The waveforms of SW0, SW1, and SW2 are shown. The (D) column in FIG. 3 shows the waveform of the control signal CH of the switch 30 with the same time scale and the same timing as the (A) to (C) columns. Note that the time scale on the horizontal axis in FIG. 2 is significantly compressed as compared with FIG.

図2に示される三角波の最初の周期、すなわち区間Aにおいては、図3(A)からわかるように、AT0による送信→AT0による受信→送信→AT1による受信が繰り返される。そして図3(D)からわかるように、AT0の受信信号によるビート信号は図1のスイッチ30により図中上側の系に振り分けられ、AT1の受信信号によるビート信号は図中下側の系に振り分けられ、並列的に処理される。すなわち、区間Aにおいては、受信アンテナAT0,AT1の受信信号から生成された、三角波の上り区間および下り区間におけるビート信号のデータが収集される。これらのフーリエ変換結果に現われるピークの周波数はターゲットとの距離および相対速度の演算に用いられ、ピークの位相はアンテナAT0とAT1による位相モノパルスの演算に用いられる。   In the first period of the triangular wave shown in FIG. 2, that is, in section A, transmission by AT0 → reception by AT0 → transmission → reception by AT1 is repeated as can be seen from FIG. As can be seen from FIG. 3D, the beat signal based on the AT0 received signal is distributed to the upper system in the figure by the switch 30 in FIG. 1, and the beat signal based on the AT1 received signal is distributed to the lower system in the figure. And processed in parallel. That is, in the section A, beat signal data in the up and down sections of the triangular wave generated from the reception signals of the receiving antennas AT0 and AT1 are collected. The peak frequency appearing in these Fourier transform results is used for the calculation of the distance to the target and the relative speed, and the peak phase is used for the calculation of the phase monopulse by the antennas AT0 and AT1.

図2に示される三角波の次の周期、すなわち区間Bにおいては、図3(B)からわかるように、AT0による送信→AT1による受信→AT0による送信→AT2による受信が繰り返される。そして図3(D)からわかるように、AT1の受信信号によるビート信号は図1のスイッチ30により図中上側の系に振り分けられ、AT2の受信信号によるビート信号は図中下側の系に振り分けられ、並列的に処理される。すなわち、区間Bにおいては、受信アンテナAT1,AT2の受信信号から生成された、三角波の上り区間および下り区間におけるビート信号のデータが収集される。これらのフーリエ変換結果に現われるピークの周波数はターゲットとの距離および相対速度の演算に用いられ、ピークの位相はアンテナAT1とAT2による位相モノパルスの演算に用いられる。   In the next period of the triangular wave shown in FIG. 2, that is, the section B, as can be seen from FIG. 3B, transmission by AT0 → reception by AT1 → transmission by AT0 → reception by AT2 is repeated. As can be seen from FIG. 3D, the beat signal based on the AT1 received signal is distributed to the upper system in the figure by the switch 30 in FIG. 1, and the beat signal based on the AT2 received signal is distributed to the lower system in the figure. And processed in parallel. That is, in the section B, beat signal data in the up and down sections of the triangular wave generated from the reception signals of the receiving antennas AT1 and AT2 are collected. The peak frequency appearing in these Fourier transform results is used for the calculation of the distance to the target and the relative velocity, and the peak phase is used for the calculation of the phase monopulse by the antennas AT1 and AT2.

図2に示される三角波のさらに次の周期、すなわち区間Cにおいては、図3(C)からわかるように、AT0による送信→AT2による受信→AT0による送信→AT0による受信が繰り返される。そして図3(D)からわかるように、AT2の受信信号によるビート信号は図1のスイッチ30により図中上側の系に振り分けられ、AT0の受信信号によるビート信号は図中下側の系に振り分けられ、並列的に処理される。すなわち、区間Cにおいては、受信アンテナAT2,AT0の受信信号から生成された、三角波の上り区間および下り区間におけるビート信号のデータが収集される。これらのフーリエ変換結果に現われるピークの周波数はターゲットとの距離および相対速度の演算に用いられ、ピークの位相はアンテナAT2とAT0による位相モノパルスの演算に用いられる。   In the further next period of the triangular wave shown in FIG. 2, that is, in section C, transmission by AT0 → reception by AT2 → transmission by AT0 → reception by AT0 is repeated, as can be seen from FIG. As can be seen from FIG. 3D, the beat signal based on the AT2 received signal is distributed to the upper system in the figure by the switch 30 in FIG. 1, and the beat signal based on the AT0 received signal is distributed to the lower system in the figure. And processed in parallel. That is, in section C, beat signal data in the up and down sections of the triangular wave generated from the reception signals of the receiving antennas AT2 and AT0 is collected. The frequency of the peak appearing in these Fourier transform results is used for the calculation of the distance to the target and the relative velocity, and the phase of the peak is used for the calculation of the phase monopulse by the antennas AT2 and AT0.

上記のようにアンテナAT0によるビート信号は区間Aにおいては上側の処理系において処理され、区間Cにおいては下側の処理系において処理される。アンテナAT1によるビート信号は区間Aにおいては下側の処理系において、区間Bにおいては上側の処理系において処理される。アンテナAT2によるビート信号は区間Bにおいては下側の処理系において、区間Cにおいては上側の処理系において処理される。すなわち、各アンテナによるビート信号が両方の処理系へ等しく振り分けられるように切り換えシーケンスが設計されているので、以下に説明するように各処理系に使われている部品のバラツキ等による誤差を吸収することができる。   As described above, the beat signal from the antenna AT0 is processed in the upper processing system in the section A, and is processed in the lower processing system in the section C. The beat signal from the antenna AT1 is processed in the lower processing system in the section A and in the upper processing system in the section B. The beat signal from the antenna AT2 is processed in the lower processing system in the section B and in the upper processing system in the section C. In other words, since the switching sequence is designed so that the beat signal from each antenna is equally distributed to both processing systems, as described below, errors due to variations in the parts used in each processing system are absorbed. be able to.

区間A,B,Cの三角波の上昇区間における結果から計算されるターゲットの方位θup,A,θup,B,θup,Cは、

Figure 0004429126
で計算される。ただし、dijはアンテナATiとATjの間隔、φiはアンテナATiについてのフーリエ変換結果に出現する反射波のピークにおける複素数値の偏角である。 Target orientations θ up, A , θ up, B , θ up, C calculated from the results in the rising section of the triangular wave in sections A, B , C are:
Figure 0004429126
Calculated by Here, d ij is the distance between the antennas AT i and AT j , and φ i is the complex-valued declination angle at the peak of the reflected wave that appears in the Fourier transform result for the antenna AT i .

同様にして区間A,B,Cの三角波の下降区間についてもθdown,A,θdown,B,θdown,Cが計算され、これらの平均値をターゲットの方位θとする。 Similarly, θ down, A , θ down, B , θ down, C are calculated for the descending sections of the triangular wave in the sections A, B, and C, and the average value thereof is set as the target direction θ.

ここで2つの処理系における回路誤差をe1,e2とすると、式(1)は

Figure 0004429126
となり、アンテナと処理系のすべての組み合わせが網羅されているので、回路誤差による位相検出精度への影響を削減することができる。 Here, if the circuit errors in the two processing systems are e1 and e2, Equation (1) is
Figure 0004429126
Thus, since all combinations of the antenna and the processing system are covered, the influence on the phase detection accuracy due to the circuit error can be reduced.

本発明の一実施形態に係る車載用FM−CWレーダ装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the vehicle-mounted FM-CW radar apparatus which concerns on one Embodiment of this invention. 三角波による変調波を示す波形図である。It is a wave form diagram which shows the modulation wave by a triangular wave. 図1の各制御信号の波形を示す波形図である。It is a wave form diagram which shows the waveform of each control signal of FIG.

Claims (1)

連続する複数の期間のそれぞれにおいて3つ以上のアンテナのうち2つのアンテナで受信された受信信号を交互に選択する第1のスイッチと、
該第1のスイッチで選択された受信信号に送信信号の一部を混合してビート信号を生成するミキサと、
該2つのアンテナの受信信号から生成されたビート信号を2つの処理系へそれぞれ振り分ける第2のスイッチとを具備し、
各アンテナの受信信号から生成されたビート信号は、前記連続する複数の期間にわたって双方の処理系へ等しい回数で振り分けられるレーダ装置において、
2つの処理系に振り分けられたビート信号のフーリエ変換結果の位相差に基づいて前記期間毎にターゲットの方位を取得するための演算手段を備え、
該演算手段は、前記期間毎に演算された各ターゲットの方位の平均値を当該複数の期間におけるターゲットの真の方位とすることを特徴とするレーダ装置。
In each successive plurality of time periods, a first switch for selecting the received signal received by the two antennas among the more than two antennas alternately,
A mixer that generates a beat signal by mixing a part of the transmission signal with the reception signal selected by the first switch;
A second switch that distributes the beat signals generated from the reception signals of the two antennas to the two processing systems,
Beat signal generated from the received signal of each antenna in the radar apparatus is distributed by the number of times that is equal to both the processing system over a plurality of periods in which the successive
Computation means for obtaining the azimuth of the target for each period based on the phase difference of the Fourier transform result of the beat signal distributed to the two processing systems,
The radar device according to claim 1, wherein the arithmetic means sets an average value of the azimuths of the targets calculated for each period as a true azimuth of the target in the plurality of periods.
JP2004266726A 2004-09-14 2004-09-14 Radar equipment Expired - Fee Related JP4429126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004266726A JP4429126B2 (en) 2004-09-14 2004-09-14 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004266726A JP4429126B2 (en) 2004-09-14 2004-09-14 Radar equipment

Publications (3)

Publication Number Publication Date
JP2006084202A JP2006084202A (en) 2006-03-30
JP2006084202A5 JP2006084202A5 (en) 2007-07-05
JP4429126B2 true JP4429126B2 (en) 2010-03-10

Family

ID=36162841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004266726A Expired - Fee Related JP4429126B2 (en) 2004-09-14 2004-09-14 Radar equipment

Country Status (1)

Country Link
JP (1) JP4429126B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913646B2 (en) * 2007-03-26 2012-04-11 富士通テン株式会社 Radar apparatus, radar apparatus control apparatus, radar apparatus control program, and radar apparatus control method

Also Published As

Publication number Publication date
JP2006084202A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
US7812759B2 (en) Radar apparatus for detection position information of a target by receiving reflection signals reflected by the target with a plurality of reception antennas
JP4905457B2 (en) Radar target detection method and radar apparatus using the target detection method
JP4769684B2 (en) Electronic scanning radar equipment
JP4769596B2 (en) Electronic scanning radar equipment
US6859168B2 (en) Radar apparatus
JP4098311B2 (en) Electronic scanning millimeter wave radar apparatus and computer program
JP3821688B2 (en) Radar equipment
US20110122013A1 (en) Radar apparatus
JPH11133142A (en) Fm-cw radar
JP2009121826A (en) Electronic scanning type radar device
JP3753071B2 (en) Radar
JP2000075028A (en) Mobile dbf radar
US20200182993A1 (en) Object detection device, object detection method, and sensor device
JP3865761B2 (en) Radar equipment
JP2002071793A (en) Radar device
JP4763002B2 (en) Electronic scanning millimeter wave radar apparatus and computer program
JP4429126B2 (en) Radar equipment
JP2006078388A (en) Radar system
JP2010112749A (en) Radar apparatus
JP6239150B2 (en) Radar equipment
KR20200053222A (en) Radar apparatus and radar signal processing method for precise measurement of distance, angular velocity
KR102235571B1 (en) Range Resolution enhancement method using low cost multi radar
US11022676B2 (en) Filter apparatus and target detection apparatus
JP4736172B2 (en) Radar signal processing circuit
JP2751616B2 (en) Radar signal processing method and apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4429126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees