JP4428773B2 - Self-priming centrifugal pump - Google Patents

Self-priming centrifugal pump Download PDF

Info

Publication number
JP4428773B2
JP4428773B2 JP28478599A JP28478599A JP4428773B2 JP 4428773 B2 JP4428773 B2 JP 4428773B2 JP 28478599 A JP28478599 A JP 28478599A JP 28478599 A JP28478599 A JP 28478599A JP 4428773 B2 JP4428773 B2 JP 4428773B2
Authority
JP
Japan
Prior art keywords
chamber
water
impeller
air
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28478599A
Other languages
Japanese (ja)
Other versions
JP2001107884A (en
Inventor
穣二 中田
Original Assignee
株式会社荻原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荻原製作所 filed Critical 株式会社荻原製作所
Priority to JP28478599A priority Critical patent/JP4428773B2/en
Publication of JP2001107884A publication Critical patent/JP2001107884A/en
Application granted granted Critical
Publication of JP4428773B2 publication Critical patent/JP4428773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給湯器の中に組み込まれて風呂の追い焚き用の循環ポンプ等に使用される自吸式遠心ポンプに関する。
【0002】
【従来の技術】
従来より、小型の自吸式遠心ポンプとしては、図6に示す如く、モータハウジング10の駆動マグネット円盤11側の継ぎ合わせ端面に隔壁板12を挟んでインペラケーシング13を重ね合わせ、更にそのインペラケーシング13の継ぎ合わせ端面に金属製仕切り板14及びガスケット板9を挟んでエンドケーシング15を重ね合わせて取付ボルト(図示せず)等で相互連結した積層型構造となっている。隔壁板12に植立した固定軸16には従動マグネット円盤17を内蔵した遠心型インペラ(羽根車)18が回動自在に嵌め込まれており、駆動マグネット円盤11と従動マグネット円盤17とが隔壁板12を間においてマグネットカップリングを構成しており、モータ駆動によるモータシャフト19の回転によって隔壁板12を隔てて遠心型インペラ18が回転被動する。
【0003】
インペラケーシング13は、図7(A)に示す如く、下部に円弧部を持つ略矩形枠型であり、複数の渦巻き羽根18a及び前面シュラウド18bを持つ遠心型インペラ18を収容した円盤状空洞部のインペラ室20と、インペラ室20からその周囲壁21の上方接線方向に延び、インペラ18による遠心流をインペラ室20から斜め上方へ導出する斜向案内流路22と、その斜向案内流路22の放口22bから勢い良く放射される気水混合流を上部反跳障壁21aに激突させて水を下方へ跳ね返し、空気と水を分離する気水分離室23を有している。
【0004】
エンドケーシング15もインペラケーシング13の外形輪郭に合致するように下部に円弧部を持つ略矩形枠型であり、上部左右に突設した吸入接手24及び吐出接手25と、インペラ18のボス部を押さえて抜け止めする筒状のボス押さえ26と、吸入接手24からの吸い込み流体(水又は空気)を吸入するための吸入室27と、筒状のボス押さえ26及びその周りの開環状隔壁28で区画され、吸入室27の下部から吸い込み流体を仕切り板14の丸形流通口(第1の流通口)14aを介してインペラ室20に収まる遠心型インペラ18の中央部(羽根輻輳部)へ案内するための環状導入部29と、呼び水を貯留し、仕切り板14の呼び水流通口(第4の流通口)14bを介してインペラ室20へ呼び水を供給するための水溜空間30を持ち、インペラケーシング13の気水分離室23で分離された空気や揚水時の吐出水を仕切り板14の上部流通口(第2の流通口)14cを介して吐出接手25に吐き出すための吐出室31とを有している。仕切り板14にはインペラケーシング13の気水分離室23で分離された分離水をエンドケーシング15の下部の水溜空間30に戻すための還流口(第3の流通口)14dが上部流通口14cより下部に形成されている。なお、32は水溜空間30の呼び水が凍結しないように呼び水を抜くための水抜き口である。
【0005】
ポンプ始動(自吸運転)時には、水溜空間30の呼び水にインペラ18が浸漬しているため、水と空気とが混合した遠心流は斜向案内流路22を介して放口22aから上部反跳障壁21aに衝突し、空気は上部流通口14cを介して吐出接手25へ送り出されると共に、分離水は気水分離室23内を落下して還流口14dを介して水溜空間30に戻る。このような気水分離による空気の排気と呼び水の回収との繰り返しにより、吸入接手24に接続する管路内が負圧化するため、吸送(揚水)運転に移行し、遠心流は斜向案内流路22から上部流通口14cを介して吐出接手25へ圧送される。なお、図中の矢印Wは水の流れを示す。
【0006】
ところで、インペラケーシング13においては、下部に位置する円盤状空洞部のインペラ室20に対して上部に斜向案内流路22が配置されているため、図7(A)に示す如く、この斜向案内流路22に対しその上側隔壁22aを挟んだ右側隅部は周囲壁21に囲まれたデッドスペースとしての袋部室33となっている。空洞を穿った袋部室33を形成する理由は、インペラケーシング13の樹脂成形時の樹脂厚のヒケによる歪み変形を防止し、周囲壁21や斜向案内流路22の隔壁の頂端面の平坦化を図り、仕切り板14との合わせ隙間を無くすためである。なお、袋部室33の内部にはリブ(図示せず)が形成されている。
【0007】
【発明が解決しようとする課題】
しかしながら、上記の自吸式遠心ポンプにあっては、次のような問題点があった。
【0008】
▲1▼ 揚水運転時には、斜向案内流路22に圧力流体が流れるため、斜向案内流路22の隔壁に仕切り板14を押し当て合わせた防水構造では、斜向案内流路22から上側隔壁22aと仕切り板14の合わせ面に発生する僅少な隙間を介して水が袋部室33へ徐々に滲み出し、袋部室33の空洞に水が滞留する。このため、垢,塵埃や入浴剤等の微細物が袋部室33に堆積し易い。
【0009】
▲2▼ 長期間ポンプを使用しない場合は、水抜き口32から水溜空間30の呼び水を排水するものであるが、袋部室33に滞留した水は自然落下せずに溜まったままとなっている。このため、寒冷時には袋部室33の滞留水が凍結し易い。
【0010】
▲3▼ ポンプの通水検査の際にも袋部室33内に水が溜まるが、給湯器等の中に組み込む際には衝撃等で袋部室33の残水が零れ出し、取付作業性の低下を招く虞れがある。
【0011】
ところで、このように仕切り板を合わせた防水構造では、揚水運転時に斜向案内流路から合わせ隙間を介して袋部室へ水が不可避的に侵入するものであるが、その侵入を防止するためにシール材を案内流路の上側隔壁の頂端面にあてがい、水密構造を採用することができる。しかしながら、部品点数の増加や組み付け作業が煩雑になる。
【0012】
そこで、上記問題点に鑑み、本発明の課題は、部品点数の増加を招くことなく、ポンプ運転停止時に袋部室内に水が滞留するのを防止できる構造の自吸式遠心ポンプを提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するため、本発明の講じた第1の手段は、袋部室の水抜き経路を設けたものである。
【0014】
即ち、本発明は、吸入口に連通する吸入室と、吐出口に連通し下部に水溜空間を持つ吐出室とを有する第1のケース、吸入室に連通し内部に遠心型インペラを収めるインペラ室と、遠心型インペラによる遠心流をインペラ室から斜め上方へ導出する斜向案内流路と、斜向案内流路に対しその下側隔壁を挟んで位置しており、斜向案内流路の放口に臨んだ上部反跳障壁を具備する気水分離室と、斜向案内流路に対しその上側隔壁を挟んで上部隅部に位置する袋部室とを有する第2のケース、並びに、重ね合わせた第1のケースと第2のケースとの間に挟まれており、吸入室とインペラ室とを連通する第1の流通口と、上部で気水分離室と吐出室とを連通する第2の流通口と、下部で気水分離室と水溜空間とを連通する第3の流通口と、水溜空間とインペラ室とを連通する第4の流通口とを有する仕切板を備える自吸式遠心ポンプにおいて、仕切板は、上部で吐出室と袋部室とを連通する第5の流通口を有し、第2のケースは、上側隔壁の下部に袋部室とインペラ室とを連通する第1の切欠きを有して成ることを特徴とする。
【0015】
揚水運転時には斜向案内流路から上側隔壁と仕切り板との合わせ隙間を介して袋部室へ水が不可避的に侵入し、また第5の流通口を介して袋部室に水が溜まってしまうが、ポンプ運転を停止すると、吐出接手から吐出室、第5の流通口を介して空気が袋部室に自然と連通するため、袋部室内に溜まった水は第1の切欠きを介してインペラ室へ呼び水として戻るので、袋部室の水の滞留を防止することができる。このため、袋部室での微細物の堆積や凍結を防止でき、また、ポンプ組付け時での漏水が起こらず、作業性を高めることができる。更に、仕切板に第5の流通口を形成し、第2のケースに第1の切欠きを形成するだけで済むことから、部品点数の増加を招かずに済み、低コスト化も実現できる。
【0016】
ここで、第2のケースが、上側隔壁の上部に斜向案内流路と袋部室とを連通する第2の切欠きを有して成る場合、上記袋部室の滞留水の水抜き作用だけでなく、袋部室自身が第2の気水分離機能を発揮する。即ち、自吸運転時には、気水混合の遠心流が斜向案内流路を流れるが、この遠心流はその放口から上部反跳壁を有する気水分離室へ放射されると同時に、その一部が第2の切欠きを介して袋部室内へ入り込むため、袋部室に入った気水混合流のうち気泡(空気)は第5の流通口を介して吐出接手へ抜き去られると共に、気水混合流の水は袋部室内を流れ落ちて第1の切欠きを介してインペラ室へ呼び水として戻される。従って、この袋部室は、際立った反跳障壁を有していないものの、気水の比重による自然分離で第2の気水分離室に相当している。このため、自吸性能が向上する。
【0017】
仕切り板に第5の流通口を形成せず、第2のケースに第1の切欠きと第2の切欠きを形成した構成でも差し支えない。袋部室に入った気水混合流の空気を抜き去る第5の流通口は形成されていないものの、袋部室内の空気は上部に空気溜まりとして残り、分離水だけが第1の切欠きを介してインペラ室へ戻る。かかる場合、袋部室は自吸運転時には消極的な第2の気水分離室と呼び水の帰還経路に相当しているが、ポンプ運転を停止すると、第2の切欠きを介して空気が袋部室に自然と連通するため、袋部室内に溜まった水は第1の切欠きを介してインペラ室へ呼び水として戻るので、袋部室の滞留を防止することができる。
【0018】
第2の切欠きは、例えば上側隔壁の放口側付け根部分に形成する。本来の上部反跳壁を持つ気水分離室に属さない領域である。自吸運転時、斜向案内流路の上側隔壁に沿って圧送される気水混合流の一部が放口側付け根部分の第2の切欠きを回り込んで袋部室へ侵入する。放口から放射直前の気水混合流の一部が侵入すため、斜向案内流路の実質的な流動抵抗が高まらずに済む。実験によると、放口側付け根部分よりも下側に第2の切欠きを形成した場合でも、ほとんど自吸性能及び揚水性能に変化は認められなかった。斜向案内流路の上側隔壁に沿って離散的に複数の第2の切欠きを形成しても構わない。揚水時には袋部室内が満水化しており、袋部室からインペラ室へ還流する水量は第1の切欠きにより絞り抵抗で限定されているため、複数の第2の切欠きを形成しても揚水時の斜向案内流路の流動抵抗はさほど高くならない。むしろ、自吸時には呼び水の帰還速度が高まる。
【0019】
第2の切欠きは、上部反跳障壁に沿って形成されていることが適切である。上側隔壁に沿って圧送される気水混合流の方向とは鋭角に第2の切欠きが交差し、遠心流の成分に向かい合わないため、上側隔壁に沿う気水混合流のうち一部返し流が袋部室に侵入するようになるので、第2の切欠き自身が局部的な気水選別部となり、気泡を逃がしながら水を袋部室へ取り込む傾向のある気水分離作用を果たし、自吸性能が高まる。
【0020】
第1の切欠きは、例えば、上側隔壁のうちインペラ室の掻き出し口側の付け根部分に形成する。袋部室から第1の切欠きを介してインペラ室の掻き出し口近傍に帰還した水は遠心型インペラの渦巻き状羽根の円周端による周期的な掻き出し圧(脈圧)に遭遇するため、羽根円周端が第1の切欠きを横切る直後に帰還水がインペラ室に流入し、殆ど水溜空間に帰還せずに、流入した直後の後続の羽根円周端の掻き出しにより再び掻き出し口を介して斜向案内流路へ圧送される。このため、呼び水量の一部は、インペラ室の掻き出し口近傍→斜向案内流路→第2の切欠き→袋部室→第1の切欠き→インペラ室の掻き出し口近傍、の循環系を形成することになるが、羽根円周端が第1の切欠きを横切る直後に帰還水が掻き出し口近傍に引き込まれるため、掻き出し口を塞ぐようになるので、その分、斜向案内流路に一旦押し出された気泡流の引き戻し力が弱まり、斜向案内流路での気泡排送能率が高まり、自吸性能が向上するものと考えられる。羽根円周端の1羽送り毎に第1の切欠きから掻き出し口近傍に引き込まれる帰還水流が斜向案内流路を上昇する気泡流のための同期的な水膜エスケープメント(逆止め)として作用しているものと考えられる。
【0021】
第1の切欠きは上部反跳障壁に対して平行に形成されている。上側隔壁に沿う遠心流の方向とは鋭角に第2の切欠きが交差し、遠心流の成分に向かい合わないため、自吸運転時においても袋部室からインペラ室への水抜きを確実に行うことができ、自吸性能の向上及び水切り騒音の低減を図ることができる。
【0022】
上記から明らかなように、袋部室を積極的に第2の気水分離室として利用するところに着目し、本発明はこれを敷衍し、袋部室に拘泥せず、第2の手段として、上部反跳障壁を持つ第1の気水分離室に対して補足的な第2の気水分離室ないし案内経路の流積自動縮小手段を講じたところにある。
【0023】
本来的な気水分離室(第1の気水分離室)は、インペラ室からの遠心流(気泡流)を案内流路を介して上部反跳障壁に衝突せしめることにより、反跳の際の気泡同士の会合頻度を高めて気団を再生すると同時に、水の反跳方向と空気の上昇方向との行く手違いによる気水分離を行うものであるが、上部反跳障壁(偏向壁)に到達する以前の案内経路途中の気泡流に対して、単純な気水の比重分離でも静的な気水分離を行うことができるものである。
【0024】
自吸運転時の気水分離作用は、管路中の空気の排気と呼び水の回収の意義があるが、呼び水量が多いと、気泡捕捉率が高くなるため、高自吸性能となる。インペラは呼び水を攪拌して気泡を絡めるように気泡流を生成し、斜向案内流路へ掻き出すものである。自吸運転初期でインペラ室内の空気を追い出し、負圧化することが必要である。呼び水量が少ないと、少ない量の気泡流が斜向案内流路の上側隔壁の表層に沿って上昇するが、下側隔壁の側に空気層が残ってインペラ室と斜向案内流路の放口とが気圧的に連通しており、斜向案内流路において空気に対する逆止弁作用が発生せず、インペラ室の負圧化が起こらない。ここで、斜向案内流路の流路断面積(流積)が細い場合、呼び水量が過少でも、インペラ室で生じた少ない量の気泡流がこの細い斜向案内流路を満杯状態で上昇することになるため、細い斜向案内流路においては空気に対する上記の逆止弁作用が生じ、インペラ室がやがて負圧化して自吸作用が発生するものである。しかし、揚水運転時に移行した際は斜向案内流路の流動抵抗が高く、揚水性能が低い。また、自吸運転では第1の気水分離室の上部反跳障壁で反跳した呼び水は水溜空間に帰還するが、帰還ループが長いことから水溜空間に残る実質的な呼び水量は少なくなり、気泡流が少なくなるため、上記の逆止弁作用がより一層発生し難くなる。
【0025】
そこで、本発明の第2の手段は、呼び水量が少ないときでも、揚水性能を落とすことなく、自吸作用を確実に開始できるように、自吸運転時には呼び水を案内経路の上側隔壁の掻き出し口近傍からその上側隔壁に沿って上部まで流し、これを還流させることにより、自吸運転時にはインペラ室からの気泡流のための案内経路の流積を実質的に窄め、空気に対する逆止弁作用を起こさせ、自吸作用を達成するものである。
【0026】
即ち、本発明は、水溜空間の呼び水に浸漬する遠心型インペラを回転自在に軸支し、吸入口に連通するインペラ室と、遠心型インペラによる遠心流をインペラ室から導出する案内流路と、案内流路の放口に臨む上部反跳障壁を有し、放口から放射された気水混合水を気水分離し、その分離水を前記水溜空間へ戻すと共にその分離気体を吐出口へ出す第1の気水分離室とを備える自吸式遠心ポンプにおいて、案内流路上を放口へ流動する気水混合水の一部を上部取水部から取水して気水分離し、その分離水を下部水抜き部を介して案内流路の上側隔壁のうちインペラ室内の掻き出し口側の付け根部分へ抜く第2の気水分離室を有して成ることを特徴とする。
【0027】
かかる構成によれば、自吸運転時には、上部取水部から取水された呼び水が第2の気水分離室,下部水抜き部を介してインペラ室内の案内経路の上側隔壁の掻き出し口近傍に戻るため、その戻った呼び水は案内経路の上側隔壁に沿って再び上昇する。このため、上側隔壁の表面を流動する呼び水の層の分だけ、インペラ室からの気泡流のための案内経路の流積が実質的に窄められるので、呼び水量が少なくても、案内経路における空気に対する逆止弁作用が起こり、インペラ室が負圧化し、自吸作用を開始することができる。やがて揚水運転に移行した場合は、第2の気水分離室も満水化し、第2の気水分離室を介する還流が実質的に消滅するので、揚水性能には遜色ない。呼び水は案内流路の上下端部間を循環的し、ループ長が最短であるため、その還流する呼び水量は少なくて済む。
【0028】
第2の気水分離室からインペラ室へ戻る還流水が案内経路のバイアス流を形成するものであるが、案内経路の路程のうちどの部分で上記の水膜逆止弁作用が顕在化しているかが興味深い。案内経路の最小流積部分(狭窄部)か、掻き出し口と推察できる。しかし、上側隔壁を伝わり昇る帰還流の層厚は一様でないと考えられるし、また案内経路の狭窄部は掻き出し口側に相当すると一般に言えることから、インペラの羽根円周端の1羽送り毎に下部水抜き部から掻き出し口近傍に引き込まれる帰還水流が案内流路を上昇する気泡流のための同期的な水膜逆止弁作用を掻き出し口近傍にて生じているものと考えられる。
【0029】
また、ポンプ運転を停止した場合は、第2の気水分離室の滞留水はインペラ室に水落ちするため、本発明の当初の課題も達成できる。
【0030】
なお、上部取水部は第1の手段における第1の切欠きと、下部水抜き部は第1の手段における第2の切欠きと、それぞれ同様な態様で形成しても良い。
【0031】
第2の気水分離室がその上部で空気抜き部を介して吐出室に連通して成る場合、自吸運転時に第2の気水分離室で分離された空気が空気抜き部を介して抜き去られるため、気水分離作用が旺盛化し、自吸性能の向上が期待できる。
【0032】
【発明の実施の形態】
次に、本発明の実施形態を添付図面に基づいて説明する。
【0033】
〔第1実施形態〕
図1(A)は本発明の第1実施形態に係る自吸式遠心ポンプにおけるインペラケーシングを示す平面図、図1(B)は同自吸式遠心ポンプにおけるエンドケーシングを裏返して見た平面図、図1(C)は同自吸式遠心ポンプにおける仕切り板を裏返して見た平面図、図2(A)は同インペラケーシングを拡大して示す平面図、図2(B)は図2(A)のA−A線に沿って切断した状態を示す断面矢視図である。なお、図1及び図2において、図6及び図7に示す部分と同一部分には同一参照符号を付し、その説明は省略する。
【0034】
本例の自吸式遠心ポンプは、図6及び図7に示す従来ポンプと同様な構成であるが、仕切板14は、丸形流通口(第1の流通口)14a、上部流通口(第2の流通口)14c、還流口(第3の流通口)14d及び水流通口(第4の流通口)14bの外、上部で吐出室31と袋部室33とを連通する空気抜き口(第5の流通口)14eを有している。他方、インペラケーシング13は、上側隔壁22aの下部に袋部室33とインペラ室20とを連通する第1の切欠き33aを有している。第1の切欠き33aは、上側隔壁22aのうちインペラ室20の掻き出し口20a側の付け根部分に形成されており、その方向は遠心流の掻き出し方向1に鋭角で交差する方向(上部反跳壁21aの沿面方向)となっている。本例ではこの第1の切欠き33aの切欠き深さを図2(B)に示す如く上側隔壁22aの高さの数分の1程度に浅く形成してある。
【0035】
このように袋部室33が空気抜き口(第5の流通口)14eと第1の切欠き33aを有する構成においても、揚水運転時には斜向案内流路22から上側隔壁22aと仕切り板14との合わせ隙間を介して袋部室33へ水が不可避的に侵入することもあろうが、吐出室31の水が空気抜き口(第5の流通口)14eを介して袋室部33内を満水化する。しかし、ポンプ運転を停止すると、吐出接手25から吐出室31、空気抜き口(第5の流通口)14eを介して空気が袋部室33に自然と連通するため、袋部室33内に溜まった水は第1の切欠き33aを介してインペラ室20へ呼び水として戻るので、袋部室33の水の滞留を防止することができる。
【0036】
このため、袋部室33での微細物の堆積や凍結を防止でき、また、ポンプ組付け時での漏水が起こらず、作業性を高めることができる。更に、仕切板14に他の流通口と同時に空気抜き口(第5の流通口)14eを打ち抜きプレスし、インペラケーシング13の成形時に第1の切欠き33aを同時に形成するだけで済むことから、部品点数の増加を招かずに済み、ポンプの低コスト化も実現できる。
【0037】
自吸運転時においては、空気抜き口(第5の流通口)14eを介して袋部室33へ侵入する僅かの呼び水が第1の切欠き33aを介してインペラ室20に早く戻るため、自吸作用が高まる。第1の切欠き33aの切欠き深さを上側隔壁22aの高さに比し浅くしてあるため、その還流がインペラ18の羽根円周端に当たらないので、水切り騒音を抑制することができる。なお、第1の切欠き33aの切欠き深さを深くし、第1の切欠き33aからインペラ室20に流入する還流水が後続の羽根円周端に掻き出させるようにすると、その還流水が掻き出し口20aに水膜逆止弁として機能するので、案内経路22へ一旦押し出させた気泡流の引き戻しを弱めることができ、自吸性能を向上させることができる。
【0038】
〔第2実施形態〕
図3(A)は本発明の第2実施形態に係る自吸式遠心ポンプにおけるインペラケーシングを示す平面図、図3(B)は同自吸式遠心ポンプにおけるエンドケーシングを裏返して見た平面図、図3(C)は同自吸式遠心ポンプにおける仕切り板を裏返して見た平面図、図4(A)は同インペラケーシングを拡大して示す平面図、図4(B)は図4(A)のA−A線に沿って切断した状態を示す断面矢視図である。なお、図3及び図4において、図6及び図7に示す部分と同一部分には同一参照符号を付し、その説明は省略する。
【0039】
本例の自吸式遠心ポンプも、図1及び図2に示す第1実施形態に係るポンプと同様な構成であるが、空気抜き口(第5の流通口)14eと第1の切欠き(下部水抜き部)33aとを有する外、上側隔壁22aの上部に斜向案内流路22と袋部室33とを連通する第2の切欠き(上部取水部)33bを有している。この第2の切欠き33bは、上側隔壁22aの放口22b側付け根部分に形成されており、その方向は上部反跳障壁21aの境界面に沿う方向になっている。本例ではこの第2の切欠き33bの切欠き深さを図4(B)に示す如く上側隔壁22aの高さの数分の1程度に浅く形成してある。
【0040】
このように第2の切欠き33bを有して成る場合、袋部室33の滞留水の水抜き作用だけでなく、袋部室33自身が第2の気水分離機能を発揮する。即ち、自吸運転時には、気水混合の遠心流が斜向案内流路22を流れるが、この遠心流はその放口22bから上部反跳壁21aを有する気水分離室23へ放射されると同時に、その一部が第2の切欠き33bを介して袋部室33内へ入り込むため、袋部室33に入った気水混合流のうち気泡(空気)は空気抜き口(第5の流通口)14eを介して吐出接手25へ抜き去られると共に、気水混合流の水は袋部室33内を流れ落ちて第1の切欠き33aを介してインペラ室20へ呼び水として戻される。従って、この袋部室33は、際立った反跳障壁を有していないものの、気水の比重による自然分離で第2の気水分離室に相当している。このため、第1実施形態に比し、自吸性能が向上する。
【0041】
第2の切欠き33bは、上側隔壁22aの放口22b側付け根部分に形成されているが、実験によると、放口22b側付け根部分よりも下側に第2の切欠き33bを形成した場合でも、ほとんど自吸性能及び揚水性能に変化は認められなかった。
【0042】
第2の切欠き33bの方向は、上部反跳障壁21aの境界面に沿う方向である。上側隔壁22aに沿って圧送される気水混合流の方向とは鋭角に第2の切欠き33bが交差し、遠心流の成分に向かい合わないため、上側隔壁22aに沿う気水混合流のうち一部返し流が袋部室33に侵入するようになるので、第2の切欠き33b自身が局部的な気水選別部となり、気泡を逃がしながら水を袋部室33へ取り込む傾向のある気水分離作用を果たし、自吸性能が高まる。
【0043】
本例でも、羽根円周端の1羽送り毎に第1の切欠き33aから掻き出し口20a近傍に引き込まれる帰還水流が斜向案内流路22を上昇する気泡流のための同期的な水膜エスケープメント(逆止め)として作用しているものと考えられる。
【0044】
〔第3実施形態〕
図5(A)は本発明の第3実施形態に係る自吸式遠心ポンプにおけるインペラケーシングを拡大して示す平面図、図5(B)は図5(A)のA−A線に沿って切断した状態を示す断面矢視図である。なお、図5において、図6及び図7に示す部分と同一部分には同一参照符号を付し、その説明は省略する。
【0045】
本例の自吸式遠心ポンプも、図3及び図4に示す第2実施形態に係るポンプと同様な構成であるが、第2実施形態における空気抜き口(第5の流通口)14eを削除した構成となっている。なお、図5に示す袋部室33に横方向2条の補強リブ33cが形成されているが、このようなリブは第1及び第2実施形態も具備するものである。
【0046】
このように、袋部室33に第1の切欠き(上部取水部)33aと第2の切欠き33bを有する構成においても、第2実施形態と同様に、袋部室33は運転停止時に水抜き作用を発揮すると共に、自吸運転時に気水分離作用を発揮する。
【0047】
なお、上記実施形態においては袋部室33の水抜き作用を主眼とし第1の切欠き33aを浅く形成してあるが、気水分離作用を旺盛化するには、水切り騒音の顕在化しない程度に深く形成しても良いし、また切欠き幅を広くしても良い。第2の切欠き33bも浅く形成してあるが、深く形成しても良いし、細い切欠きを離散的に複数個形成しても良い。
【0048】
【発明の効果】
以上説明したように、本発明は、第1に袋部室の水抜き経路を設けたことに特長があり、また第2に袋部室等を利用して第2の気水分離室を構成したことに特長を有するものであるから、次の効果を奏する。
【0049】
▲1▼ 揚水運転時に仕切り板との合わせ隙間等から袋部室に水が貯留しても、ポンプ運転停止時にはその袋部室からインペラ室へ自然に水落ちするため、袋部室の水の滞留を防止することができる。このため、袋部室での微細物の堆積や凍結を防止でき、また、ポンプ組付け時での漏水が起こらず、作業性を高めることができる。更に、仕切板に第5の流通口を形成し、第2のケースに第1や第2のの切欠きを形成するだけで済むことから、部品点数の増加を招かずに済み、低コスト化も実現できる。
【0050】
▲2▼ 袋部室又はそれ以外の部分に第2の気水分離室を具備するため、揚水運転時に第2の気水分離室に水が貯留しても、ポンプ運転停止時にはその第2の気水分離室からインペラ室へ自然に水落ちするため、第2の気水分離室の水の滞留を防止することができるので、上記▲1▼と同様の効果を得ることができる。
【0051】
▲3▼ 第1の気水分離室の上部反跳障壁による気水分離作用に加え、袋部室等の第2の気水分離室における気水の比重分離や呼び水の循環時間の短い還流による案内経路の水膜逆止弁作用などが重畳するため、自吸性能の向上を図ることができる。
【図面の簡単な説明】
【図1】(A)は本発明の第1実施形態に係る自吸式遠心ポンプにおけるインペラケーシングを示す平面図、(B)は同自吸式遠心ポンプにおけるエンドケーシングを裏返して見た平面図、(C)は同自吸式遠心ポンプにおける仕切り板を裏返して見た平面図である。
【図2】(A)は第1実施形態のインペラケーシングを拡大して示す平面図、(B)は(A)のA−A線に沿って切断した状態を示す断面矢視図である。
【図3】(A)は本発明の第2実施形態に係る自吸式遠心ポンプにおけるインペラケーシングを示す平面図、(B)は同自吸式遠心ポンプにおけるエンドケーシングを裏返した見た平面図、(C)は同自吸式遠心ポンプにおける仕切り板を裏返した見た平面図である。
【図4】(A)は第2実施形態のインペラケーシングを拡大して示す平面図、(B)は(A)のA−A線に沿って切断した状態を示す断面矢視図である。
【図5】(A)は第3実施形態のインペラケーシングを拡大して示す平面図、(B)は(A)のA−A線に沿って切断した状態を示す断面矢視図である。
【図6】従来の自吸式遠心ポンプを示す一部縦断面図である。
【図7】(A)は図6のA−A線に沿って見た状態を示すインペラケーシングの平面図、(B)は図6のB−B線に沿って見た状態を示すエンドケーシングの平面図、(C)は図6のB−B線に沿って見た状態を示す仕切り板の平面図である。
【符号の説明】
1…遠心流の掻き出し方向(案内経路の方向)
9…ガスケット板
10…モータハウジング(駆動室ケース)
11…駆動マグネット円盤
12…隔壁板
13…インペラケーシング
14…金属製仕切り板
14a…丸形流通口(第1の流通口)
14b…呼び水流通口(第4の流通口)
14c…上部流通口(第2の流通口)
14d…還流口(第3の流通口)
14e…空気抜き口(第5の流通口)
15…エンドケーシング(ポンプカバー)
16…固定軸
17…従動マグネット円盤
18…遠心型インペラ(羽根車)
18a…渦巻き羽根
18b…前面シュラウド
19…モータシャフト
20…インペラ室
21…周囲壁
21a…上部反跳障壁
22…斜向案内流路
22a…上側隔壁
22b…放口
23a…気水分離室
24…吸入接手
25…吐出接手
26…ボス押さえ
27…吸入室
28…開環状隔壁
29…環状導入部
30…水溜空間
31…吐出室
33…袋部室
33a…第1の切欠き(下部水抜き部)
33b…第2の切欠き(上部取水部)
33c…補強リブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a self-priming centrifugal pump that is incorporated in a water heater and used for a circulation pump for bathing or the like.
[0002]
[Prior art]
Conventionally, as a small self-priming centrifugal pump, as shown in FIG. 6, an impeller casing 13 is overlapped with a partition plate 12 sandwiched between a splicing end face of a motor housing 10 on the drive magnet disk 11 side, and the impeller casing is further overlapped. 13 has a laminated structure in which the end casing 15 is overlapped with the metal partition plate 14 and the gasket plate 9 and is interconnected with mounting bolts (not shown). A centrifugal type impeller (impeller) 18 incorporating a driven magnet disk 17 is rotatably fitted to the fixed shaft 16 planted on the partition plate 12, and the drive magnet disk 11 and the driven magnet disk 17 are connected to the partition plate. A magnet coupling is configured with 12 interposed therebetween, and the centrifugal impeller 18 is rotationally driven across the partition plate 12 by the rotation of the motor shaft 19 driven by the motor.
[0003]
As shown in FIG. 7A, the impeller casing 13 has a substantially rectangular frame shape having a circular arc portion at the lower portion, and is a disk-shaped cavity portion containing a centrifugal impeller 18 having a plurality of spiral blades 18a and a front shroud 18b. An impeller chamber 20, an oblique guide channel 22 extending from the impeller chamber 20 in the upward tangential direction of the peripheral wall 21, and guiding the centrifugal flow by the impeller 18 obliquely upward from the impeller chamber 20, and the oblique guide channel 22 An air-water separation chamber 23 is provided for separating the air and the water by causing the air-water mixed flow radiated vigorously from the outlet 22b to collide with the upper recoil barrier 21a and splash the water downward.
[0004]
The end casing 15 also has a substantially rectangular frame shape having an arc portion at the lower part so as to match the outer contour of the impeller casing 13, and holds down the suction joint 24 and the discharge joint 25 projecting from the upper left and right, and the boss part of the impeller 18. And a cylindrical boss presser 26 for retaining it, a suction chamber 27 for sucking a suction fluid (water or air) from the suction joint 24, a cylindrical boss presser 26 and an open annular partition wall 28 around it. Then, the suction fluid is guided from the lower portion of the suction chamber 27 to the central portion (blade converging portion) of the centrifugal impeller 18 that is accommodated in the impeller chamber 20 via the circular flow port (first flow port) 14 a of the partition plate 14. And a water reservoir space 30 for storing priming water and supplying priming water to the impeller chamber 20 via the priming water circulation port (fourth circulation port) 14b of the partition plate 14. The discharge chamber 31 for discharging the air separated in the steam / water separation chamber 23 of the impeller casing 13 and the discharge water at the time of pumping to the discharge joint 25 through the upper flow port (second flow port) 14c of the partition plate 14. And have. The partition plate 14 has a return port (third flow port) 14d for returning the separated water separated in the steam / water separation chamber 23 of the impeller casing 13 to the water reservoir space 30 below the end casing 15 from the upper flow port 14c. It is formed at the bottom. Reference numeral 32 denotes a water drain port for draining the priming water so that the priming water in the water reservoir space 30 does not freeze.
[0005]
When the pump is started (self-priming operation), since the impeller 18 is immersed in the priming water of the water storage space 30, the centrifugal flow in which water and air are mixed rebounds upward from the outlet 22a via the oblique guide channel 22. Colliding with the barrier 21a, air is sent out to the discharge joint 25 through the upper circulation port 14c, and the separated water falls in the steam-water separation chamber 23 and returns to the water storage space 30 through the reflux port 14d. By repeating the exhaust of air and the recovery of the priming water due to such air-water separation, the inside of the pipe connected to the suction joint 24 becomes negative pressure. It is pumped from the guide channel 22 to the discharge joint 25 through the upper flow port 14c. In addition, the arrow W in a figure shows the flow of water.
[0006]
By the way, in the impeller casing 13, since the oblique guide flow path 22 is disposed at the upper part with respect to the impeller chamber 20 of the disk-shaped cavity portion located at the lower part, as shown in FIG. The right corner of the guide channel 22 sandwiching the upper partition wall 22a is a bag chamber 33 as a dead space surrounded by the peripheral wall 21. The reason for forming the bag chamber 33 having a hollow is to prevent distortion deformation due to the sink of the resin thickness when the impeller casing 13 is molded, and to flatten the top end face of the partition wall of the peripheral wall 21 and the oblique guide channel 22. This is because the gap between the partition plate 14 and the partition plate 14 is eliminated. A rib (not shown) is formed inside the bag portion chamber 33.
[0007]
[Problems to be solved by the invention]
However, the above self-priming centrifugal pump has the following problems.
[0008]
(1) At the time of pumping operation, since the pressure fluid flows through the oblique guide channel 22, in the waterproof structure in which the partition plate 14 is pressed against the partition wall of the oblique guide channel 22, the upper partition wall extends from the oblique guide channel 22. Water gradually oozes out into the bag portion chamber 33 through a slight gap generated on the mating surface of 22a and the partition plate 14, and the water stays in the cavity of the bag portion chamber 33. For this reason, fine substances such as dirt, dust and bathing agents are likely to accumulate in the bag portion chamber 33.
[0009]
(2) When the pump is not used for a long period of time, the priming water in the water storage space 30 is drained from the water drain port 32, but the water staying in the bag chamber 33 remains collected without falling naturally. . For this reason, at the time of cold, the staying water in the bag part chamber 33 is easily frozen.
[0010]
(3) Water is accumulated in the bag chamber 33 even during the pump water flow inspection, but when it is installed in a water heater or the like, the remaining water in the bag chamber 33 begins to spill out due to impact or the like, and the installation workability is reduced. There is a risk of inviting.
[0011]
By the way, in the waterproof structure in which the partition plates are combined in this way, water inevitably enters the bag room from the oblique guide flow path through the alignment gap during the pumping operation. A sealing material can be applied to the top end face of the upper partition wall of the guide channel, and a watertight structure can be adopted. However, the increase in the number of parts and the assembly work become complicated.
[0012]
Therefore, in view of the above problems, an object of the present invention is to provide a self-priming centrifugal pump having a structure capable of preventing water from staying in the bag chamber when the pump is stopped without causing an increase in the number of parts. It is in.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the first means taken by the present invention is to provide a drainage path for the bag chamber.
[0014]
That is, the present invention provides a first case having a suction chamber that communicates with a suction port, and a discharge chamber that communicates with the discharge port and has a water reservoir space in the lower portion, and an impeller chamber that communicates with the suction chamber and houses a centrifugal impeller therein. And an oblique guide channel for guiding the centrifugal flow generated by the centrifugal impeller obliquely upward from the impeller chamber, and a lower partition with respect to the oblique guide channel. A second case having an air-water separation chamber having an upper recoil barrier facing the mouth, and a bag chamber positioned at an upper corner of the oblique guide channel with its upper partition interposed therebetween, and an overlapping A first communication port that communicates between the suction chamber and the impeller chamber, and a second fluid communication between the air / water separation chamber and the discharge chamber at the top. , A third circulation port communicating the steam-water separation chamber and the water reservoir space at the bottom, and a water reservoir space In the self-priming centrifugal pump including a partition plate having a fourth flow port communicating with the impeller chamber, the partition plate has a fifth flow port communicating with the discharge chamber and the bag portion chamber at the upper portion, The second case is characterized by having a first notch communicating the bag portion chamber and the impeller chamber at the lower portion of the upper partition.
[0015]
During the pumping operation, water inevitably enters the bag part chamber from the oblique guide channel through the gap between the upper partition wall and the partition plate, and water accumulates in the bag part chamber through the fifth circulation port. When the pump operation is stopped, the air naturally communicates with the bag portion chamber from the discharge joint through the discharge chamber and the fifth flow port, so that the water accumulated in the bag portion chamber passes through the first notch and the impeller chamber. Since it returns as priming water, it is possible to prevent water from staying in the bag chamber. For this reason, accumulation and freezing of fine objects in the bag part chamber can be prevented, and water leakage does not occur when the pump is assembled, thereby improving workability. Furthermore, since it is only necessary to form the fifth flow port in the partition plate and form the first notch in the second case, the number of parts does not increase, and the cost can be reduced.
[0016]
Here, in the case where the second case has a second notch communicating the oblique guide channel and the bag part chamber at the upper part of the upper partition, only the draining action of the stagnant water in the bag part chamber can be achieved. In addition, the bag chamber itself performs the second air / water separation function. That is, during the self-priming operation, the centrifugal flow of the air-water mixture flows through the oblique guide channel, and this centrifugal flow is radiated from the outlet to the air-water separation chamber having the upper recoil wall, and at the same time, Since the part enters the bag part chamber through the second notch, air bubbles (air) in the air-water mixed flow entering the bag part room are extracted to the discharge joint through the fifth circulation port, and The water of the water mixed flow flows down in the bag part chamber and returns to the impeller chamber as priming water through the first notch. Therefore, although this bag part chamber does not have an outstanding recoil barrier, it corresponds to the second air-water separation chamber by natural separation based on the specific gravity of the water. For this reason, self-priming performance improves.
[0017]
There may be a configuration in which the fifth notch is not formed in the partition plate and the first notch and the second notch are formed in the second case. Although the fifth distribution port for removing the air of the air-water mixed flow that has entered the bag portion chamber is not formed, the air in the bag portion remains as an air reservoir in the upper portion, and only the separated water passes through the first notch. Return to the impeller room. In such a case, the bag chamber corresponds to a return path for the second air-water separation chamber and the priming water that is passive during the self-priming operation, but when the pump operation is stopped, the air is passed through the second notch to the bag chamber. Therefore, the water accumulated in the bag chamber returns to the impeller chamber as priming water through the first notch, so that the bag chamber can be prevented from staying.
[0018]
The second notch is formed, for example, at the outlet side root portion of the upper partition. It is an area that does not belong to the air-water separation chamber with the original upper recoil wall. During the self-priming operation, a part of the air-water mixed flow pumped along the upper partition wall of the oblique guide flow channel enters the bag chamber by passing around the second notch at the outlet side base portion. Since a part of the air-water mixed flow immediately before radiation enters from the outlet, the substantial flow resistance of the oblique guide channel does not need to be increased. According to the experiment, even when the second cutout was formed below the outlet side root portion, almost no change was observed in the self-priming performance and the pumping performance. A plurality of second notches may be discretely formed along the upper partition of the oblique guide channel. Since the interior of the bag portion is full during pumping, the amount of water returning from the bag chamber to the impeller chamber is limited by the drawing resistance due to the first notch, so even when a plurality of second notches are formed, The flow resistance of the oblique guide channel is not so high. Rather, the return speed of priming water increases during self-priming.
[0019]
Second notch Kiha , Upper recoil barrier Be formed along Is appropriate. Since the second notch intersects at an acute angle with the direction of the air-water mixed flow fed along the upper partition and does not face the centrifugal flow component, part of the return flow of the air-water mixed flow along the upper partition Will enter the bag compartment, so the second notch itself will become a local air / water separator, and will perform the air / water separation action that tends to take water into the bag compartment while escaping air bubbles. Will increase.
[0020]
The first cutout is formed, for example, in the base portion of the upper partition wall on the scraper opening side of the impeller chamber. Since the water returned from the bag chamber through the first notch to the vicinity of the scraping opening of the impeller chamber encounters periodic scraping pressure (pulse pressure) due to the circumferential end of the spiral blade of the centrifugal impeller, the blade circle Immediately after the peripheral edge crosses the first cutout, the return water flows into the impeller chamber, hardly returns to the water reservoir space, and is inclined again through the discharge port by the scraping of the subsequent peripheral edge of the blade immediately after flowing in. It is pumped to the direction guide channel. For this reason, a part of the priming water volume forms a circulation system in the vicinity of the impeller chamber scraping outlet → the oblique guide channel → the second notch → the bag portion chamber → the first notch → the vicinity of the impeller chamber scraping port. However, immediately after the circumferential edge of the blade crosses the first notch, the return water is drawn into the vicinity of the raking port, so that the raking port is blocked. It is considered that the pulling-back force of the extruded bubble flow is weakened, the bubble discharging efficiency in the oblique guide channel is increased, and the self-priming performance is improved. As a synchronous water film escapement (non-return) for the bubbly flow in which the return water flow drawn from the first notch to the vicinity of the scraping port every time the blade circumferential edge feeds up the slant guide channel It is thought that it is acting.
[0021]
First cutout Kiha , Formed parallel to the upper recoil barrier . Since the second notch intersects the direction of the centrifugal flow along the upper partition wall at an acute angle and does not face the centrifugal flow component, water must be reliably drained from the bag chamber to the impeller chamber even during self-priming operation. It is possible to improve self-priming performance and reduce draining noise.
[0022]
As apparent from the above, the present invention pays attention to the fact that the bag part chamber is positively used as the second air-water separation chamber, and the present invention lays this out and does not restrict the bag part chamber. The second air / water separation chamber or the guide channel automatic reduction means for supplementing the first air / water separation chamber having the recoil barrier is provided.
[0023]
The original air / water separation chamber (first air / water separation chamber) is configured so that the centrifugal flow (bubble flow) from the impeller chamber collides with the upper recoil barrier via the guide flow path, so that While air bubbles are regenerated by increasing the frequency of air bubble association, air-water separation is performed by the mistake of the water recoil direction and the air rising direction, but it reaches the upper recoil barrier (deflection wall). Static air-water separation can be carried out even with simple specific gravity separation of the bubble flow in the middle of the previous guide path.
[0024]
The air-water separation action during the self-priming operation has the significance of exhausting the air in the pipe and collecting the priming water. However, if the amount of priming water is large, the bubble trapping rate becomes high, so that high self-priming performance is achieved. The impeller stirs the priming water to generate a bubble flow so as to entangle the bubbles and scrapes it out to the oblique guide channel. In the initial stage of self-priming operation, it is necessary to expel the air in the impeller chamber and make it negative pressure. When the amount of priming water is small, a small amount of bubble flow rises along the surface layer of the upper partition wall of the oblique guide channel, but an air layer remains on the side of the lower partition wall and the impeller chamber and the oblique guide channel are released. The opening communicates with the air at a pressure, so that a check valve action against air does not occur in the oblique guide flow path, and negative pressure in the impeller chamber does not occur. Here, when the channel cross-sectional area (flow product) of the oblique guide channel is thin, even if the priming water amount is too small, a small amount of bubble flow generated in the impeller chamber rises in a state where the narrow oblique guide channel is full. For this reason, in the narrow oblique guide channel, the above-described check valve action with respect to the air occurs, and the impeller chamber eventually becomes negative pressure to generate a self-priming action. However, when shifting during the pumping operation, the flow resistance of the oblique guide channel is high and the pumping performance is low. In the self-priming operation, the priming water recoiled by the upper recoil barrier of the first air-water separation chamber returns to the basin space, but since the return loop is long, the substantial priming water remaining in the basin space is reduced, Since the bubble flow is reduced, the check valve action is more difficult to occur.
[0025]
Therefore, the second means of the present invention is to draw the priming water from the upper partition wall of the guide path during the self-priming operation so that the self-priming action can be reliably started without degrading the pumping performance even when the priming water amount is small. By flowing from the vicinity to the upper part along the upper partition wall and refluxing it, the self-priming operation substantially constricts the flow of the guide path for the bubble flow from the impeller chamber, and the check valve action against air To achieve a self-priming action.
[0026]
That is, the present invention rotatably supports a centrifugal impeller immersed in priming water in a water reservoir space, and rotatably supports an impeller chamber that communicates with a suction port, and a guide channel that leads a centrifugal flow from the impeller chamber from the impeller chamber; It has an upper recoil barrier facing the outlet of the guide channel, separates the air / water mixed water radiated from the outlet, returns the separated water to the water storage space and discharges the separated gas to the outlet. In a self-priming centrifugal pump comprising a first air / water separation chamber, a part of the air / water mixed water that flows on the guide channel to the outlet is taken from the upper intake portion to separate the air and water, and the separated water is It has the 2nd air-water separation chamber extracted from the upper partition of a guide channel to the root part by the side of the discharge port in an impeller chamber through a lower drainage part.
[0027]
According to such a configuration, during the self-priming operation, the priming water taken from the upper intake portion returns to the vicinity of the scraping opening of the upper partition wall of the guide path in the impeller chamber via the second steam separation chamber and the lower drainage portion. The returned priming water rises again along the upper partition wall of the guide path. For this reason, the flow volume of the guide path for the bubble flow from the impeller chamber is substantially constricted by the amount of the priming water that flows on the surface of the upper partition wall. A check valve action with respect to air occurs, the impeller chamber becomes negative pressure, and a self-priming action can be started. When the operation is shifted to the pumping operation, the second air / water separation chamber is also filled with water, and the reflux through the second air / water separation chamber is substantially eliminated. Since the priming water circulates between the upper and lower ends of the guide channel and the loop length is the shortest, the amount of priming water to be recirculated is small.
[0028]
The reflux water returning from the second steam-water separation chamber to the impeller chamber forms a bias flow of the guide path. In which part of the guide path, the water film check valve action is manifested. Is interesting. It can be inferred that it is the minimum flow-portion part (constriction part) of the guide path or the scraping port. However, it is considered that the layer thickness of the return flow that rises along the upper partition is not uniform, and it can be generally said that the narrowed portion of the guide path corresponds to the scraping port side. It is considered that the return water flow drawn from the lower drainage portion to the vicinity of the raking port causes a synchronous water film check valve action for the bubble flow rising up the guide channel in the vicinity of the raking port.
[0029]
Further, when the pump operation is stopped, the accumulated water in the second steam separation chamber falls into the impeller chamber, so that the original problem of the present invention can be achieved.
[0030]
In addition, you may form an upper water intake part in the 1st notch in a 1st means, and a lower water drain part in the 2nd notch in a 1st means, respectively, respectively.
[0031]
When the second air / water separation chamber communicates with the discharge chamber via the air vent at the upper part, the air separated in the second air / water separation chamber is removed via the air vent during the self-priming operation. For this reason, the air-water separation action is vigorous, and improvement in self-priming performance can be expected.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
[0033]
[First Embodiment]
FIG. 1 (A) is a plan view showing an impeller casing in the self-priming centrifugal pump according to the first embodiment of the present invention, and FIG. 1 (B) is a plan view of the end casing in the self-priming centrifugal pump as seen upside down. FIG. 1C is a plan view of the self-priming centrifugal pump viewed from the inside up, FIG. 2A is an enlarged plan view of the impeller casing, and FIG. 2B is FIG. It is a cross-sectional arrow figure which shows the state cut | disconnected along the AA of A). 1 and 2, the same parts as those shown in FIGS. 6 and 7 are denoted by the same reference numerals, and the description thereof is omitted.
[0034]
The self-priming centrifugal pump of this example has the same configuration as the conventional pump shown in FIGS. 6 and 7, but the partition plate 14 includes a round flow port (first flow port) 14a and an upper flow port (first flow port). 2 outlet 14 c, reflux outlet (third outlet) 14 d, and water outlet (fourth outlet) 14 b, and an air outlet (fifth outlet) communicating the discharge chamber 31 and the bag chamber 33 at the upper part. No. 14e). On the other hand, the impeller casing 13 has a first notch 33a that allows the bag portion chamber 33 and the impeller chamber 20 to communicate with each other under the upper partition 22a. The first notch 33a is formed at the root portion of the upper partition wall 22a on the side of the outlet 20a of the impeller chamber 20, and the direction intersects the scraping direction 1 of the centrifugal flow at an acute angle (upper recoil wall). 21a creeping direction). In this example, the notch depth of the first notch 33a is formed to be shallow to about a fraction of the height of the upper partition wall 22a as shown in FIG.
[0035]
Thus, even in the configuration in which the bag chamber 33 has the air vent (fifth flow port) 14e and the first notch 33a, the upper partition 22a and the partition plate 14 are aligned from the oblique guide channel 22 during the pumping operation. Although water may inevitably enter the bag portion chamber 33 through the gap, the water in the discharge chamber 31 fills the bag chamber portion 33 through the air vent (fifth distribution port) 14e. However, when the pump operation is stopped, since air naturally communicates with the bag portion chamber 33 from the discharge joint 25 through the discharge chamber 31 and the air vent (fifth flow port) 14e, the water accumulated in the bag portion 33 is Since it returns to the impeller chamber 20 as priming water through the first notch 33a, the retention of water in the bag portion chamber 33 can be prevented.
[0036]
For this reason, accumulation and freezing of fine objects in the bag portion chamber 33 can be prevented, and water leakage does not occur when the pump is assembled, and workability can be improved. In addition, the air vent (fifth flow port) 14e is punched into the partition plate 14 at the same time as the other flow ports, and the first notch 33a only needs to be formed at the same time when the impeller casing 13 is formed. It is possible to reduce the cost of the pump without increasing the number of points.
[0037]
During the self-priming operation, a small amount of priming water that enters the bag chamber 33 through the air vent (fifth flow port) 14e quickly returns to the impeller chamber 20 through the first notch 33a. Will increase. Since the notch depth of the first notch 33a is made shallower than the height of the upper partition wall 22a, the return does not hit the blade circumferential edge of the impeller 18, so that water draining noise can be suppressed. . In addition, if the notch depth of the 1st notch 33a is made deep and the reflux water which flows in into the impeller chamber 20 from the 1st notch 33a is made to scrape out to the subsequent blade circumferential end, the reflux water will be However, since it functions as a water film check valve at the scraping opening 20a, pulling back of the bubble flow once pushed out to the guide path 22 can be weakened, and the self-priming performance can be improved.
[0038]
[Second Embodiment]
FIG. 3 (A) is a plan view showing an impeller casing in a self-priming centrifugal pump according to a second embodiment of the present invention, and FIG. 3 (B) is a plan view of the end casing in the self-priming centrifugal pump as seen upside down. 3C is a plan view of the self-priming centrifugal pump viewed from the inside up, FIG. 4A is an enlarged plan view of the impeller casing, and FIG. 4B is FIG. It is a cross-sectional arrow figure which shows the state cut | disconnected along the AA of A). 3 and 4, the same reference numerals are given to the same portions as those shown in FIGS. 6 and 7, and the description thereof is omitted.
[0039]
The self-priming centrifugal pump of this example has the same configuration as that of the pump according to the first embodiment shown in FIGS. 1 and 2, except that an air vent (fifth flow port) 14e and a first notch (lower part). In addition to the water drainage portion 33a, the upper partition 22a has a second notch (upper water intake portion) 33b communicating with the oblique guide channel 22 and the bag portion chamber 33. The second notch 33b is formed at the root portion of the upper partition 22a on the side of the outlet 22b, and the direction thereof is a direction along the boundary surface of the upper recoil barrier 21a. In this example, the notch depth of the second notch 33b is shallow to about a fraction of the height of the upper partition wall 22a as shown in FIG. 4B.
[0040]
Thus, when it has the 2nd notch 33b, not only the draining action of the stagnant water of the bag part chamber 33 but the bag part chamber 33 itself exhibits a 2nd air-water separation function. That is, during the self-priming operation, the centrifugal flow of the air / water mixture flows through the oblique guide channel 22, and this centrifugal flow is radiated from the outlet 22b to the air / water separation chamber 23 having the upper recoil wall 21a. At the same time, since a part of the air enters the bag part chamber 33 through the second notch 33b, bubbles (air) in the air-water mixed flow entering the bag part chamber 33 are removed from the air vent (fifth distribution port) 14e. The water in the gas-water mixed flow flows down in the bag chamber 33 and returns to the impeller chamber 20 as priming water through the first notch 33a. Therefore, although this bag part chamber 33 does not have an outstanding recoil barrier, it corresponds to a second air-water separation chamber by natural separation based on the specific gravity of water. For this reason, compared with 1st Embodiment, self-priming performance improves.
[0041]
The second notch 33b is formed at the root portion of the upper partition wall 22a on the outlet 22b side, but according to experiments, the second notch 33b is formed below the root portion of the outlet 22b side. However, almost no change was observed in self-priming performance and pumping performance.
[0042]
The direction of the second notch 33b is a direction along the boundary surface of the upper recoil barrier 21a. Since the second notch 33b intersects at an acute angle with the direction of the air / water mixed flow pumped along the upper partition 22a and does not face the centrifugal flow component, one of the air / water mixed flows along the upper partition 22a Since the partial return flow enters the bag part chamber 33, the second notch 33b itself becomes a local air / water sorting part, and the air / water separation action tends to take water into the bag part chamber 33 while escaping bubbles. And self-priming performance increases.
[0043]
Also in this example, the synchronous water film for the bubble flow in which the return water flow drawn from the first notch 33a to the vicinity of the raking port 20a rises up the oblique guide channel 22 every time one blade is fed at the blade circumferential end. It is thought that it acts as an escapement (non-return).
[0044]
[Third Embodiment]
FIG. 5 (A) is an enlarged plan view showing an impeller casing in a self-priming centrifugal pump according to a third embodiment of the present invention, and FIG. 5 (B) is along the line AA in FIG. 5 (A). It is a cross-sectional arrow view which shows the state cut | disconnected. In FIG. 5, the same parts as those shown in FIGS. 6 and 7 are denoted by the same reference numerals, and the description thereof is omitted.
[0045]
The self-priming centrifugal pump of this example has the same configuration as the pump according to the second embodiment shown in FIGS. 3 and 4, but the air vent (fifth flow port) 14e in the second embodiment is deleted. It has a configuration. In addition, although the reinforcing rib 33c of the horizontal direction 2 form is formed in the bag part chamber 33 shown in FIG. 5, such a rib also comprises 1st and 2nd embodiment.
[0046]
As described above, in the configuration in which the bag portion chamber 33 has the first notch (upper water intake portion) 33a and the second notch 33b, the bag portion chamber 33 is drained when the operation is stopped, as in the second embodiment. As well as air / water separation during self-priming operation.
[0047]
In the above-described embodiment, the first notch 33a is shallowly formed mainly for the draining action of the bag chamber 33. However, in order to enhance the air-water separation action, the draining noise is not manifested. It may be formed deeply or the notch width may be widened. The second notch 33b is also formed shallow, but it may be formed deeply or a plurality of thin notches may be formed discretely.
[0048]
【The invention's effect】
As described above, the present invention is characterized in that the drainage path of the bag part chamber is provided first, and the second air / water separation chamber is configured using the bag part chamber and the like second. Since it has features, it has the following effects.
[0049]
(1) Even if water is stored in the bag room due to a gap between the partition plate and the like during pumping operation, water will naturally fall from the bag room to the impeller room when the pump is stopped, preventing water from staying in the bag room. can do. For this reason, accumulation and freezing of fine objects in the bag part chamber can be prevented, and water leakage does not occur when the pump is assembled, thereby improving workability. Furthermore, the fifth distribution port is formed in the partition plate, and the first and second cutouts are only formed in the second case, so that the number of parts is not increased and the cost is reduced. Can also be realized.
[0050]
(2) Since the second air / water separation chamber is provided in the bag chamber or other portion, even if water is stored in the second air / water separation chamber during the pumping operation, the second air / water separation chamber is used when the pump operation is stopped. Since the water naturally falls from the water separation chamber to the impeller chamber, it is possible to prevent water from staying in the second air / water separation chamber, so that the same effect as the above (1) can be obtained.
[0051]
(3) In addition to the air / water separation action by the upper recoil barrier of the first air / water separation chamber, guidance by specific gravity separation in the second air / water separation chamber such as the bag chamber and the return with short circulation time of the priming water Since the water film check valve action of the route is superimposed, the self-priming performance can be improved.
[Brief description of the drawings]
FIG. 1A is a plan view showing an impeller casing in a self-priming centrifugal pump according to a first embodiment of the present invention, and FIG. 1B is a plan view of the end casing in the self-priming centrifugal pump as seen upside down. (C) is the top view which looked at the partition plate in the self-priming type centrifugal pump inside out.
2A is an enlarged plan view showing the impeller casing of the first embodiment, and FIG. 2B is a sectional view taken along the line AA in FIG.
FIG. 3A is a plan view showing an impeller casing in a self-priming centrifugal pump according to a second embodiment of the present invention, and FIG. 3B is a plan view of the end casing in the self-priming centrifugal pump as seen upside down. (C) is the top view which looked at the partition plate in the self-priming type centrifugal pump turned upside down.
FIG. 4A is an enlarged plan view showing an impeller casing of a second embodiment, and FIG. 4B is a cross-sectional view taken along the line AA in FIG.
5A is an enlarged plan view showing an impeller casing according to a third embodiment, and FIG. 5B is a cross-sectional view taken along the line AA of FIG.
FIG. 6 is a partial longitudinal sectional view showing a conventional self-priming centrifugal pump.
7A is a plan view of an impeller casing showing a state seen along the line AA in FIG. 6, and FIG. 7B is an end casing showing a state seen along the line BB in FIG. 6; (C) is a top view of the partition plate which shows the state seen along the BB line of FIG.
[Explanation of symbols]
1 ... Direction of centrifugal flow scraping (direction of guide path)
9 ... Gasket plate
10. Motor housing (drive chamber case)
11 ... Driving magnet disk
12 ... Bulkhead plate
13 ... Impeller casing
14 ... Metal divider
14a ... Round distribution port (first distribution port)
14b ... priming outlet (fourth outlet)
14c ... Upper distribution port (second distribution port)
14d ... Reflux port (third distribution port)
14e ... Air vent (fifth distribution port)
15 ... End casing (pump cover)
16 ... fixed shaft
17 ... Driven magnetic disk
18 ... Centrifugal impeller (impeller)
18a ... spiral blade
18b ... Front shroud
19 ... Motor shaft
20 ... Impeller room
21 ... Ambient wall
21a ... Upper recoil barrier
22 ... Diagonal guide channel
22a ... Upper partition
22b ... Outlet
23a ... Gas-water separation chamber
24 ... Inhalation joint
25 ... Discharge joint
26 ... Boss presser
27 ... Inhalation chamber
28 ... Open annular partition
29 ... annular introduction part
30 ... Puddle space
31 ... Discharge chamber
33 ... Bag club room
33a ... 1st notch (lower drainage part)
33b ... Second notch (upper water intake)
33c ... Reinforcing rib

Claims (9)

吸入口に連通する吸入室と、吐出口に連通し下部に水溜空間を持つ吐出室とを有する第1のケース、前記吸入室に連通し内部に遠心型インペラを収めるインペラ室と、前記遠心型インペラによる遠心流を前記インペラ室から斜め上方へ導出する斜向案内流路と、前記斜向案内流路に対しその下側隔壁を挟んで位置しており、前記斜向案内流路の放口に臨んだ上部反跳障壁を具備する気水分離室と、前記斜向案内流路に対しその上側隔壁を挟んで上部隅部に位置する袋部室とを有する第2のケース、並びに、重ね合わせた第1のケースと第2のケースとの間に挟まれており、前記吸入室と前記インペラ室とを連通する第1の流通口と、上部で前記気水分離室と前記吐出室とを連通する第2の流通口と、この第2の流通口より下部で前記気水分離室と前記水溜空間とを連通する第3の流通口と、前記水溜空間と前記インペラ室とを連通する第4の流通口とを有する仕切板を備える自吸式遠心ポンプにおいて、
前記仕切板は、上部で前記吐出室と前記袋部室とを連通する第5の流通口を有し、前記第2のケースは、前記上側隔壁の下部に前記袋部室と前記インペラ室とを連通する第1の切欠きを有して成ることを特徴とする自吸式遠心ポンプ。
A first case having a suction chamber communicating with the suction port; a discharge chamber communicating with the discharge port and having a water reservoir space at a lower portion; an impeller chamber communicating with the suction chamber and housing a centrifugal impeller therein; and the centrifugal type An oblique guide channel for deriving a centrifugal flow by the impeller obliquely upward from the impeller chamber; and an outlet of the oblique guide channel, the lower guide wall being positioned with respect to the oblique guide channel. A second case having an air-water separation chamber having an upper recoil barrier facing the bag, a bag chamber located at an upper corner of the oblique guide channel with an upper partition therebetween, and an overlap A first flow port that is sandwiched between the first case and the second case, and communicates the suction chamber and the impeller chamber, and the air / water separation chamber and the discharge chamber at the top. A second circulation port that communicates and the air-water separation below the second circulation port In self-priming centrifugal pump comprising a partition plate having a said third flow port for communicating the water reservoir space, the fourth flow port communicating with said impeller chamber and the water reservoir space,
The partition plate has a fifth flow port that communicates the discharge chamber and the bag portion chamber at an upper portion thereof, and the second case communicates the bag portion chamber and the impeller chamber at a lower portion of the upper partition wall. A self-priming centrifugal pump characterized by comprising a first notch.
請求項1に記載の自吸式遠心ポンプにおいて、前記第2のケースは、前記上側隔壁の上部に前記斜向案内流路と前記袋部室とを連通する第2の切欠きを有して成ることを特徴とする自吸式遠心ポンプ。  2. The self-priming centrifugal pump according to claim 1, wherein the second case has a second notch communicating with the oblique guide channel and the bag portion chamber at an upper portion of the upper partition. A self-priming centrifugal pump characterized by that. 吸入口に連通する吸入室と、吐出口に連通し下部に水溜空間を持つ吐出室とを有する第1のケース、前記吸入室に連通し内部に遠心型インペラを収めるインペラ室と、前記遠心型インペラによる遠心流を前記インペラ室から斜め上方へ導出する斜向案内流路と、前記斜向案内流路に対しその下側隔壁を挟んで位置しており、前記斜向案内流路の放口に臨んだ上部反跳障壁を具備する気水分離室と、前記斜向案内流路に対しその上側隔壁を挟んで上部隅部に位置する袋部室とを有する第2のケース、並びに、重ね合わせた第1のケースと第2のケースとの間に挟まれており、前記吸入室と前記インペラ室とを連通する第1の流通口,上部で前記気水分離室と前記吐出室とを連通する第2の流通口,この第2の流通口より下部で前記気水分離室と前記水溜空間とを連通する第3の流通口,及び前記水溜空間と前記インペラ室とを連通する第4の流通口を有する仕切板とを備える自吸式遠心ポンプにおいて、
前記第2のケースは、前記上側隔壁の下部に前記袋部室と前記インペラ室とを連通する第1の切欠きと、前記上側隔壁の上部に前記斜向案内流路と前記袋部室とを連通する第2の切欠きと、を有して成ることを特徴とする自吸式遠心ポンプ。
A first case having a suction chamber communicating with the suction port; a discharge chamber communicating with the discharge port and having a water reservoir space at a lower portion; an impeller chamber communicating with the suction chamber and housing a centrifugal impeller therein; and the centrifugal type An oblique guide channel for deriving a centrifugal flow by the impeller obliquely upward from the impeller chamber; and an outlet of the oblique guide channel, the lower guide wall being positioned with respect to the oblique guide channel. A second case having an air-water separation chamber having an upper recoil barrier facing the bag, a bag chamber located at an upper corner of the oblique guide channel with an upper partition therebetween, and an overlap A first flow port that communicates between the suction chamber and the impeller chamber, and communicates the air / water separation chamber and the discharge chamber at the top. A second circulation port, and the air / water separation chamber below the second circulation port. The third flow port for communicating the serial water reservoir space, and the self-priming centrifugal pump comprising a partition plate having a fourth flow port communicating with said impeller chamber and the water reservoir space,
The second case has a first notch communicating the bag portion chamber and the impeller chamber with a lower portion of the upper partition wall, and communicates the oblique guide channel and the bag portion chamber with an upper portion of the upper partition wall. A self-priming centrifugal pump characterized by comprising a second notch.
請求項2又は請求項3に記載の自吸式遠心ポンプにおいて、前記第2の切欠きは、前記上側隔壁の放口側付け根部分に形成されていることを特徴とする自吸式遠心ポンプ。  4. The self-priming centrifugal pump according to claim 2, wherein the second notch is formed at an outlet side root portion of the upper partition wall. 5. 請求項4に記載の自吸式遠心ポンプにおいて、前記第2の切欠きは、前記上部反跳障壁に沿って形成されていることを特徴とする自吸式遠心ポンプ。The self-priming centrifugal pump according to claim 4, wherein the second notch is formed along the upper recoil barrier. 請求項2乃至請求項5のいずれか一項に記載の自吸式遠心ポンプにおいて、前記第1の切欠きは、前記上側隔壁のうち前記インペラ室の掻き出し口側の付け根部分に形成されていることを特徴とする自吸式遠心ポンプ。  The self-priming centrifugal pump according to any one of claims 2 to 5, wherein the first notch is formed in a root portion of the upper partition wall on a scraping opening side of the impeller chamber. A self-priming centrifugal pump characterized by that. 請求項6に記載の自吸式遠心ポンプにおいて、前記第1の切欠きは、前記上部反跳障壁に対して平行に形成されていることを特徴とする自吸式遠心ポンプ。The self-priming centrifugal pump according to claim 6, wherein the first notch is formed in parallel to the upper recoil barrier . 水溜空間の呼び水に浸漬する遠心型インペラを回転自在に軸支し、吸入口に連通するインペラ室と、前記遠心型インペラによる遠心流を前記インペラ室から導出する案内流路と、前記案内流路の放口に臨む上部反跳障壁を有し、前記放口から放射された気水混合水を気水分離し、その分離水を前記水溜空間へ戻すと共にその分離気体を吐出口へ抜く第1の気水分離室とを備える自吸式遠心ポンプにおいて、
前記案内流路上を前記放口へ流動する前記気水混合水の一部を上部取水部から取水して気水分離し、その分離水を下部水抜き部を介して前記案内流路の上側隔壁のうち前記インペラ室内の掻き出し口側の付け根部分へ戻す第2の気水分離室を有して成ることを特徴とする自吸式遠心ポンプ。
A centrifugal impeller immersed in the priming water of the water storage space is rotatably supported, an impeller chamber communicating with the suction port, a guide flow path for deriving a centrifugal flow by the centrifugal impeller from the impeller chamber, and the guide flow path A first rebounding barrier that faces the air outlet, separates the air-water mixed water radiated from the air outlet, returns the separated water to the water reservoir space, and draws the separated gas to the outlet. In a self-priming centrifugal pump comprising a gas-water separation chamber,
A part of the air / water mixed water flowing on the guide channel to the outlet is taken from the upper intake part to separate the water, and the separated water is separated from the upper partition wall of the guide channel via the lower drain part. A self-priming centrifugal pump comprising a second air / water separation chamber that returns to the root portion of the impeller chamber on the raking outlet side.
請求項4に記載の自吸式遠心ポンプにおいて、前記第2の気水分離室は、その上部で空気抜き部を介して前記吐出室に連通して成ることを特徴とする自吸式遠心ポンプ。  5. The self-priming centrifugal pump according to claim 4, wherein the second air-water separation chamber communicates with the discharge chamber through an air vent at an upper portion thereof.
JP28478599A 1999-10-05 1999-10-05 Self-priming centrifugal pump Expired - Fee Related JP4428773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28478599A JP4428773B2 (en) 1999-10-05 1999-10-05 Self-priming centrifugal pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28478599A JP4428773B2 (en) 1999-10-05 1999-10-05 Self-priming centrifugal pump

Publications (2)

Publication Number Publication Date
JP2001107884A JP2001107884A (en) 2001-04-17
JP4428773B2 true JP4428773B2 (en) 2010-03-10

Family

ID=17682997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28478599A Expired - Fee Related JP4428773B2 (en) 1999-10-05 1999-10-05 Self-priming centrifugal pump

Country Status (1)

Country Link
JP (1) JP4428773B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355589A (en) * 2000-06-16 2001-12-26 Nidec Shibaura Corp Self-primping pump
JP5971449B1 (en) * 2014-11-13 2016-08-17 Nok株式会社 Casing seal structure
EP3236115B1 (en) * 2014-12-19 2021-08-18 NOK Corporation Seal structure for casing
CN109441833A (en) * 2018-12-04 2019-03-08 江苏凯泉泵业制造有限公司 A kind of chemical industry self priming pump
GB2605110A (en) 2021-07-14 2022-09-21 Univ Jiangsu Quick no-water startup apparatus for centrifugal pump
CN113464450B (en) * 2021-07-14 2022-08-23 江苏大学 Be applied to quick anhydrous starting drive of centrifugal pump

Also Published As

Publication number Publication date
JP2001107884A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
JP4428773B2 (en) Self-priming centrifugal pump
JP4657845B2 (en) Horizontal shaft pump
JP3098978B2 (en) Self-priming centrifugal pump
JP2006177330A (en) Pump
JP2002021761A (en) Self-priming pump
JP2005248901A (en) Self-priming pump and self-priming pump device
JP2021055324A (en) Water closet
JP3662633B2 (en) underwater pump
JP2007239598A (en) Self-priming pump
JP4137614B2 (en) Self-priming pump
JP3545331B2 (en) Pump air release structure
JP3257966B2 (en) Self-priming centrifugal pump
JP2014190220A (en) Wesco type electric pump
JP4617920B2 (en) Self-priming electric pump
CN214063305U (en) Vertical self-priming pump
JP3116943B2 (en) Self-priming pump
JP2002005067A (en) Electric pump
JP2014190292A (en) Wesco type electric pump
JP2004278404A (en) Self-priming pump
JP2876728B2 (en) Self-priming pump
JPH0533748Y2 (en)
JPH04308394A (en) Self-priming pump
JPH08108171A (en) Water tank equipment for removing sand or performing washing by water in water tank
JPS6323994Y2 (en)
JPH0448958B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4428773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151225

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees