JP4427347B2 - Method for producing ZnO single crystal - Google Patents

Method for producing ZnO single crystal Download PDF

Info

Publication number
JP4427347B2
JP4427347B2 JP2004038778A JP2004038778A JP4427347B2 JP 4427347 B2 JP4427347 B2 JP 4427347B2 JP 2004038778 A JP2004038778 A JP 2004038778A JP 2004038778 A JP2004038778 A JP 2004038778A JP 4427347 B2 JP4427347 B2 JP 4427347B2
Authority
JP
Japan
Prior art keywords
zno
crystal
container
single crystal
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004038778A
Other languages
Japanese (ja)
Other versions
JP2005225740A (en
Inventor
郁生 新倉
安兵衛 柏葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denpa Co Ltd
Original Assignee
Tokyo Denpa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denpa Co Ltd filed Critical Tokyo Denpa Co Ltd
Priority to JP2004038778A priority Critical patent/JP4427347B2/en
Publication of JP2005225740A publication Critical patent/JP2005225740A/en
Application granted granted Critical
Publication of JP4427347B2 publication Critical patent/JP4427347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、トランジスタ、ダイオード、センサ、発振器など広範囲なデバイスの作製に用いられる酸化亜鉛(ZnO)単結晶の製造方法に関するものである。   The present invention relates to a method for manufacturing a zinc oxide (ZnO) single crystal used for manufacturing a wide range of devices such as transistors, diodes, sensors, and oscillators.

酸化亜鉛(ZnO、以下、「ZnO」という。)の単結晶化に関しては、非特許文献1が報告されている。この非特許文献1には水熱法によるZnO単結晶の育成が記載されている。
この育成法によれば、ZnO焼結体を結晶育成装置内の下部に置き、一方、ZnO種結晶を当該育成装置の上部にそれぞれ配置し、次いで水酸化カリウム(KOH)及び水酸化リチウム(LiOH)から成るアルカリ水溶液の溶媒(以下、「アルカリ溶媒」という。)を充填する。
この状態で、結晶育成装置内を370〜400°Cの育成温度、700〜1000kg/cm2 の圧力で、また、育成装置内の上部の温度が下部の温度より10〜15°C低くして運転することによりZnO単結晶を育成している。
Non-Patent Document 1 has been reported regarding single crystallization of zinc oxide (ZnO, hereinafter referred to as “ZnO”). This non-patent document 1 describes the growth of ZnO single crystals by a hydrothermal method.
According to this growth method, the ZnO sintered body is placed in the lower part of the crystal growth apparatus, while the ZnO seed crystals are respectively arranged in the upper part of the growth apparatus, and then potassium hydroxide (KOH) and lithium hydroxide (LiOH). ) In an aqueous alkaline solution (hereinafter referred to as “alkaline solvent”).
In this state, the inside of the crystal growth apparatus is set to a growth temperature of 370 to 400 ° C. and a pressure of 700 to 1000 kg / cm 2 , and the temperature in the upper part of the growth apparatus is set to 10 to 15 ° C. lower than the temperature of the lower part. A ZnO single crystal is grown by operation.

上記のように育成溶液としてアルカリ溶媒のみを用いた場合には育成環境が還元性雰囲気になり、酸素欠陥が多く存在し、電気抵抗率は1〜102Ωcmとなる。そこで育成環境を酸素雰囲気にするために過酸化水素(H22)を添加し、108〜1010Ωcmを得ている。 When only an alkaline solvent is used as the growth solution as described above, the growth environment is a reducing atmosphere, there are many oxygen defects, and the electrical resistivity is 1 to 10 2 Ωcm. Therefore, hydrogen peroxide (H 2 O 2 ) is added to make the growth environment in an oxygen atmosphere, and 10 8 to 10 10 Ωcm is obtained.

さらに、特許文献1には、図3に示すように、内径30mm×高さ300mmのほぼ円柱形状をなし、内容積は250mlである育成容器110は、熱電対挿入部112、112’、開孔率5%のバッフル板103、原料充填部114、結晶育成部116、ZnO種結晶107をPt線109を貫通させて吊り下げたPtフレーム105から構成され、該育成容器110にアルカリ溶媒に加えて、過酸化水素(H22)及び水酸化アンモニウム(NH4OH)を添加することにより電気抵抗率106〜1011ΩcmのZnO単結晶を得ている。特許文献1に、アンモニウムイオン(NH4 +) は、Liイオンと異なり結晶中には混入しないため抵抗率のバラツキを抑制する効果があるとしている。 Further, in Patent Document 1, as shown in FIG. 3, the growth container 110 having a substantially cylindrical shape with an inner diameter of 30 mm × height of 300 mm and an internal volume of 250 ml is provided with thermocouple insertion portions 112 and 112 ′, open holes. A baffle plate 103 having a rate of 5%, a raw material filling unit 114, a crystal growth unit 116, and a Pt frame 105 in which a ZnO seed crystal 107 is suspended through a Pt line 109. The growth vessel 110 is added with an alkaline solvent. By adding hydrogen peroxide (H 2 O 2 ) and ammonium hydroxide (NH 4 OH), a ZnO single crystal having an electric resistivity of 10 6 to 10 11 Ωcm is obtained. Patent Document 1 states that ammonium ions (NH 4 + ), unlike Li ions, are not mixed in the crystal and thus have an effect of suppressing variation in resistivity.

しかしながら、特許文献1に記載の製造法は、酸素欠陥の数を減少させるために酸素を多量に供給しようとするものであり、更なる自由電子密度を減少させ、高抵抗化を図ること及び、P型伝導性をもった結晶を製造することはできないものである。   However, the manufacturing method described in Patent Document 1 is intended to supply a large amount of oxygen in order to reduce the number of oxygen defects, to further reduce the free electron density and increase resistance, Crystals with P-type conductivity cannot be produced.

本発明は、上記のような従来技術の課題等に鑑みてなされたものであり、その目的とするところは、半絶縁性基板更にP型半導体基板を供するZnO単結晶の製造方法を提供することにある。上記多量に存在すると思われる酸素欠陥の位置に窒素原子を配位しようとするものである。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a method of manufacturing a ZnO single crystal that provides a semi-insulating substrate and a P-type semiconductor substrate. It is in. It is intended to coordinate a nitrogen atom at the position of the oxygen defect that is considered to exist in a large amount.

特開平6−279192号公報JP-A-6-279192 坂上 登著「高純度ZnOの水熱育成ストイキオメトリーの評価」(昭和63年2月、秋田高専研究紀要第23号)Noboru Sakagami “Evaluation of hydrothermal growth stoichiometry of high-purity ZnO” (February 1988, Akita National College of Technology Bulletin No. 23)

本発明は、上記目的を達成するために、亜硝酸イオンを用いることにより多量に存在する酸素欠陥の位置に窒素原子を配位して、ZnOを主成分とする単結晶から半絶縁性基板及びP型半導体基板を供することが可能な結晶の製造方法を特徴とする。   In order to achieve the above-mentioned object, the present invention uses a nitrite ion to coordinate a nitrogen atom at a position of a large amount of oxygen defects, from a single crystal mainly composed of ZnO to a semi-insulating substrate, and It is characterized by a crystal manufacturing method capable of providing a P-type semiconductor substrate.

本発明の結晶の製造方法は、酸化亜鉛(ZnO)焼結体原料を容器下部の原料充填部に、ZnO種結晶を容器上部の結晶育成部にそれぞれ配置するとともに、亜硝酸イオン(NO2 +)を含有するアルカリ溶媒(ミネラライザー)を容器に充填し、原料充填部の温度が結晶育成部の温度より高くなるように容器内温度を制御して水熱条件下でZnO単結晶を育成する製造方法である。 The method for producing a crystal of the present invention comprises disposing a zinc oxide (ZnO) sintered body raw material in a raw material filling portion at the bottom of the container and a ZnO seed crystal in a crystal growing portion at the top of the container, and nitrite ions (NO 2 + ) Containing an alkaline solvent (mineralizer), and the ZnO single crystal is grown under hydrothermal conditions by controlling the temperature in the container so that the temperature of the raw material filling part is higher than the temperature of the crystal growing part. It is a manufacturing method.

以上の説明からわかるように、本発明の結晶製造方法によれば、ミネラライザーに亜硝酸イオンを生ずるミネラライザーを加えることにより得られた結晶に効率よく窒素がドーピングされ、アクセプターとして機能し、幅広い抵抗率制御が可能となり、薄膜トランジスタや圧電振動子などのデバイスを形成するために必要な半絶縁性基板を提供することができる。また本発明によればPN接合を有するデバイスの作製に有用なP型結晶基板を提供することができる。   As can be seen from the above description, according to the crystal manufacturing method of the present invention, the crystal obtained by adding a mineralizer that generates nitrite ions to the mineralizer is efficiently doped with nitrogen, functions as an acceptor, and has a wide range. The resistivity can be controlled, and a semi-insulating substrate necessary for forming a device such as a thin film transistor or a piezoelectric vibrator can be provided. In addition, according to the present invention, a P-type crystal substrate useful for manufacturing a device having a PN junction can be provided.

以下本発明の実施例について説明する。本発明は、これら実施例に限定されるものではない。
図1は、ZnO単結晶を育成するための育成容器及びその内筒容器を示す概略図である。
本発明で使用される育成容器は、図3で示されたものと同様に、溶媒10で満たされたライナー8内に、白金ラック7を図2に示すように挿入して、ZnOの種結晶の育成が行われる。
白金ラック7には、ZnO原料1のための原料充填容器2、バッフル板3、種結晶5を白金線6で止着させた種結晶保持棒4が具備されている。
Examples of the present invention will be described below. The present invention is not limited to these examples.
FIG. 1 is a schematic view showing a growth container for growing a ZnO single crystal and an inner cylinder container thereof.
In the same manner as shown in FIG. 3, the growth container used in the present invention is inserted into the liner 8 filled with the solvent 10 with the platinum rack 7 as shown in FIG. Is trained.
The platinum rack 7 includes a raw material filling container 2 for the ZnO raw material 1, a baffle plate 3, and a seed crystal holding rod 4 in which a seed crystal 5 is fixed by a platinum wire 6.

本発明のZnO単結晶を育成する製造方法の実施例を以下に説明する。
まず、高純度ZnO粉末をプレス機で圧縮成形し、該圧縮成型されたZnOを、1,000°C以上で1時間以上焼結した焼結体を図1に示す白金で作られたラック7の原料充填部2に充填する。
上記のZnO焼結体原料1を原料充填容器2に入れ、種結晶保持棒4にZnO種結晶5を白金線6で吊って固定することによって止着される。
Examples of the production method for growing the ZnO single crystal of the present invention will be described below.
First, a rack 7 made of platinum shown in FIG. 1 is a sintered body obtained by compression-molding high-purity ZnO powder with a press and sintering the compression-molded ZnO at 1,000 ° C. or more for 1 hour or more. The raw material filling part 2 is filled.
The above-described ZnO sintered body raw material 1 is put in the raw material filling container 2, and the ZnO seed crystal 5 is suspended and fixed to the seed crystal holding rod 4 by a platinum wire 6.

次いで、白金ラック7は、白金ライナー8に挿入され、次に、白金ライナー8に水酸化カリウム(KOH)を3モル/L、水酸化リチウム(LiOH)を1モル/L、KNO2を0.01〜1.5モル/Lからなるミネラライザー10を注入する。ミネラライザーの量は育成温度、圧力により適量注入する。 Next, the platinum rack 7 is inserted into the platinum liner 8. Next, the platinum liner 8 is filled with 3 mol / L of potassium hydroxide (KOH), 1 mol / L of lithium hydroxide (LiOH), and 0.02 of KNO 2 . A mineralizer 10 consisting of 01 to 1.5 mol / L is injected. An appropriate amount of mineralizer is injected depending on the growth temperature and pressure.

次にライナーキャップ9で蓋をされ溶接される。溶接された育成容器はオートクレーブ11中に設置される。このライナー8とオートクレーブ11との間には圧力の調整を行うために純水12を注入する、純水の量は温度、圧力により適量を注入する。オートクレーブの周囲にはヒータ13が取り付けられ、これによりオートクレーブを加熱する。 温度300〜600°C、圧力500〜1200気圧で水熱合成を実施した。原料充填部の温度と結晶育成部の温度の差は15°Cから40°Cで育成を行った。   Next, the liner cap 9 is covered and welded. The welded growth vessel is installed in the autoclave 11. Pure water 12 is injected between the liner 8 and the autoclave 11 to adjust the pressure. An appropriate amount of pure water is injected according to temperature and pressure. A heater 13 is attached around the autoclave to heat the autoclave. Hydrothermal synthesis was performed at a temperature of 300 to 600 ° C. and a pressure of 500 to 1200 atmospheres. The difference between the temperature of the raw material filling portion and the temperature of the crystal growth portion was grown at 15 ° C. to 40 ° C.

育成されたZnO単結晶に含まれる元素について、SIMS分析を行ったところ最高1018/cm3の窒素がドープされていることがわかった。また、電気的測定からP型伝導性を確認することができた。
アルカリ溶媒として水酸化カリウム(KOH)、水酸化リチウム(LiOH)の代わりにNaOH、Li2CO3などであっても本発明は適用できる。
When the element contained in the grown ZnO single crystal was subjected to SIMS analysis, it was found that a maximum of 10 18 / cm 3 nitrogen was doped. Moreover, P-type conductivity could be confirmed from electrical measurements.
The present invention can be applied even if potassium hydroxide (KOH) or lithium hydroxide (LiOH) is used as the alkaline solvent instead of NaOH, Li 2 CO 3 or the like.

上記ミネラライザーKNO2の代わりにLiNO2、NaNO2などの亜硝酸イオンをもつミネラライザーであっても本発明は有効である。
The present invention is effective even for a mineralizer having nitrite ions such as LiNO 2 and NaNO 2 instead of the above-described mineralizer KNO 2 .

本発明の実施の形態とされる結晶育成容器の一例を示す略示的斜視図である。It is a schematic perspective view which shows an example of the crystal growth container made into embodiment of this invention. 本発明の実施の形態とされる結晶育成装置の一例を示す略示的断面図である。It is a schematic sectional drawing which shows an example of the crystal growth apparatus made into embodiment of this invention. 従来例としての特許文献1に記載されている結晶育成容器の一例を示す略示的斜視図である。It is a schematic perspective view which shows an example of the crystal growth container described in patent document 1 as a prior art example.

符号の説明Explanation of symbols

1 原料
2 原料充填容器
3 バッフル版
4 種結晶保持棒
5 種結晶
6 白金線
7 ラック
8 ライナー
9 ライナーキャップ
10 溶媒
11 オートクレーブ
12 純水
13 ヒータ
DESCRIPTION OF SYMBOLS 1 Raw material 2 Raw material filling container 3 Baffle plate 4 Seed crystal holding rod 5 Seed crystal 6 Platinum wire 7 Rack 8 Liner 9 Liner cap 10 Solvent 11 Autoclave 12 Pure water 13 Heater

Claims (1)

ZnO焼結体原料を容器下部の原料充填部に、ZnO種結晶を容器上部の結晶育成部にそれぞれ配置するとともに、亜硝酸イオン(NO2 +)を含有するミネラライザーを容器に充填し、原料充填部の温度が結晶育成部の温度より高くなるように容器内温度を制御して水熱条件下でZnO単結晶を育成すること
を特徴とするZnO単結晶の製造方法。
The ZnO sintered body material is placed in the raw material filling part at the bottom of the container, the ZnO seed crystal is placed in the crystal growth part at the top of the container, and a mineralizer containing nitrite ions (NO 2 + ) is filled in the container, A method for producing a ZnO single crystal, comprising growing the ZnO single crystal under hydrothermal conditions by controlling the temperature in the container so that the temperature of the filling portion is higher than the temperature of the crystal growth portion.
JP2004038778A 2004-02-16 2004-02-16 Method for producing ZnO single crystal Expired - Fee Related JP4427347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004038778A JP4427347B2 (en) 2004-02-16 2004-02-16 Method for producing ZnO single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004038778A JP4427347B2 (en) 2004-02-16 2004-02-16 Method for producing ZnO single crystal

Publications (2)

Publication Number Publication Date
JP2005225740A JP2005225740A (en) 2005-08-25
JP4427347B2 true JP4427347B2 (en) 2010-03-03

Family

ID=35000747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004038778A Expired - Fee Related JP4427347B2 (en) 2004-02-16 2004-02-16 Method for producing ZnO single crystal

Country Status (1)

Country Link
JP (1) JP4427347B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10156024B2 (en) 2013-05-31 2018-12-18 Ngk Insulators, Ltd. Zinc oxide free-standing substrate and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5276769B2 (en) * 2004-10-01 2013-08-28 東京電波株式会社 Hexagonal wurtzite single crystal, method for producing the same, and hexagonal wurtzite single crystal substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10156024B2 (en) 2013-05-31 2018-12-18 Ngk Insulators, Ltd. Zinc oxide free-standing substrate and method for manufacturing same

Also Published As

Publication number Publication date
JP2005225740A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
KR100960834B1 (en) Hexagonal wurtzite type single crystal, process for producing the same, and hexagonal wurtzite type single crystal substrate
US8668774B2 (en) Low temperature continuous circulation reactor for the aqueous synthesis of ZnO films, nanostructures, and bulk single crystals
US20060124051A1 (en) Zinc oxide single crystal
US8926750B2 (en) Low temperature continuous circulation reactor for the aqueous synthesis of ZnO films, nanostructures, and bulk single crystals
JP7168827B2 (en) crystalline oxide film
WO2005071143A1 (en) Process for producing single crystal of gallium-containing nitride
Wang et al. Rapid growth of halide perovskite single crystals: from methods to optimization control
JP4427347B2 (en) Method for producing ZnO single crystal
CN101983263A (en) Zinc oxide single crystal and method for producing the same
CN103733343A (en) Process for high-pressure nitrogen annealing of metal nitrides
CN101851785B (en) Method for producing group III nitride semiconductor
JP2004315361A (en) Zinc oxide single crystal
JP4930166B2 (en) Method for producing aluminum oxide single crystal
JP2007169075A (en) Nitride-containing molded product and manufacturing method of single crystal nitride
WO2021090635A1 (en) Production method for gallium oxide crystals
JP2009023899A (en) Electroconductive ceramic material and method for manufacturing the same
JPH0692794A (en) Method for growing zinc oxide single crystal
JP2009208993A (en) Plate-like nickel hydroxide powder and its production method
JP4108962B2 (en) Zinc oxide raw material preparation method
CN107109696A (en) For the mono-crystalline gallium nitride for preparing the method for mono-crystalline gallium nitride and being prepared with this method
LIN et al. Stability of low-index surfaces of Cs2SnI6 studied by first-principles calculations
JPH06279190A (en) Method for growing zinc oxide single crystal
Callahan et al. Hydrothermal and ammonothermal growth of ZnO and GaN
JP2010070423A (en) High resistance zinc oxide single crystal and method for producing the same
JP6774593B2 (en) Crystalline oxide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees