JP4426915B2 - Measurement method using total station - Google Patents

Measurement method using total station Download PDF

Info

Publication number
JP4426915B2
JP4426915B2 JP2004204863A JP2004204863A JP4426915B2 JP 4426915 B2 JP4426915 B2 JP 4426915B2 JP 2004204863 A JP2004204863 A JP 2004204863A JP 2004204863 A JP2004204863 A JP 2004204863A JP 4426915 B2 JP4426915 B2 JP 4426915B2
Authority
JP
Japan
Prior art keywords
total station
measurement
point
axis
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004204863A
Other languages
Japanese (ja)
Other versions
JP2006029809A (en
Inventor
高弘 近藤
裕道 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2004204863A priority Critical patent/JP4426915B2/en
Publication of JP2006029809A publication Critical patent/JP2006029809A/en
Application granted granted Critical
Publication of JP4426915B2 publication Critical patent/JP4426915B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、構造物等の変位測定等に有効な、トータルステーションを用いた測定方法に関する。   The present invention relates to a measuring method using a total station, which is effective for measuring displacement of a structure or the like.

構造物等の変位の測定について、トータルステーションを据え付けて定期的に測定を行う場合がある。   Regarding the measurement of displacement of structures and the like, there are cases where a total station is installed and periodically measured.

このように、トータルステーションを常時据え付けて測定を行うと、測点は移動していないにも関わらず、計測結果は周期的に変動して誤差が生じる場合がある。これは、トータルステーションを取り付けた架台やその取付具の温度膨張や日射等の自然要因の影響等による微妙な傾斜や変位、照度の変化等が原因になっていると考えられている。   As described above, when the measurement is performed with the total station installed at all times, the measurement result may periodically vary and an error may occur although the measurement point is not moved. This is considered to be caused by subtle inclinations and displacements, changes in illuminance, etc. due to the influence of natural factors such as temperature expansion and solar radiation of the gantry on which the total station is attached and its fixtures.

このような誤差を修正する方法として、同一平面上にない4点の基準点を用いて、トータルステーションの位置のずれ(すなわち座標系のずれ)を初期状態に戻すための三次元座標の補正マトリックスを算出し、この補正マトリックスを用いて任意の測点の測定精度を向上させる、トータルステーションによる測定精度の向上方法(以下単に「測定精度向上方法」という場合がある)を開発し、実用化に至っている(特許文献1又は特許文献2参照)。
特開平11−223527号公報([0007]−[0016]) 特開2001−221635号公報([0011]−[0019]、図2)
As a method for correcting such an error, a three-dimensional coordinate correction matrix for returning a total station position shift (that is, a coordinate system shift) to an initial state using four reference points that are not on the same plane. Developed a measurement accuracy improvement method using the total station (hereinafter sometimes referred to simply as “measurement accuracy improvement method”) that uses this correction matrix to improve the measurement accuracy of any measurement point, and has been put to practical use. (See Patent Document 1 or Patent Document 2).
JP-A-11-223527 ([0007]-[0016]) JP 2001-221635 A ([0011]-[0019], FIG. 2)

ところが、例えば、トンネルの坑内や障害物の多い都市部のように、視界条件の厳しい現場における測定では、有効な4点の基準点を確保できない場合がある、という問題点を有している。つまり、前記の測定精度向上方法は、4点の基準点を設定することが可能な広くて見晴らしのいい現場では有効であるが、視界条件の厳しい現場における測定では、4点の基準点を確保することが困難であるために、適用することができない場合があった。   However, there is a problem in that effective four reference points may not be ensured in measurements at sites with severe visibility conditions, such as tunnel tunnels and urban areas with many obstacles. In other words, the measurement accuracy improvement method described above is effective on a wide and well-viewed site where four reference points can be set, but secures four reference points for measurements at sites with severe visibility conditions. In some cases, it was difficult to apply.

本発明は、前記の問題点を解決するためになされたものであり、視界条件が厳しく、立体的に配置される4点の基準点を確保することができない現場においても、高精度に測定を行うことが可能な、トータルステーションを用いた測定方法を提案することを課題とする。   The present invention has been made in order to solve the above-mentioned problems, and has high visibility even in the field where the visibility conditions are severe and four reference points arranged in a three-dimensional manner cannot be secured. It is an object to propose a measurement method using a total station that can be performed.

このような課題を解決するために、請求項1に記載のトータルステーションを用いた測定方法は、不動点と仮定した3点の基準点と少なくとも1点の測点をトータルステーションで測定し、前記3点の基準点のうち任意の1点を原点として、前記3点の基準点が前記原点で互いに直交する3本の基準軸のうちいずれか2本の基準軸により形成される基準平面上に配置されるように、前記3点の基準点及び前記測点を座標変換して、前記測点の座標値を測定することを特徴としている。 In order to solve such a problem, the measurement method using the total station according to claim 1 measures three reference points assumed to be a fixed point and at least one measurement point with the total station, and the three points. An arbitrary one of the reference points is set as the origin, and the three reference points are arranged on a reference plane formed by any two reference axes among the three reference axes orthogonal to each other at the origin. As described above, the coordinate values of the three reference points and the measurement points are transformed to measure the coordinate values of the measurement points.

かかるトータルステーションを用いた測定方法は、トータルステーションに自然要因等が原因による微小な傾斜や移動が生じた場合でも、3点の基準点を、X軸、Y軸、Z軸からなる基準軸のうち、いずれか2本の基準軸により形成される基準平面(X−Y平面、Y−Z平面又はZ−X平面)上に配置されるように移動することで、座標系を初期状態に修正するため、高精度に測点の座標値を測定することが可能となる。そのため、近接施工等に伴う構造物の変位計測などに関しても、正確にその変位を測定することができる。また、3点の基準点によりその測定が可能なため、障害物の多い都市部やトンネル等の限られた空間内での測定に関しても、必要な数の基準点を容易に設定することが可能である。
ここで、トータルステーションとは、測距と測角を同時に測定するとともに、その結果を自動記録することが可能な測量機械である。また、コンピュータやプロッタ等を組み合わせることによりシステム化し、大量に計算値を処理することを可能としている。
The measurement method using such a total station is such that even if a slight inclination or movement due to a natural factor or the like occurs in the total station, three reference points are selected from the reference axes including the X axis, the Y axis, and the Z axis. To correct the coordinate system to the initial state by moving so as to be arranged on a reference plane (XY plane, YZ plane, or ZX plane) formed by any two reference axes. It becomes possible to measure the coordinate value of the measuring point with high accuracy. Therefore, the displacement can be accurately measured even with respect to the displacement measurement of the structure accompanying the proximity construction or the like. In addition, since it is possible to measure with three reference points, the necessary number of reference points can be easily set for measurement in limited spaces such as urban areas and tunnels where there are many obstacles. It is.
Here, the total station is a surveying machine capable of simultaneously measuring a distance and an angle and recording the result automatically. In addition, the system can be systemized by combining a computer, a plotter, etc., and a large amount of calculation values can be processed.

また、前記トータルステーションを用いた測定方法において、各基準点及び測点の座標変換をマトリックス演算により行えば、複数の点の座標変換を容易に行うことが可能なため、好適である。   Further, in the measurement method using the total station, it is preferable that the coordinate conversion of each reference point and the measurement point is performed by matrix calculation because the coordinate conversion of a plurality of points can be easily performed.

本発明のトータルステーションを用いた測定方法により、視界条件が厳しく、立体的に配置される4点以上の基準点を確保することができない現場においても、自然要因等により生じるトータルステーションの傾斜や移動等からなる誤差(座標系のずれ)を修正して、高精度に測定を行うことが可能となった。   Due to the measurement method using the total station of the present invention, the field of view conditions are severe, and even in the field where four or more reference points arranged in a three-dimensional manner cannot be secured, the total station tilts or moves due to natural factors, etc. This makes it possible to measure with high accuracy by correcting the error (deviation of the coordinate system).

以下、本発明の好適な実施の形態について、図面を参照して説明する。なお、説明において、同一要素には同一の符号を用い、重複する説明は省略する。
ここで、図1(a)〜(d)は、本実施の形態に係るトータルステーションを用いた測定方法説明図である。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings. In the description, the same reference numerals are used for the same elements, and duplicate descriptions are omitted.
Here, FIGS. 1A to 1D are explanatory diagrams of a measurement method using the total station according to the present embodiment.

本実施の形態では、近接施工における既設構造物の変位計測を、本発明のトータルステーションを用いた測定方法により行う場合について説明する。   In the present embodiment, a case will be described in which displacement measurement of an existing structure in proximity construction is performed by a measurement method using the total station of the present invention.

<基準点及び測点の測定>
まず、トータルステーションを据え付ける機械点と、3点の基準点を設定する。ここで、基準点は移動することのない、不動の位置と仮定する。また、機械点は、トータルステーションにより各基準点と各測点を見渡すことができる位置に設定するものとする。
<Measurement of reference points and measuring points>
First, the machine point where the total station is installed and three reference points are set. Here, groups Junten is not to move, assuming stationary position. The machine point is set to a position where the total station can overlook each reference point and each measurement point.

次に、機械点にトータルステーションを据え付けて、各基準点1,2,3及び測点4を測定し、その座標を得る(図1(a)参照)。ここで、本実施の形態では、測点4として、既設構造物の任意の1点について測定するものとする。
ここで、測定により得られた各基準点1,2,3及び測点4の測定座標値を、それぞれ、基準点1(x1,y1,z1)、基準点2(x2,y2,z2)、基準点3(x3,y3,z3)、測点4(x4,y4,z4)とする。
Next, the total station is installed at the machine point, and each of the reference points 1, 2, 3 and the measuring point 4 are measured to obtain the coordinates (see FIG. 1 (a)). Here, in this Embodiment, it shall measure about one arbitrary point of the existing structure as the measurement point 4. FIG.
Here, the measurement coordinate values of the reference points 1, 2, 3 and the measurement point 4 obtained by the measurement are respectively referred to as the reference point 1 (x1, y1, z1), the reference point 2 (x2, y2, z2), Reference point 3 (x3, y3, z3) and measurement point 4 (x4, y4, z4).

<座標変換>
次に、各基準点1,2,3が同一の基準平面上(本実施の形態ではX−Y平面)に配置されるように各基準点1,2,3及び測点4の座標変換を行う。
<Coordinate transformation>
Next, the coordinate conversion of each reference point 1, 2, 3 and the measuring point 4 is performed so that each reference point 1, 2, 3 is arranged on the same reference plane (in this embodiment, the XY plane). Do.

(1)平行移動
まず、下式(式1)により、基準点1を原点として、基準点1の測定座標値(x1,y1,z1)が、X軸、Y軸、Z軸の各基準軸の交点である原点(0,0,0)に配置されるように、全測定座標値を平行移動させる(図1(a)参照)。
(1) Parallel movement First, according to the following equation (Equation 1), with reference point 1 as the origin, the measured coordinate values (x1, y1, z1) of reference point 1 are the reference axes of the X, Y, and Z axes. All measured coordinate values are translated so that they are arranged at the origin (0, 0, 0), which is the intersection of (see FIG. 1A).

Figure 0004426915
Figure 0004426915

(2)Z軸による回転移動
次に、基準点2がY軸とZ軸により形成されるY−Z平面上に配置されるようにZ軸を軸として基準点2,3と測点4を回転移動する。
図1(a)に示すように、基準点1と基準点2とを結ぶ線分がY−Z平面となす角度kzを式2により求めて、Z軸を軸としてこの角度kzだけ、基準点2,3と測点4を回転移動させる。この作業により、図1(b)に示すように、基準点2がY−Z平面上に配置される。なお、各座標値は、式4に示すように、式3に示すZ軸の回転マトリックスmzにより算出する。なお、基準点1(x01,y01,z01)は原点なので、回転移動しない。
(2) Rotational movement by the Z axis Next, the reference points 2, 3 and the measuring point 4 are set with the Z axis as an axis so that the reference point 2 is arranged on the YZ plane formed by the Y axis and the Z axis. Rotate and move.
As shown in FIG. 1A, an angle kz formed by a line connecting the reference point 1 and the reference point 2 with the YZ plane is obtained by Equation 2, and the reference point is set by this angle kz with the Z axis as an axis. 2 and 3 and the measuring point 4 are rotated. By this operation, as shown in FIG. 1B, the reference point 2 is arranged on the YZ plane. Each coordinate value is calculated by a Z-axis rotation matrix mz shown in Equation 3 as shown in Equation 4. Since the reference point 1 (x01, y01, z01) is the origin, it does not rotate.

Figure 0004426915
Figure 0004426915

(3)X軸による回転移動
続いて、基準点2がY軸の軸線上に配置されるように、X軸を軸として、基準点2,3と測点4を回転移動する。
図1(b)に示すように、基準点1と基準点2とを結ぶ線分がX−Y平面となす角度kxを式5により求めて、X軸を軸としてこの角度kxだけ、基準点2,3と測点4を回転移動させる。この作業により、図1(c)に示すように、基準点2がY軸上に配置される。なお、各座標値は、式7に示すように、式6に示すX軸の回転マトリックスmxにより算出する。また、基準点1(x01,y01,z01)は原点なので、回転移動しない。
(3) Rotational movement by the X axis Subsequently, the reference points 2 and 3 and the measuring point 4 are rotationally moved about the X axis so that the reference point 2 is arranged on the axis of the Y axis.
As shown in FIG. 1B, an angle kx formed by a line segment connecting the reference point 1 and the reference point 2 to the XY plane is obtained by the equation 5, and the reference point is set by this angle kx with the X axis as an axis. 2 and 3 and the measuring point 4 are rotated. By this operation, the reference point 2 is arranged on the Y axis as shown in FIG. Each coordinate value is calculated by an X-axis rotation matrix mx shown in Equation 6, as shown in Equation 7. Since the reference point 1 (x01, y01, z01) is the origin, it does not rotate.

Figure 0004426915
Figure 0004426915

(4)Y軸による回転移動
さらに、基準点3がX軸とY軸により形成されるX−Y平面上に配置されるように、Y軸を軸として回転移動する。
図1(c)に示すように、基準点3とX−Y平面となす角度kyを式8により求めて、Y軸を軸としてこの角度kyだけ基準点3及び測点4を回転移動させる。この作業により、図1(d)に示すように、基準点1,2,3の3点がX−Y平面上に配置される。なお、各座標値は、式10に示すように、式9に示すY軸の回転マトリックスmyにより算出する。なお、基準点1及び基準点2はY軸の軸線上にあるため、回転移動しない。
(4) Rotational movement by the Y axis Furthermore, the Y axis is rotated and moved so that the reference point 3 is arranged on the XY plane formed by the X axis and the Y axis.
As shown in FIG. 1C, an angle ky formed between the reference point 3 and the XY plane is obtained by Expression 8, and the reference point 3 and the measurement point 4 are rotationally moved by the angle ky with the Y axis as an axis. By this work, as shown in FIG. 1D, the three reference points 1, 2 and 3 are arranged on the XY plane. Each coordinate value is calculated by a Y-axis rotation matrix my shown in Equation 9 as shown in Equation 10. Since the reference point 1 and the reference point 2 are on the axis of the Y axis, they do not rotate.

Figure 0004426915
Figure 0004426915

式10により、基準点1,2,3を基準とした測点4の測定時の座標値(x04zxy,y04zxy,z04zxy)が算出される。   According to Expression 10, coordinate values (x04zxy, y04zxy, z04zxy) at the time of measurement of the measurement point 4 with reference to the reference points 1, 2, and 3 are calculated.

以上の作業を繰り返し定期的に行い、測点4の初期値や過去に算出された座標値と比較することで、構造物の変位の確認を行うことができる。   By repeating the above operations periodically and comparing with the initial value of the measuring point 4 or the coordinate value calculated in the past, the displacement of the structure can be confirmed.

<基準点の移動の確認>
前記の方法により、測定された各基準点1,2,3間の直線長を算出して、初期段階の各直線長と比較することにより、基準点の移動の確認を行う。
<Confirmation of reference point movement>
The movement of the reference point is confirmed by calculating the straight line length between the measured reference points 1, 2, and 3 by the above method and comparing it with each straight line length in the initial stage.

本発明に係るトータルステーションを用いた測定方法は、基準点1,2,3を同一の基準平面(X−Y平面)上に移動して、常に同じ状態(初期状態)に変換した後、測点4の座標を測定するため、トータルステーションが何らかの原因により傾斜や移動した場合でも、測定値に影響を及ぼすことがない。   In the measuring method using the total station according to the present invention, the reference points 1, 2, and 3 are moved on the same reference plane (XY plane) and converted into the same state (initial state) at all times. Since the coordinates of 4 are measured, even if the total station is inclined or moved for some reason, the measured value is not affected.

また、トータルステーションの移動などにより生じる誤差を、3点の基準点1,2,3を利用することで修復することが可能なため、トンネル坑内や都市部等、限られた視界条件内において測定を行うために多数の基準点を設けることができない箇所においても、高精度な測定が可能である。   In addition, since errors caused by movement of the total station can be repaired by using the three reference points 1, 2, and 3, measurements can be made within limited visibility conditions, such as in tunnel tunnels and urban areas. Even in a place where a large number of reference points cannot be provided for the purpose of measurement, high-precision measurement is possible.

以上、本発明について、好適な実施形態について説明したが、本発明は前記各実施形態に限られず、本発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。
例えば、座標変換に関する回転の順番は限定されるものではなく、最終的に3点の基準点が同一の基準平面上に変換することが可能であればよいことはいうまでもない。
As mentioned above, although preferred embodiment was described about this invention, this invention is not limited to said each embodiment, A design change is possible suitably in the range which does not deviate from the meaning of this invention.
For example, the order of rotation related to coordinate conversion is not limited, and it is needless to say that three reference points can be finally converted on the same reference plane.

また、前記実施の形態では、近接施工に伴う、既設構造物の変位測定に本発明に係るトータルステーションを用いた測定方法を採用するものとしたが、これに限定されるものではなく、例えばトンネル内における内空変位測定や供用後の構造物の変位測定等に使用してもよく、任意の点にトータルステーションを据え付けて、定期的に各測点の経時的変化を測定する必要がある測定に有効である。
また、前記実施の形態では、常設したトータルステーションにより測定を行うものとしたが、これに限定されるものではなく、測定時にその都度トータルステーションを据え付けて行う場合でも、当該トータルステーションを用いた測定方法を適用することが可能である。
Further, in the above embodiment, the measurement method using the total station according to the present invention is adopted for the displacement measurement of the existing structure accompanying the proximity construction, but is not limited to this, for example, in the tunnel It can be used for measuring the internal displacement of a building or measuring the displacement of a structure after in-service, and is effective for measurements that require periodic measurement of changes over time at each point by installing a total station at any point. It is.
Further, in the above embodiment, the measurement is performed by the permanent total station. However, the present invention is not limited to this, and the measurement method using the total station is applied even when the total station is installed at the time of measurement. Is possible.

また、本発明のトータルステーションを用いた測定方法に使用するトータルステーションの機種は限定されるものではなく、例えば自動追尾式トータルステーションやノンプリズム搭載型トータルステーション等を使用してもよい。   Further, the type of the total station used in the measurement method using the total station of the present invention is not limited. For example, an automatic tracking total station, a non-prism mounted total station, or the like may be used.

また、原点に設定される基準点は限定されるものではなく、変位測定の期間中、同一の基準点を使用するのであれば、3点のうちどの基準点を使用してもよい。
また、前記実施の形態では、測点を1点としたが、測点の数は限定されるものではなく、前記実施の形態と同様の方法により、複数点について測定を行ってもよい。
The reference point set as the origin is not limited, and any reference point out of the three points may be used as long as the same reference point is used during the displacement measurement.
In the above embodiment, the number of measurement points is one, but the number of measurement points is not limited, and a plurality of points may be measured by the same method as in the above embodiment.

また、前記実施の形態では、基準点の移動の確認を行うものとしたが、基準点の移動の確認は必要に応じて行えばよく、基準点の移動が生じないことが確信されていれば、行わなくてもよい。   In the above embodiment, the movement of the reference point is confirmed. However, the movement of the reference point may be confirmed as necessary, and if it is certain that the movement of the reference point does not occur. It does not have to be done.

本実施の形態に係るトータルステーションを用いた測定方法の各段階を示す説明図である。It is explanatory drawing which shows each step | level of the measuring method using the total station which concerns on this Embodiment.

符号の説明Explanation of symbols

1,2,3 基準点
4 測点
1, 2, 3 Reference point 4 Station

Claims (2)

不動点と仮定した3点の基準点と少なくとも1点の測点をトータルステーションで測定し、
前記3点の基準点のうち任意の1点を原点として、前記3点の基準点が、前記原点で互いに直交する3本の基準軸のうちいずれか2本の基準軸により形成される基準平面上に配置されるように、前記3点の基準点及び前記測点を座標変換して、
前記測点の座標値を測定することを特徴とする、トータルステーションを用いた測定方法。
Measure three reference points assumed to be fixed points and at least one measuring point at the total station,
A reference plane formed by any two of the three reference axes orthogonal to each other at the origin, with any one of the three reference points as the origin. The coordinates of the three reference points and the measurement point are transformed so as to be arranged above,
A measuring method using a total station, wherein the coordinate value of the measuring point is measured.
前記座標変換をマトリックス演算により行うことを特徴とする、請求項1に記載のトータルステーションを用いた測定方法。   The measurement method using a total station according to claim 1, wherein the coordinate transformation is performed by matrix calculation.
JP2004204863A 2004-07-12 2004-07-12 Measurement method using total station Expired - Fee Related JP4426915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004204863A JP4426915B2 (en) 2004-07-12 2004-07-12 Measurement method using total station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004204863A JP4426915B2 (en) 2004-07-12 2004-07-12 Measurement method using total station

Publications (2)

Publication Number Publication Date
JP2006029809A JP2006029809A (en) 2006-02-02
JP4426915B2 true JP4426915B2 (en) 2010-03-03

Family

ID=35896376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004204863A Expired - Fee Related JP4426915B2 (en) 2004-07-12 2004-07-12 Measurement method using total station

Country Status (1)

Country Link
JP (1) JP4426915B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225286A (en) * 2017-12-29 2018-06-29 江西日月明测控科技股份有限公司 A kind of vehicle-mounted total powerstation position and orientation estimation method of movement station

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151757A (en) * 2008-12-26 2010-07-08 Taisei Corp Survey method using total station
JP6441154B2 (en) * 2015-04-08 2018-12-19 大成建設株式会社 Measuring method using total station and control device for total station
CN113203400B (en) * 2021-05-12 2022-11-11 青岛环海海洋工程勘察研究院有限责任公司 Survey equipment installation measurement method and survey equipment installation measurement system without surveying ship dock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225286A (en) * 2017-12-29 2018-06-29 江西日月明测控科技股份有限公司 A kind of vehicle-mounted total powerstation position and orientation estimation method of movement station
CN108225286B (en) * 2017-12-29 2020-09-29 江西日月明测控科技股份有限公司 Pose estimation method for mobile station vehicle-mounted total station

Also Published As

Publication number Publication date
JP2006029809A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
Fraser et al. Metric exploitation of still video imagery
US7979159B2 (en) Method and system for determining the relation between a robot coordinate system and a local coordinate system located in the working range of the robot
US20120029870A1 (en) Method and system for automatically performing a study of a multi-dimensional space
CN101324428B (en) Method for measuring construction steel structure special-shaped component three-dimensional coordinates
CN108362262A (en) Utilize the anti-method for solving construction angle of inclination of space coordinate spin matrix
CN104677280A (en) Rotation axis spatial state calibrating method for swinging arm-type contourgraph
CN103591944A (en) Measurement construction method of arc building
CN111537002A (en) Calibration method and orientation method for laser strapdown inertial measurement unit installation error
JP4426915B2 (en) Measurement method using total station
JP2007263689A (en) Azimuth measuring method for apparatus in environment where external information can not be acquired
US20040025357A1 (en) Device and method for detecting the rotational movement of an element rotatably mounted about an axis
CN110275139B (en) Ultra-short baseline positioning system and method based on rotary primitive multiplexing
JP5610443B2 (en) 3D dimension measurement method
JP4271522B2 (en) Measuring method of air displacement in tunnel
KR101802650B1 (en) System and method for localization of an inpipe moving body
JP2010151757A (en) Survey method using total station
JP2006162539A (en) System and method for measuring displacement
CN102829765B (en) Measuring method for swaying quantity of unstable platform in reference mode
Wang et al. Research on improving the measurement accuracy of the AACMM based on indexing joint
JP4852363B2 (en) Measurement method using total station
CN111197486A (en) Push bench guiding method based on machine vision
CN115183681B (en) Laser measurement method and system for structural displacement
CN115030247B (en) Boom pose information correction method and device and excavator
CN112765303B (en) Road coordinate registration method and device
Fraser et al. Vision-Based Multi-Epoch Deformation Monitoring of the Atrium of Federation Square

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091211

R150 Certificate of patent or registration of utility model

Ref document number: 4426915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151218

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees