JP4425845B2 - Artificial barrier environment monitoring device - Google Patents

Artificial barrier environment monitoring device Download PDF

Info

Publication number
JP4425845B2
JP4425845B2 JP2005283831A JP2005283831A JP4425845B2 JP 4425845 B2 JP4425845 B2 JP 4425845B2 JP 2005283831 A JP2005283831 A JP 2005283831A JP 2005283831 A JP2005283831 A JP 2005283831A JP 4425845 B2 JP4425845 B2 JP 4425845B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber sensor
displacement
temperature
overpack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005283831A
Other languages
Japanese (ja)
Other versions
JP2007093413A (en
Inventor
博 古内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2005283831A priority Critical patent/JP4425845B2/en
Publication of JP2007093413A publication Critical patent/JP2007093413A/en
Application granted granted Critical
Publication of JP4425845B2 publication Critical patent/JP4425845B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、放射性廃棄物を封入したオーバーパックの腐食の有無を判定する人工バリア環境モニタリング装置に関する。   The present invention relates to an artificial barrier environment monitoring device that determines the presence or absence of corrosion of an overpack enclosing radioactive waste.

高レベルの放射性廃棄物を収容する高レベル放射性物質収納体としてオーバーパックが使用される。   An overpack is used as a high-level radioactive material container that contains high-level radioactive waste.

原子力発電所などの使用済核燃料から取り出される高レベル放射性廃棄物は、ガラス固化体に封入され、炭素鋼のオーバーパックに入れられ、その周りをベントナイトなどの粘土を緩衝材として取り囲み、地下数百メートルのところに埋設される。このようなオーバーパックや緩衝材は人工バリアと呼ばれる。   High-level radioactive waste extracted from spent nuclear fuel such as nuclear power plants is sealed in vitrified material, placed in a carbon steel overpack, surrounded by clay such as bentonite as a buffer, and several hundred underground Buried at the meter. Such overpacks and cushioning materials are called artificial barriers.

高レベル放射性物質収納体の地層処分施設を対象とした腐食状況モニタリング装置は、地層処分がまだ計画段階のため具体的な測定器は見当たらない。一般的に、研究段階では腐食を発生させる環境因子(温度、pH、水分、酸素量、水素量など)ごとに専用測定器を用いて測定し、それぞれの結果と腐食状況の目視観察、電子顕微鏡観察あるいはX線分析などの結果との相関関係から環境因子と腐食との関係を求め、腐食要因を分析している。   As for the corrosion status monitoring device for the geological disposal facility of the high-level radioactive material container, there is no specific measuring instrument because the geological disposal is still in the planning stage. In general, in the research stage, each environmental factor that causes corrosion (temperature, pH, moisture, oxygen content, hydrogen content, etc.) is measured using a dedicated measuring instrument, and the results and corrosion status are visually observed, electron microscope Correlation between environmental factors and corrosion is obtained from the correlation with observation or X-ray analysis results, and the corrosion factors are analyzed.

従来、上記環境因子測定には温度はサーミスタ、熱電対など、pHはガラス電極法、比色法、アンチモン電極法、キンヒドロン電極法などのpH計、その他水分計、酸素濃度計、水素濃度計などを用いている。   Conventionally, for the environmental factor measurement, the temperature is thermistor, thermocouple, etc. The pH is glass electrode method, colorimetric method, antimony electrode method, quinhydrone electrode method, etc. pH meter, other moisture meter, oxygen concentration meter, hydrogen concentration meter, etc. Is used.

また、光ファイバセンサを使った温度や変位量測定には後方散乱光に含まれるレーリ散乱光、ブリルアン散乱光、ラマン散乱光などを利用した報告例がある。   In addition, there are examples of reports using Rayleigh scattered light, Brillouin scattered light, Raman scattered light, etc. included in backscattered light for measuring temperature and displacement using an optical fiber sensor.

非特許文献1には、BOTDR(Brillion Optical-fiber Time Domain Reflectometer)と呼ばれるブリルアン散乱光に基づく測定法によってモニタリングすべき構造物の情報を得る方法が検討されていることが記載されている。この方法では、光ファイバ内で発生するブリルアン散乱光がひずみに依存して周波数シフトする現象を利用しており、光ファイバに沿って連続的にひずみを直接計測することを行う。   Non-Patent Document 1 describes that a method of obtaining information on a structure to be monitored by a measurement method based on Brillouin scattered light called BOTDR (Brillion Optical-fiber Time Domain Reflectometer) is described. This method utilizes a phenomenon in which Brillouin scattered light generated in an optical fiber shifts in frequency depending on the strain, and the strain is directly measured along the optical fiber.

その他に表面プラズモン共鳴による屈折率測定を利用した溶液の濃度センサ(特許文献1)、水素センサ(非特許文献2)およびpHセンサ(非特許文献3)などの報告例がある。   In addition, there are reported examples of a solution concentration sensor (Patent Document 1), a hydrogen sensor (Non-Patent Document 2), a pH sensor (Non-Patent Document 3) and the like using refractive index measurement by surface plasmon resonance.

特開2005−10025号公報JP 2005-10025 A 光ファイバブリルアンひずみ分布センサによる構造物のスマート化:成瀬 第25回光波センシング技術研究会 p135-142Making a structure smart with an optical fiber Brillouin strain distribution sensor: Naruse 25th Optical Wave Sensing Technology Study Group p135-142 水素センサ(Surface Plasmon Resonance Hydrogen Sensor Using An Optical Fibre : X.Bevenot et al 14th International Conference on Optical Fiber Sensors p388-391)Hydrogen Sensor (Surface Plasmon Resonance Hydrogen Sensor Using An Optical Fiber: X.Bevenot et al 14th International Conference on Optical Fiber Sensors p388-391) pHセンサ(A pH sensor made using cellulosic coating on a biconically tapered singlemode optical fiber : F.J.Arregui et al. 14th International Conference on Optical Fiber Sensors p464-467 )pH sensor (A pH sensor made using cellulosic coating on a biconically tapered singlemode optical fiber: F.J.Arregui et al. 14th International Conference on Optical Fiber Sensors p464-467)

上記従来技術を地層処分された人工バリアに適用した場合、天然バリア(岩盤など)からの地下水流入により、オーバーパックの腐食あるいはオーバーパック腐食によるガラス固体化からの放射性物質の流出などが懸念される。また、センサ自体が大掛かりでありしかもセンサ部と測定機器との間の信号線が金属で接続すると、信号雑音(電磁雑音による影響)が発生する可能性がある。センサ設置時に人工バリアの健全性を保ちつつ、かつ電磁ノイズを受けないセンサが要求される。   When the above-mentioned conventional technology is applied to an artificial barrier that has been disposed of, there is a concern that the inflow of groundwater from a natural barrier (such as bedrock) may cause overpack corrosion or outflow of radioactive materials from glass solidification due to overpack corrosion. . Further, if the sensor itself is large and the signal line between the sensor unit and the measuring device is connected with metal, signal noise (influence of electromagnetic noise) may occur. A sensor that does not receive electromagnetic noise while maintaining the soundness of the artificial barrier when the sensor is installed is required.

本発明は、かかる点に鑑みて地下深く埋設される人工バリアを構成するオーバーパックの腐食を確実にモニタリングすることのできる人工バリア腐食モニタリング装置を提供することを目的とする。   In view of such a point, an object of the present invention is to provide an artificial barrier corrosion monitoring apparatus capable of reliably monitoring corrosion of an overpack constituting an artificial barrier buried deep underground.

本発明は、放射性廃棄物を封入したオーバーパックの腐食有無を判定する人工バリア環境モニタリング装置において、
前記オーバーパックの周囲に温度測定用光ファイバセンサ,変位測定用光ファイバセンサ,およびpH,水分,水素,酸素を測定する表面プラズモン共鳴光ファイバセンサを備え、並びに温度変位測定制御器および表面プラズモン共鳴光ファイバセンサ測定制御器を備え、前記温度変位測定制御器を制御して前記温度測定用光ファイバセンサおよび変位測定用光ファイバセンサからのブリルアン散乱光に基づいてそれぞれ温度および変位の変位量を求め、および前記表面プラズモン共鳴光ファイバセンサ測定制御器を制御し、前記表面プラズモン共鳴光ファイバセンサからの検出値である表面プラズモン共鳴した光を分光してpH,水分,水素,酸素の物理値に従った波長の光吸収量を求め、前記変位量および波長の光吸収量から演算処理した温度,変位,pH,水分,酸素量増減および水素量増減のすべてを予め定めた値と比較することによって前記オーバーパックの腐食の有無を判定する腐食判定手段を備えること
を特徴とする人工バリア環境モニタリング装置を提供する。
The present invention is an artificial barrier environment monitoring device for determining the presence or absence of corrosion of an overpack enclosing radioactive waste,
An optical fiber sensor for temperature measurement, an optical fiber sensor for displacement measurement, and a surface plasmon resonance optical fiber sensor for measuring pH, moisture, hydrogen, and oxygen are provided around the overpack, and a temperature displacement measurement controller and surface plasmon resonance are provided. An optical fiber sensor measurement controller is provided, and the temperature displacement measurement controller is controlled to obtain temperature and displacement amounts of displacement based on Brillouin scattered light from the temperature measurement optical fiber sensor and displacement measurement optical fiber sensor, respectively. And controlling the surface plasmon resonance optical fiber sensor measurement controller to split the surface plasmon resonance light, which is a detection value from the surface plasmon resonance optical fiber sensor, according to physical values of pH, moisture, hydrogen, and oxygen. The amount of light absorption at the selected wavelength is calculated and processed from the amount of displacement and the light absorption amount at the wavelength. An artificial barrier environment characterized by comprising a corrosion judging means for judging the presence or absence of corrosion of the overpack by comparing all of temperature, displacement, pH, moisture, oxygen amount increase and decrease and hydrogen amount increase and decrease with predetermined values. Provide monitoring equipment.

また、前記温度変位測定制御器は、BOTDR測定器を使用して散乱光強度から距離と温度および距離と変位量を求めることを特徴とする人工バリア環境モニタリング装置を提供する。   The temperature displacement measurement controller provides a man-made barrier environment monitoring device characterized in that a distance, temperature, distance, and displacement amount are obtained from scattered light intensity using a BOTDR measurement device.

また、前記表面プラズモン共鳴光ファイバセンサ測定制御器は、分光器を備えることを特徴とする人工バリア環境モニタリング装置を提供する。   The surface plasmon resonance optical fiber sensor measurement controller includes a spectroscope, and provides an artificial barrier environment monitoring device.

また、前記オーバーパックには、入口の幅よりも径の大きい円形の溝が直線状もしくはらせん状に掘られ、該溝に前記温度測定用光ファイバセンサ、変位測定用光ファイバセンサおよび表面プラズモン共鳴光ファイバセンサを設置したことを特徴とする人工バリア環境モニタリング装置を提供する。   In addition, a circular groove having a diameter larger than the width of the inlet is formed in the overpack in a straight line shape or a spiral shape, and the temperature measuring optical fiber sensor, the displacement measuring optical fiber sensor, and the surface plasmon resonance are formed in the groove. An artificial barrier environment monitoring apparatus characterized by installing an optical fiber sensor is provided.

更に本発明は、放射性廃棄物を封入したオーバーパックの腐食有無を判定する人工バリア環境モニタリング装置において、
前記オーバーパックの周囲に設けた温度測定用光ファイバセンサ,変位測定用光ファイバセンサからのブリルアン散乱光に基づいてそれぞれ温度および変位の変位量を求め、および前記オーバーパックの周囲に設けた表面プラズモン共鳴光ファイバセンサからの検出値である表面プラズモン共鳴した光を分光してpH,水分,水素,酸素の物理値に従った波長の光吸収量を求める手段と、前記変位量および波長の光吸収量から演算処理した温度,変位,pH,水分,酸素量増減および水素量増減のすべてを予め定めた値と比較することによって前記オーバーパックの腐食の有無を判定する手段と、を備えた人工バリア環境モニタリングを有すること
を特徴とする人工バリア環境モニタリング装置を提供する。
Furthermore, the present invention provides an artificial barrier environment monitoring device for determining the presence or absence of corrosion of an overpack enclosing radioactive waste,
Temperature and displacement amounts are obtained based on the Brillouin scattered light from the temperature measuring optical fiber sensor and the displacement measuring optical fiber sensor provided around the overpack, and the surface plasmon provided around the overpack. A means for obtaining a light absorption amount of a wavelength according to physical values of pH, moisture, hydrogen and oxygen by spectroscopically analyzing the surface plasmon-resonant light which is a detection value from the resonant optical fiber sensor; and a light absorption of the displacement amount and the wavelength. Means for determining the presence or absence of corrosion of the overpack by comparing all of the temperature, displacement, pH, moisture, oxygen amount increase / decrease and hydrogen amount increase / decrease calculated from the amount with a predetermined value. An artificial barrier environmental monitoring device characterized by having environmental monitoring is provided.

本発明は、オーバーパックの周囲に温度測定用光ファイバセンサ,変位測定用光ファイバセンサ,およびpH,水分,水素,酸素を測定する表面プラズモン共鳴光ファイバセンサを備え、並びに温度変位測定制御器および表面プラズモン共鳴光ファイバセンサ測定制御器を備えるようにしているので、オーバーパックの腐食の有無を判定するに必要とされる温度,変位,pH,水分,水素および酸素のセンサ情報を信号雑音に邪魔されることなく確実に得ることが出来、以ってオーバーパックの腐食の有無を判定することのできる人工バリア環境モニタリング装置を提供することができる。   The present invention comprises an optical fiber sensor for temperature measurement, an optical fiber sensor for displacement measurement, and a surface plasmon resonance optical fiber sensor for measuring pH, moisture, hydrogen and oxygen around the overpack, and a temperature displacement measurement controller, Since the surface plasmon resonance optical fiber sensor measurement controller is provided, the sensor information of temperature, displacement, pH, moisture, hydrogen and oxygen required to judge the presence or absence of overpack corrosion is disturbed by signal noise. Therefore, it is possible to provide an artificial barrier environment monitoring device that can be obtained without any problem and can determine the presence or absence of corrosion of the overpack.

以下、本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

高レベル放射性廃棄物地層処分における人工バリアとその近傍地層領域では、廃棄物からの放熱、周辺岩盤からの地下水侵入、地下水による緩衝材の膨潤圧の発生、周辺岩盤の応力変化、および緩衝材中の酸素や二酸化炭素と地下水による化学反応など、熱的、水理学的、力学的、化学的なプロセスが相互に影響を及ぼし合っており、これらの錬成挙動として現象を捉えることが必要になっている。   Artificial barriers in high-level radioactive waste geological disposal and the nearby geological regions, heat release from waste, groundwater intrusion from surrounding rock, generation of swelling pressure of buffer due to groundwater, stress change in surrounding rock, and in buffer Thermal, hydraulic, mechanical, and chemical processes, such as chemical reactions of oxygen and carbon dioxide with groundwater, interact with each other, and it is necessary to capture these phenomena as their refining behavior Yes.

そのため、本実施例では、人工バリアとその近傍地層領域における環境を解析する熱−水−応力−化学錬成モデルを構築し、人工バリア健全性を評価することを行う。図1に熱移動,水分移動応力・変形,化学反応についての相関関係を示す。熱輸送変形による熱生成が熱移動に作用し、対流,水化学,変形による透水性が水分移動に作用し、熱応力,膨潤圧が応力・変形に作用する。   For this reason, in this embodiment, a thermal-water-stress-chemical refining model for analyzing the environment in the artificial barrier and the nearby formation region is constructed, and the health of the artificial barrier is evaluated. Fig. 1 shows the correlation between heat transfer, moisture transfer stress / deformation, and chemical reaction. Heat generation due to heat transport deformation affects heat transfer, convection, water chemistry, and water permeability due to deformation affect moisture movement, and thermal stress and swelling pressure affect stress / deformation.

図2は、本発明の実施例である人工バリア環境モニタリング装置100の構成を示す図である。図2において、人工バリア環境モニタリング装置100は、人工バリア環境モニタリング部101、データ収集器102、温度変位測定制御器103、表面プラズモン共鳴光ファイバセンサ測定制御器104、およびセンサ部105からなる。センサ部105は、温度測定用光ファイバセンサ108、変位測定用光ファイバセンサ109、およびpH、水分、水素、酸素を測定する表面プラズモン共鳴光ファイバセンサ110からなる。センサ部105の周囲には緩衝材106が設けられる。緩衝材の外側は天然バリア131となる。表面プラズモン共鳴光ファイバセンサとしては従来からあるヘテロ型構造の光ファイバセンサ(特許文献1参照)や後述する図2に示す構造のものを使用する。   FIG. 2 is a diagram illustrating a configuration of the artificial barrier environment monitoring apparatus 100 according to the embodiment of the present invention. In FIG. 2, the artificial barrier environment monitoring apparatus 100 includes an artificial barrier environment monitoring unit 101, a data collector 102, a temperature displacement measurement controller 103, a surface plasmon resonance optical fiber sensor measurement controller 104, and a sensor unit 105. The sensor unit 105 includes a temperature measuring optical fiber sensor 108, a displacement measuring optical fiber sensor 109, and a surface plasmon resonance optical fiber sensor 110 that measures pH, moisture, hydrogen, and oxygen. A buffer material 106 is provided around the sensor unit 105. The outside of the cushioning material is a natural barrier 131. As the surface plasmon resonance optical fiber sensor, a conventional hetero type optical fiber sensor (see Patent Document 1) or a structure shown in FIG. 2 described later is used.

人工バリア環境モニタリング装置101から出力されるデータ収集開始信号117に基づきデータ収集器102はレーザ光発信器111、BOTDR測定器112、チャネル切替器113、にデータ収集指令118を送信する。これに基づきレーザ光発信器111はレーザ光を発信し、チャネル切替器113を使い温度計測用光ファイバセンサ108と変位測定用光ファイバセンサ109にレーザ光を送る。送ったレーザ光に対する後方散乱光のなかのブリルアン散乱光をBOTDR測定器112を使って測定し、発信してから戻るまでの時間と散乱光強度から距離と温度および距離と変位量を求める。そして、その値をデータ収集器102に送信する。   Based on the data collection start signal 117 output from the artificial barrier environment monitoring apparatus 101, the data collector 102 transmits a data collection command 118 to the laser light transmitter 111, the BOTDR measuring device 112, and the channel switch 113. Based on this, the laser beam transmitter 111 transmits a laser beam and sends the laser beam to the temperature measuring optical fiber sensor 108 and the displacement measuring optical fiber sensor 109 using the channel switch 113. The Brillouin scattered light in the back scattered light with respect to the transmitted laser light is measured using the BOTDR measuring instrument 112, and the distance, temperature, distance, and displacement are determined from the time from transmission to return and the scattered light intensity. Then, the value is transmitted to the data collector 102.

一方、表面プラズモン共鳴光ファイバセンサ測定制御器104はデータ収集器102から計測開始指令118を受けた後、p偏光付き白色光源114からp偏光された光をチャネル切替器116を通して表面プラズモン共鳴光ファイバセンサ110に送る。そして、オーバーパック107表面環境のpH、水分、水素量、酸素量に基づき表面プラズモン共鳴した検出値である光を再びチャネル切替器116を通して分光器115に送り、pH、水分、水素、酸素それぞれの物理量に従った波長の光吸収量を求めデータ収集器102にその値を送る。データ収集器102に集められた温度と変位は距離と時刻の情報とともに、pH、水分、水素、酸素の環境情報は測定時刻とともに、それぞれ人口バリア環境モニタリング装置101に送られる。人工バリア環境モニタリング装置101では収集した温度、変位、pH、水分、水素量、酸素量をリアルタイム表示するとともに、履歴情報表示し、オーバーパック107の腐食状況を監視する。   On the other hand, the surface plasmon resonance optical fiber sensor measurement controller 104 receives the measurement start command 118 from the data collector 102 and then passes the p-polarized light from the p-polarized white light source 114 through the channel switch 116 to the surface plasmon resonance optical fiber. Send to sensor 110. Then, light, which is a detection value obtained by surface plasmon resonance based on the pH, moisture, hydrogen amount, and oxygen amount of the overpack 107 surface environment, is sent again to the spectroscope 115 through the channel switch 116, and each of pH, moisture, hydrogen, oxygen The light absorption amount of the wavelength according to the physical quantity is obtained and the value is sent to the data collector 102. The temperature and displacement collected in the data collector 102 are sent to the artificial barrier environment monitoring device 101 together with the distance and time information, and the environmental information of pH, moisture, hydrogen and oxygen together with the measurement time. The artificial barrier environment monitoring apparatus 101 displays the collected temperature, displacement, pH, moisture, hydrogen amount, and oxygen amount in real time, displays history information, and monitors the corrosion status of the overpack 107.

温度および変位を測定する光ファイバセンサ108,109は後方散乱光の収集を目的としているためオープンエンド型とする。また、距離と温度、距離と変位の関係を測定できるため、できる限りオーバーパックの表面積をカバーできるように図1に示すようにらせん状に設置し、変位測定値に対して温度補償をするため温度と変位情報をペアで設置する。一方、表面プラズモン共鳴光ファイバセンサ110は入射光に対する損失量を測定するため、図2に示すようにループ型にする。   The optical fiber sensors 108 and 109 for measuring temperature and displacement are open end types because they are intended to collect backscattered light. In addition, since the relationship between distance and temperature and distance and displacement can be measured, it is installed in a spiral shape as shown in FIG. 1 so as to cover the surface area of the overpack as much as possible, and temperature compensation is performed for the displacement measurement value. Install temperature and displacement information in pairs. On the other hand, the surface plasmon resonance optical fiber sensor 110 is of a loop type as shown in FIG. 2 in order to measure the amount of loss with respect to incident light.

117はデータ収集開始信号用光ケーブル、118はデータ収集指令用ケーブル、119は温度、変位測定用レーザ光発信用光ケーブル、120は表面プラズモン共鳴光ファイバセンサ用光発信用光ケーブル、121は後方散乱光受信用光ケーブル、122は温度、変位の測定データ用ケーブル、123は表面プラズモン共鳴光受信用光ケーブル、124はpH、水分、水素、酸素の測定データ用ケーブル、125は測定データ受信用ケーブルである。   117 is a data collection start signal optical cable, 118 is a data collection command cable, 119 is a temperature, displacement measurement laser light transmission optical cable, 120 is a surface plasmon resonance optical fiber sensor light transmission optical cable, and 121 receives backscattered light. Optical cable 122, temperature and displacement measurement data cable 123, surface plasmon resonance light receiving optical cable 124, pH, moisture, hydrogen and oxygen measurement data cable 125, and measurement data receiving cable 125.

表面プラズモン共鳴光ファイバセンサ110構造を図3に示す。   The structure of the surface plasmon resonance optical fiber sensor 110 is shown in FIG.

図3において、201は表面プラズモン共鳴光ファイバセンサのコア、202は表面プラズモン共鳴光ファイバセンサのクラッド、203は金および銀などの蒸着、204はpH感度のある物質、205は光ファイバケーブルの被覆(ジャケット)、401は表面プラズモン共鳴光ファイバセンサ用設置溝、402は温度および変位測定光ファイバセンサ用設置溝である。ファイバのクラッド202部分を1部除去し、コア201径を2つのテイパーをつけて小さくして、コア201表面に金や銀などを蒸着203して、セルロースなどpH感度のある物質204をつける。このような2つのテイパーをつけてコア201径を小さくした部分ではエバネッセント波吸収が発生し、固有の波長においてpH濃度と吸収強度の間には相関関係があることがわかっている。表面プラズモン共鳴光ファイバセンサ110はこのエバネッセント波吸収に共鳴する表面プラズモン共鳴現象を組み合わせたものである。   In FIG. 3, 201 is a core of a surface plasmon resonance optical fiber sensor, 202 is a cladding of a surface plasmon resonance optical fiber sensor, 203 is a vapor deposition such as gold and silver, 204 is a substance having pH sensitivity, and 205 is a coating of an optical fiber cable. (Jacket) 401 is an installation groove for a surface plasmon resonance optical fiber sensor, and 402 is an installation groove for a temperature and displacement measurement optical fiber sensor. A part of the fiber cladding 202 is removed, the diameter of the core 201 is reduced by attaching two tapers, and gold, silver or the like is vapor-deposited 203 on the surface of the core 201, and a substance 204 having pH sensitivity such as cellulose is attached. It is known that evanescent wave absorption occurs in the portion where the diameter of the core 201 is reduced by attaching such two tapers, and there is a correlation between pH concentration and absorption intensity at a specific wavelength. The surface plasmon resonance optical fiber sensor 110 is a combination of surface plasmon resonance phenomena that resonate with this evanescent wave absorption.

人工バリア環境モニタリング部101の構成を図4に示す。   The configuration of the artificial barrier environment monitoring unit 101 is shown in FIG.

図4において、301は腐食判定器、302はデータ表示器、303は最新データ受信器、304は測定値保存器、305は過去データ参照器、306はデータ収集開始/終了制御器、307は収集データ処理器、311は温度および変位量がしきい値温度よりも高いかどうかの判別器、312はすべての条件が成立かどうかの判別器、313はpHがしきい値よりも小さいかどうかの判別器、314は水分量初期値と現在値の差が下限値より小さいかどうかの判別器、315は酸素量初期値と現在値の差が下限値より小さいかどうかの判別器、316は水素量初期値と現在値の差が上限値より大きいかどうかの判別器、317は規定された期間継続しているかどうかの判別器、318はすべての条件が成立かどうかの判別器、319は腐食有無の判定器、321はグラフ表示器、322は数値表示器、323は、腐食評価表示器、331は距離ごとの最新の温度データ、332は距離ごとの最新の変位データ、333は最新のpHデータ、334は最新の水分データ、335は最新の水素量データ、330は最新の酸素量データ、351は距離ごとの過去の温度データ、352は距離ごとの過去の変位データ、353は過去のpHデータ、354は過去の水分データ、355は、過去の水素量データ、356は過去の酸素量データである。   In FIG. 4, 301 is a corrosion determination device, 302 is a data display, 303 is a latest data receiver, 304 is a measured value storage device, 305 is a past data reference device, 306 is a data collection start / end controller, and 307 is a collection device. A data processor 311 is a discriminator for determining whether the temperature and the displacement amount are higher than a threshold temperature, 312 is a discriminator for determining whether all conditions are satisfied, and 313 is a parameter for determining whether pH is smaller than a threshold value. A discriminator 314 is a discriminator for determining whether the difference between the initial moisture content value and the current value is less than the lower limit value. A 315 is a discriminator for determining whether the difference between the initial oxygen content value and the current value is less than the lower limit value. A discriminator for determining whether or not the difference between the initial value and the current value is greater than the upper limit value, 317 for determining whether or not the duration has continued for a specified period, 318 for determining whether all conditions are satisfied, and 319 for corrosiveness No determination unit, 321 is a graph display, 322 is a numerical display, 323 is a corrosion evaluation display, 331 is the latest temperature data for each distance, 332 is the latest displacement data for each distance, and 333 is the latest pH. Data, 334 is latest moisture data, 335 is latest hydrogen amount data, 330 is latest oxygen amount data, 351 is past temperature data for each distance, 352 is past displacement data for each distance, and 353 is past pH. Data 354 is past moisture data, 355 is past hydrogen amount data, and 356 is past oxygen amount data.

人工バリア環境モニタリング部101は収集データ処理器307とデータ収集開始と終了の制御を行うデータ収集開始/終了制御器306から構成されている。以下、収集データ処理器307の構成および処理内容について説明する。収集データ処理器307は最新データ受信器303、データ表示器302、測定値保存器304、過去データ参照器305、および腐食判定器301から構成されている。最新データ受信器303は図1に示すデータ収集器102から最新のデータを受信するもので、このデータをデータ表示器302と測定値保存器304に送る。データ表示器302は受け取ったデータを数値表示322するとともに測定値保存器304からこれまでのデータを読み取り、最新のデータと合わせて履歴情報としてグラフ表示321する。   The artificial barrier environment monitoring unit 101 includes a collected data processor 307 and a data collection start / end controller 306 that controls the start and end of data collection. Hereinafter, the configuration and processing contents of the collected data processor 307 will be described. The collected data processor 307 includes a latest data receiver 303, a data display unit 302, a measured value storage unit 304, a past data reference unit 305, and a corrosion determination unit 301. The latest data receiver 303 receives the latest data from the data collector 102 shown in FIG. 1, and sends this data to the data display 302 and the measurement value storage 304. The data display unit 302 displays the received data as a numerical value 322, reads the data so far from the measured value storage unit 304, and displays it as history information 321 together with the latest data.

腐食判定器301は最新データ受信器303にある最新データと過去データ参照器305からあらかじめ設定された期間の過去のデータ351〜356を受け取り、温度、変位、pH、水分、酸素量増減、水素量増減を比較する。腐食判定器301は、「同一場所の温度および変位量がしきい値温度よりも高い」311、「pHがしきい値よりも小さい」313、「水分量の初期値と現在値の差が下限値より小さい」314、「酸素量の初期値と現在値の差が下限値より小さい」315、「水素量の初期値と現在値の差が上限値より大きい」316という条件がすべて同時に成立し、「規定された期間継続している」317場合、「すべての条件が成立」318したと判断し、「腐食があると判定」319して、腐食評価表示323としてデータ表示器302に表示する。   The corrosion determination unit 301 receives the latest data in the latest data receiver 303 and the past data 351 to 356 for a preset period from the past data reference unit 305, and the temperature, displacement, pH, moisture, oxygen amount increase / decrease, hydrogen amount Compare changes. Corrosion determination unit 301 has “the temperature and displacement at the same place are higher than the threshold temperature” 311, “pH is lower than the threshold” 313, and the difference between the initial value and the current value of the water content is the lower limit. Are smaller than 314, “the difference between the initial value and the current value of the oxygen amount is smaller than the lower limit value” 315, and “the difference between the initial value of the hydrogen amount and the current value is greater than the upper limit value” 316. , “Continues for a specified period” 317, it is determined that “all conditions are satisfied” 318, “determines that there is corrosion” 319, and is displayed on the data display 302 as a corrosion evaluation display 323. .

以下、判定器の構成について詳細に説明する。   Hereinafter, the configuration of the determiner will be described in detail.

図6に温度および変位量がしきい値温度よりも高いかどうかの判別器311の詳細を示す。図6において、501は測定範囲の中の場所Aにおける温度測定値、502は腐食発生可能温度の参照値、503は測定範囲の中の場所Aにおける温度測定値と、腐食発生可能温度の参照値の大小判定器で測定値>参照値のとき条件成立情報を出力する手段504は測定範囲の中の場所Aにおける変位測定値、505は腐食発生可能変位の参照値、506は測定範囲の中の場所Aにおける変位測定値と腐食発生可能変位の参照値の大小判定器で測定値>参照値のとき条件成立情報を出力する手段、507は温度および変位量の条件が同時成立かどうかの判別器、508は場所Aにおいて温度および変位に腐食特有の変位があったと判定し、条件成立情報を出力する手段である。   FIG. 6 shows details of the discriminator 311 whether or not the temperature and the displacement amount are higher than the threshold temperature. In FIG. 6, reference numeral 501 denotes a temperature measurement value at a location A in the measurement range, 502 denotes a reference value for the temperature at which corrosion can occur, 503 denotes a temperature measurement value at the location A within the measurement range, and a reference value for the temperature at which corrosion can occur. When the measured value is greater than the reference value, the means 504 for outputting the condition establishment information is the displacement measurement value at the location A in the measurement range, 505 is the reference value of the displacement capable of causing corrosion, and 506 is the measurement value in the measurement range. Means for outputting condition establishment information when the measured value> reference value when the displacement measurement value at the location A and the reference value of the displacement capable of causing corrosion are larger than the reference value, 507 is a discriminator for determining whether the conditions of temperature and displacement are simultaneously satisfied , 508 is a means for determining that there is a displacement peculiar to corrosion in the temperature and displacement at the location A, and outputting condition establishment information.

測定範囲の場所Aにおける温度測定値501および変位測定値504とそれぞれの参照値502,505との大小判定器503,506の構成からなる。同時刻における場所Aの温度測定値501および変位測定値504が腐食発生の可能性のあるそれぞれの参照値502,505よりも大きいと大小判定器503,506が判別し、2つの条件が同時に成立したと判別器507が判断した場合、腐食発生に対する温度および変位に有意な変化があったと判断器508が判定し、条件成立情報を条件判別器312に送る。   The size determination unit 503 and 506 includes a temperature measurement value 501 and a displacement measurement value 504 at a location A in the measurement range, and reference values 502 and 505, respectively. When the temperature measurement value 501 and the displacement measurement value 504 at the location A at the same time are larger than the respective reference values 502 and 505 that may cause corrosion, the magnitude determination units 503 and 506 determine that the two conditions are satisfied simultaneously. When the discriminator 507 determines that the change has occurred, the discriminator 508 determines that there has been a significant change in temperature and displacement with respect to the occurrence of corrosion, and sends condition establishment information to the condition discriminator 312.

図7にpHがしきい値よりも小さいかどうかの判別器313の詳細を示す。pH測定値601と参照値602との大小判定器603の構成からなる。図7において、601はpH測定値、602は腐食発生可能pHの参照値、603はpH測定値と腐食発生可能pHの参照値の大小判定器で測定値<参照値のとき条件成立情報を出力する手段である。pH測定値601が腐食発生の可能性のある参照値602よりも小さい場合、腐食発生に対するpH測定値601に有意な変化があったと大小判定器603が判断し、条件成立情報を条件判別器312に送る。   FIG. 7 shows details of the discriminator 313 as to whether or not pH is smaller than the threshold value. The size determination unit 603 includes a pH measurement value 601 and a reference value 602. In FIG. 7, 601 is a pH measurement value, 602 is a reference value of a corrosion-prone pH, 603 is a magnitude determination unit for a pH measurement value and a reference value of a corrosion-prone pH, and outputs condition establishment information when the measurement value <reference value. It is means to do. When the measured pH value 601 is smaller than the reference value 602 that may cause corrosion, the magnitude determination unit 603 determines that there is a significant change in the measured pH value 601 with respect to the occurrence of corrosion, and the condition determination information is stored in the condition discriminator 312. Send to.

図8に水分量初期値と現在値の差が下限値より小さいかどうかの判別器314の詳細を示す。水分量の初期値702と現在値701の差と参照値703の大小判定器704の構成からなる。図8において、701は水分量測定値、702は初期の水分量測定値、703は腐食発生可能水分量の参照値、704は現在の水分量測定値と初期の水分量測定値の差と参照値の大小判定器で、(現在の水分量測定値−初期の水分量測定値)<参照値のとき条件成立情報を出力する手段である。水分量の初期値702と現在値701の差が腐食発生の可能性のある参照値703よりも小さい場合、腐食発生に対する水分量に有意な変化があったと大小判定器704が判断し、条件成立情報を条件判別器312に送る。   FIG. 8 shows details of the discriminator 314 as to whether or not the difference between the initial moisture content value and the current value is smaller than the lower limit value. A difference between the initial value 702 and the current value 701 of the moisture amount and a reference value 703 size determination unit 704 are configured. In FIG. 8, reference numeral 701 denotes a measured moisture content, 702 denotes an initial measured moisture content, 703 denotes a reference value of the amount of water that can be corroded, and 704 denotes a difference between the current measured moisture value and the initial measured moisture content. It is a means for outputting condition establishment information when (current moisture content measurement value−initial moisture content measurement value) <reference value in a value magnitude judgment device. When the difference between the initial value 702 and the current value 701 of the moisture amount is smaller than the reference value 703 that may cause corrosion, the magnitude determination unit 704 determines that there is a significant change in the moisture amount with respect to the occurrence of corrosion, and the condition is satisfied. Information is sent to the condition discriminator 312.

図9に酸素量初期値と現在値の差が下限値より小さいかどうかの判別器315の詳細を示す。酸素量の初期値802と現在値801の差と参照値803の大小判定器804の構成からなる。図9において、801は酸素量測定値、802は初期の酸素量測定値、803は腐食発生可能酸素量の参照値、804は現在の酸素量測定値と初期の酸素量測定値の差と参照値の大小判定器で、(現在の酸素量測定値−初期の酸素量測定値)<参照値のとき条件成立情報を出力する手段である。酸素量の初期値802と現在値801の差が腐食発生の可能性のある参照値803よりも小さい場合、腐食発生に対する酸素量に有意な変化があったと大小判定器804が判断し、条件成立情報を条件判別器に送る。   FIG. 9 shows details of the discriminator 315 whether or not the difference between the initial oxygen amount value and the current value is smaller than the lower limit value. A difference between the initial value 802 and the current value 801 of the oxygen amount and a configuration of a magnitude determination unit 804 having a reference value 803 are included. In FIG. 9, 801 is an oxygen amount measurement value, 802 is an initial oxygen amount measurement value, 803 is a reference value of the amount of oxygen that can be corroded, and 804 is a difference between a current oxygen amount measurement value and an initial oxygen amount measurement value. It is a means for outputting condition establishment information when (current oxygen amount measured value−initial oxygen amount measured value) <reference value in a value magnitude determination device. When the difference between the initial value 802 and the current value 801 of the oxygen amount is smaller than the reference value 803 that may cause corrosion, the magnitude determination unit 804 determines that there is a significant change in the oxygen amount with respect to the occurrence of corrosion, and the condition is satisfied. Send information to the condition discriminator.

図10に水素量初期値と現在値の差が上限値より大きいかどうかの判別器の詳細を示す。水素量の初期値902と現在値901の差と参照値903の大小判定器904の構成からなる。図10において、901は水素量測定値、902は初期の水素量測定値、903は腐食発生可能水素量の参照値、904は現在の水素量測定値と初期の水素量測定値の差と参照値の大小判定器で(現在の水素量測定値−初期の水素量測定値)>参照値のとき条件成立情報を出力する手段である。水素量の初期値902と現在値901の差が腐食発生の可能性のある参照値903よりも大きい場合、腐食発生に対する水素量に有意な変化があったと大小判定器904が判断し、条件成立情報を条件判別器312に送る。   FIG. 10 shows details of the discriminator whether or not the difference between the initial hydrogen amount value and the current value is larger than the upper limit value. A difference between the initial value 902 and the current value 901 of the hydrogen amount and the configuration of the magnitude determination unit 904 of the reference value 903 are included. In FIG. 10, 901 is a hydrogen measurement value, 902 is an initial hydrogen measurement value, 903 is a reference value of the amount of hydrogen that can be corroded, 904 is a difference between a current hydrogen measurement value and an initial hydrogen measurement value and a reference. This is a means for outputting condition establishment information when the value magnitude determination device is (current hydrogen amount measurement value−initial hydrogen amount measurement value)> reference value. When the difference between the initial value 902 and the current value 901 of the hydrogen amount is larger than the reference value 903 that may cause corrosion, the magnitude determination unit 904 determines that there is a significant change in the hydrogen amount with respect to corrosion occurrence, and the condition is satisfied. Information is sent to the condition discriminator 312.

オーバーパック107に光ファイバセンサ108,109,110を敷設する方法の例を図5に示す。光ファイバセンサ108,109,110は機械的強度が小さいためオーバーパック107に図5に示すような溝401、402を作成し、その溝の中に温度測定用光ファイバセンサ108、変位測定用光ファイバセンサ109、表面プラズモン共鳴光ファイバセンサ110を埋め込む。この溝401、402の形状は光ファイバセンサ108,109,110にダメージを与えないような形状が望ましいため、円形としている。   An example of a method of laying the optical fiber sensors 108, 109, 110 on the overpack 107 is shown in FIG. Since the optical fiber sensors 108, 109, and 110 have low mechanical strength, grooves 401 and 402 as shown in FIG. 5 are formed in the overpack 107, and the temperature measuring optical fiber sensor 108 and the displacement measuring light are formed in the grooves. A fiber sensor 109 and a surface plasmon resonance optical fiber sensor 110 are embedded. The grooves 401 and 402 have a circular shape because it is desirable that the optical fiber sensors 108, 109, and 110 are not damaged.

以上説明した実施例により地下数百メートルに埋設した高レベル放射性廃棄物の人工バリア環境モニタリングが可能になり、高レベル放射性廃棄物が外に漏れないようにしているオーバーパックの金属腐食監視装置として利用できる。   As an overpack metal corrosion monitoring device that enables the monitoring of an artificial barrier environment of high-level radioactive waste buried in several hundred meters underground, according to the embodiment described above, and prevents high-level radioactive waste from leaking outside. Available.

熱−水−応力−化学の錬成挙動の概念図。Schematic diagram of heat-water-stress-chemistry refining behavior. 光ファイバセンサを用いて人工バリア環境の温度、変位、pH、水分、酸素、水素を測定し、オーバーパックの健全性を監視する情報を提供する実施例である人工バリア環境モニタリング装置101の構成図。Configuration diagram of an artificial barrier environment monitoring apparatus 101 which is an embodiment that provides information for measuring the temperature, displacement, pH, moisture, oxygen, and hydrogen of an artificial barrier environment using an optical fiber sensor and monitoring the health of an overpack . 表面プラズモン共鳴光ファイバセンサ110の構造例を示す図。The figure which shows the structural example of the surface plasmon resonance optical fiber sensor 110. FIG. 人工バリア環境モニタリング装置101においてオーバーパック107の腐食有無を判断するデータ処理および判定ルールの構成例を示す図。The figure which shows the structural example of the data processing and determination rule which judge the corrosion presence or absence of the overpack in the artificial barrier environment monitoring apparatus. オーバーパック107への光ファイバセンサ取り付け構造例を示す図。The figure which shows the example of an optical fiber sensor attachment structure to the overpack. 同一場所における温度および変位の参照値の大小判定器構造例。An example of the structure of a magnitude judgment device for reference values of temperature and displacement at the same place. pH測定値と参照値の大小判定較器構造例を示す図。The figure which shows the magnitude judgment comparator structure example of pH measurement value and a reference value. 水分量の初期値と現在値の差と参照値の大小判定器構造例を示す図。The figure which shows the difference of the initial value of a moisture content, the present value, and the magnitude determination device structure example of a reference value. 酸素量の初期値と現在値の差と参照値の大小判定器構造例を示す図。The figure which shows the magnitude determination device structural example of the difference of the initial value of oxygen amount, the present value, and a reference value. 水素量の初期値と現在値の差と参照値の大小判定器構造例を示す図。The figure which shows the difference of the initial value of hydrogen amount, a present value, and the magnitude structure structure of a reference value.

符号の説明Explanation of symbols

100…人工バリア環境モニタリング装置、101…人工バリア環境モニタリング部、102…データ収集器、103…温度変位測定制御器、104…表面プラズモン共鳴光ファイバセンサ測定制御器、106…緩衝材、107…オーバーパック、108…温度測定用光ファイバセンサ、109…変位測定用光ファイバセンサ、110…表面プラズモン共鳴光ファイバセンサ、111…レーザ光発信器、112…BOTDR測定器、113…チャネル切替器、114…P偏光付き白色光源、115…分光器、116…チャネル切替器。   DESCRIPTION OF SYMBOLS 100 ... Artificial barrier environment monitoring apparatus, 101 ... Artificial barrier environment monitoring part, 102 ... Data collector, 103 ... Temperature displacement measurement controller, 104 ... Surface plasmon resonance optical fiber sensor measurement controller, 106 ... Buffer material, 107 ... Over Pack, 108 ... Temperature measurement optical fiber sensor, 109 ... Displacement measurement optical fiber sensor, 110 ... Surface plasmon resonance optical fiber sensor, 111 ... Laser light transmitter, 112 ... BOTDR measurement device, 113 ... Channel switch, 114 ... P-polarized white light source, 115... Spectroscope, 116.

Claims (5)

放射性廃棄物を封入したオーバーパックの腐食有無を判定する人工バリア環境モニタリング装置において、
前記オーバーパックの周囲に温度測定用光ファイバセンサ,変位測定用光ファイバセンサ,およびpH,水分,水素,酸素を測定する表面プラズモン共鳴光ファイバセンサを備え、並びに温度変位測定制御器および表面プラズモン共鳴光ファイバセンサ測定制御器を備え、前記温度変位測定制御器を制御して前記温度測定用光ファイバセンサおよび変位測定用光ファイバセンサからのブリルアン散乱光に基づいてそれぞれ温度および変位の変位量を求め、および前記表面プラズモン共鳴光ファイバセンサ測定制御器を制御し、前記表面プラズモン共鳴光ファイバセンサからの検出値である表面プラズモン共鳴した光を分光してpH,水分,水素,酸素の物理値に従った波長の光吸収量を求め、前記変位量および波長の光吸収量から演算処理した温度,変位,pH,水分,酸素量増減および水素量増減のすべてを予め定めた値と比較することによって前記オーバーパックの腐食の有無を判定する腐食判定手段を備えること
を特徴とする人工バリア環境モニタリング装置。
In an artificial barrier environment monitoring device that judges the presence or absence of corrosion of an overpack enclosing radioactive waste,
An optical fiber sensor for temperature measurement, an optical fiber sensor for displacement measurement, and a surface plasmon resonance optical fiber sensor for measuring pH, moisture, hydrogen, and oxygen are provided around the overpack, and a temperature displacement measurement controller and surface plasmon resonance are provided. An optical fiber sensor measurement controller is provided, and the temperature displacement measurement controller is controlled to obtain temperature and displacement displacement amounts based on Brillouin scattered light from the temperature measurement optical fiber sensor and displacement measurement optical fiber sensor, respectively. And controlling the surface plasmon resonance optical fiber sensor measurement controller to split the surface plasmon resonance light, which is a detection value from the surface plasmon resonance optical fiber sensor, according to physical values of pH, moisture, hydrogen, and oxygen. The amount of light absorption at the selected wavelength is calculated and processed from the amount of displacement and the light absorption amount at the wavelength. An artificial barrier environment characterized by comprising a corrosion judging means for judging the presence or absence of corrosion of the overpack by comparing all of temperature, displacement, pH, moisture, oxygen amount increase and decrease and hydrogen amount increase and decrease with predetermined values. Monitoring device.
請求項1において、前記温度変位測定制御器は、BOTDR測定器を使用して散乱光強度から距離と温度および距離と変位量を求めることを特徴とする人工バリア環境モニタリング装置。   2. The artificial barrier environment monitoring device according to claim 1, wherein the temperature displacement measurement controller obtains a distance, a temperature, a distance, and a displacement amount from a scattered light intensity using a BOTDR measurement device. 請求項1において、前記表面プラズモン共鳴光ファイバセンサ測定制御器は、分光器を備えることを特徴とする人工バリア環境モニタリング装置。   The artificial barrier environment monitoring device according to claim 1, wherein the surface plasmon resonance optical fiber sensor measurement controller includes a spectrometer. 請求項1において、前記オーバーパックには、入口の幅よりも径の大きい円形の溝が直線状もしくはらせん状に掘られ、該溝に前記温度測定用光ファイバセンサ、変位測定用光ファイバセンサおよび表面プラズモン共鳴光ファイバセンサを設置したことを特徴とする人工バリア環境モニタリング装置。   2. The overpack according to claim 1, wherein a circular groove having a diameter larger than the width of the inlet is formed in a linear shape or a spiral shape in the overpack, and the temperature measuring optical fiber sensor, the displacement measuring optical fiber sensor, and An artificial barrier environment monitoring device characterized by installing a surface plasmon resonance optical fiber sensor. 放射性廃棄物を封入したオーバーパックの腐食有無を判定する人工バリア環境モニタリング装置において、
前記オーバーパックの周囲に設けた温度測定用光ファイバセンサ,変位測定用光ファイバセンサからのブリルアン散乱光に基づいてそれぞれ温度および変位の変位量を求め、および前記オーバーパックの周囲に設けた表面プラズモン共鳴光ファイバセンサからの検出値である表面プラズモン共鳴した光を分光してpH,水分,水素,酸素の物理値に従った波長の光吸収量を求める手段と、前記変位量および波長の光吸収量から演算処理した温度,変位,pH,水分,酸素量増減および水素量増減のすべてを予め定めた値と比較することによって前記オーバーパックの腐食の有無を判定する手段と、を備えた人工バリア環境モニタリングを有すること
を特徴とする人工バリア環境モニタリング装置。
In an artificial barrier environment monitoring device that judges the presence or absence of corrosion of an overpack enclosing radioactive waste,
Temperature and displacement amounts are obtained based on the Brillouin scattered light from the temperature measuring optical fiber sensor and the displacement measuring optical fiber sensor provided around the overpack, and the surface plasmon provided around the overpack. A means for obtaining a light absorption amount of a wavelength according to physical values of pH, moisture, hydrogen and oxygen by spectroscopically analyzing the surface plasmon-resonant light which is a detection value from a resonant optical fiber sensor; Means for determining the presence or absence of corrosion of the overpack by comparing all of the temperature, displacement, pH, moisture, oxygen amount increase / decrease and hydrogen amount increase / decrease calculated from the amount with a predetermined value. An artificial barrier environment monitoring device characterized by having environmental monitoring.
JP2005283831A 2005-09-29 2005-09-29 Artificial barrier environment monitoring device Expired - Fee Related JP4425845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283831A JP4425845B2 (en) 2005-09-29 2005-09-29 Artificial barrier environment monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283831A JP4425845B2 (en) 2005-09-29 2005-09-29 Artificial barrier environment monitoring device

Publications (2)

Publication Number Publication Date
JP2007093413A JP2007093413A (en) 2007-04-12
JP4425845B2 true JP4425845B2 (en) 2010-03-03

Family

ID=37979311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283831A Expired - Fee Related JP4425845B2 (en) 2005-09-29 2005-09-29 Artificial barrier environment monitoring device

Country Status (1)

Country Link
JP (1) JP4425845B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923057A (en) * 2010-04-29 2010-12-22 大连理工大学 BOTDR (Brillouin Optical Time-Domain Reflectometer) fiber optical corrosive sensor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0722319D0 (en) * 2007-11-14 2007-12-27 Rolls Royce Plc Component monitoring arrangement
JP2009192250A (en) * 2008-02-12 2009-08-27 Fujikura Ltd Optical fiber sensor cable
JP5215949B2 (en) * 2009-06-22 2013-06-19 株式会社日立エンジニアリング・アンド・サービス Artificial barrier environment monitoring device
CN101893544B (en) * 2010-07-02 2015-10-21 中国兵器工业第五九研究所 A kind of surface wettability sensor
FR2985315B1 (en) * 2011-12-30 2014-03-14 Andra DEVICE FOR DETECTION AND / OR DETERMINATION OF HYDROGEN AND METHOD FOR DETECTION AND / OR DETERMINATION OF HYDROGEN
JP5864272B2 (en) * 2012-01-06 2016-02-17 日立Geニュークリア・エナジー株式会社 Hydrogen concentration measuring device
JP5554853B1 (en) * 2013-02-01 2014-07-23 健二 篠原 Solidified storage container with lighting mechanism for contaminated waste
US10734124B2 (en) * 2017-12-04 2020-08-04 Westinghouse Electric Company Llc Heat pipe assembly of nuclear apparatus having fiber optical temperature detection system
JP6695580B1 (en) * 2019-08-20 2020-05-20 株式会社関東技研 Radioactive waste container inspection facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923057A (en) * 2010-04-29 2010-12-22 大连理工大学 BOTDR (Brillouin Optical Time-Domain Reflectometer) fiber optical corrosive sensor

Also Published As

Publication number Publication date
JP2007093413A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4425845B2 (en) Artificial barrier environment monitoring device
Ferdinand The evolution of optical fiber sensors technologies during the 35 last years and their applications in structure health monitoring
CN101566580B (en) Method for monitoring steel bar corrosion state in concrete by stages and sensor
EP2936138B1 (en) Sensor system for corrosion monitoring
Henault et al. Qualification of a truly distributed fiber optic technique for strain and temperature measurements in concrete structures
Failleau et al. A metrological comparison of Raman-distributed temperature sensors
JP5215949B2 (en) Artificial barrier environment monitoring device
Delepine-Lesoille et al. Industrial qualification process for optical fibers distributed strain and temperature sensing in nuclear waste repositories
CN105334221A (en) Novel fiber optic sensing detecting device for reinforcement corrosion
NO20220636A1 (en) Continuous assessment of well elements using fiber optics
CN113932767A (en) Electric power comprehensive pipe gallery settlement monitoring device and method based on temperature compensation
Xu et al. Corrosion monitoring and assessment of steel under impact loads using discrete and distributed fiber optic sensors
EP1496352B1 (en) Method and apparatus for temperature monitoring of a physical structure
JP2020527703A (en) Fluorophore-enhanced multidimensional photonic sensor
Henault et al. Monitoring of concrete structures using OFDR technique
Soga et al. Fiber-optic underground sensor networks
Wei et al. Photonic crystal fiber based chloride chemical sensors for corrosion monitoring
US20180031485A1 (en) Distributed fiber optic chemical sensor and method
CN114005558B (en) FBG real-time leakage monitoring method and system for main steam pipeline of nuclear power station
Buchoud et al. Development of an automatic algorithm to analyze the cracks evolution in a reinforced concrete structure from strain measurements performed by an Optical Backscatter Reflectometer
Sinchenko Fibre optic distributed corrosion sensor
KR101549699B1 (en) Sensing unit and optical fiber sensor apparatus comprising the same
Ramani Corrosion Monitoring of Steel in Concrete Using Optical Sensors
Wu et al. Fiber-optic sensors for infrastructure health monitoring, Volume I: Introduction and fundamental concepts
Lin et al. Temperature Effect on Fiber Optical Sensors for Dry Cast Storage Health Monitoring

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees