JP4424789B2 - Cooling method and cooling device - Google Patents

Cooling method and cooling device Download PDF

Info

Publication number
JP4424789B2
JP4424789B2 JP26878299A JP26878299A JP4424789B2 JP 4424789 B2 JP4424789 B2 JP 4424789B2 JP 26878299 A JP26878299 A JP 26878299A JP 26878299 A JP26878299 A JP 26878299A JP 4424789 B2 JP4424789 B2 JP 4424789B2
Authority
JP
Japan
Prior art keywords
adsorption
desorption
unit
humidity
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26878299A
Other languages
Japanese (ja)
Other versions
JP2000199656A (en
Inventor
睦弘 伊藤
達也 浅野
藤雄 渡辺
昌信 架谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Silysia Chemical Ltd
Original Assignee
Fuji Silysia Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Silysia Chemical Ltd filed Critical Fuji Silysia Chemical Ltd
Priority to JP26878299A priority Critical patent/JP4424789B2/en
Publication of JP2000199656A publication Critical patent/JP2000199656A/en
Application granted granted Critical
Publication of JP4424789B2 publication Critical patent/JP4424789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments

Description

【0001】
【発明の属する技術分野】
本発明は、吸湿能を有する吸脱着媒体を利用した冷却方法、およびその冷却方法によって空気の冷却を行う冷却装置に関する。
【0002】
【従来の技術】
従来、吸湿能を有する吸脱着媒体を利用した冷却方法としては、例えば、特開平5−115737号公報に記載されているような方法がある。
同公報に記載された冷却方法では、高湿空気を吸脱着媒体に接触させて低湿空気とし、その低湿空気を加湿機で加湿して低湿空気から水の気化熱を奪うことにより、低湿空気の低温化および高湿化を図り、その低温空気によって冷却を行っている。また、吸湿した吸脱着媒体については、ヒータで加熱した高温空気を通して湿気を脱着させることによって再生させている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記冷却方法において、空気冷却の際に熱交換された熱量Qeと、吸脱着媒体の再生に必要な熱量Lから、成績係数(COP:coefficient of performance)ε1=Qe/Lを求めると、COPが1未満程度の値にしかなっておらず、上記冷却方法で必要な冷却能力を確保するためは、吸脱着媒体の再生工程で消費するエネルギーがかなり大きくなってしまう、という欠点があった。
【0004】
本発明は、上記問題を解決するためになされたものであり、その目的は、吸脱着媒体の再生のために消費するエネルギーを、従来よりも低減可能な冷却方法と、その冷却方法によって空気の冷却を行う冷却装置を提供することにある。
【0005】
【課題を解決するための手段、および発明の効果】
上述の目的を達成するために、請求項1に記載の冷却方法は、
雰囲気の温度および湿度に応じて湿気を吸着または脱着し、吸着時には発熱する一方、脱着時には吸熱する性質を有する吸脱着媒体を、気体の流入口または流出口となる複数の通気口を有する流路内に設けることにより、前記流入口から流入した気体を前記吸脱着媒体に接触させた上で前記流出口から流出させる吸脱着構造物を形成し、
複数の前記吸脱着構造物の内、いくつかを吸着部、別のいくつかを脱着部、残りのいくつかを再生部に割り当てて、
第1温度で第1湿度の気体を前記吸着部に流入させて、該吸着部内の吸脱着媒体に湿気を吸着させることにより、該吸着部から前記第1温度よりも高温な第2温度で前記第1湿度よりも低湿な第2湿度の気体を流出させ、
その気体から熱を奪うことにより、前記第2温度よりも低温な第3温度で前記第2湿度の気体とし、
その気体を前記脱着部に流入させて、該脱着部内の吸脱着媒体が吸着している湿気を脱着させることにより、該脱着部から前記第3温度よりも低温な第4温度で前記第2湿度よりも高湿な第3湿度の気体を流出させ、その気体によって冷却対象となる物体または空間の冷却を行い、
前記第温度よりも高温な第5温度まで加熱した気体を前記再生部に流入させて、該再生部内の吸脱着媒体が吸着している湿気を脱着させることにより、該再生部内の吸脱着媒体を再生させ、
さらに、前記吸着部とした吸脱着構造物が前記脱着部となり、前記脱着部とした吸脱着構造物が前記再生部となり、前記再生部とした吸脱着構造物が前記吸着部となるように、各吸脱着構造物を循環させることによって冷却能力を維持し、
しかも、前記再生部から流出する気体の少なくとも一部を、前記吸着部に流入させることにより、前記吸着部に流入する気体を加湿する
ことを特徴とする。
【0006】
この冷却方法において、吸脱着構造物は、吸着部→脱着部→再生部→吸着部の順に循環させて利用されるもので、比較的湿度の高い第1温度で第1湿度の気体を吸着部に通して第1湿度よりも低湿な第2湿度の気体とし、その気体の熱を奪って第2温度よりも低温な第3温度の気体とした上で、その気体を脱着部に通すことによって、第3温度よりも低温な第4温度で第2湿度よりも高湿な第3湿度の冷却用低温気体を得ている。そのため、上記従来技術のように専用の加湿機を設けなくてもよくなり、加湿機の作動に伴って消費されていたエネルギーが節約される。
【0007】
また、吸着部において吸脱着媒体が吸着した湿気が、脱着部において気体の加湿に利用されるので、この加湿に伴って吸脱着媒体の吸湿量がある程度低下することになる。そのため、再生部において高温気体を通して湿気を脱着させる際には、脱着部で脱着しなかった残りの湿気を脱着させるだけで吸脱着媒体が再生するので、上記従来技術のように、吸着部において湿気を吸着させた吸脱着媒体をそのまま再生部で再生するのに比べ、吸脱着媒体の再生のために消費するエネルギーを低減できる。この結果、本発明の冷却方法では、上記従来技術よりも成績係数(COP)ε1が格段に改善され、具体的に言えば、COPが1〜10程度の値となる。
また、この冷却方法においては、前記再生部から流出する気体の少なくとも一部を、前記吸着部に流入させることにより、前記吸着部に流入する気体を加湿する。
このようにすると、吸着部に吸着させる湿気が増えるので、その吸着部を脱着部と入れ替えた際の脱着部における冷却能力が改善される。
【0008】
なお、以上説明した本発明の冷却方法において、吸脱着媒体は、雰囲気の温度および湿度に応じて湿気を吸着または脱着し、吸着時には発熱する一方、脱着時には吸熱する性質を有する物質ないし組成物であれば何でもよい。具体的には、例えば、シリカゲル、ゼオライト、活性炭、活性アルミナ、硫酸、リン酸、塩化カルシウム、塩化リチウム、ジエチレングリコール、トリエチレングリコール、グリセリン、FSM(株式会社豊田中研)、MCM(Mobil社)などを用いることができる。
【0009】
吸脱着構造物は、気体の流入口または流出口となる複数の通気口を有する流路を有し、流入口から流入した気体を、流路内に設けられた吸脱着媒体に接触させた上で流出口から流出させるものであれば、その構造については特に限定されないが、流路内における吸脱着媒体の設け方は、吸脱着媒体の形態や特性に応じて適宜選定される。具体的には、例えば、吸脱着媒体を通気可能な容器に封入して流路内に固定したり、必要に応じて適当なバインダを吸脱着媒体に加えて成形加工することにより、流路をなす壁面自体が吸脱着媒体で構成されるようにしたり、あるいは、流路をなす壁面の表面に吸脱着媒体を付着または含浸させてもよい。
【0010】
また、吸着部から流出して脱着部へ流入する気体から熱を奪うには、周知の熱交換器等を利用すればよい。ここで、請求項2に記載のように、前記吸着部から流出して前記脱着部へ流入する気体から奪った熱を、前記再生部に流入させる気体の加熱に利用すると、さらに、エネルギーが無駄にならないので望ましい。具体的には、例えば、空冷式の熱交換器から排出される熱気を再生部へ導入する流路を形成すればよい。但し、この熱気のみで再生部における吸脱着媒体の再生を行うことは通常は困難なので、その場合は、さらに熱交換器から再生部へ至る流路の途中にヒータないし熱媒が供給される熱交換器を配設し、流路内の気体を加熱する。
【0012】
また、請求項に記載のように、前記吸着部に流入させる気体から熱を奪うことにより、該気体の相対湿度を高くする構成を採用することも望ましい。
吸着部に流入させる気体から熱を奪うための具体的手段については特に限定されないが、例えば、脱着部から流出する低温気体の一部と吸着部に流入させる気体の双方を熱交換器等に通して熱交換し、吸着部に流入させる気体から熱を奪う。このようにすれば、吸着部に流入する前にあらかじめ気体が低温化されるので、これにより、吸着部に流入させる気体の相対湿度を高くすることができる。また、本発明の冷却方法においては、「前記再生部から流出する気体の少なくとも一部を、前記吸着部に流入させることにより、前記吸着部に流入する気体を加湿する構成を採用しているが、この場合、再生部から流出する気体は、湿気を脱着させる都合上、通常はある程度まで加熱されているので、再生部から流出する気体と室温の気体の双方を熱交換器等に通して熱交換することで、吸着部に流入させる気体から熱を奪うことができ、吸着部に流入させる気体の相対湿度を高くすることができる。
【0013】
このような構成を採用すれば、より相対湿度の高い気体が吸着部に流入することになるので、相対湿度が高くなるほど飽和吸着量が大となる吸脱着媒体が設けてある吸着部では、吸着される水分の絶対量が増えることになり、その吸着部が脱着部とされた時に脱着する水分の量も増えることになるので、冷却効果が高くなる。ちなみに、脱着部から流出する低温気体の一部を吸着部に流入させる気体から熱を奪うために使う場合、その熱を奪うために使った一部の気体を冷却のために使うことはできなくなるが、残りの低温気体については、より低温化されることになる。
【0014】
次に、請求項に記載の冷却方法は、
一つの前記吸脱着構造物の流路内に設けられる前記吸脱着媒体が、比較的高湿での吸着能力が高い第1吸脱着媒体と、比較的低湿での吸着能力が高い第2吸脱着媒体の双方からなり、
前記吸脱着構造物を前記吸着部とした際に、流入口から流入した気体が前記第1吸脱着媒体に接触した後で前記第2吸脱着媒体に接触して流出口から流出するように、前記第1,第2吸脱着媒体を設け、
前記吸脱着構造物を前記脱着部または前記再生部とした際に、流入口から流入した気体が前記第2吸脱着媒体に接触した後で前記第1吸脱着媒体に接触して流出口から流出するように、前記吸脱着構造物の流路内における気体の流通方向を変更する
ことを特徴とする。
【0015】
この冷却方法によれば、吸脱着構造物を吸着部とした際には、流入口から流入した気体がかなり高湿であっても、まず、比較的高湿での吸着能力が高い第1吸脱着媒体に接触するので、湿気が効果的に吸着される。また、第1吸脱着媒体に接触して低湿化された気体は、引き続いて比較的低湿での吸着能力が高い第2吸脱着媒体に接触するので、さらに湿気が吸着される。したがって、吸着部から流出する気体をきわめて低湿な状態とすることができる。
【0016】
また、吸脱着構造物を脱着部または再生部とした際には、流入口から流入した低湿度の気体が、まず、第2吸脱着媒体に接触するので、第2吸脱着媒体は、比較的低湿での吸着能力が高いにもかかわらず良好に湿気を脱着する。これにより、第2吸脱着媒体に接触した気体はいくらか湿気を帯びることになるが、引き続いて接触する第1吸脱着媒体は、比較的高湿での吸着能力が高いので、何ら問題なく湿気を脱着する。
【0017】
したがって、吸着部における吸着性能と、脱着部および再生部における脱着性能がともに良好になり、さらに冷却能力が改善される。
なお、請求項に記載のように第1,第2吸脱着媒体の双方を利用すると、いずれか一方を利用した場合よりも冷却性能を改善することができるが、本発明の冷却方法においては、いずれか一方を利用するだけでも相応の冷却能力を発揮することはもちろんである。また、第1,第2吸脱着媒体の双方を利用する場合、気体の流通方向を上記のように最適化すれば、最も冷却性能が高くなるが、上記とは異なる気体の流通方向とした場合、あるいは第1,第2吸脱着媒体を2つの領域に分けて設けず、第1,第2吸脱着媒体が混在するように設けた場合でも、相応の冷却能力を発揮する。したがって、例えば、必要な冷却性能とコスト面等とを勘案して、必要があれば、上記のような、請求項に記載のものとは異なる構成を採用しても構わない。
【0018】
また、第1,第2吸脱着媒体は、両者を比較した際に、相対的に高湿での吸着能力が高いものと、相対的に低湿での吸着能力が高いものを組み合わせることで、いずれか一方の吸脱着媒体だけを採用したものよりも性能が改善されるが、望ましくは、請求項に記載のように、前記第1吸脱着媒体は、相対湿度60%における吸湿率と相対湿度100%における吸湿率との差が10重量%以上あり、前記第2吸脱着媒体は、相対湿度0%における吸湿率と相対湿度60%における吸湿率との差が10重量%以上あると、各吸脱着媒体が相互の利点を活かして互いの欠点を補い合い、比較的高湿から低湿まで幅広い範囲で良好な冷却性能を発揮するようになるので望ましい。
【0019】
このような第1吸脱着媒体の代表的な例としては、平均細孔径5〜10nm程度のメゾポアタイプのシリカゲル(例えば、B型シリカゲル)を挙げることができ、第2吸脱着媒体の代表的な例としては、平均細孔径2〜5nm程度のマイクロポアタイプのシリカゲル(例えば、A型シリカゲル)を挙げることができる。
【0020】
なお、上記吸湿率の差は、無限に大きくなることはないが、本発明においては可能な限り大きな値となる方が望ましく、上限については特に具体的な数値をもって限定されるものではない。下限については、それぞれ10重量%以上である。上記吸湿率の差が10重量%を下回ると、吸脱着媒体の量の割には吸脱着可能な水分量が小さくなりすぎるので、所期の効果を得るためには多量の吸脱着媒体が必要となり、その分だけコストの増大を招く。また、その多量の吸脱着媒体と気体とを十分に接触させるには大きな流路が必要となるので、冷却装置を構成した場合に装置の大型化を招きやすい。
【0021】
次に、請求項に記載の冷却方法は、
それぞれの両端に開口を有する複数の貫通穴を並列に形成して、各貫通穴の内壁面に前記吸脱着媒体を設けることにより、各貫通穴が前記流路、各開口が前記通気口となる前記吸脱着構造物の集合体を形成して、
該集合体の略中央において前記貫通穴の貫通方向に延びる軸線を中心にして、該集合体を回転させることにより、前記吸着部とした吸脱着構造物が前記脱着部となり、前記脱着部とした吸脱着構造物が前記再生部となり、前記再生部とした吸脱着構造物が前記吸着部となるように、各吸脱着構造物に連続する流路を切り替える
ことを特徴とする。
【0022】
この冷却方法によれば、吸脱着構造物の集合体を回転させるだけで、吸脱着構造物と吸脱着構造物に連続する流路との位置関係が順に入れ替わって、吸着部とした吸脱着構造物が脱着部となり、脱着部とした吸脱着構造物が再生部となり、再生部とした吸脱着構造物が吸着部となるので、多数のバルブ等を利用して複雑に流路の切り替えを行わなくてもよくなる。
【0023】
なお、以上説明したことから明らかなように、請求項に記載の冷却装置、すなわち、空気を吸入して、該空気を請求項1〜請求項に記載の冷却方法によって冷却し、冷却された空気を冷却対象となる空間に放出することを特徴とする冷却装置によれば、空気を冷却する際に、請求項1〜請求項に記載の冷却方法について述べた通りの作用、効果を奏するので、この種の吸脱着媒体を利用した冷却装置としては、きわめてCOPが高くなり、従来と同等な冷却能力を確保した場合でも、エネルギーの消費量を低減することができる。
【0024】
【発明の実施の形態】
次に、本発明の実施形態について説明する。
以下に説明する冷却装置は、本発明の冷却方法によって空気の冷却を行うように構成されたもので、室内の空気を冷却対象とする冷房装置である。
【0025】
図1に示すように、冷房装置は、吸着部1,脱着部2,および再生部3として利用される吸脱着ユニット10を備え、室内の空気が吸着部1に流入し、吸着部1から流出した空気が第1熱交換器12を通って脱着部2に流入し、脱着部2から流出した空気が再び室内へ戻るように構成されている。また、室外の空気が第1熱交換器12,第2熱交換器14を通って再生部3に流入し、再生部3から流出した空気が室外へ排出されるように構成されている。また、熱媒源から供給される熱媒が、第2熱交換器14を通って再び熱媒源へ戻るように構成されている。
【0026】
これらの内、吸脱着ユニット10は、図2に示すように、両端に開口を有する複数の貫通穴を並列に形成してなるハニカム構造の円柱体で、第1吸脱着層10aと第2吸脱着層10bからなる2層構造になっている。
第1吸脱着層10aは、B型シリカゲルを主成分とする組成物をハニカム状に成形したものである。ここで用いたB型シリカゲルは、25℃における吸着等温線が、図3に示すようなカーブc1を描くもので、相対湿度60%における吸湿率と相対湿度100%における吸湿率との差が10重量%以上ある。一方、第2吸脱着層10bは、A型シリカゲルを主成分とする組成物をハニカム状に成形したものである。ここで用いたA型シリカゲルは、25℃における吸着等温線が、図3に示すようなカーブc2を描くもので、相対湿度0%における吸湿率と相対湿度60%における吸湿率との差が10重量%以上ある。
【0027】
この吸脱着ユニット10は、図1においては、図示の都合上、吸着部1,脱着部2,および再生部3を並列に描いてあるが、実際は、図2中に示した点線を境界として各領域が吸着部1,脱着部2,および再生部3となるように、冷房装置内における空気の流入路および流出路が配置され、各領域では図2中に太線矢印で示した方向へ空気が流される。また、吸脱着ユニット10は、モータ等(図示略)によって、図2中のC−C線を回転中心として矢印A方向へ回転駆動され、この回転に伴って、吸着部1となっていた領域が脱着部2となり、脱着部2となっていた領域が再生部3となり、再生部3となっていた領域が吸着部1となるように、順次位置が切り替わる。
【0028】
なお、図2には明示的に示していないが、上記吸脱着ユニット10において、第1吸脱着層10aが吸脱着ユニット10全体の30%、第2吸脱着層10bは吸脱着ユニット10全体の70%を占める構成になっている。また、図2において、吸着部1,脱着部2,および再生部3は、ほぼ1/3ずつの領域とされているが、これらの領域は等分にする必要はなく、各領域の大きさの比は、吸脱着ユニット10の吸脱着性能、空気の流量、その他の種々の条件によって変わり得る。
【0029】
第1熱交換器12は、吸着部1から流出した空気の熱を奪って、室外から取り込んだ空気へ移動させるものである。第2熱交換器14は、第1熱交換器12内で熱を受け取った空気をさらに加熱するものである。
以上のように構成された冷房装置において、高湿な室内空気は、まず吸着部1へと流入する。高湿空気が吸着部1を通過すると、最初に高湿環境下での吸着能が高い第1吸脱着層10aが多量の湿気を吸着し、続いて低湿環境下での吸着能が高い第2吸脱着層10bが僅かに残る湿気をも吸着し、湿度はほぼゼロとなる。また、この時、吸着熱が発生するため、空気は加熱されて温度は上昇する。吸着部1から流出した低湿空気は、第1熱交換器12によって熱が奪われ、脱着部2へと流入する。
【0030】
低湿空気が脱着部2を通過すると、最初に第2吸脱着層10bが低湿空気に晒されるが、この空気は湿度がほぼゼロであるため、低湿環境下での吸着能が高い第2吸脱着層10bといえども、いくらかの水分が脱着する。また、続いて第1吸脱着層10aが空気に晒される。この空気は、第2吸脱着層10bにおいて加湿された空気なので、僅かに湿気が高くなってはいるが、高湿環境下での吸着能が高い第1吸脱着層10aからすれば、未だ十分に低湿な空気であり、この低湿空気に第1吸脱着層10aが晒されると、第1吸脱着層10aからもいくらかの水分が脱着する。その結果、空気は高湿になり、同時に熱が奪われて低温化する。
【0031】
したがって、この冷房装置では、上記従来技術のように専用の加湿機を設けなくてもよく、加湿機の作動に伴って消費されていたエネルギーが節約されることになる。
また、吸着部1において吸着された湿気が、脱着部2において空気の加湿に利用されるので、再生部3において高温気体を通して湿気を脱着させる際には、脱着部2で脱着しなかった残りの湿気を脱着させるだけで、第1吸脱着層10aおよび第2吸脱着層10bの再生を図ることができる。したがって、上記従来技術のように、吸着部1において湿気を吸着させた吸脱着媒体をそのまま再生部3で再生するのに比べ、吸脱着媒体の再生のために消費するエネルギーを低減できる。
【0032】
なお、以上説明した冷房装置において、吸脱着ユニット10の個々の貫通穴を含む部分が、本発明でいう吸脱着構造物に相当し、吸脱着ユニット10全体が、本発明でいう吸脱着構造物の集合体に相当する。また、第1吸脱着層10aのB型シリカゲルが、本発明でいう第1吸脱着媒体に相当し、第2吸脱着層10bのA型シリカゲルが、本発明でいう第2吸脱着媒体に相当し、これらは双方とも本発明でいう吸脱着媒体に相当する。
【0033】
但し、上記冷房装置は、本発明の冷却装置を具体化した一実施形態に過ぎず、各部の具体的な構造は、適宜設計変更可能である。例えば、本発明でいう吸脱着構造物は、上記冷房装置に設けたようなハニカム構造の吸脱着ユニット10に限られるものではなく、例えば、吸脱着媒体を通気可能な容器に封入したもの、流路をなす壁面の表面に吸脱着媒体を付着または含浸させてものなどであってもよい。
【0034】
ところで、上記冷房装置のように、B型シリカゲルを主成分とする第1吸脱着層10a、A型シリカゲルを主成分とする第2吸脱着層10bの双方を利用すると、いずれか一方しかない場合よりも冷却性能を改善することができるが、これは、次のようなモデルを使った実験によって実証される。
【0035】
まず、上記冷房装置の吸脱着ユニット10と同様の特性を持つモデルとして、カラム内にA型シリカゲルを70%、B型シリカゲルを30%の割合で2層をなすように充填したもの(以下、モデル1という)を用意した。また、いずれか一方の吸着媒体しか存在しないモデルとして、カラム内にA型シリカゲルを100%充填したもの(以下、モデル2という)、カラム内にB型シリカゲルを100%充填したもの(以下、モデル3という)を用意した。
【0036】
そして、上記各モデルが、吸着部1となった場合を想定して、各モデルに相対湿度82%、温度30.5℃の空気を、流速3.8m/minで流入させた。なお、モデル1においては、B型シリカゲル側が空気の流入側である。
各モデルの出口側から流出する空気の湿度を測定したところ、モデル1、2では、湿度がほぼゼロになっていた。また、モデル3では、湿度が約21%になっていた。
【0037】
続いて、上記各モデルから流出した空気を30℃まで冷却し、上記各モデルが、脱着部2となった場合を想定して、冷却した空気を再び各モデルに流通させた。但し、この時の流通方向は、吸着部1を想定した場合とは逆の向きになる。
各モデルの出口側(吸着部1とした場合における入口側と同じ側)から流出する空気の温度を測定したところ、モデル1では12.5℃、モデル2では18℃、モデル3では24℃となっていた。
【0038】
さらに、各モデルのシリカゲルの含水率を調べたところ、モデル1、モデル3はシリカゲルの含水率が4%程度まで大きく低下していたが、モデル2では出口側付近のシリカゲルの含水率が28%程度あり、あまり低下していなかった。
以上のことからは、吸脱着媒体として、A型シリカゲルを単独で採用すると、吸着性能は高いものの、高湿下での脱着性能に劣るため、脱着に伴う吸熱量が少なくなることが伺われる。また、B型シリカゲルを単独で採用すると、低湿下での吸着性能が低いため、十分に低湿な空気を得ることができず、その分だけ脱着の効率も悪くなるため、脱着に伴う吸熱量が少なくなることが伺われる。
【0039】
これに対し、A型・B型シリカゲルを組み合わせて利用すると、吸着時には、各シリカゲルの特性にあった条件下で吸脱着が行われるので、吸着しきれない湿気が残留したり、脱着しきれない水分が残留したりせず、最大限の冷却能力が発揮されるものと考えられる。
【0040】
但し、A型・B型シリカゲルを単独で採用した場合でも、いくらかの冷却性能は発揮されているので、A型・B型シリカゲルを単独で採用した冷却装置が使用に耐えないものとなる訳ではなく、用途によっては、A型・B型シリカゲルを単独で採用しても構わない。
【0041】
次に、本発明の実施形態について別の例を挙げて説明する。
以下に説明する冷却装置は、図1に示した冷房装置に対して、さらに冷却能力を高めるための構成を付加したものである。
すなわち、図4に示すように、冷房装置は、吸着部1,脱着部2,および再生部3として利用される吸脱着ユニット10と、第1熱交換器12、第2熱交換器14等を備え、これらが図1に示した冷房装置と同様に配設されている。
【0042】
そして、これらの構成に加えて、再生部3から流出した空気の一部が第3熱交換器16を通って吸着部1に流入するように構成され、室外の空気が第3熱交換器16を通って室外へ排出されるように構成されている。
このようにすると、再生部3から流出した空気に含まれる湿気が吸着部1において吸着されるので、吸着部1の含水量が増大し、吸着部1を脱着部2とした時の脱着部2における冷却能力が改善される。また特に、再生部3から流出する空気と室内の空気の双方を第3熱交換器16に通して熱交換することで、吸着部1に流入させる空気から熱を奪っているので、これにより、再生部3から吸着部1へと流入させる空気の相対湿度を高くすることができ、熱を奪うことなく再生部3から吸着部1へ空気を流入させる場合に比べ、吸着部1において吸着される水分の絶対量を増大させることができ、その吸着部1が脱着部2とされた時に脱着する水分の量も増えることになるので、冷却効果が高くなる。
【0043】
次に、本発明の実施形態についてさらに別の例を挙げて説明する。
以下に説明する冷却装置も、図1に示した冷房装置に対して、さらに冷却能力を高めるための構成を付加したものである。
すなわち、図5に示すように、冷房装置は、吸着部1,脱着部2,および再生部3として利用される吸脱着ユニット10と、第1熱交換器12、第2熱交換器14等を備え、これらが図1に示した冷房装置と同様に配設されている。
【0044】
そして、これらの構成に加えて、室内(以下、第1室内ともいう)の空気が第4熱交換器18を通って吸着部1へ流入するように構成され、また、脱着部2から流出した空気の一部が第4熱交換器18を通って第2室内へと流れるように構成されている。
【0045】
このようにすると、脱着部2から流出する冷気によって第1室内の空気があらかじめ冷却されてから吸着部1へ流入するので、これにより、吸着部1へ流入する空気の相対湿度を高くすることができ、冷却することなく吸着部1へ空気を流入させる場合に比べ、吸着部1において吸着される水分の絶対量を増大させることができ、その吸着部1が脱着部2とされた時に脱着する水分の量も増えることになるので、冷却効果が高くなる。
【0046】
なお、脱着部2から流出した空気の一部は、第4熱交換器18を通った後も室温よりは低温なので、第2室内へ流れるように構成して低温空気の有効利用を図っているが、他の用途に利用してもよい。例えば、図5に示した構成に加えて、図4に示した構成をも採用し、脱着部2から流出して第4熱交換器18を通った空気をさらに第3熱交換器16に通して、再生部3から流出した空気を冷却するために利用することもできる。もちろん、特に必要がなければ、単に室外へ排出してもよい。
【0047】
以上、本発明の実施形態について説明したが、本発明の実施形態については上記のもの以外にも種々の具体的形態が考えられる。
例えば、上記実施形態では、冷房装置、すなわち、室内の空気を冷却対象とする冷却装置を構成したが、本発明の冷却方法ないし冷却装置は、冷房装置以外のものにも適用可能である。具体的には、例えば、食品などを保管する低温保管庫内や、発熱源となる機器を内蔵した各種装置を冷却対象として、本発明の冷却方法ないし冷却装置を適用してもよい。
【図面の簡単な説明】
【図1】 実施形態において説明した冷房装置の構成図である。
【図2】 上記冷房装置の吸脱着ユニットの斜視図である。
【図3】 第1吸脱着層と第2吸脱着層に用いた各シリカゲルの吸着等温線である。
【図4】 上記冷房装置に別の構成を付加した冷房装置の構成図である。
【図5】 上記冷房装置にさらに別の構成を付加した冷房装置の構成図である。
【符号の説明】
1・・・吸着部、2・・・脱着部、3・・・再生部、10・・・吸脱着ユニット、10a・・・第1吸脱着層、10b・・・第2吸脱着層、12・・・第1熱交換器、14・・・第2熱交換器、16・・・第3熱交換器、18・・・第4熱交換器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling method using an adsorption / desorption medium having a hygroscopic ability, and a cooling device that cools air by the cooling method.
[0002]
[Prior art]
Conventionally, as a cooling method using an adsorption / desorption medium having a hygroscopic ability, for example, there is a method as described in JP-A-5-115737.
In the cooling method described in the publication, high-humidity air is brought into contact with the adsorption / desorption medium to form low-humidity air, and the low-humidity air is humidified by a humidifier to remove the heat of vaporization of water from the low-humidity air. The temperature is lowered and the humidity is increased, and cooling is performed by the low-temperature air. Further, the moisture absorbing / desorbing medium is regenerated by desorbing moisture through high-temperature air heated by a heater.
[0003]
[Problems to be solved by the invention]
However, in the cooling method, when a coefficient of performance (COP) ε1 = Qe / L is obtained from the amount of heat Qe exchanged during air cooling and the amount of heat L necessary for regeneration of the adsorption / desorption medium, The COP is only a value of less than 1, and in order to secure the cooling capacity necessary for the above cooling method, there is a disadvantage that the energy consumed in the regeneration process of the adsorption / desorption medium becomes considerably large. .
[0004]
The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a cooling method capable of reducing the energy consumed for the regeneration of the adsorption / desorption medium as compared with the conventional method, and the cooling method. It is providing the cooling device which cools.
[0005]
[Means for Solving the Problems and Effects of the Invention]
  In order to achieve the above object, the cooling method according to claim 1 comprises:
  A flow path having a plurality of vents serving as gas inlets or outlets for adsorbing and desorbing media that absorbs or desorbs moisture according to the temperature and humidity of the atmosphere and generates heat during adsorption while absorbing heat during desorption. By providing in, forming an adsorption / desorption structure that allows the gas flowing in from the inflow port to contact the adsorption / desorption medium and then outflow from the outflow port,
  Of the plurality of the adsorption / desorption structures, some are assigned to the adsorption unit, another some are assigned to the desorption unit, and some of the remaining are assigned to the regeneration unit,
  A gas having a first humidity is caused to flow into the adsorption unit at a first temperature, and moisture is adsorbed by the adsorption / desorption medium in the adsorption unit, so that the second temperature higher than the first temperature is obtained from the adsorption unit. Let the gas of the second humidity lower than the first humidity flow out,
  By depriving the gas of heat, the second humidity gas is obtained at a third temperature lower than the second temperature,
  By flowing the gas into the desorption portion and desorbing the moisture adsorbed by the adsorption / desorption medium in the desorption portion, the second humidity at a fourth temperature lower than the third temperature from the desorption portion. A third humidity gas having a higher humidity is discharged, and the object or space to be cooled is cooled by the gas.
  Said1A gas heated to a fifth temperature higher than the temperature is caused to flow into the regeneration unit, and the moisture adsorbed by the adsorption / desorption medium in the regeneration unit is desorbed to regenerate the adsorption / desorption medium in the regeneration unit. ,
  Further, the adsorption / desorption structure as the adsorption part becomes the desorption part, the adsorption / desorption structure as the desorption part becomes the regeneration part, and the adsorption / desorption structure as the regeneration part becomes the adsorption part, Maintaining cooling capacity by circulating each adsorption / desorption structureAnd
In addition, the gas flowing into the adsorption unit is humidified by causing at least a part of the gas flowing out from the regeneration unit to flow into the adsorption unit.
  It is characterized by that.
[0006]
In this cooling method, the adsorption / desorption structure is used by circulating in the order of adsorption part → desorption part → regeneration part → adsorption part, and adsorbs the gas of the first humidity at a relatively high first temperature. Through a gas having a second humidity lower than the first humidity, depriving the heat of the gas to a gas having a third temperature lower than the second temperature, and passing the gas through the desorption part. Thus, a cooling low-temperature gas having a fourth humidity lower than the third temperature and a third humidity higher than the second humidity is obtained. Therefore, it is not necessary to provide a dedicated humidifier as in the prior art, and energy consumed by the operation of the humidifier is saved.
[0007]
  Further, since the moisture adsorbed by the adsorption / desorption medium in the adsorption part is used for humidifying the gas in the desorption part, the moisture absorption amount of the adsorption / desorption medium is reduced to some extent along with this humidification. Therefore, when the moisture is desorbed through the high-temperature gas in the regeneration unit, the adsorption / desorption medium is regenerated simply by desorbing the remaining moisture that has not been desorbed in the desorption unit. The energy consumed for the regeneration of the adsorption / desorption medium can be reduced as compared with the case where the adsorption / desorption medium adsorbing the adsorbent is directly regenerated in the regeneration unit. As a result, in the cooling method of the present invention, the coefficient of performance (COP) ε1 is remarkably improved as compared with the above-described prior art, and specifically, the COP becomes a value of about 1 to 10.
Further, in this cooling method, the gas flowing into the adsorption unit is humidified by causing at least a part of the gas flowing out from the regeneration unit to flow into the adsorption unit.
If it does in this way, since the moisture made to adsorb | suck to an adsorption | suction part will increase, the cooling capability in the desorption part at the time of replacing the adsorption | suction part with the desorption part will be improved.
[0008]
In the cooling method of the present invention described above, the adsorption / desorption medium is a substance or composition having a property of adsorbing or desorbing moisture according to the temperature and humidity of the atmosphere and generating heat during adsorption, while absorbing heat during desorption. Anything is fine. Specifically, for example, silica gel, zeolite, activated carbon, activated alumina, sulfuric acid, phosphoric acid, calcium chloride, lithium chloride, diethylene glycol, triethylene glycol, glycerin, FSM (Toyota Chuken), MCM (Mobil), etc. Can be used.
[0009]
The adsorption / desorption structure has a flow path having a plurality of vent holes serving as gas inlets or outlets, and the gas flowing in from the inlet is brought into contact with an adsorption / desorption medium provided in the flow path. However, the structure is not particularly limited as long as it is allowed to flow out from the outlet, and the method of providing the adsorption / desorption medium in the flow path is appropriately selected according to the form and characteristics of the adsorption / desorption medium. Specifically, for example, by enclosing an adsorbing / desorbing medium in a ventable container and fixing it in the flow path, or by adding a suitable binder to the adsorbing / desorbing medium as necessary, the flow path can be changed. The wall surface itself may be composed of an adsorption / desorption medium, or the adsorption / desorption medium may be attached or impregnated on the surface of the wall surface forming the flow path.
[0010]
In addition, a known heat exchanger or the like may be used to remove heat from the gas that flows out from the adsorption unit and flows into the desorption unit. Here, as described in claim 2, when the heat taken out from the gas flowing out from the adsorption unit and flowing into the desorption unit is used for heating the gas flowing into the regeneration unit, energy is further wasted. This is desirable. Specifically, for example, a flow path for introducing hot air discharged from an air-cooled heat exchanger to the regeneration unit may be formed. However, since it is usually difficult to regenerate the adsorbing / desorbing medium in the regenerating section with only this hot air, in that case, the heat or heat medium supplied by the heater or heating medium is further provided in the middle of the flow path from the heat exchanger to the regenerating section. An exchanger is provided to heat the gas in the flow path.
[0012]
  Claims3It is also desirable to adopt a configuration in which the relative humidity of the gas is increased by taking heat away from the gas flowing into the adsorption portion.
  Specific means for removing heat from the gas flowing into the adsorption unit is not particularly limited. For example, both a part of the low-temperature gas flowing out from the desorption unit and the gas flowing into the adsorption unit are passed through a heat exchanger or the like. Heat exchange to remove heat from the gas flowing into the adsorption section. If it does in this way, since gas will be temperature-lowered beforehand before flowing in into an adsorption part, the relative humidity of gas which flows in into an adsorption part can be made high by this. Also,In the cooling method of the present invention, “at least a part of the gas flowing out from the regeneration unit flows into the adsorption unit, thereby humidifying the gas flowing into the adsorption unit.Constitution"Is adoptedBut in this caseSince the gas flowing out from the regeneration unit is usually heated to a certain degree for the purpose of desorbing moisture, both the gas flowing out from the regeneration unit and the gas at room temperature are exchanged through a heat exchanger or the like. Thus, heat can be taken from the gas flowing into the adsorption portion, and the relative humidity of the gas flowing into the adsorption portion can be increased.
[0013]
If such a configuration is adopted, a gas with a higher relative humidity will flow into the adsorption unit. Therefore, in the adsorption unit provided with an adsorption / desorption medium in which the saturated adsorption amount increases as the relative humidity increases, the adsorption unit The absolute amount of moisture to be increased increases, and the amount of moisture to be desorbed when the adsorbing portion is a desorption portion also increases, so that the cooling effect is enhanced. By the way, when a part of the low temperature gas flowing out from the desorption part is used to take heat away from the gas flowing into the adsorption part, the part of the gas used to take the heat cannot be used for cooling. However, the remaining low temperature gas is further lowered in temperature.
[0014]
  Next, the claim4The cooling method described in
  The adsorption / desorption medium provided in the flow path of one of the adsorption / desorption structures includes a first adsorption / desorption medium having a high adsorption capability at a relatively high humidity and a second adsorption / desorption having a high adsorption capability at a relatively low humidity. Consisting of both media,
  When the adsorption / desorption structure is used as the adsorbing portion, the gas flowing in from the inlet contacts the first adsorption / desorption medium and then flows out from the outlet after contacting the first adsorption / desorption medium. Providing the first and second adsorption / desorption media;
  When the adsorption / desorption structure is the desorption part or the regeneration part, after the gas flowing in from the inlet contacts the second adsorption / desorption medium, it contacts the first adsorption / desorption medium and flows out from the outlet. To change the flow direction of the gas in the flow path of the adsorption / desorption structure
  It is characterized by that.
[0015]
According to this cooling method, when the adsorption / desorption structure is used as the adsorbing part, even if the gas flowing in from the inflow port has a very high humidity, first, the first absorption having a relatively high adsorption capability at a high humidity. Since it contacts the desorption medium, moisture is effectively adsorbed. Further, the gas that has been reduced in humidity by contacting the first adsorption / desorption medium is subsequently brought into contact with the second adsorption / desorption medium having a relatively high adsorption capacity at a relatively low humidity, so that moisture is further adsorbed. Therefore, the gas flowing out from the adsorption part can be brought into a very low humidity state.
[0016]
Further, when the adsorption / desorption structure is used as the desorption part or the regeneration part, the low humidity gas flowing in from the inlet first comes into contact with the second adsorption / desorption medium. Good desorption of moisture despite its high adsorption capacity at low humidity. As a result, the gas in contact with the second adsorbing / desorbing medium will be somewhat damp, but the first adsorbing / desorbing medium that is in contact with the second adsorbing / desorbing medium has a relatively high adsorption capacity at a relatively high humidity, so that it can absorb moisture without any problem. Detach.
[0017]
  Therefore, both the adsorption performance in the adsorption section and the desorption performance in the desorption section and the regeneration section are improved, and the cooling capacity is further improved.
  Claims4When both the first and second adsorption / desorption media are used as described in the above, the cooling performance can be improved as compared with the case where either one is used. However, in the cooling method of the present invention, either one is used. Needless to say, it can provide a suitable cooling capacity just by using it. Also, when both the first and second adsorption / desorption media are used, if the gas flow direction is optimized as described above, the cooling performance is the highest, but the gas flow direction is different from the above. Alternatively, even if the first and second adsorbing / desorbing media are not provided separately in two regions and the first and second adsorbing / desorbing media are provided so as to coexist, the corresponding cooling capacity is exhibited. Therefore, for example, in consideration of necessary cooling performance and cost, etc.4A configuration different from that described in (1) may be adopted.
[0018]
  In addition, when the first and second adsorption / desorption media are compared with each other, by combining a relatively high moisture adsorption capacity and a relatively low humidity adsorption capacity, Although the performance is improved over that using only one of the adsorption / desorption media, preferably, the claims5As described above, the first adsorption / desorption medium has a difference between the moisture absorption rate at 60% relative humidity and the moisture absorption rate at 100% relative humidity of 10% by weight or more, and the second adsorption / desorption medium has a relative humidity of 0%. When the difference between the moisture absorption rate at 10% and the moisture absorption rate at 60% relative humidity is 10% by weight or more, each adsorption / desorption medium makes use of mutual advantages to compensate for each other's disadvantages, and in a wide range from relatively high humidity to low humidity. This is desirable because it provides good cooling performance.
[0019]
As a typical example of such a first adsorption / desorption medium, a mesopore type silica gel (for example, B-type silica gel) having an average pore diameter of about 5 to 10 nm can be mentioned, and a typical example of the second adsorption / desorption medium. As examples, a micropore type silica gel (for example, A type silica gel) having an average pore diameter of about 2 to 5 nm can be used.
[0020]
The difference in the moisture absorption rate does not increase infinitely, but is preferably as large as possible in the present invention, and the upper limit is not specifically limited. About a minimum, it is 10 weight% or more, respectively. If the difference in moisture absorption is less than 10% by weight, the amount of moisture that can be absorbed and desorbed is too small for the amount of the adsorption and desorption medium, so a large amount of adsorption and desorption medium is required to obtain the desired effect. As a result, the cost increases accordingly. In addition, since a large flow path is required to sufficiently bring the large amount of the adsorption / desorption medium into contact with the gas, when the cooling device is configured, the size of the device tends to increase.
[0021]
  Next, the claim6The cooling method described in
  A plurality of through holes having openings at both ends are formed in parallel, and the adsorption / desorption medium is provided on the inner wall surface of each through hole, whereby each through hole serves as the flow path and each opening serves as the vent. Forming an assembly of the adsorption / desorption structures;
  By rotating the assembly around an axis extending in the penetration direction of the through hole at the approximate center of the assembly, the adsorbing / desorbing structure serving as the adsorbing portion becomes the desorbing portion, which serves as the desorbing portion. Switching the continuous flow path to each adsorption / desorption structure so that the adsorption / desorption structure serves as the regeneration section and the adsorption / desorption structure as the regeneration section serves as the adsorption section.
  It is characterized by that.
[0022]
According to this cooling method, just by rotating the assembly of the adsorption / desorption structure, the positional relationship between the adsorption / desorption structure and the flow path continuous to the adsorption / desorption structure is sequentially switched, and the adsorption / desorption structure serving as the adsorption portion is obtained. Since the object becomes the desorption part, the adsorption / desorption structure as the desorption part becomes the regeneration part, and the adsorption / desorption structure as the regeneration part becomes the adsorption part. You do n’t have to.
[0023]
  As is apparent from the above description, the claims7The cooling device according to claim 1, i.e., inhaling air and claiming the air.6According to the cooling device, which is cooled by the cooling method according to claim 1 and discharges the cooled air to a space to be cooled, when the air is cooled, claims 1 to6Therefore, the cooling device using this type of adsorption / desorption medium has an extremely high COP, and even when a cooling capacity equivalent to the conventional one is secured, Consumption can be reduced.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
The cooling device described below is configured to cool air by the cooling method of the present invention, and is a cooling device that cools indoor air.
[0025]
As shown in FIG. 1, the cooling device includes an adsorption / desorption unit 10 that is used as an adsorption unit 1, a desorption unit 2, and a regeneration unit 3, and indoor air flows into the adsorption unit 1 and flows out from the adsorption unit 1. Thus, the air that has flowed through the first heat exchanger 12 flows into the desorption section 2 and the air that has flowed out of the desorption section 2 returns to the room again. In addition, the outdoor air flows into the regeneration unit 3 through the first heat exchanger 12 and the second heat exchanger 14, and the air that has flowed out of the regeneration unit 3 is discharged to the outside. Further, the heat medium supplied from the heat medium source is configured to return to the heat medium source again through the second heat exchanger 14.
[0026]
Among these, as shown in FIG. 2, the adsorption / desorption unit 10 is a honeycomb structure columnar body in which a plurality of through holes having openings at both ends are formed in parallel, and the first adsorption / desorption layer 10a and the second adsorption / desorption layer 10a. It has a two-layer structure composed of a desorption layer 10b.
The first adsorption / desorption layer 10a is formed by forming a composition mainly composed of B-type silica gel into a honeycomb shape. In the B-type silica gel used here, the adsorption isotherm at 25 ° C. draws a curve c1 as shown in FIG. 3, and the difference between the moisture absorption rate at 60% relative humidity and the moisture absorption rate at 100% relative humidity is 10%. It is more than wt%. On the other hand, the second adsorption / desorption layer 10b is formed by forming a composition containing A-type silica gel as a main component into a honeycomb shape. The type A silica gel used here has an adsorption isotherm at 25 ° C. that draws a curve c2 as shown in FIG. 3, and the difference between the moisture absorption rate at 0% relative humidity and the moisture absorption rate at 60% relative humidity is 10%. It is more than wt%.
[0027]
In FIG. 1, the adsorbing / desorbing unit 10 has the adsorbing unit 1, the desorbing unit 2, and the regenerating unit 3 drawn in parallel for the convenience of illustration. An air inflow path and an outflow path in the cooling device are arranged so that the areas are the adsorption section 1, the desorption section 2, and the regeneration section 3. In each area, air flows in the direction indicated by the thick arrow in FIG. Washed away. In addition, the adsorption / desorption unit 10 is driven to rotate in the direction of arrow A about the CC line in FIG. 2 by a motor or the like (not shown), and the area that has become the suction portion 1 along with this rotation. The position is sequentially switched so that the region that has become the detachable portion 2 becomes the regenerating portion 3 and the region that has become the regenerating portion 3 becomes the suction portion 1.
[0028]
Although not explicitly shown in FIG. 2, in the adsorption / desorption unit 10, the first adsorption / desorption layer 10 a is 30% of the entire adsorption / desorption unit 10, and the second adsorption / desorption layer 10 b is the entire adsorption / desorption unit 10. It is configured to occupy 70%. In FIG. 2, the adsorbing part 1, the desorbing part 2, and the regenerating part 3 are approximately 1/3 of each area, but these areas do not need to be equally divided. The ratio may vary depending on the adsorption / desorption performance of the adsorption / desorption unit 10, the air flow rate, and other various conditions.
[0029]
The 1st heat exchanger 12 takes the heat of the air which flowed out from adsorption part 1, and moves it to the air taken in from the outdoors. The second heat exchanger 14 further heats the air that has received heat in the first heat exchanger 12.
In the cooling device configured as described above, the humid indoor air first flows into the adsorption unit 1. When the high-humidity air passes through the adsorption part 1, the first adsorption / desorption layer 10a having a high adsorption capacity in the high-humidity environment first adsorbs a large amount of moisture, and then the second high adsorption ability in the low-humidity environment. The adsorbing / desorbing layer 10b also absorbs the remaining moisture, and the humidity becomes almost zero. At this time, since heat of adsorption is generated, the air is heated and the temperature rises. The low-humidity air flowing out from the adsorption unit 1 is deprived of heat by the first heat exchanger 12 and flows into the desorption unit 2.
[0030]
When the low-humidity air passes through the desorption part 2, the second adsorption / desorption layer 10b is first exposed to the low-humidity air. Since this air has almost zero humidity, the second adsorption / desorption has a high adsorption capacity in a low-humidity environment. Even in layer 10b, some moisture is desorbed. Subsequently, the first adsorption / desorption layer 10a is exposed to air. Since this air is air humidified in the second adsorption / desorption layer 10b, the humidity is slightly higher, but it is still sufficient if the first adsorption / desorption layer 10a having high adsorption ability in a high humidity environment is used. When the first adsorption / desorption layer 10a is exposed to the low-humidity air, some moisture is also desorbed from the first adsorption / desorption layer 10a. As a result, the air becomes humid, and at the same time, heat is taken away and the temperature is lowered.
[0031]
Therefore, in this cooling device, it is not necessary to provide a dedicated humidifier as in the above-described prior art, and energy consumed by the operation of the humidifier is saved.
Further, since the moisture adsorbed in the adsorption unit 1 is used for humidifying the air in the desorption unit 2, when the moisture is desorbed through the high temperature gas in the regeneration unit 3, the remaining that has not been desorbed in the desorption unit 2 The regeneration of the first adsorption / desorption layer 10a and the second adsorption / desorption layer 10b can be achieved simply by desorbing moisture. Therefore, the energy consumed for regeneration of the adsorption / desorption medium can be reduced as compared with the case where the adsorption / desorption medium in which moisture is adsorbed in the adsorption unit 1 is regenerated as it is in the reproduction unit 3 as in the conventional technique.
[0032]
In the above-described cooling device, the portion including the individual through holes of the adsorption / desorption unit 10 corresponds to the adsorption / desorption structure as referred to in the present invention, and the entire adsorption / desorption unit 10 refers to the adsorption / desorption structure as defined in the present invention. Is equivalent to Further, the B type silica gel of the first adsorption / desorption layer 10a corresponds to the first adsorption / desorption medium referred to in the present invention, and the A type silica gel of the second adsorption / desorption layer 10b corresponds to the second adsorption / desorption medium referred to in the present invention. Both of these correspond to the adsorption / desorption medium referred to in the present invention.
[0033]
However, the cooling device is merely an embodiment that embodies the cooling device of the present invention, and the specific structure of each part can be appropriately changed in design. For example, the adsorption / desorption structure referred to in the present invention is not limited to the honeycomb structure adsorption / desorption unit 10 as provided in the cooling device, but includes, for example, an adsorption / desorption medium enclosed in a ventable container, For example, the adsorption / desorption medium may be attached or impregnated on the surface of the wall surface forming the path.
[0034]
By the way, when both the first adsorption / desorption layer 10a mainly composed of B-type silica gel and the second adsorption / desorption layer 10b mainly composed of A-type silica gel are used as in the above cooling device, only one of them is used. Cooling performance can be improved, but this is demonstrated by experiments using the following model.
[0035]
First, as a model having the same characteristics as the adsorption / desorption unit 10 of the cooling device, a column packed with 70% A-type silica gel and 30% B-type silica gel so as to form two layers (hereinafter, referred to as a model) Model 1) was prepared. In addition, as a model in which only one of the adsorption media exists, a column in which 100% A-type silica gel is packed (hereinafter referred to as model 2), and a column in which 100% B-type silica gel is packed (hereinafter referred to as model). 3).
[0036]
Then, assuming that each model is the adsorption unit 1, air having a relative humidity of 82% and a temperature of 30.5 ° C. was introduced into each model at a flow rate of 3.8 m / min. In model 1, the B-type silica gel side is the air inflow side.
When the humidity of the air flowing out from the outlet side of each model was measured, in models 1 and 2, the humidity was almost zero. In model 3, the humidity was about 21%.
[0037]
Then, the air which flowed out from each said model was cooled to 30 degreeC, and the said cooled air was distribute | circulated to each model again supposing the case where each said model became the removal | desorption part 2. FIG. However, the flow direction at this time is opposite to the case where the suction part 1 is assumed.
When the temperature of the air flowing out from the outlet side of each model (the same side as the inlet side in the case of the adsorption part 1) was measured, it was 12.5 ° C. for Model 1, 18 ° C. for Model 2, 24 ° C. for Model 3 It was.
[0038]
Furthermore, when the moisture content of the silica gel of each model was examined, the moisture content of the silica gel in the models 1 and 3 was greatly reduced to about 4%, but in the model 2, the moisture content of the silica gel near the outlet side was 28%. There was a degree, and it did not decrease so much.
From the above, it can be inferred that when A-type silica gel is used alone as the adsorption / desorption medium, although the adsorption performance is high, the desorption performance under high humidity is inferior, so that the amount of heat absorbed due to desorption decreases. In addition, when B-type silica gel is used alone, the adsorption performance under low humidity is low, so that sufficiently low-humidity air cannot be obtained, and the desorption efficiency is reduced accordingly, so the endothermic amount accompanying desorption is low. I hear that it will be less.
[0039]
On the other hand, when A-type and B-type silica gels are used in combination, during adsorption, adsorption / desorption is performed under conditions suitable for the characteristics of each silica gel, so moisture that cannot be absorbed remains or cannot be desorbed. It is thought that the maximum cooling capacity is exhibited without moisture remaining.
[0040]
However, even if A-type and B-type silica gels are used alone, some cooling performance has been demonstrated, so the cooling device that uses A-type and B-type silica gels alone cannot withstand use. However, depending on the application, A-type and B-type silica gels may be used alone.
[0041]
Next, another example is given and demonstrated about embodiment of this invention.
The cooling device described below is obtained by adding a configuration for further increasing the cooling capacity to the cooling device shown in FIG.
That is, as shown in FIG. 4, the cooling device includes an adsorption / desorption unit 10 used as the adsorption unit 1, the desorption unit 2, and the regeneration unit 3, the first heat exchanger 12, the second heat exchanger 14, and the like. These are provided in the same manner as the cooling device shown in FIG.
[0042]
In addition to these configurations, a part of the air flowing out from the regeneration unit 3 is configured to flow into the adsorption unit 1 through the third heat exchanger 16, and outdoor air is configured to flow into the third heat exchanger 16. It is configured to be discharged outside through the room.
In this way, moisture contained in the air flowing out from the regeneration unit 3 is adsorbed in the adsorption unit 1, so that the moisture content of the adsorption unit 1 increases, and the desorption unit 2 when the adsorption unit 1 is used as the desorption unit 2. The cooling capacity is improved. In particular, heat is taken from the air flowing into the adsorption unit 1 by exchanging both the air flowing out from the regeneration unit 3 and the indoor air through the third heat exchanger 16, thereby The relative humidity of the air flowing from the regeneration unit 3 to the adsorption unit 1 can be increased, and the air is adsorbed by the adsorption unit 1 as compared with the case where air is introduced from the regeneration unit 3 to the adsorption unit 1 without taking heat away. The absolute amount of moisture can be increased, and the amount of moisture to be desorbed when the adsorbing portion 1 is the desorbing portion 2 is increased, so that the cooling effect is enhanced.
[0043]
Next, the embodiment of the present invention will be described with another example.
The cooling device described below is also obtained by adding a configuration for further increasing the cooling capacity to the cooling device shown in FIG.
That is, as shown in FIG. 5, the cooling device includes an adsorption / desorption unit 10 used as the adsorption unit 1, the desorption unit 2, and the regeneration unit 3, the first heat exchanger 12, the second heat exchanger 14, and the like. These are provided in the same manner as the cooling device shown in FIG.
[0044]
In addition to these configurations, the air in the room (hereinafter also referred to as the first room) is configured to flow into the adsorption unit 1 through the fourth heat exchanger 18 and flows out from the desorption unit 2. Part of the air is configured to flow through the fourth heat exchanger 18 into the second chamber.
[0045]
If it does in this way, since the air in the 1st room is cooled beforehand by the cold air which flows out from desorption part 2, it will flow into adsorption part 1, and, thereby, the relative humidity of the air which flows into adsorption part 1 can be made high. The absolute amount of moisture adsorbed in the adsorption unit 1 can be increased as compared with the case where air is allowed to flow into the adsorption unit 1 without cooling, and is desorbed when the adsorption unit 1 is used as the desorption unit 2. Since the amount of moisture also increases, the cooling effect is enhanced.
[0046]
In addition, since a part of the air flowing out from the desorption part 2 is lower than the room temperature even after passing through the fourth heat exchanger 18, it is configured to flow into the second chamber so as to effectively use the low temperature air. However, it may be used for other purposes. For example, in addition to the configuration shown in FIG. 5, the configuration shown in FIG. 4 is also adopted, and the air that has flowed out of the detachable part 2 and passed through the fourth heat exchanger 18 is further passed through the third heat exchanger 16. Thus, it can also be used to cool the air flowing out from the regenerator 3. Of course, if there is no particular need, it may be simply discharged outside the room.
[0047]
As mentioned above, although embodiment of this invention was described, various specific forms other than the above can be considered about embodiment of this invention.
For example, in the above-described embodiment, the cooling device, that is, the cooling device that cools indoor air is configured. However, the cooling method or the cooling device of the present invention can be applied to devices other than the cooling device. Specifically, for example, the cooling method or the cooling device of the present invention may be applied to a low-temperature storage for storing food or the like, or various devices with a built-in device serving as a heat source.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a cooling device described in an embodiment.
FIG. 2 is a perspective view of an adsorption / desorption unit of the cooling device.
FIG. 3 is an adsorption isotherm of each silica gel used in the first adsorption / desorption layer and the second adsorption / desorption layer.
FIG. 4 is a configuration diagram of a cooling device in which another configuration is added to the cooling device.
FIG. 5 is a configuration diagram of a cooling device in which another configuration is added to the cooling device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Adsorption part, 2 ... Desorption part, 3 ... Regeneration part, 10 ... Adsorption / desorption unit, 10a ... 1st adsorption / desorption layer, 10b ... 2nd adsorption / desorption layer, 12 ... 1st heat exchanger, 14 ... 2nd heat exchanger, 16 ... 3rd heat exchanger, 18 ... 4th heat exchanger.

Claims (7)

雰囲気の温度および湿度に応じて湿気を吸着または脱着し、吸着時には発熱する一方、脱着時には吸熱する性質を有する吸脱着媒体を、気体の流入口または流出口となる複数の通気口を有する流路内に設けることにより、前記流入口から流入した気体を前記吸脱着媒体に接触させた上で前記流出口から流出させる吸脱着構造物を形成し、
複数の前記吸脱着構造物の内、いくつかを吸着部、別のいくつかを脱着部、残りのいくつかを再生部に割り当てて、
第1温度で第1湿度の気体を前記吸着部に流入させて、該吸着部内の吸脱着媒体に湿気を吸着させることにより、該吸着部から前記第1温度よりも高温な第2温度で前記第1湿度よりも低湿な第2湿度の気体を流出させ、
その気体から熱を奪うことにより、前記第2温度よりも低温な第3温度で前記第2湿度の気体とし、
その気体を前記脱着部に流入させて、該脱着部内の吸脱着媒体が吸着している湿気を脱着させることにより、該脱着部から前記第3温度よりも低温な第4温度で前記第2湿度よりも高湿な第3湿度の気体を流出させ、その気体によって冷却対象となる物体または空間の冷却を行い、
前記第温度よりも高温な第5温度まで加熱した気体を前記再生部に流入させて、該再生部内の吸脱着媒体が吸着している湿気を脱着させることにより、該再生部内の吸脱着媒体を再生させ、
さらに、前記吸着部とした吸脱着構造物が前記脱着部となり、前記脱着部とした吸脱着構造物が前記再生部となり、前記再生部とした吸脱着構造物が前記吸着部となるように、各吸脱着構造物を循環させることによって冷却能力を維持し、
しかも、前記再生部から流出する気体の少なくとも一部を、前記吸着部に流入させることにより、前記吸着部に流入する気体を加湿する
ことを特徴とする冷却方法。
A flow path having a plurality of vents serving as gas inlets or outlets for adsorbing and desorbing media that absorbs or desorbs moisture according to the temperature and humidity of the atmosphere and generates heat during adsorption while absorbing heat during desorption. By providing in, forming an adsorption / desorption structure that allows the gas flowing in from the inflow port to contact the adsorption / desorption medium and then outflow from the outflow port,
Of the plurality of the adsorption / desorption structures, some are assigned to the adsorption unit, another some are assigned to the desorption unit, and some of the remaining are assigned to the regeneration unit,
A gas having a first humidity is caused to flow into the adsorption unit at a first temperature, and moisture is adsorbed by the adsorption / desorption medium in the adsorption unit, so that the second temperature higher than the first temperature is obtained from the adsorption unit. Let the gas of the second humidity lower than the first humidity flow out,
By depriving the gas of heat, the second humidity gas is obtained at a third temperature lower than the second temperature,
By flowing the gas into the desorption portion and desorbing the moisture adsorbed by the adsorption / desorption medium in the desorption portion, the second humidity at a fourth temperature lower than the third temperature from the desorption portion. A third humidity gas having a higher humidity is discharged, and the object or space to be cooled is cooled by the gas.
A gas heated to a fifth temperature higher than the first temperature is caused to flow into the regeneration unit, and moisture adsorbed by the adsorption / desorption medium in the regeneration unit is desorbed, whereby the adsorption / desorption medium in the regeneration unit Play
Further, the adsorption / desorption structure as the adsorption part becomes the desorption part, the adsorption / desorption structure as the desorption part becomes the regeneration part, and the adsorption / desorption structure as the regeneration part becomes the adsorption part, Maintain cooling capacity by circulating each adsorption / desorption structure ,
In addition, the cooling method is characterized in that the gas flowing into the adsorption unit is humidified by causing at least a part of the gas flowing out from the regeneration unit to flow into the adsorption unit .
前記吸着部から流出して前記脱着部へ流入する気体から奪った熱を、前記再生部に流入させる気体の加熱に利用する
ことを特徴とする請求項1に記載の冷却方法。
The cooling method according to claim 1, wherein the heat taken from the gas flowing out from the adsorption unit and flowing into the desorption unit is used for heating the gas flowing into the regeneration unit.
前記吸着部に流入させる気体から熱を奪うことにより、該気体の相対湿度を高くする
ことを特徴とする請求項1または請求項に記載の冷却方法。
The cooling method according to claim 1 or 2 , wherein the relative humidity of the gas is increased by removing heat from the gas flowing into the adsorption portion.
一つの前記吸脱着構造物の流路内に設けられる前記吸脱着媒体が、比較的高湿での吸着能力が高い第1吸脱着媒体と、比較的低湿での吸着能力が高い第2吸脱着媒体の双方からなり、
前記吸脱着構造物を前記吸着部とした際に、流入口から流入した気体が前記第1吸脱着媒体に接触した後で前記第2吸脱着媒体に接触して流出口から流出するように、前記第1,第2吸脱着媒体を設け、
前記吸脱着構造物を前記脱着部または前記再生部とした際に、流入口から流入した気体が前記第2吸脱着媒体に接触した後で前記第1吸脱着媒体に接触して流出口から流出するように、前記吸脱着構造物の流路内における気体の流通方向を変更する
ことを特徴とする請求項1〜請求項のいずれかに記載の冷却方法。
The adsorption / desorption medium provided in the flow path of one of the adsorption / desorption structures includes a first adsorption / desorption medium having a high adsorption capability at a relatively high humidity and a second adsorption / desorption having a high adsorption capability at a relatively low humidity. Consisting of both media,
When the adsorption / desorption structure is used as the adsorbing portion, the gas flowing in from the inlet contacts the first adsorption / desorption medium and then flows out from the outlet after contacting the first adsorption / desorption medium. Providing the first and second adsorption / desorption media;
When the adsorption / desorption structure is the desorption part or the regeneration part, after the gas flowing in from the inlet contacts the second adsorption / desorption medium, it contacts the first adsorption / desorption medium and flows out from the outlet. as to method of cooling according to any one of claims 1 to 3, characterized in that to change the flow direction of the gas in the flow path of the desorption structure.
前記第1吸脱着媒体は、相対湿度60%における吸湿率と相対湿度100%における吸湿率との差が10重量%以上あり、
前記第2吸脱着媒体は、相対湿度0%における吸湿率と相対湿度60%における吸湿率との差が10重量%以上ある
ことを特徴とする請求項に記載の冷却方法。
The first adsorption / desorption medium has a difference between the moisture absorption rate at 60% relative humidity and the moisture absorption rate at 100% relative humidity of 10% by weight or more,
The cooling method according to claim 4 , wherein the second adsorption / desorption medium has a difference between a moisture absorption rate at a relative humidity of 0% and a moisture absorption rate at a relative humidity of 60% of 10% by weight or more.
それぞれの両端に開口を有する複数の貫通穴を並列に形成して、各貫通穴の内壁面に前記吸脱着媒体を設けることにより、各貫通穴が前記流路、各開口が前記通気口となる前記吸脱着構造物の集合体を形成して、
該集合体の略中央において前記貫通穴の貫通方向に延びる軸線を中心にして、該集合体を回転させることにより、前記吸着部とした吸脱着構造物が前記脱着部となり、前記脱着部とした吸脱着構造物が前記再生部となり、前記再生部とした吸脱着構造物が前記吸着部となるように、各吸脱着構造物に連続する流路を切り替える
ことを特徴とする請求項1〜請求項のいずれかに記載の冷却方法。
A plurality of through holes having openings at both ends are formed in parallel, and the adsorption / desorption medium is provided on the inner wall surface of each through hole, whereby each through hole serves as the flow path and each opening serves as the vent. Forming an assembly of the adsorption / desorption structures;
By rotating the assembly around an axis extending in the penetration direction of the through hole at the approximate center of the assembly, the adsorbing / desorbing structure serving as the adsorbing portion becomes the desorbing portion, which serves as the desorbing portion. The continuous flow path is switched to each adsorption / desorption structure so that the adsorption / desorption structure serves as the regeneration unit, and the adsorption / desorption structure as the regeneration unit serves as the adsorption unit. Item 6. The cooling method according to any one of Items 5 .
空気を吸入して、該空気を請求項1〜請求項に記載の冷却方法によって冷却し、冷却された空気を冷却対象となる空間に放出する
ことを特徴とする冷却装置。
By sucking air, cooled by the cooling method according to claims 1 to 6 air cooling apparatus characterized by releasing cooling air into the space to be cooled.
JP26878299A 1998-10-26 1999-09-22 Cooling method and cooling device Expired - Fee Related JP4424789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26878299A JP4424789B2 (en) 1998-10-26 1999-09-22 Cooling method and cooling device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-304141 1998-10-26
JP30414198 1998-10-26
JP26878299A JP4424789B2 (en) 1998-10-26 1999-09-22 Cooling method and cooling device

Publications (2)

Publication Number Publication Date
JP2000199656A JP2000199656A (en) 2000-07-18
JP4424789B2 true JP4424789B2 (en) 2010-03-03

Family

ID=26548478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26878299A Expired - Fee Related JP4424789B2 (en) 1998-10-26 1999-09-22 Cooling method and cooling device

Country Status (1)

Country Link
JP (1) JP4424789B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ579617A (en) * 2007-03-28 2011-09-30 Mitsubishi Electric Corp Heat exchanger having fins with fine pores for adsorbing water by capillary action
JP2011202950A (en) * 2011-06-15 2011-10-13 Japan Exlan Co Ltd Adsorption type heat exchange module and method of manufacturing the same

Also Published As

Publication number Publication date
JP2000199656A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
JP2950444B2 (en) Deodorizing and dehumidifying cooling method and deodorizing and dehumidifying cooling device
JP3680149B2 (en) Air conditioner
JP2011036768A (en) Dehumidifier
JP2004294048A (en) Humidity controller
JP4273555B2 (en) Air conditioning system
JP4075950B2 (en) Air conditioner
JP4529318B2 (en) Dehumidifying device and cold air generator using the dehumidifying device
JP4424789B2 (en) Cooling method and cooling device
JP2011143358A (en) Moisture absorption filter and humidifier
JPS62297647A (en) Dehumidification system of building
JP4350846B2 (en) Cooling method and cooling device
JPH11132500A (en) Dehumidifying air conditioner
JP2009083851A (en) Small desiccant air conditioner
JP4368012B2 (en) Cooling method and cooling device
JP2004321885A (en) Humidity control element
JPH06322A (en) Open-type absorptive air conditioner
JP2006289258A (en) Dehumidification body and desiccant air-conditioner using the same
JP4186339B2 (en) Adsorption type refrigerator
JP2001215068A (en) Adsorption type refrigerator
JP2015087070A (en) Dehumidification system
JP2016084982A (en) Dehumidifier
CN213314232U (en) Space dehumidification system
US20240115990A1 (en) Low Dew Point Air Dehumidification System
JP2002340372A (en) Dehumidifying device
JP4418313B2 (en) Packed bed type heat exchange type adsorption apparatus and method for obtaining gas having a predetermined adsorbate concentration using the adsorption apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091208

R150 Certificate of patent or registration of utility model

Ref document number: 4424789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees