JP4424115B2 - Method for producing electrophotographic photoreceptor - Google Patents

Method for producing electrophotographic photoreceptor Download PDF

Info

Publication number
JP4424115B2
JP4424115B2 JP2004228677A JP2004228677A JP4424115B2 JP 4424115 B2 JP4424115 B2 JP 4424115B2 JP 2004228677 A JP2004228677 A JP 2004228677A JP 2004228677 A JP2004228677 A JP 2004228677A JP 4424115 B2 JP4424115 B2 JP 4424115B2
Authority
JP
Japan
Prior art keywords
base material
honing
cylindrical base
substrate
injection angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004228677A
Other languages
Japanese (ja)
Other versions
JP2006047696A (en
Inventor
紀孝 堀井
護 藤田
渉 中林
優 我妻
一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2004228677A priority Critical patent/JP4424115B2/en
Publication of JP2006047696A publication Critical patent/JP2006047696A/en
Application granted granted Critical
Publication of JP4424115B2 publication Critical patent/JP4424115B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

本発明は円筒状基材、電子写真感光体基材の表面粗面化方法及び装置、電子写真感光体及びその製造方法に関し、詳しくは、レーザービームをライン走査する方式の電子写真プリンターや複写機等に使用される電子写真感光体基材の表面粗面化方法及び装置、基材を用いて製造された電子写真感光体及びその製造方法に関する。   The present invention relates to a cylindrical substrate, a surface roughening method and apparatus for an electrophotographic photosensitive member base, an electrophotographic photosensitive member and a method for manufacturing the same, and more specifically, an electrophotographic printer or copying machine of a line scanning method using a laser beam. The present invention relates to a method and apparatus for roughening the surface of an electrophotographic photosensitive member substrate used for the above, an electrophotographic photosensitive member produced using the substrate, and a method for producing the same.

例えば、レーザービームをライン走査する方式の電子写真装置においては、レーザー光を用いて形成する画像に干渉縞模様(モアレ模様とも言う)が現れるというレーザー光を用いた電子写真装置特有の問題がある。この干渉縞の発生は、電子写真感光体の感光層内で吸収されなかったレーザーの透過光が感光層内あるいは感光体基材で多重反射され、感光層表面において入射光と干渉することに起因するものとされている。この干渉縞の発生を防止する手段として、特許文献1において、感光体基材又は感光層の表面を粗面化し、これらの表面に光散乱性を付与する技術が示されている。湿式ホーニング法は、短時間の加工で容易に安定して粗面化させることが出来ること、所望の粗さを正確に得ることが出来ること、及び塗膜欠陥の原因となる異常凹凸部が極めて少ない均一な粗さを持つ粗面が得られること等、生産上の観点から、また、黒斑点や干渉縞模様に対する画質安定性の点から、陽極酸化法あるいはバフ研磨法等の他の粗面化処理法に比べて優れているものである。   For example, in an electrophotographic apparatus of a line scanning method using a laser beam, there is a problem peculiar to an electrophotographic apparatus using a laser beam that an interference fringe pattern (also referred to as a moire pattern) appears in an image formed using the laser beam. . The generation of the interference fringes is caused by the fact that the transmitted light of the laser that has not been absorbed in the photosensitive layer of the electrophotographic photosensitive member is multiple-reflected in the photosensitive layer or the photosensitive substrate and interferes with the incident light on the photosensitive layer surface. It is supposed to be. As means for preventing the generation of the interference fringes, Patent Document 1 discloses a technique for roughening the surface of a photoreceptor substrate or a photosensitive layer and imparting light scattering properties to these surfaces. The wet honing method can easily and stably roughen the surface in a short time, can accurately obtain the desired roughness, and has extremely uneven portions that cause coating film defects. Other rough surfaces such as anodic oxidation method or buffing method from the viewpoint of production such as obtaining a rough surface with less uniform roughness, and from the viewpoint of image quality stability against black spots and interference fringes It is superior to the chemical treatment method.

特公平5?26191号公報Japanese Patent Publication No. 5-26191

しかしながら、前記湿式ホーニングは基材表面の均一な粗面化に優れる反面、湿式ホーニング後の洗浄で研磨材除去が不十分な場合、前記導電性支持体としてのアルミニウム基材上に研磨材が残留し、黒ポチ、白ポチなどの画像欠陥に繋がる。研磨材残留による画像欠陥の原因の1つとして、ホーニング時の円筒状基材内面への研磨材の侵入が挙げられる。ホーニング時に円筒状基材を縦方向に配置し円筒状基材の上端を把持した場合、特開平11−231560号に記載されているような上下対称の噴射角度でホーニング液を噴射すると、ホーニング時に基材下端部から研磨材が基材内部に吹きつけられ、基材内面に研磨材が付着する。そして、基材内面に付着した研磨材がその後工程のすすぎ槽にて水槽内に浮遊し、基材表面に付着することによって画質欠陥が発生する。基材内面への研磨材の侵入を防ぐ解決策として、特開2002−107958号に記載されているのように、円筒状基材を縦方向に配置しホーニング液の噴射方向を下方にすることにより、基材内部への噴射を防止することが出来る。但し、下方に噴射しただけでは基材の粗面形状に方向性が生じ、ドラム上に画像を形成するためにレーザーを照射する際、レーザーの反射率にも方向性が生じ易くなり、画質の低下を招く。   However, while the wet honing is excellent in uniform roughening of the substrate surface, if the abrasive removal is insufficient by washing after wet honing, the abrasive remains on the aluminum substrate as the conductive support. However, it leads to image defects such as black spots and white spots. One of the causes of image defects due to the residual abrasive is the penetration of the abrasive into the inner surface of the cylindrical substrate during honing. When the cylindrical base material is arranged in the vertical direction during honing and the upper end of the cylindrical base material is gripped, if the honing liquid is jetted at a vertically symmetrical jet angle as described in JP-A-11-231560, The abrasive is sprayed from the lower end of the substrate into the substrate, and the abrasive adheres to the inner surface of the substrate. Then, the abrasive material adhering to the inner surface of the base material floats in the water tank in the subsequent rinsing tank and adheres to the surface of the base material, thereby causing image quality defects. As a solution to prevent the abrasive from entering the inner surface of the base material, as described in JP-A-2002-107958, the cylindrical base material is arranged in the vertical direction and the injection direction of the honing liquid is set downward. Thus, it is possible to prevent the injection into the base material. However, simply spraying downward causes directionality in the rough surface shape of the substrate, and when laser irradiation is performed to form an image on the drum, directionality is also likely to occur in the reflectance of the laser, and image quality is reduced. Incurs a decline.

本発明ではレーザー反射率の方向性を生じさせずに研磨材の残留による画質欠陥を低減する方法を提供することを目的とする。   It is an object of the present invention to provide a method for reducing image quality defects due to residual abrasives without causing laser reflectivity directivity.

上記目的を達成させるための手段は下記の通りである。   Means for achieving the above object are as follows.

)円筒状基材を移動させながらホーニング液を噴射し粗面化し円筒状基材を形成する工程とを有し、前記円筒状基材を形成する工程では、少なくとも1つ以上のホーニングノズルから前記円筒状基材に噴射されるホーニング液の噴射角度は、前記円筒状基材の軸方向に対して垂直方向を基準とし前記円筒状基材の移動方向に対する上流方向への噴射角度θ2と、前記円筒状基材の軸方向に対して垂直方向を基準とし前記円筒状基材の移動方向に対する下流方向への噴射角度θ1とからなり、前記噴射角度θ2は前記噴射角度θ1より大きく30〜70°であり、かつ、前記噴射角度θ1は0〜15°であり、前記噴射角度θ2とθ1との角度の差が15〜55°であり、得られた円筒状基材が、レーザー光を基材面に対して20°の角度で照射し、基材面に対して垂直に反射したレーザー光の反射率を測定し、ホーニング処理した基材の上端から下端方向にレーザーを走査した場合の反射率c%の平均値と、下端から上端にレーザーを走査した場合の反射率d%の平均値との差|c−d|%を反射率方向差とした場合、湿式ホーニングにより粗面化された基材表面の反射率方向差が5%以下である電子写真用感光体の製造方法である。 (1) while moving the cylindrical base material by ejecting honing liquid is roughened and forming a cylindrical base material, the step of forming the cylindrical base material is at least one honing The injection angle of the honing liquid injected from the nozzle onto the cylindrical base material is an injection angle θ2 in the upstream direction with respect to the moving direction of the cylindrical base material with respect to the direction perpendicular to the axial direction of the cylindrical base material. And an injection angle θ1 in the downstream direction with respect to the moving direction of the cylindrical base material with respect to a direction perpendicular to the axial direction of the cylindrical base material, and the injection angle θ2 is larger than the injection angle θ1 and 30. is to 70 °, and the spray angle .theta.1 is 0 to 15 °, wherein Ri difference 15 to 55 ° der angle between the injection angle θ2 with .theta.1, resulting cylindrical base material, laser Illuminate light at an angle of 20 ° to the substrate surface Then, the reflectance of the laser light reflected perpendicularly to the substrate surface is measured, and the average value of the reflectance c% when the laser is scanned from the upper end to the lower end direction of the honed substrate, and the upper end from the lower end When the difference | cd−% from the average value of the reflectance d% when the laser is scanned is taken as the reflectance direction difference, the reflectance direction difference on the surface of the substrate roughened by wet honing is 5 % Is a method for producing an electrophotographic photoreceptor having a ratio of at most% .

上記製造方法により、粗面形状の方向性を低減させることができ、画質欠陥の抑制効果が高くなる。   By the above manufacturing method, the directionality of the rough surface shape can be reduced, and the effect of suppressing image quality defects is enhanced.

)上記()に記載の電子写真用感光体の製造方法において、前記円筒状基材は、前記移動方向の上流側端で把持されている。 ( 2 ) In the method for manufacturing an electrophotographic photoreceptor according to ( 1 ), the cylindrical base material is held at an upstream end in the moving direction.

更に、円筒状基材を移動方向の上流側端のみで把持する場合、粗面形状の方向性を低減させることができることに加え、基材表面の研磨材の残留を低減させることができる。これにより、より画質欠陥の抑制効果が高くなる。   Furthermore, in the case where the cylindrical base material is gripped only by the upstream end in the moving direction, the directionality of the rough surface shape can be reduced, and the residue of the abrasive on the base material surface can be reduced. Thereby, the effect of suppressing image quality defects is further enhanced.

)上記()または()に記載の電子写真用感光体の製造方法において、前記円筒状基材は、縦吊りされ上昇させながら前記ホーニング液の噴射により粗面化される。 ( 3 ) In the method for producing an electrophotographic photoreceptor according to ( 1 ) or ( 2 ), the cylindrical base material is roughened by jetting the honing liquid while being vertically suspended and lifted.

本発明によれば、粗面形状の方向性を低減させることができる。更に、円筒状基材を多方向に配置し上端側のみで把持する場合、粗面形状の方向性を低減させることができることに加え、基材表面の研磨材の残留を低減させることができる。これにより、画質をより向上させることができる。   According to the present invention, the directionality of the rough surface shape can be reduced. Further, when the cylindrical base material is arranged in multiple directions and is gripped only at the upper end side, in addition to reducing the directionality of the rough surface shape, it is possible to reduce residual abrasives on the surface of the base material. Thereby, the image quality can be further improved.

図1には、本実施の形態にかかる円筒状基材のホーニング装置の一実施形態を示す概略図が示されている。   The schematic which shows one Embodiment of the honing apparatus of the cylindrical base material concerning this Embodiment is shown by FIG.

図1では、円筒状基材を縦方向に配置して垂直方向に移動させる湿式ホーニング方式を例に取り以下に説明する。   In FIG. 1, a wet honing method in which a cylindrical base material is arranged in the vertical direction and moved in the vertical direction will be described below as an example.

本実施の形態における円筒状基材の粗面化を行うホーニング装置は、円筒状基材1にホーニング液を噴射する少なくとも1つ以上のホーニングノズル3と、円筒状基材1の少なくとも一端を把持する把持具8と、を有し、ホーニングノズル3から噴射されるホーニング液の噴射角度は、円筒状基材1の軸方向に対して垂直方向を基準とし円筒状基材1の移動方向に対する上流方向への噴射角度θ1と、円筒状基材1の軸方向に対して垂直方向を基準とし円筒状基材1の移動方向に対する下流方向への噴射角度θ2とからなり、噴射角度θ2は噴射角度θ1より大きく、かつ、噴射角度θ1は0°以上に設定されている。また、図1に示すホーニング装置は、循環式であり、湿式ホーニング槽7には、円筒状基材1と円筒状基材1の一端を把持する把持具8と、円筒状基材1にホーニング液を噴射する少なくとも1つ以上のホーニングノズル3が設けられている。また、湿式ホーニング槽7の下面には、ホーニング液抜き取り穴が設けられ、この抜き取り穴にはホーニング液循環用配管が連結され、このホーニング液循環用配管は、送液ポンプ2を介してホーニング液導入配管6に接続され、ホーニング液導入配管6は、ホーニングノズル3に接続されている。また、ホーニングノズル3は、圧縮空気導入管5にも接続されている。これにより、ホーニング液4は、送液ポンプ2によりホーニング液導入配管6を介してホーニングノズル3に送液され、さらに圧縮空気導入管5により圧縮された空気によってホーニングノズル3より所望の圧力で噴射される。   The honing apparatus for roughening a cylindrical base material in the present embodiment grips at least one or more honing nozzles 3 that inject a honing liquid onto the cylindrical base material 1 and at least one end of the cylindrical base material 1. The angle of the honing liquid sprayed from the honing nozzle 3 with respect to the direction perpendicular to the axial direction of the cylindrical base material 1 is upstream of the moving direction of the cylindrical base material 1. The injection angle θ1 in the direction and the injection angle θ2 in the downstream direction with respect to the moving direction of the cylindrical substrate 1 with respect to the direction perpendicular to the axial direction of the cylindrical substrate 1, and the injection angle θ2 is the injection angle It is larger than θ1 and the injection angle θ1 is set to 0 ° or more. The honing apparatus shown in FIG. 1 is a circulation type, and the wet honing tank 7 includes a cylindrical base material 1, a gripping tool 8 that grips one end of the cylindrical base material 1, and a honing to the cylindrical base material 1. At least one or more honing nozzles 3 for injecting liquid are provided. Further, a honing liquid extraction hole is provided on the lower surface of the wet honing tank 7, and a honing liquid circulation pipe is connected to the extraction hole, and the honing liquid circulation pipe is connected to the honing liquid via the liquid feed pump 2. Connected to the introduction pipe 6, the honing liquid introduction pipe 6 is connected to the honing nozzle 3. The honing nozzle 3 is also connected to a compressed air introduction pipe 5. As a result, the honing liquid 4 is fed to the honing nozzle 3 via the honing liquid introduction pipe 6 by the liquid feed pump 2, and further injected from the honing nozzle 3 at a desired pressure by the air compressed by the compressed air introduction pipe 5. Is done.

次に、図1のホーニング装置を用いた湿式ホーニングについて具体的に説明する。   Next, the wet honing using the honing apparatus of FIG. 1 will be specifically described.

先ず、円筒状基材1の上端を把持具8に把持させ、湿式ホーニング槽7の中央部に配置し、円筒状基材1を軸中心に回転させながら垂直方向に移動させ、ホーニング装置内に研磨材を懸濁させたホーニング液を送液ポンプ2でホーニングノズル3に送り、同時にホーニングノズル3に圧縮空気導入管5を介してエアーを導入することにより、ホーニング液4を円筒状基材1に噴射させる。ホーニング時にホーニングノズル3の位置を固定する場合は円筒状基材1を上昇させる。またホーニング時は必ずしもホーニングノズル3を固定する必要は無く、円筒状基材1の位置を固定し、ホーニングノズル3を下降走査させる方法も取り得る。   First, the upper end of the cylindrical base material 1 is gripped by the gripping tool 8 and placed in the central portion of the wet honing tank 7, and the cylindrical base material 1 is moved in the vertical direction while rotating around the axial center. The honing liquid in which the abrasive is suspended is sent to the honing nozzle 3 by the liquid feed pump 2 and simultaneously air is introduced into the honing nozzle 3 through the compressed air introduction pipe 5, whereby the honing liquid 4 is supplied to the cylindrical substrate 1. To spray. When fixing the position of the honing nozzle 3 during honing, the cylindrical substrate 1 is raised. Further, it is not always necessary to fix the honing nozzle 3 at the time of honing, and a method in which the position of the cylindrical base material 1 is fixed and the honing nozzle 3 is scanned downward is also possible.

なお、上述の方法では、一般に円筒状基材1の下端部は開放状態で処理されるが、円筒状基材1の下端部に蓋をしてからホーニング処理を行ってもよい。   In the above-described method, the lower end portion of the cylindrical base material 1 is generally processed in an open state. However, the honing process may be performed after the lower end portion of the cylindrical base material 1 is covered.

以上、円筒状基材1を縦方向に配置してホーニング処理を行うホーニング装置について説明したが、これに限るものではなく、湿式ホーニング槽7内に円筒状基材1を横置きにして、両端を把持して、軸中心に回転させながら左右いずれかの方向に移動させてもよい。かかる場合は、左右いずれかの方向に応じて、後述するように、噴射角度θ1とθ2の角度を設定することが望ましい。   As mentioned above, although the honing apparatus which arrange | positions the cylindrical base material 1 to a vertical direction and performed honing processing was demonstrated, it is not restricted to this, The cylindrical base material 1 is placed horizontally in the wet honing tank 7, and both ends And may be moved in either the left or right direction while rotating around the axis. In such a case, it is desirable to set the injection angles θ1 and θ2 according to either the left or right direction, as will be described later.

ホーニング液4の噴射角度は、図2に示すように、円筒状基材1を湿式ホーニング槽7内に縦吊りし、上昇移動させてホーニングする場合、円筒状基材1の軸方向に対して垂直方向、すなわち図面上水平方向を基準として、上方向の角度θ1が0〜15°であることが好ましい。上方向の噴射角度θ1が0°未満であると基材面の粗さ形状に方向性が強く現れてしまう。また15°を超えると、同様に基材面の粗面形状に方向性が現れてしまい、また、上端のみで円筒状基材1を把持してホーニングする場合、ホーニング中に基材下端部から基材内部に研磨液が侵入することで基材表面への研磨材の残留が発生し、画質欠陥に繋がるおそれがある。一方、下方向の噴射角度θ2は30〜50°であることが好ましい。下方向の噴射角度θ2が30°未満であると基材面の粗さ形状の方向性は小さくなるが、ホーニング液の噴射の広がり幅が狭くなるため、単位面積当たりに衝突する研磨材の量が少なくなり、粗面化効率が低下する。また、50°を超えると基材面の粗さ形状の方向性が大きく現れるため好ましくない。   As shown in FIG. 2, when the hoisting liquid 4 is hoisted by hoisting the cylindrical base material 1 by suspending it vertically in the wet honing tank 7 and moving it upward, as shown in FIG. With reference to the vertical direction, that is, the horizontal direction in the drawing, the upward angle θ1 is preferably 0 to 15 °. When the upward injection angle θ1 is less than 0 °, the directionality appears strongly in the roughness shape of the substrate surface. When the angle exceeds 15 °, directionality appears in the rough surface shape of the base material surface, and when the cylindrical base material 1 is gripped and honed only at the upper end, from the lower end portion of the base material during honing. When the polishing liquid enters the inside of the base material, the abrasive material remains on the surface of the base material, which may lead to image quality defects. On the other hand, the downward injection angle θ2 is preferably 30 to 50 °. If the downward injection angle θ2 is less than 30 °, the directionality of the roughness shape of the base material surface is reduced, but the spreading width of the honing liquid injection is narrowed, so the amount of abrasive that collides per unit area And the roughening efficiency decreases. On the other hand, if it exceeds 50 °, the directionality of the rough shape of the base material surface appears greatly, which is not preferable.

以上、円筒状基材を縦方向に配置して湿式ホーニングを行う場合について説明したが、これに限るものではなく、図3に示すように、円筒状基材を横方向に配置して円筒状基材を軸中心に回転させながら、円筒状基材の表面を粗面化してもよい。   As described above, the case where the cylindrical base material is arranged in the vertical direction and wet honing is performed has been described. However, the present invention is not limited to this, and the cylindrical base material is arranged in the horizontal direction as shown in FIG. The surface of the cylindrical base material may be roughened while rotating the base material about the axis.

かかる場合、図3に示すように、円筒状基材1を湿式ホーニング槽7内に横置きにして、図面上で左方向に水平に移動させてホーニングする場合、円筒状基材1の軸方向に対して垂直方向、すなわち図面上鉛直方向を基準として、左方向の角度θ1が0°〜15°であることが好ましい。左方向の噴射角度θ1が0°未満であると基材面の粗さ形状に方向性が強く現れてしまう。また15°を超えると、同様に基材面の粗面形状に方向性が現れてしまい、また、移動方向側のみで円筒状基材1を把持してホーニングする場合、ホーニング中に基材下端部から基材内部に研磨液が侵入することで基材表面への研磨材の残留が発生し、画質欠陥に繋がるおそれがある。一方、右方向の噴射角度θ2は30°〜50°であることが好ましい。右方向の噴射角度θ2が30°未満であると基材面の粗さ形状の方向性は小さくなるが、ホーニング液の噴射の広がり幅が狭くなるため、単位面積当たりに衝突する研磨材の量が少なくなり、粗面化効率が低下する。また、50°を超えると基材面の粗さ形状の方向性が大きく現れるため好ましくない。なお、図3では、図面上左方向に移動する場合について説明したが、これに限るものではなく、図面上右方向に水平に移動させてもよく、かかる場合、円筒状基材1を水平方向に移動させる方向が逆方向になっただけであるため、その噴射角度θ1およびθ2は、図3にて説明した上述同様の範囲であることが望ましい。   In such a case, as shown in FIG. 3, when the cylindrical base material 1 is horizontally placed in the wet honing tank 7 and moved horizontally in the left direction on the drawing, honing is performed. The angle θ1 in the left direction is preferably 0 ° to 15 ° with respect to the vertical direction, that is, the vertical direction in the drawing. If the jet angle θ1 in the left direction is less than 0 °, directionality appears strongly in the roughness shape of the substrate surface. When the angle exceeds 15 °, directionality appears in the rough surface shape of the base material surface, and when the cylindrical base material 1 is gripped and honed only on the moving direction side, the lower end of the base material during honing. When the polishing liquid enters the base material from the part, the abrasive material remains on the base material surface, which may lead to image quality defects. On the other hand, the injection angle θ2 in the right direction is preferably 30 ° to 50 °. When the injection angle θ2 in the right direction is less than 30 °, the directionality of the roughness shape of the base material surface is reduced, but the spreading width of the injection of the honing liquid is reduced, so that the amount of abrasive that collides per unit area And the roughening efficiency decreases. On the other hand, if it exceeds 50 °, the directionality of the rough shape of the base material surface appears greatly, which is not preferable. In addition, in FIG. 3, although the case where it moved to the left direction on drawing was demonstrated, it is not restricted to this, You may move horizontally to the right direction on drawing, and in such a case, the cylindrical base material 1 is horizontal direction. Therefore, the injection angles θ1 and θ2 are preferably in the same range as described above with reference to FIG.

また、ホーニングノズル3の噴射方向は、円筒状基材1の軸方向に対して垂直方向を基準として±15°の範囲での傾きを有していてもよい。   Further, the injection direction of the honing nozzle 3 may have an inclination in a range of ± 15 ° with respect to a direction perpendicular to the axial direction of the cylindrical base material 1.

また、ホーニングノズル3からの噴射時の圧縮空気圧力は、0.05MPa〜0.30MPaであり、ホーニングノズル3の先端から基材表面までの距離は、40mmから300mmであることが好ましい。また、ホーニング液4の研磨材含有濃度は、5重量%〜30重量%であり、ホーニングノズル3に対するホーニング液の流量は、5kg/分〜20kg/分であることが好ましく、さらに、ホーニングノズル3を固定した場合、円筒状基材1の移動速度は200mm/分〜3000mm/分であることが望ましい。また、円筒状基材1の回転数は、50rpmから500rpmであることが好ましい。本実施の形態では、上述の噴射角度θ1およびθ2に加え、上述の各条件の組み合わせることによって、所望のホーニング処理を行っている。   Moreover, the compressed air pressure at the time of injection from the honing nozzle 3 is 0.05 MPa to 0.30 MPa, and the distance from the tip of the honing nozzle 3 to the substrate surface is preferably 40 mm to 300 mm. In addition, the abrasive content concentration of the honing liquid 4 is 5 wt% to 30 wt%, and the flow rate of the honing liquid with respect to the honing nozzle 3 is preferably 5 kg / min to 20 kg / min. Is fixed, the moving speed of the cylindrical substrate 1 is desirably 200 mm / min to 3000 mm / min. Moreover, it is preferable that the rotation speed of the cylindrical base material 1 is 50 rpm to 500 rpm. In the present embodiment, a desired honing process is performed by combining the above-described conditions in addition to the above-described injection angles θ1 and θ2.

なお、上述のホーニング処理の後、ホーニング液よりも低濃度(好ましくは0.1〜1.0重量%)の研磨材を含有する洗浄液をスプレーノズルから噴射させて感光体基材の表面を洗浄することは、後述する洗浄工程において洗浄の精度及び効率が向上する傾向にあるので好ましい。粗面化された円筒状基材は基材面に付着した研磨材を除去する為にブラシ洗浄及び水による濯ぎ洗浄がなされる。   After the honing treatment described above, the surface of the photoreceptor substrate is cleaned by spraying a cleaning liquid containing an abrasive having a lower concentration (preferably 0.1 to 1.0% by weight) than the honing liquid from a spray nozzle. It is preferable to do so because the accuracy and efficiency of cleaning tend to be improved in the cleaning step described later. The roughened cylindrical base material is subjected to brush cleaning and water rinsing to remove the abrasive adhered to the base material surface.

濯ぎ洗浄された基材は塗布前に基材に付着した水分を除去する為に乾燥機に入れられ、温風乾燥される。水滴の残留は基材上にシミを発生させ、画質欠陥の原因となる。乾燥後の基材は冷却され、塗布工程へ移載される。   The substrate that has been rinsed and washed is placed in a dryer to remove moisture adhering to the substrate before coating, and dried with hot air. The remaining water droplets cause spots on the substrate and cause image quality defects. The dried substrate is cooled and transferred to the coating process.

塗布工程においては、円筒状基材表面に下引き層を含む感光層を塗布する。例えば、基材上に下引き層、電荷発生層、電荷輸送層を構成するようにする。   In the coating step, a photosensitive layer including an undercoat layer is coated on the surface of the cylindrical substrate. For example, an undercoat layer, a charge generation layer, and a charge transport layer are formed on the substrate.

塗布方法については、浸漬塗布、スプレー塗布、フローコート塗布等の様々な塗布方法があるが、感光層の塗布液の特性に応じた塗布方法を選択するものであり、塗布方法を限定するものではない。また、1層塗布毎に塗液面を乾燥させる必要があるが、塗液の種類により強制乾燥が不要なものもあるため、必ずしも乾燥機を使用する必要はない。   Regarding the application method, there are various application methods such as dip coating, spray coating, and flow coating. However, the coating method is selected according to the characteristics of the coating solution of the photosensitive layer, and the coating method is not limited. Absent. Moreover, although it is necessary to dry the coating liquid surface every time one layer is applied, it is not always necessary to use a dryer because forced drying is not necessary depending on the type of the coating liquid.

以上により塗布工程によって基材上に機能層が積層され、その結果、電子写真感光体が製造される。   As described above, the functional layer is laminated on the base material by the coating process, and as a result, the electrophotographic photosensitive member is manufactured.

(実施例1)
以下、本発明の効果を電子写真感光体用の基材をホーニング処理する方法について実施例を用いて具体的に説明するが、本発明はこれらにより限定されるものではない。
Example 1
Hereinafter, the effect of the present invention will be specifically described with reference to examples of a method for honing a substrate for an electrophotographic photosensitive member, but the present invention is not limited thereto.

アルミニウムを主成分とする円筒状基材(以下、アルミニウム基材とする)をダイヤモンドバイトを用いてφ30mmに外面を鏡面切削加工した後、その表面粗さRa0.03〜0.06μmの平滑面に仕上げた。   A cylindrical base material containing aluminum as a main component (hereinafter referred to as an aluminum base material) is subjected to mirror cutting of the outer surface to a diameter of 30 mm using a diamond tool, and then a smooth surface having a surface roughness Ra of 0.03 to 0.06 μm. Finished.

切削工程終了後、脱脂洗浄、濯ぎ洗浄そして温純水引き上げ乾燥工程の順で処理を行った。脱脂洗浄工程及び濯ぎ洗浄工程は35kHz〜40kHzの超音波発振機により洗浄中の基材に超音波を印加した。脱脂洗浄工程で使用する界面活性剤は非イオン性界面活性剤であり、脱脂洗浄工程で使用した水は0.1μS/cm以下のイオン交換水である。   After the cutting process, the degreasing cleaning, the rinsing cleaning, and the warm pure water pulling and drying process were performed in this order. In the degreasing cleaning step and the rinsing cleaning step, ultrasonic waves were applied to the substrate being cleaned by an ultrasonic oscillator of 35 kHz to 40 kHz. The surfactant used in the degreasing and cleaning process is a nonionic surfactant, and the water used in the degreasing and cleaning process is ion exchange water of 0.1 μS / cm or less.

このアルミニウム基材に対し上述した湿式ホーニング装置によってその表面の粗面化処理を行った。アルミニウム基材は、縦吊りされ、軸中心に回転させながら上昇移動させた。本実施例では、ホーニング液の上方向(移動方向に対して下流方向)の噴射角度θ1を0°、下方向(移動方向に対して上流方向)の噴射角度θ2を50°で噴射するように設定し、かつホーニングノズルをアルミニウム基材の中心軸に対し、垂直に設置した。ホーニングノズル先端から基材表面までの距離はそれぞれ100mmとした。また、ホーニング時の基材の回転数は100rpmとし、基材の上端から粗面化を開始した。その粗面化処理においては、酸化アルミニウムを主成分とする研磨材を10重量%で水に懸濁させ、これを10kg/minの流量で噴射ノズルに送り込んで、処理速度1000mm/min、圧縮空気圧0.1〜0.2MPaで前記アルミニウム基材に吹きつけ、表面粗さがRa:0.18μmになるようにした。なお、前記研磨材として、昭和電工株式会社製の酸化アルミニウム(アルナビーズ(CB−A35S)、平均粒径35μm)を用いた。   The surface of the aluminum substrate was roughened by the wet honing apparatus described above. The aluminum substrate was suspended vertically and moved upward while rotating around the axis. In this embodiment, the injection angle θ1 in the upward direction (downstream with respect to the moving direction) of the honing liquid is 0 °, and the injection angle θ2 in the downward direction (upstream with respect to the moving direction) is set to 50 °. The honing nozzle was set perpendicularly to the central axis of the aluminum substrate. The distance from the tip of the honing nozzle to the substrate surface was 100 mm. Moreover, the rotation speed of the base material at the time of honing was 100 rpm, and roughening was started from the upper end of the base material. In the roughening treatment, an abrasive mainly composed of aluminum oxide is suspended in water at 10% by weight, and this is sent to an injection nozzle at a flow rate of 10 kg / min, a processing speed of 1000 mm / min, and a compressed air pressure. The aluminum substrate was sprayed at 0.1 to 0.2 MPa so that the surface roughness was Ra: 0.18 μm. As the abrasive, aluminum oxide (Aluna Beads (CB-A35S), average particle size 35 μm) manufactured by Showa Denko Co., Ltd. was used.

前記の粗面化したアルミニウム基材について、以下の洗浄処理を行った。前記アルミニウム基材に対し、まず水でシャワーを吹きかけ、その後、水を吹きかけながら、処理部材としてのナイロン製ブラシを該アルミニウム基材に接触させ、該アルミニウム基材と共に同方向に100rpmで回転させながら60秒間押付処理を行った。次に導電度0.1〜1.0μS/cm、温度18〜25℃の純水による濯ぎ洗浄を行い、50℃の温純水引き上げ後に135℃で熱風乾燥を行った。   The following cleaning treatment was performed on the roughened aluminum base material. The aluminum base material is first sprayed with water, and then sprayed with water, and a nylon brush as a processing member is brought into contact with the aluminum base material while rotating in the same direction at 100 rpm with the aluminum base material. The pressing process was performed for 60 seconds. Next, rinsing with pure water having an electric conductivity of 0.1 to 1.0 μS / cm and a temperature of 18 to 25 ° C. was performed, and hot air drying was performed at 135 ° C. after raising the hot pure water at 50 ° C.

次に、これらの洗浄処理を行なった基材上に、有機ジルコニウム化合物(商品名:オルガチックスZC540、松本製薬(株)製)100部、シランカップリング剤(商品名:A1100、日本ユニカー(株)製)10部、ポリビニルブチラール樹脂(商品名:BM−S、積水化学(株)製)10部及びn−ブチルアルコール130部を混合し、得られた塗布液を浸漬塗布法により塗布し、140℃で15分間加熱して、1.0μmの下引き層を形成した。   Next, 100 parts of an organic zirconium compound (trade name: ORGATICS ZC540, manufactured by Matsumoto Pharmaceutical Co., Ltd.) and a silane coupling agent (trade name: A1100, Nippon Unicar Co., Ltd.) )) 10 parts, polyvinyl butyral resin (trade name: BM-S, manufactured by Sekisui Chemical Co., Ltd.) 10 parts and n-butyl alcohol 130 parts were mixed, and the resulting coating solution was applied by a dip coating method. By heating at 140 ° C. for 15 minutes, an undercoat layer of 1.0 μm was formed.

次に、ポリビニルブチラール樹脂(商品名:BM−1、積水化学(株)製)の2%シクロヘキサノン溶液に、金属含有又は否金属含有ヒドロキシフタロシアノン顔料を、顔料と樹脂との比を2:1に混合し、次いでサンドミルにより3時間分散処理を行なった。得られた分散液をさらに酢酸n−ブチルで希釈して下引き層上に浸漬塗布し、0.15μm厚の電荷発生層を形成した。   Next, in a 2% cyclohexanone solution of polyvinyl butyral resin (trade name: BM-1, manufactured by Sekisui Chemical Co., Ltd.), a metal-containing or non-metal-containing hydroxyphthalocyanone pigment and a ratio of the pigment to the resin are 2: Then, the mixture was dispersed in a sand mill for 3 hours. The obtained dispersion was further diluted with n-butyl acetate and dip-coated on the undercoat layer to form a charge generation layer having a thickness of 0.15 μm.

次に、N,N'−ジフェニル−N,N'−ビス(m−トリル)ベンジジン4部及びポリカーボネートZ樹脂6部を、モノクロロベンゼン36部に溶解させた溶液を電荷発生層上に浸漬塗布し、115℃で40分間乾燥して、24μm厚の電荷輸送層を形成した。以上のようにして電子写真感光体を得た。   Next, a solution obtained by dissolving 4 parts of N, N′-diphenyl-N, N′-bis (m-tolyl) benzidine and 6 parts of polycarbonate Z resin in 36 parts of monochlorobenzene is dip-coated on the charge generation layer. And dried at 115 ° C. for 40 minutes to form a 24 μm thick charge transport layer. An electrophotographic photosensitive member was obtained as described above.

[評価方法]
画質評価での干渉縞発生度合いの評価について、得られた電子写真感光体を反射率変動評価機(富士ゼロックス社製)にて評価した。反射率変動評価機は、感光体支持部と半導体レーザーコリメータと集光レンズからなる投光部、光パワーメータからなる受光部の構成からなり、被評価物に対して780nmのレーザー光を照射し、反射率を測定指定している。この反射率変動評価機では感光体にレーザー光を照射し、干渉して明るくなった干渉光の光量の入射光に対する割合を反射率a%とし、干渉して暗くなった干渉光の光量の入射光に対する割合を反射率b%とするときの反射率の差(a−b)を測定する。この(a−b)を反射率変動と呼ぶ。この反射率変動は得られた電子写真感光体の反射率変動の最大値を測定し、干渉縞発生度合いの評価を行なった。評価基準としては、反射率が1.5%未満であることが好ましく、反射率は0%に近いほど良い。
[Evaluation methods]
About evaluation of the interference fringe generation | occurrence | production degree in image quality evaluation, the obtained electrophotographic photoreceptor was evaluated with the reflectance fluctuation | variation evaluation machine (made by Fuji Xerox). The reflectance fluctuation evaluator is composed of a light projecting unit composed of a photosensitive member supporting unit, a semiconductor laser collimator and a condenser lens, and a light receiving unit composed of an optical power meter, and irradiates the object to be evaluated with 780 nm laser light. Specified measurement of reflectance. In this reflectance fluctuation evaluation machine, the photosensitive member is irradiated with laser light, and the ratio of the amount of interference light brightened by interference to the incident light is defined as reflectance a%, and the amount of interference light darkened by interference is incident. The reflectance difference (ab) is measured when the ratio to light is the reflectance b%. This (ab) is called reflectance fluctuation. As for the reflectance fluctuation, the maximum value of the reflectance fluctuation of the obtained electrophotographic photosensitive member was measured, and the occurrence of interference fringes was evaluated. As an evaluation criterion, the reflectance is preferably less than 1.5%, and the reflectance is better as it is closer to 0%.

次に、粗面形状の方向性の評価方法として、レーザー反射率測定機(富士ゼロックス社製)を用い、円筒状基材を回転させながら780nmレーザー光を基材面に対して20°の角度で照射し、基材面に対して垂直に反射したレーザー光の反射率を測定した。ホーニング処理した基材の上端から下端方向にレーザーを走査した場合の反射率c%の平均値と、下端から上端にレーザーを走査した場合の反射率d%の平均値との差|c−d|%を粗面形状の方向性の指標として評価した。評価基準としては反射率の方向差|c−d|%が0%に近いほど良いが、5%以下であれば良好である。反射率方向差が5%を超えると、ハーフトーン画像の印刷の濃淡差が大きく出てしまう。   Next, as a method for evaluating the directionality of the rough surface shape, a laser reflectivity measuring machine (manufactured by Fuji Xerox Co., Ltd.) is used, and a 780 nm laser beam is rotated at an angle of 20 ° with respect to the substrate surface while rotating the cylindrical substrate. The reflectivity of the laser beam irradiated with and reflected perpendicularly to the substrate surface was measured. Difference between the average value of the reflectance c% when the laser is scanned in the direction from the upper end to the lower end of the honed substrate and the average value of the reflectance d% when the laser is scanned from the lower end to the upper end | cd |% Was evaluated as an index of the directionality of the rough surface shape. As an evaluation criterion, the difference in reflectance direction | cd−% is better as it is closer to 0%, but it is better if it is 5% or less. When the reflectance direction difference exceeds 5%, a halftone image print will have a large difference in shading.

ホーニング時の基材内面への研磨材侵入量の評価方法として、ホーニング直後の基材内面に付着した研磨材の全量を採取し、採取した研磨材の重量を測定することで基材内面の研磨材付着量を評価した。   As an evaluation method of the amount of abrasive material entering the inner surface of the substrate during honing, the entire amount of abrasive material adhering to the inner surface of the substrate immediately after honing is collected and the weight of the collected abrasive material is measured to polish the inner surface of the substrate. The amount of material adhesion was evaluated.

研磨材の残留によるドラム欠陥数については、得られた電子写真感光体500本に関して、CCDカメラと顕微鏡とからなる自社製の表面欠陥評価装置を用いることにより、感光体ドラム表面の欠陥数を測定し、研磨材残留による欠陥発生率の評価を行った。   Regarding the number of drum defects due to residual abrasive, the number of defects on the surface of the photosensitive drum was measured by using an in-house manufactured surface defect evaluation device consisting of a CCD camera and a microscope for 500 electrophotographic photoreceptors obtained. Then, the defect occurrence rate due to the residual abrasive was evaluated.

ハーフトーン印刷画像を10枚印刷して、これによる画質について評価した。ハーフトーン印刷画像の評価方法として、作製したドラムをデジタル複写機(富士ゼロックス社製)に組み込み、複写試験を行った。画像濃度はX−Rite404A濃度計(アムテック社製)にて測定し、平均画像濃度が1.4以下である場合、濃度不足であり、1.6以上である場合、濃度過多であると評価した。   Ten halftone print images were printed and the image quality was evaluated. As a method for evaluating a halftone printed image, the produced drum was incorporated into a digital copying machine (manufactured by Fuji Xerox Co., Ltd.), and a copying test was conducted. The image density was measured with an X-Rite 404A densitometer (manufactured by Amtec Corporation). When the average image density was 1.4 or less, the density was insufficient, and when the average image density was 1.6 or more, it was evaluated that the density was excessive. .

(実施例2)
実施例1と同様に、アルミニウム基材は、縦吊りされ、軸中心に回転させながら上昇移動させた。上方向の噴射角度θ1を15°、下方向の噴射角度θ2を50°で噴射するホーニングノズルを用い、それ以外の条件は実施例1と同様にしてホーニング処理し、電子写真感光体を得た。その電子写真感光体について前記評価を実施した。
(Example 2)
Similar to Example 1, the aluminum base material was suspended vertically and moved upward while rotating about the axis center. A honing nozzle that injects the upward injection angle θ1 at 15 ° and the downward injection angle θ2 at 50 ° was used, and the honing treatment was performed in the same manner as in Example 1 to obtain an electrophotographic photosensitive member. . The evaluation was performed on the electrophotographic photosensitive member.

(実施例3)
実施例1と同様に、アルミニウム基材は、縦吊りされ、軸中心に回転させながら上昇移動させた。上方向の噴射角度θ1を15°、下方向の噴射角度θ2を30°で噴射するホーニングノズルを用い、それ以外の条件は実施例1と同様にしてホーニング処理し、電子写真感光体を得た。その電子写真感光体について前記評価を実施した。
(Example 3)
Similar to Example 1, the aluminum base material was suspended vertically and moved upward while rotating about the axis center. A honing nozzle that injects the upward injection angle θ1 at 15 ° and the downward injection angle θ2 at 30 ° was used, and the honing treatment was performed in the same manner as in Example 1 to obtain an electrophotographic photosensitive member. . The evaluation was performed on the electrophotographic photosensitive member.

(実施例4)
実施例1と同様に、アルミニウム基材は、縦吊りされ、軸中心に回転させながら上昇移動させた。上方向の噴射角度θ1を15°、下方向の噴射角度θ2を70°で噴射するホーニングノズルを用い、それ以外の条件は実施例1と同様にしてホーニング処理し、電子写真感光体を得た。その電子写真感光体について前記評価を実施した。
Example 4
Similar to Example 1, the aluminum base material was suspended vertically and moved upward while rotating about the axis center. A honing nozzle that injects the upward injection angle θ1 at 15 ° and the downward injection angle θ2 at 70 ° was used, and the honing treatment was performed in the same manner as in Example 1 to obtain an electrophotographic photosensitive member. . The evaluation was performed on the electrophotographic photosensitive member.

(実施例5)
実施例1と同様に、アルミニウム基材は、縦吊りされ、軸中心に回転させながら下降移動させた。下方向の噴射角度θ1を15°、上方向の噴射角度θ2を50°で噴射するホーニングノズルを用い、それ以外は実施例1と同じ条件にてホーニング処理し、電子写真感光体を得た。その電子写真感光体について前記評価を実施した。
(Example 5)
As in Example 1, the aluminum base material was suspended vertically and moved downward while rotating about the axis. A honing process was performed under the same conditions as in Example 1 except that a honing nozzle that injects the downward jetting angle θ1 at 15 ° and the upward jetting angle θ2 at 50 ° to obtain an electrophotographic photosensitive member. The evaluation was performed on the electrophotographic photosensitive member.

(実施例6)
アルミニウム基材は、横方向に配置され、軸中心に回転させながら図3に示すように左方向に水平に移動させた。左方向(移動方向に対して上流方向)の噴射角度θ1を15°、右方向(移動方向に対して下流方向)の噴射角度θ2を50°で噴射するホーニングノズルを用い、かつホーニングノズルをアルミニウム基材の中心軸に対し、垂直に設置した。ホーニングノズル先端から基材表面までの距離はそれぞれ100mmとした。また、ホーニング時の基材の回転数は100rpmとし、基材の上端から粗面化を開始した。その粗面化処理においては、酸化アルミニウムを主成分とする研磨材を10重量%で水に懸濁させ、これを10kg/minの流量で噴射ノズルに送り込んで、処理速度1000mm/min、圧縮空気圧0.1〜0.2MPaで前記アルミニウム基材に吹きつけ、表面粗さがRa:0.18μmになるようにしてホーニング処理し、電子写真感光体を得た。その電子写真感光体について前記評価を実施した。
(Example 6)
The aluminum base material was arranged in the horizontal direction and moved horizontally in the left direction as shown in FIG. 3 while rotating around the axis. A honing nozzle is used that injects an injection angle θ1 in the left direction (upstream with respect to the moving direction) at 15 °, an injection angle θ2 in the right direction (downstream with respect to the moving direction) at 50 °, and the honing nozzle is made of aluminum. It installed perpendicularly | vertically with respect to the central axis of a base material. The distance from the tip of the honing nozzle to the substrate surface was 100 mm. Moreover, the rotation speed of the base material at the time of honing was 100 rpm, and roughening was started from the upper end of the base material. In the roughening treatment, an abrasive mainly composed of aluminum oxide is suspended in water at 10% by weight, and this is sent to an injection nozzle at a flow rate of 10 kg / min, a processing speed of 1000 mm / min, and a compressed air pressure. It sprayed on the said aluminum base material at 0.1-0.2 MPa, and it honing-processed so that surface roughness might be set to Ra: 0.18 micrometer, and the electrophotographic photoreceptor was obtained. The evaluation was performed on the electrophotographic photosensitive member.

(実施例7)
アルミニウム基材は、横方向に配置され、移動方向のみで基材を把持した。軸中心に回転させながら図3に示すように右方向に水平に移動させた。左方向(移動方向に対して上流方向)の噴射角度θ1を0°、右方向(移動方向に対して下流方向)の噴射角度θ2を30°で噴射するホーニングノズルを用い、かつホーニングノズルをアルミニウム基材の中心軸に対し、垂直に設置した。ホーニングノズル先端から基材表面までの距離はそれぞれ100mmとした。また、ホーニング時の基材の回転数は100rpmとし、基材の上端から粗面化を開始した。その粗面化処理においては、酸化アルミニウムを主成分とする研磨材を10重量%で水に懸濁させ、これを10kg/minの流量で噴射ノズルに送り込んで、処理速度1000mm/min、圧縮空気圧0.1〜0.2MPaで前記アルミニウム基材に吹きつけ、表面粗さがRa:0.18μmになるようにしてホーニング処理し、電子写真感光体を得た。その電子写真感光体について前記評価を実施した。
(Example 7)
The aluminum substrate was arranged in the lateral direction and gripped the substrate only in the moving direction. While rotating about the axis, it was moved horizontally to the right as shown in FIG. A honing nozzle that injects the injection angle θ1 in the left direction (upstream with respect to the moving direction) at 0 °, the injection angle θ2 in the right direction (downstream with respect to the moving direction) at 30 °, and the honing nozzle is made of aluminum. It installed perpendicularly | vertically with respect to the central axis of a base material. The distance from the tip of the honing nozzle to the substrate surface was 100 mm. Moreover, the rotation speed of the base material at the time of honing was 100 rpm, and roughening was started from the upper end of the base material. In the roughening treatment, an abrasive mainly composed of aluminum oxide is suspended in water at 10% by weight, and this is sent to an injection nozzle at a flow rate of 10 kg / min, a processing speed of 1000 mm / min, and a compressed air pressure. It sprayed on the said aluminum base material at 0.1-0.2 MPa, and it honing-processed so that surface roughness might be set to Ra: 0.18 micrometer, and the electrophotographic photoreceptor was obtained. The evaluation was performed on the electrophotographic photosensitive member.

(比較例1)
実施例1と同様に、アルミニウム基材は、縦吊りされ、軸中心に回転させながら上昇移動させた。上方向の噴射角度θ1を50°、下方向の噴射角度θ2を15°で噴射するホーニングノズルを用い、それ以外の条件は実施例1と同様にしてホーニング処理し、電子写真感光体を得た。その電子写真感光体について前記評価を実施した。
(Comparative Example 1)
Similar to Example 1, the aluminum base material was suspended vertically and moved upward while rotating about the axis center. A honing nozzle that injects an upward jetting angle θ1 of 50 ° and a downward jetting angle θ2 of 15 ° was used, and honing was performed in the same manner as in Example 1 to obtain an electrophotographic photosensitive member. . The evaluation was performed on the electrophotographic photosensitive member.

(比較例2)
実施例1と同様に、アルミニウム基材は、縦吊りされ、軸中心に回転させながら上昇移動させた。上方向の噴射角度θ1を30°、下方向の噴射角度θ2を30°で噴射するホーニングノズルを用い、それ以外の条件は実施例1と同様にしてホーニング処理し、電子写真感光体を得た。その電子写真感光体について前記評価を実施した。
(Comparative Example 2)
Similar to Example 1, the aluminum base material was suspended vertically and moved upward while rotating about the axis center. A honing nozzle that injects the upward injection angle θ1 at 30 ° and the downward injection angle θ2 at 30 ° was used, and the honing treatment was performed in the same manner as in Example 1 to obtain an electrophotographic photosensitive member. . The evaluation was performed on the electrophotographic photosensitive member.

(比較例3)
実施例1と同様に、アルミニウム基材は、縦吊りされ、軸中心に回転させながら上昇移動させた。上方向の噴射角度θ1を−15°、下方向の噴射角度θ2を50°で噴射するホーニングノズルを用い、それ以外の条件は実施例1と同様にしてホーニング処理し、電子写真感光体を得た。その電子写真感光体について前記評価を実施した。
(Comparative Example 3)
Similar to Example 1, the aluminum base material was suspended vertically and moved upward while rotating about the axis center. A honing nozzle that injects an upward jetting angle θ1 of −15 ° and a downward jetting angle θ2 of 50 ° is used, and honing is performed in the same manner as in Example 1 to obtain an electrophotographic photosensitive member. It was. The evaluation was performed on the electrophotographic photosensitive member.

[評価結果]
これらの結果を、下記表1に示す。
[Evaluation results]
These results are shown in Table 1 below.

Figure 0004424115
Figure 0004424115

実施例1〜6及び比較例1〜3ともに欠陥発生率の評価以外は各10回評価を実施し、その平均値を表1に記載した。実施例1〜7、比較例2,3から、移動方向に対して下流側の噴射角度θ1を小さくすると研磨材の基材内面侵入量は低減することにより研磨材残留による画質欠陥は低減させることができる。さらに、移動方向に対して上流側の噴射角度θ2を下流側方向の噴射角度θ1よりも大きくすることにより、得られた円筒状基材の表面の反射率方向差は低減し、且つ粗面形状の方向性は小さくなる。但し、噴射角度θ1とθ2の大きさの差が大きい場合には反射率方向差は若干大きくなる。実施例2〜4から、移動方向に対して上流側方向の噴射角度θ2を大きくすると反射率方向差がやや大きくなる。比較例1より移動方向に対して下流方向の噴射角度θ1を上流方向の噴射角度θ2よりも大きくした場合、研磨材残留による画質欠陥が生じる。   Each of Examples 1 to 6 and Comparative Examples 1 to 3 was evaluated 10 times except for the defect occurrence rate, and the average value is shown in Table 1. From Examples 1 to 7 and Comparative Examples 2 and 3, when the injection angle θ1 on the downstream side with respect to the moving direction is reduced, the amount of abrasive material entering the substrate inner surface is reduced, thereby reducing image quality defects due to residual abrasives. Can do. Further, by making the upstream injection angle θ2 larger than the downstream injection angle θ1 with respect to the moving direction, the difference in the reflectance direction of the surface of the obtained cylindrical substrate is reduced, and the rough surface shape The directionality of becomes smaller. However, when the difference between the ejection angles θ1 and θ2 is large, the reflectance direction difference is slightly increased. From Examples 2 to 4, when the injection angle θ2 in the upstream direction with respect to the moving direction is increased, the difference in reflectance direction is slightly increased. When the injection angle θ1 in the downstream direction with respect to the moving direction is larger than the injection angle θ2 in the upstream direction relative to the moving direction, the image quality defect due to the remaining abrasive material occurs.

本発明における湿式ホーニング装置の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the wet honing apparatus in this invention. 実施の形態における円筒状基材を縦吊りした場合のノズルから噴射するホーニング液の噴射角度を説明する概略図である。It is the schematic explaining the injection angle of the honing liquid injected from the nozzle at the time of hanging the cylindrical base material vertically in embodiment. 実施の形態における円筒状基材を横置きした場合のノズルから噴射するホーニング液の噴射角度を説明する概略図である。It is the schematic explaining the injection angle of the honing liquid injected from the nozzle at the time of placing the cylindrical base material horizontally in embodiment.

符号の説明Explanation of symbols

1 円筒状基材、2 送液ポンプ、3 ホーニングノズル、4 ホーニング液、5 圧縮空気導入管、6 ホーニング液導入配管、7 湿式ホーニング槽、8 把持具。   DESCRIPTION OF SYMBOLS 1 Cylindrical base material, 2 liquid feeding pump, 3 honing nozzle, 4 honing liquid, 5 compressed air introduction pipe, 6 honing liquid introduction piping, 7 wet honing tank, 8 gripping tool.

Claims (1)

円筒状基材を移動させながらホーニング液を噴射し粗面化し円筒状基材を形成する工程とを有し、
前記円筒状基材を形成する工程では、少なくとも1つ以上のホーニングノズルから前記円筒状基材に噴射されるホーニング液の噴射角度は、前記円筒状基材の軸方向に対して垂直方向を基準とし前記円筒状基材の移動方向に対する上流方向への噴射角度θ2と、前記円筒状基材の軸方向に対して垂直方向を基準とし前記円筒状基材の移動方向に対する下流方向への噴射角度θ1とからなり、
前記噴射角度θ2は前記噴射角度θ1より大きく30〜70°であり、かつ、前記噴射角度θ1は0〜15°であり、前記噴射角度θ2とθ1との角度の差が15〜55°であり、
得られた円筒状基材が、レーザー光を基材面に対して20°の角度で照射し、基材面に対して垂直に反射したレーザー光の反射率を測定し、ホーニング処理した基材の上端から下端方向にレーザーを走査した場合の反射率c%の平均値と、下端から上端にレーザーを走査した場合の反射率d%の平均値との差|c−d|%を反射率方向差とした場合、湿式ホーニングにより粗面化された基材表面の反射率方向差が5%以下であることを特徴とする電子写真用感光体の製造方法。
And forming a cylindrical base material by jetting honing liquid while moving the cylindrical base material,
In the step of forming the cylindrical base material, the injection angle of the honing liquid sprayed from the at least one honing nozzle to the cylindrical base material is based on a direction perpendicular to the axial direction of the cylindrical base material. And an injection angle θ2 in the upstream direction with respect to the moving direction of the cylindrical base material, and an injection angle in the downstream direction with respect to the moving direction of the cylindrical base material with respect to a direction perpendicular to the axial direction of the cylindrical base material θ1 and
The injection angle θ2 is larger than the injection angle θ1 and is 30 to 70 °, the injection angle θ1 is 0 to 15 ° , and the difference between the injection angles θ2 and θ1 is 15 to 55 °. The
The obtained cylindrical substrate is irradiated with laser light at an angle of 20 ° with respect to the substrate surface, the reflectance of the laser beam reflected perpendicularly to the substrate surface is measured, and the honing treatment is performed. The difference | cd−% between the average value of the reflectance c% when the laser is scanned from the upper end to the lower end and the average value of the reflectance d% when the laser is scanned from the lower end to the upper end A method for producing an electrophotographic photoreceptor, wherein the difference in the direction of the reflectance of the substrate surface roughened by wet honing is 5% or less when the direction difference is taken .
JP2004228677A 2004-08-04 2004-08-04 Method for producing electrophotographic photoreceptor Expired - Fee Related JP4424115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004228677A JP4424115B2 (en) 2004-08-04 2004-08-04 Method for producing electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004228677A JP4424115B2 (en) 2004-08-04 2004-08-04 Method for producing electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JP2006047696A JP2006047696A (en) 2006-02-16
JP4424115B2 true JP4424115B2 (en) 2010-03-03

Family

ID=36026320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004228677A Expired - Fee Related JP4424115B2 (en) 2004-08-04 2004-08-04 Method for producing electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP4424115B2 (en)

Also Published As

Publication number Publication date
JP2006047696A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
US20070020918A1 (en) Substrate processing method and substrate processing apparatus
TWI764920B (en) Rectangular glass substrate and method for preparing the same
US5573445A (en) Liquid honing process and composition for interference fringe suppression in photosensitive imaging members
JP4424115B2 (en) Method for producing electrophotographic photoreceptor
JPH0715589B2 (en) ELECTROPHOTOGRAPHIC PHOTOSENSITIVE BODY, PROCESS FOR PROCESSING THE SUBSTRATE, AND METHOD FOR MANUFACTURING ELECTROPHOTOGRAPHIC PHOTOSENSITIVE BODY
JPH04300163A (en) Suspension liquid for wet-type horning abrasive and surface-treatment method using thereof
JPH08305044A (en) Electrophotographic photoreceptor and its production
JP2003290724A (en) Method and apparatus for cleaning cylindrical base material, and method for manufacturing cylindrical base material and electrophotographic photoreceptor
JP4483360B2 (en) Method for manufacturing cylindrical substrate
JP3365213B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JP2668985B2 (en) Electrophotographic photoreceptor
JP2006071904A (en) Apparatus and method for manufacturing electrophotographic photoreceptor, and electrophotographic photoreceptor
JP4698088B2 (en) Electrophotographic photoreceptor for reversal development process and method for producing the same
JP2007072179A (en) Apparatus and method for manufacturing electrophotographic photoreceptor, and the electrophotographic photoreceptor
JP4155024B2 (en) Cylindrical substrate cleaning method and cleaning apparatus, and electrophotographic photosensitive member manufacturing method
JP2001296679A (en) Surface roughening method and apparatus for electrophotographic photoreceptor base material, and electrophotographic photoreceptor and method for manufacturing the same
JP3823509B2 (en) Particle dispersion agitator, surface treatment method for electrophotographic photoreceptor substrate using the particle dispersion agitator, surface treatment apparatus, and electrophotographic photoreceptor treated by the surface treatment method
JP2003202691A (en) Electrophotographic photoreceptor, manufacturing method for electrophotographic photoreceptor, and process cartridge and electrophotographic device having electrophotographic photoreceptor
US7335452B2 (en) Substrate with plywood suppression
JP2996742B2 (en) Image forming method
JP2022155989A (en) Substrate manufacturing method and surface treatment method
JP2005234034A (en) Honing treatment method, process cartridge and electrophotographic apparatus
JP2005000835A (en) Washing method for cylindrical base material
JP2000155436A (en) Base for electrophotographic photoreceptor
JP2004118118A (en) Method for manufacturing electrophotographic photoreceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R150 Certificate of patent or registration of utility model

Ref document number: 4424115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees