JP4423388B2 - Oriented molecular mass spectrometry - Google Patents

Oriented molecular mass spectrometry Download PDF

Info

Publication number
JP4423388B2
JP4423388B2 JP2004157488A JP2004157488A JP4423388B2 JP 4423388 B2 JP4423388 B2 JP 4423388B2 JP 2004157488 A JP2004157488 A JP 2004157488A JP 2004157488 A JP2004157488 A JP 2004157488A JP 4423388 B2 JP4423388 B2 JP 4423388B2
Authority
JP
Japan
Prior art keywords
mass spectrometry
molecular mass
light
oriented
oriented molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004157488A
Other languages
Japanese (ja)
Other versions
JP2005337903A (en
Inventor
英樹 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004157488A priority Critical patent/JP4423388B2/en
Publication of JP2005337903A publication Critical patent/JP2005337903A/en
Application granted granted Critical
Publication of JP4423388B2 publication Critical patent/JP4423388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

本願発明は、質量のみならず分子の空間構造を推定することができる配向分子質量分析装置に関するものである。   The present invention relates to an oriented molecular mass spectrometer capable of estimating not only mass but also a molecular spatial structure.

従来の質量分析計は、対象とする物質をイオン化し、そのイオンに電場や磁場をかけることによって運動させ、該運動の相違に基づいて対象とする物質の質量を測定するものである。上記イオン化する方法としては、物質にレーザー光及び電子線を照射して物質から電子を剥ぎ取りイオン化するのが普通である。しかし、一般の物質においては、特に分子量の大きい物質においては、イオン化の際に分子が分解して断片化(フラグメンテーション)してしまうため、多数の断片(フラグメント)の質量スペクトルからもとの物質の分子量および分子構造を推定することは困難であった。その断片化の一つの解決法として、対象とする物質が壊れずにソフトなイオン化ができるマトリックス支援レーザー脱離イオン化法(MALDI法)が開発されている。しかし、該MALDI法においても、得られるのは、分子量であり、その分子の構造までは知ることはできなかった。   A conventional mass spectrometer ionizes a target substance, moves the ion by applying an electric field or a magnetic field, and measures the mass of the target substance based on the difference in the movement. As the above ionization method, it is common to irradiate a substance with a laser beam and an electron beam to peel off the electron from the substance and ionize it. However, in general substances, especially in substances with a large molecular weight, the molecules are decomposed and fragmented (fragmented) at the time of ionization. It was difficult to estimate molecular weight and molecular structure. As one solution for the fragmentation, a matrix-assisted laser desorption / ionization method (MALDI method) has been developed that allows soft ionization without breaking the target substance. However, even in the MALDI method, the molecular weight is obtained, and it was impossible to know the structure of the molecule.

その理由は、図1(1)に示すように、従来の質量分析計においては、対象とする分子の配向がランダムであるため、その分解生成物の飛び散り方は、バラバラとなり、分子構造の情報が失われてしまうためである。   The reason for this is that, as shown in Fig. 1 (1), in the conventional mass spectrometer, the orientation of the target molecules is random, so the way the decomposition products scatter is scattered, and the molecular structure information Is lost.

分子の頭と尻尾を区別して配向させてイオン化及び分解を行う方法には、静電場とレーザー光の光電場を組み合わせた方法(下記非特許文献1参照)及びレーザー光の光電場のみを用いる方法(非特許文献2及び3参照)が報告されている。
なお、上記配向及びイオン化には、分子の配向がランダムな状態をほぼすべての分子について頭と尻尾を区別して一定方向に配向する場合と、配向操作に対して反応の鈍い分子等については、ランダムな状態の集団の中から頭と尻尾を区別して一定の方向に配向しているものを選択してイオン化する場合を包含している。
As a method of performing ionization and decomposition by distinguishing and orienting the head and tail of a molecule, a method combining an electrostatic field and a laser light photoelectric field (see Non-Patent Document 1 below) and a method using only a laser light photoelectric field (See Non-Patent Documents 2 and 3).
In addition, in the above-mentioned orientation and ionization, when the orientation of the molecules is random, the head and tail are distinguished for almost all molecules and oriented in a certain direction, and the molecules that are slow to the orientation operation are randomly selected. This includes a case where the head and tail are distinguished from a group of different states and selected to be ionized by orientation in a certain direction.

以下に、レーザー光の光電場のみを用いる方法の概略を述べる。二つの波長λ1、λ2より構成されその比がλ1:λ2=2:1となっているようなレーザー光(以下「位相制御光」という。)を、対象とする物質に照射しイオン化する。位相制御光の光電場E(t)は、次の式で表される。
E(t)=E1cos(2πct/λ)+E2cos(2πct/(λ/2)+φ)
ここでcは、光速度である。また波長λ1=λ、λ2=λ/2とし、波長λ、λ/2の光の成分の振幅をそれぞれE1, E2、波長λとλ/2の光の相対位相差をφとした。位相制御光は、相対位相がφ=0とφ=πの時によって、図2のような波形となり、光の進行方向に対して光電場の振幅がプラスとマイナスで非対称な形状となる。分子の永久双極子は電場の大きい方向に向くため、分子の頭と尻尾を区別して配向してイオン化と光分解が起こる、または、配向した分子だけが選択されてイオン化と光分解が起こる。
H. Ohmura, T. Nakanaga, M. Tachiya, Phys.Rev. Lett. 92, 113002(2004). H. Ohmura and T. Nakanaga, J. Chem. Phys. 120, 5176(2004). H. Sakai et. al., Phys. Rev.Lett. 90, 083001(2003).
The outline of the method using only the photoelectric field of laser light is described below. The target substance is irradiated with laser light (hereinafter referred to as “phase control light”) that is composed of two wavelengths λ 1 and λ 2 and has a ratio of λ 1 : λ 2 = 2: 1. Ionize. The photoelectric field E (t) of the phase control light is expressed by the following equation.
E (t) = E 1 cos (2πct / λ) + E 2 cos (2πct / (λ / 2) + φ)
Here, c is the speed of light. Further, the wavelengths λ 1 = λ and λ 2 = λ / 2 are set, the amplitudes of the light components of the wavelengths λ and λ / 2 are E 1 and E 2 , respectively, and the relative phase difference between the wavelengths λ and λ / 2 is φ and did. The phase control light has a waveform as shown in FIG. 2 depending on when the relative phase is φ = 0 and φ = π, and has an asymmetric shape in which the amplitude of the photoelectric field is positive and negative with respect to the traveling direction of the light. Since the permanent dipole of a molecule is oriented in the direction of a large electric field, the head and tail of the molecule are distinguished and oriented to cause ionization and photolysis, or only the oriented molecule is selected to cause ionization and photolysis.
H. Ohmura, T. Nakanaga, M. Tachiya, Phys. Rev. Lett. 92, 113002 (2004). H. Ohmura and T. Nakanaga, J. Chem. Phys. 120, 5176 (2004). H. Sakai et.al., Phys. Rev. Lett. 90, 083001 (2003).

通常の質量分析において、測定される物理量は、質量(分子量)のみであり、分子量からさらに分子構造を推定するのは困難であった。   In normal mass spectrometry, the only physical quantity to be measured is mass (molecular weight), and it is difficult to further estimate the molecular structure from the molecular weight.

本願発明は、図1(2)に示すように、分子を配向させて分解し、その分解生成物の飛び散り方(空間分布)から、分子の構造を推定しようというものであり、質量だけでなく分子の立体構造に関する情報も得ることができる。   As shown in FIG. 1 (2), the present invention aims to estimate the structure of the molecule from the orientation (decomposition) of the decomposition products, and the molecular structure, as shown in FIG. 1 (2). Information on the three-dimensional structure of the molecule can also be obtained.

分子の配向方法としては、静電場とレーザー光の光電場を組み合わせた方法及びレーザー光の光電場のみを用いる方法がある。分子のイオン化及び分解には、従来の方法を用いてもよい。   As a method for aligning molecules, there are a method in which an electrostatic field and a photoelectric field of laser light are combined, and a method in which only a photoelectric field of laser light is used. Conventional methods may be used for ionization and decomposition of the molecules.

本願発明においては、分子の分子量のみならず、分子の構造をも推定できる質量分析を行うことを可能とするものである。   In the present invention, it is possible to perform mass spectrometry capable of estimating not only the molecular weight of a molecule but also the structure of the molecule.

以下、本願発明の実施の形態として、分子の頭と尻尾を区別して配向させ光分解に、光電場のみを用いる方法を採用した例を図3〜図5に基づいて説明する。   Hereinafter, as an embodiment of the present invention, an example in which a method of using only a photoelectric field for photolysis by distinguishing and aligning the head and tail of a molecule will be described with reference to FIGS.

本願発明の一実施例は、1)レーザー部、2)位相制御部(光干渉計)、3)質量分析計の3つから構成される。
図3は、第1のレーザー部の概略図である。レーザーは、パルスレーザーを用いる。該レーザ光の波長は、200nm〜20000nm、パルス幅は、10フェムト秒〜100ナノ秒、光強度は、106W/cm〜1020W/cmが適当である。一実施例として、波長800nm、パルス130fs、光強度 1012W/cm2を採用した。レーザーの波長をλとすると、一部のレーザー光をλ/2または2λとなるように波長変換する。波長変換は、非線形光学結晶による第二高調波発生によってレーザー光(波長800nm)の一部を波長λ/2(400nm)に変換した。
One embodiment of the present invention comprises three parts: 1) a laser unit, 2) a phase control unit (optical interferometer), and 3) a mass spectrometer.
FIG. 3 is a schematic diagram of the first laser unit. As the laser, a pulse laser is used. The wavelength of the laser beam is suitably 200 nm to 20000 nm, the pulse width is 10 femtoseconds to 100 nanoseconds, and the light intensity is suitably 10 6 W / cm to 10 20 W / cm. As an example, a wavelength of 800 nm, a pulse of 130 fs, and a light intensity of 10 12 W / cm 2 were employed. When the wavelength of the laser is λ, a part of the laser light is wavelength-converted so as to be λ / 2 or 2λ. In the wavelength conversion, a part of the laser beam (wavelength 800 nm) was converted into a wavelength λ / 2 (400 nm) by second harmonic generation by a nonlinear optical crystal.

図4は、第2の位相制御部(光干渉計)の概略図である。レーザー部から出射された波長λとλ/2の光は、位相制御部へと導かれる。図4に示される光干渉計は、マッハー・ツェンダー干渉計に手を加えたものである。波長λのレーザー光は、光路1へ、波長λ/2のレーザー光は、光路2へ導かれる。どちらかの光路の光路長を制御して、光路長1と光路長2の長さを光の波長λの1/100以下の精度で一致させる。本実施例においては、光路2に対して次のような方法で光路長を制御している。
(粗調整)波長λ/2の光路に〜λで粗調整することのできる並進ステージを挿入している。
(微調整)平行平板型光学媒質(一実施例は、石英板、厚さ:3mm)にレーザ光を通過させる。平行平板型光学媒質を回転させることによって、レーザー光が平行平板型光学媒質を通過する長さを〜λ/100の精度で光路長の微調整する。
どちらかの光路に1/2波長板(一実施例においては光路1)を挿入して、波長λとλ/2のレーザー光の偏光をそろえて同軸に重ね合わされる。このとき、波長λとλ/2レーザー光は、空間的にも時間的にも重なり、その相対位相が制御された位相制御光となって光干渉計から出力される。
FIG. 4 is a schematic diagram of the second phase controller (optical interferometer). Light of wavelengths λ and λ / 2 emitted from the laser unit is guided to the phase control unit. The optical interferometer shown in FIG. 4 is a modification of the Mach-Zehnder interferometer. The laser beam having the wavelength λ is guided to the optical path 1, and the laser beam having the wavelength λ / 2 is guided to the optical path 2. By controlling the optical path length of one of the optical paths, the optical path length 1 and the optical path length 2 are made to coincide with each other with an accuracy of 1/100 or less of the light wavelength λ. In this embodiment, the optical path length of the optical path 2 is controlled by the following method.
(Coarse adjustment) A translation stage that can be coarsely adjusted by ~ λ is inserted in the optical path of wavelength λ / 2.
(Fine adjustment) Laser light is passed through a parallel plate type optical medium (in one embodiment, a quartz plate, thickness: 3 mm). By rotating the parallel plate optical medium, the length of the laser beam passing through the parallel plate optical medium is finely adjusted with an accuracy of λ / 100.
A half-wave plate (optical path 1 in one embodiment) is inserted into one of the optical paths, and the laser beams with wavelengths λ and λ / 2 are aligned and overlapped on the same axis. At this time, the wavelength λ and the λ / 2 laser light are spatially and temporally overlapped and output from the optical interferometer as phase control light whose relative phase is controlled.

位相制御光は、質量分析計に導かれる。質量分析計内においては、対象とする物質は、位相制御光によって配向してイオン化する。イオン化によって光分解が引き起こされ、その結果生じた光分解生成物イオンの質量スペクトルを測定する。質量分析計は、光分解の際に、光分解生成物がもつ初期速度、または光分解生成物の放出角度分布が測定できる質量分析計を用いる。本実施例においては、飛行時間型質量分析計を用いた。   The phase control light is guided to the mass spectrometer. In the mass spectrometer, the target substance is oriented and ionized by the phase control light. Photolysis is caused by ionization, and the mass spectrum of the resulting photolysis product ions is measured. As the mass spectrometer, a mass spectrometer that can measure the initial velocity of the photolysis product or the emission angle distribution of the photolysis product during photolysis is used. In this example, a time-of-flight mass spectrometer was used.

図5は、配向分子質量分析計による硫化カルボニル(COS)分子の質量スペクトルの例である。Cイオン、Oイオン、COイオン、Sイオン、CSイオン、COSイオンが観測される。したがって、測定した分子は、C、O、Sを含んだ3原子分子COSであり、それが分解して、その他のイオン(フラグメントイオン)が観測されたことがわかる。それぞれのフラグメントイオンは、2つのピークの対としてそれぞれ観測される。これは、光分解の際の初期速度を反映したものである。つまり、飛行時間の速い成分は、光分解の際にイオン検出器の方向に飛び出したイオンによるもの、飛行時間の遅い成分は、イオン検出器の位置と反対の方向に飛び出したイオンによるものである。ランダムな配向の分子の測定結果は、時間の速い成分と遅い成分の大きさが等しく対称的なスペクトル形状が観測される。   FIG. 5 is an example of a mass spectrum of carbonyl sulfide (COS) molecules by an oriented molecular mass spectrometer. C ions, O ions, CO ions, S ions, CS ions, and COS ions are observed. Therefore, the measured molecule is a triatomic molecule COS containing C, O, and S, and it is understood that other ions (fragment ions) were observed by decomposition. Each fragment ion is observed as a pair of two peaks. This reflects the initial velocity during photolysis. That is, the component having a fast flight time is due to ions jumping in the direction of the ion detector during photolysis, and the component having a slow flight time is due to ions jumping in the direction opposite to the position of the ion detector. . In the measurement result of randomly oriented molecules, a symmetrical spectral shape is observed in which the components of the fast component and the slow component are equal.

しかし、図5のように分子の永久双極子モーメントをイオン検出器の位置と逆の方向に向けて分子を配向させた場合、図5のようにCイオンとOイオン、COイオンは、時間の速い成分が大きく観測され、SイオンとCSイオンは、時間の遅い成分が大きく観測され、非対称なスペクトル形状となる。これは、COS分子の永久双極子ベクトルの始点にOおよびCが存在し、永久双極子ベクトルの終点にCおよびSが存在していることを示しており、このことから、永久双極子ベクトルの始点から終点に向けてO−C−Sと原子が並んでいることがわかる。このように、質量だけでなく、分子の並び方(分子構造)まで推定することができる。また光分解は、通常の物質で起こる一般的な現象であるため、汎用性の高い手法である。
However, when the molecule is oriented with the permanent dipole moment of the molecule directed in the direction opposite to the position of the ion detector as shown in Fig. 5, the C ion, O ion, and CO ion are The fast component is observed to be large, and the S ion and CS ion have a large component with a slow time, resulting in an asymmetric spectral shape. This indicates that there are O and C at the beginning of the permanent dipole vector of the COS molecule, and C and S at the end of the permanent dipole vector. It can be seen that the atoms are aligned with O-C-S from the start point to the end point. Thus, it is possible to estimate not only the mass but also how the molecules are arranged (molecular structure). Photolysis is a general phenomenon that occurs with ordinary substances and is therefore a highly versatile technique.

本願発明は、無機化合物全般、有機化合物全般、クラスター分子、金属クラスター錯体、タンパク質又は生体高分子の構造決定に利用することができる。利用分野としては、化学合成分野、医薬品分野又はバイオテクノジー分野等が考えられる。
また、質量が同じで構造が異なる異性体の識別に関する重要な分析手法となることが期待される。例えば、サリドマイドは、光学異性体(まったく同じ原子構造のものが、左右の手のように重ね合わせることができないもの)が存在し、L体に効果があり、D体に副作用があるが、これらを区別して認識することが可能である。
The present invention can be used to determine the structure of all inorganic compounds, all organic compounds, cluster molecules, metal cluster complexes, proteins, or biopolymers. Possible fields of use include the chemical synthesis field, the pharmaceutical field or the biotechnology field.
In addition, it is expected to be an important analytical technique for identifying isomers having the same mass but different structures. For example, thalidomide has optical isomers (those with exactly the same atomic structure that cannot be overlapped like the left and right hands), are effective in the L form, and have side effects in the D form. Can be distinguished and recognized.

配向分子質量分析計の原理説明図Illustration of the principle of an oriented molecular mass spectrometer 位相制御光による頭と尻尾を区別した分子配向の概念図Conceptual diagram of molecular orientation distinguishing head and tail by phase control light レーザー部の概略図Schematic diagram of laser unit 位相制御部の概略図Schematic diagram of phase controller 配向分子質量分析計による硫化カルボニル(COS)分子の測定例Example of measurement of carbonyl sulfide (COS) molecules by an oriented molecular mass spectrometer

Claims (11)

分子を配向させた状態でイオン化及び分解し、その分解された破片の該分解時の運動状況を分析し、該運動状況に基いて該分子の構造を推定することを特徴とする配向分子質量分析方法Molecules are ionized and decomposed in the state of being oriented to analyze motion status at the time of the decomposition of the decomposed debris oriented molecular mass analysis and estimates the structure of the molecule based on the movement status Way . 上記配向は、分子の頭と尻尾を区別することを特徴とする請求項1に記載の配向分子質量分析方法The oriented molecular mass spectrometry method according to claim 1, wherein the orientation distinguishes between a molecular head and a tail. 上記配向は、電場及び光により行うことを特徴とする請求項1に記載の配向分子質量分析方法The oriented molecular mass spectrometry method according to claim 1, wherein the orientation is performed by an electric field and light. 上記配向は、光により行うことを特徴とする請求項1に記載の配向分子質量分析方法The oriented molecular mass spectrometry method according to claim 1, wherein the orientation is performed by light. 上記光は、位相制御光であることを特徴とする請求項4に記載の配向分子質量分析方法The method according to claim 4, wherein the light is phase control light. 上記イオン化及び分解は、光により行うことを特徴とする請求項1に記載の配向分子質量分析方法The oriented molecular mass spectrometry method according to claim 1, wherein the ionization and decomposition are performed by light. 上記光は、位相制御光であることを特徴とする請求項6に記載の配向分子質量分析方法The method according to claim 6, wherein the light is phase control light. 上記運動状況の分析は、上記破片の質量スペクトル又は放出角度分布により行うことを特徴とする請求項1に記載の配向分子質量分析方法The oriented molecular mass spectrometry method according to claim 1, wherein the analysis of the motion state is performed by a mass spectrum or an emission angle distribution of the fragments. 上記質量スペクトルの測定は、飛行時間法により行うことを特徴とする請求項8に記載の配向分子質量分析方法The oriented molecular mass spectrometry method according to claim 8, wherein the mass spectrum is measured by a time-of-flight method . 上記質量スペクトルのパターンにより、分子の構造を推定することを特徴とする請求項9に記載の配向分子質量分析方法The oriented molecular mass spectrometry method according to claim 9, wherein a molecular structure is estimated based on the pattern of the mass spectrum. 上記パターンは、それぞれの破片が示すピークに着目するものであることを特徴とする請求項10に記載の配向分子質量分析方法The oriented molecular mass spectrometry method according to claim 10, wherein the pattern focuses on a peak indicated by each fragment.
JP2004157488A 2004-05-27 2004-05-27 Oriented molecular mass spectrometry Expired - Fee Related JP4423388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157488A JP4423388B2 (en) 2004-05-27 2004-05-27 Oriented molecular mass spectrometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157488A JP4423388B2 (en) 2004-05-27 2004-05-27 Oriented molecular mass spectrometry

Publications (2)

Publication Number Publication Date
JP2005337903A JP2005337903A (en) 2005-12-08
JP4423388B2 true JP4423388B2 (en) 2010-03-03

Family

ID=35491643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157488A Expired - Fee Related JP4423388B2 (en) 2004-05-27 2004-05-27 Oriented molecular mass spectrometry

Country Status (1)

Country Link
JP (1) JP4423388B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2533156B (en) 2014-12-12 2018-06-27 Thermo Fisher Scient Bremen Gmbh Method of determining the structure of a macromolecular assembly

Also Published As

Publication number Publication date
JP2005337903A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
Rijs et al. IR spectroscopic techniques to study isolated biomolecules
Mühlberger et al. Single photon ionization (SPI) via incoherent VUV-excimer light: Robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis
Yatsuhashi et al. Multiple ionization and Coulomb explosion of molecules, molecular complexes, clusters and solid surfaces
Vrakking Attosecond imaging
Shafir et al. Role of the ionic potential in high harmonic generation
Ledingham et al. Behavior of polyatomic molecules in intense infrared laser beams
Antonov et al. Nonthermal desorption of molecular ions of polyatomic molecules induced by uv laser radiation
Scrinzi et al. Attosecond cross correlation technique
Von den Hoff et al. Attosecond control of the dissociative ionization via electron localization: A comparison between D2 and CO
Bhattacharyya et al. Strong-field-induced Coulomb explosion imaging of tribromomethane
Sezer et al. Laser-induced acoustic desorption of natural and functionalized biochromophores
Lin et al. Femtosecond resolving photodissociation dynamics of the SO2 molecule
Schätti et al. Pushing the mass limit for intact launch and photoionization of large neutral biopolymers
Heathcote et al. Partial and Contingent Recoil-Frame Covariance-Map Imaging
Latka et al. Femtosecond wave-packet revivals in ozone
JPWO2005074003A1 (en) Laser analysis apparatus and method
Schmid et al. Single-photon ionization of organic molecules beyond 10 kDa
Yang et al. Photoinduced Reactions in the Ion− Molecule Complexes Mg+− XCH3 (X= F, Cl)
Reischl et al. Ultrafast molecular dynamics controlled by pulse duration: The Na3 molecule
Brand et al. Matter-wave physics with nanoparticles and biomolecules
JP4423388B2 (en) Oriented molecular mass spectrometry
Kechaoglou et al. Controlling intramolecular hydrogen migration by asymmetric laser fields: the water case
Wang et al. Comparing pulsed and continuous laser-induced acoustic desorption (LIAD) as sources for intact biomolecules
Eiden et al. An improved method for capturing laser desorbed ions in an ion trap mass spectrometer: dynamic rf trapping
Xing et al. A comparative study of cation and anion cluster reaction products: The reaction mechanisms of lead clusters with benzene in gas phase

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091105

R150 Certificate of patent or registration of utility model

Ref document number: 4423388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees