JP4422364B2 - Fiber structure with ability to prevent underwater organism adhesion - Google Patents

Fiber structure with ability to prevent underwater organism adhesion Download PDF

Info

Publication number
JP4422364B2
JP4422364B2 JP2001144476A JP2001144476A JP4422364B2 JP 4422364 B2 JP4422364 B2 JP 4422364B2 JP 2001144476 A JP2001144476 A JP 2001144476A JP 2001144476 A JP2001144476 A JP 2001144476A JP 4422364 B2 JP4422364 B2 JP 4422364B2
Authority
JP
Japan
Prior art keywords
fiber structure
photocatalyst
sea urchin
ability
composite photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001144476A
Other languages
Japanese (ja)
Other versions
JP2002336705A (en
Inventor
知基 中村
茂 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Fibers Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2001144476A priority Critical patent/JP4422364B2/en
Publication of JP2002336705A publication Critical patent/JP2002336705A/en
Application granted granted Critical
Publication of JP4422364B2 publication Critical patent/JP4422364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Cleaning Or Clearing Of The Surface Of Open Water (AREA)
  • Catalysts (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Mechanical Means For Catching Fish (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水中生物付着防止能を有する繊維構造体に関する。さらに詳しくは、水中で使用される繊維構造体にウニ状複合光触媒を含有及び/又は固着させることにより、光触媒による繊維構造体の劣化等を抑制し、藻類、フジツボ、寄生虫等の水中生物の繊維構造体への付着を防止するようにした繊維構造体に関する。
【0002】
【従来の技術】
繊維構造体を水中で使用するとき、その表面には種々の水生生物が付着する。
例えば、空港等の水中大型土木工事時に、周囲海域を汚濁から守るために使用している汚濁防止シートでは、数週間でシートの全面に藻が付着し、付着した藻を落とすため、数ヶ月に一回の洗浄が必要となっている。
また、海面養殖及び陸上養殖等に用いられる養殖網には、藻及びフジツボ等が付着するため、養殖網中の水の流れが妨げられ、養殖網中の水質を急速に悪化させる。
さらに、海面付近で使用するロープ類には、藻の他に、フジツボ等が付着する。フジツボが付着したロープは、作業者の負傷の原因となるうえ、ロープ巻き上げ用のウインチを痛めるので、そのまま放棄されるのが通常である。
さらに、養殖魚の寄生虫のなかには、養殖網に卵を産み付け、繁殖するものがある。
【0003】
これら水生生物の付着防止には、従来は、繊維構造体に毒性物質を付着させる方法が行なわれている。しかし、該繊維構造体は水中で使用されるので、付着させた毒性物質が繊維構造体から容易に流出し、そのため、効果の持続性に問題があるうえに、環境が汚染される。例えば、藻及びフジツボ等付着防止のため、広く用いられてきた有機スズ化合物は、水中に流出後、環境ホルモンとして作用し、貝類に異型を生じさせることが指摘されている。
また、フジツボ付着防止には、静岡県浜松工業技術センターより微細加工された繊維構造体が提案されているが(静岡県工業技術情報、1998年2月、#36号)、ロープの巻き上げ時等に、微細部分が脱落し、効果が失われるという問題があった。
さらに、寄生虫に対しては、大量の抗生物質の投与によって、寄生虫の付着防止に対応しているのが現状であり、養殖網の水生生物付着防止への対応が強く望まれている。
【0004】
藻及びフジツボ等の、水中で使用される繊維構造体に付着する生物の大部分は、微細な生物体として海中を漂ったのち、繊維構造体に付着し、繊維構造体上で成長していく。藻類は、胞子状態で繊維構造体に付着後、付着した場所で発芽、成長する。また、甲殻類であるフジツボは、プランクトンとして繊維構造体に付着した後、変態して、繊維構造体に付着したまま一生を終える。従って、これらの胞子及びプランクトンを繊維構造体付着時に殺傷できれば、藻類及びフジツボの付着防止が可能となる。
【0005】
藻類及びフジツボは、光が充分存在する場所で成長する。藻類の成長には、光合成可能な光が必要であり、フジツボの成長には、フジツボが海面上へ露出することが必要だからである。従って、繊維構造体への藻類及びフジツボの付着を抑制するには、光が十分存在する条件下で、繊維構造体の表面に強い殺菌力を持たせればよい。
【0006】
ある種の寄生虫は、卵を養殖網に産み付けて繁殖する。従って、この養殖網に産み付けられた卵を殺傷することで、養殖魚への寄生虫抑制が可能となる。
【0007】
現在の養殖は、経済的な理由から、主として光が差し込む比較的浅い海で行なわれている。また、近年では、陸上養殖と呼ばれる、陸上に設置したプールでの養殖も盛んに行なわれている。つまり、養殖網は、主として、光が充分に存在する場所で使用されている。従って、養殖網に産卵する寄生虫の抑制も、光が充分存在する条件下で、繊維構造体の表面に強い殺菌力を持たせればよい。
【0008】
光の存在下で殺菌効果を示す物質として、光触媒が知られており、その作用を利用して、衣服の殺菌、防臭加工も提案されているが、水中生物に対する効果は知られていなかった。
【0009】
光触媒による抗菌機構は、光により光触媒の表面付着の水をラジカル化し、このラジカルによって、ごく近傍の生物を殺傷させるものである。この光触媒による抗菌機構では、毒性物質の抗菌機構と異なり、光が殺菌のエネルギー源であり、理論的には効果が永久に続く。また、発生したラジカルは、直ちに近傍の物質と反応し、無害な物質に戻るため、一般的な毒性物質での抗菌機構とは異なり、環境に対する負荷が格段に小さい。
【0010】
従って、光触媒のラジカル発生の効率が良いこと、効果が長時間持続すること、及び、環境への負荷が小さいことから、光触媒は水中で使用されるとき、その優れた効能を余すことなく発揮する。また、水中で使用する繊維構造体に付着する生物のうち、問題となる生物は全て、光触媒の効果が得られる光が充分存在する領域で、繊維構造体に付着して成長する。従って、これらの生物付着抑制のためには、光触媒を繊維構造体に含有等させることが適している。
【0011】
しかしながら、従来用いられている通常の光触媒を、繊維構造体に含有及び/又は固着させると、光触媒を繊維構造体に固着等させる加工時に、光触媒と繊維構造体を結びつけるバインダー及び/又は繊維構造体が、光触媒より分解され、繊維構造体が黄変するという問題があること、また、光触媒の分解作用により、時とともに、繊維構造体等の分解が進み、劣化するという問題があった。
【0012】
また、これらの問題を解決するため、光触媒の表面の所々の一部を、光触媒能を有さないアパタイト等で覆った、マスクメロン型光触媒を繊維構造体に固着等させることが提案されている。しかし、マスクメロン型光触媒はバインダー等を劣化させないが、光触媒がアパタイト等で広く覆われているので、光触媒としての能力に劣り、充分な水中生物付着抑制効果が得られなかった。
【0013】
【発明が解決しようとする課題】
本発明の目的は、これらの問題を解決し、環境に対する安全性が高く、生物種を選ばず、持続性に優れた生物性付着防止能を有し、かつ、繊維構造体の劣化等を抑制し、水中での使用に好適な繊維構造体を提供することである。
【0014】
【課題を解決するための手段】
本発明は、光触媒能を有する物質の表面に光触媒能を有さない針状物質を複数有するウニ状複合光触媒が、繊維構造体の表面又は内部に、含有及び/又は固着されている、水中生物付着防止能を有する繊維構造体である。
【0015】
本発明は、前記ウニ状複合光触媒が、バインダーを介して、前記繊維構造体に固着されていてもよい。
【0016】
前記繊維構造体に、前記繊維構造体の重量に基づいて0.01重量%以上、30重量%以下の、前記ウニ状複合光触媒が固着されていることが好ましい。また、前記繊維構造体に、前記繊維構造体の重量に基づいて0.01重量%以上、20重量%以下の、前記ウニ状複合光触媒が含有されていることが好ましい。
【0017】
前記ウニ状複合光触媒における、前記光触媒能を有さない針状物質の扁平率が、2以上、40以下であることが好ましい。また、前記ウニ状複合光触媒は、該触媒粒子1個あたり、4本以上の針状物質を有することが好ましい。
【0018】
前記ウニ状複合光触媒は、前記光触媒能を有する物質の表面の10%以上、90%以下が、前記光触媒能を有さない針状物質で覆われていないことが好ましい。
【0019】
前記ウニ状複合光触媒中の光触媒能を有する物質に、酸化チタン及び/又はチタン酸ストロンチウムを含むことが好ましい。また、前記ウニ状複合光触媒中の光触媒能を有する物質に、可視光応答型光触媒を含むことが好ましい。
【0020】
前記バインダーが、アクリル酸エステル樹脂及び/又はアクリル酸エステル樹脂のプレポリマーを含むものであることが好ましい。
【0021】
前記繊維構造体が、シート状物、ロープ、魚網、又は養殖網であることが好ましい。
【0022】
【発明の実施の形態】
本発明者らは、水中生物の付着を防止し、繊維構造体等の光触媒による劣化を防止する等のためには、光触媒能を有さない物質の大部分がバインダーと、一部が繊維構造体と接触し、光触媒能を有する部分がバインダー及び繊維構造体と接触しないという構造を、主としてとることができる、ウニ状複合光触媒を繊維構造体に固着等させることが、最も好ましいことを発見した。
【0023】
ウニ状複合光触媒は、光触媒能を有さない物質からなる複数の針状突起物が、光触媒能を有する物質の表面に隙間を持って有された、あたかもウニのような形状の光触媒である。ウニ状複合光触媒は、光触媒能を有する物質が、ほぼ球状であり、その球の表面に光触媒能を有さない針状物質を、針の先端が外側に向くように、ほぼ放射状に有するものである。ウニ状複合光触媒は、光触媒能を有する物質の表面の、針状突起で覆われていない、むき出しになって表面が覗いている部分で、光触媒の効果を発揮し、水中生物の付着を抑制する。
【0024】
ウニ状複合光触媒の大きさは、特に限定されるものではないが、例えば、光触媒能を有する微粒子の集合体である二次粒径の平均粒径が、0.1〜1μm程度、針状物質の長さが、二次粒径の半分から2倍程度のものが好ましい。
【0025】
光触媒能を有さない針状突起は、その形状の扁平率が小さすぎると、光触媒の機能を充分に示さない。扁平率とは、光触媒能を有さない縦長の針状物質を長方形に近似したときの、長辺と短辺の比率をいう。一方、扁平率が大きすぎると、針状物質の形状の維持が困難となる。従って、扁平率は2〜40の範囲が好ましく、特に5〜20程度の範囲が好ましい。
【0026】
光触媒能を有する物質一個あたりの、光触媒能を有さない針状物質の数は、少なすぎると、繊維構造体等の光触媒による劣化等を抑制する効果が低くなる。一方、多すぎても、光触媒能を有さない針状物質が、光触媒能を有する物質の表面の大部分を覆ってしまい、光触媒の性能が減少する。従って、ウニ状複合光触媒一個あたりの、光触媒能を有さない針状物質の数は、4本以上、50本以下が好ましく、特に、4本以上、30本以下が、より好ましい。
【0027】
また、同様に、ウニ状複合光触媒において、光触媒能を有する物質を光触媒能を有さない物質で覆う面積が小さすぎると、繊維構造体等の光触媒による劣化等を抑制する効果が低くなり、一方、覆う面積が大きすぎると、光触媒の性能が減少する。従って、ウニ状複合光触媒において、光触媒能を有する物質の全表面積の10%以上、90%以下は、むき出しになって表面が覗いているのが好ましく、特に、20%以上、70%以下が、より好ましい。
【0028】
ウニ状複合光触媒の表面上、光触媒能を有する物質が、むき出しになって覗いている割合は、光触媒能を有する物質と光触媒能を有さない針状物質が異なった金属成分である場合は、例えばX線マイクロアナライザー(XMA)にて測定可能であり、同種の金属のみで構成されている場合には電子分光法(ESCA)で定量可能である。
【0029】
ウニ状複合光触媒中の光触媒能を有する物質は、光により顕著な光触媒機能を発現すれば、特に限定されるものではなく、公知のものが利用可能であるが、例えば、二酸化チタン、三酸化タングステン、酸化亜鉛、三二酸化鉄、チタン酸ストロンチウム等の金属酸化物や、硫化カドミウム、硫化亜鉛、硫化インジウム等の金属硫化物や、セレン酸カドミウム、セレン化亜鉛等の金属セレン化物、リン化ゲルマニウム、リン化インジウム等の金属リン化物等、並びに、これらの光触媒に白金、ロジウム、ルテニウム、ニオブ、銅、鉄等の金属及び金属酸化物を担持したもの等がある。特に、触媒活性、安全性、価格等の面から、酸化チタン、チタン酸ストロンチウム等が好ましい。
【0030】
ウニ状複合光触媒中の光触媒能を有する物質の種類は、繊維構造体中に、1種単独で含有等されていてもよいし、2種以上含有等されていてもよい。また、本発明の効果が得られる範囲内であれば、ウニ状複合光触媒ではない、通常の光触媒を併用してもよい。さらに、ウニ状複合光触媒中の光触媒能を有する物質及び/又は併用する通常の光触媒は、紫外光応答型光触媒に限らず、可視光応答型光触媒を使用してもよい。例えば、可視光応答型光触媒を紫外光応答型光触媒と併用して繊維構造体中に含有等させると、水深が深くなればなるほど紫外線は減衰して、紫外光応答型光触媒の効果は減少するが、可視光の届く紫外線より深い水深まで、可視光応答型光触媒が効果を発揮するので、紫外光応答型光触媒単独を固着等させた場合より深い深度まで、水中生物付着防止能を有する繊維構造体が得られる。
【0031】
ウニ状複合光触媒中の光触媒能を有さない針状物質としては、光触媒能を有する物質の表面上に針状体を形成でき、光触媒能を有さない物質であれば、有機物、無機物ともに使用可能である。特に、安定性等の面から、無機物が好ましく、さらに、無機酸化物、金属酸化物、複合金属酸化物が、より好ましい。光触媒能を有さない針状物質としては、例えば、アパタイトがある。
【0032】
ウニ状複合光触媒と繊維構造体を、接着、付着及び貼合せ等によって固着させるバインダーには、特に制限がなく、例えば樹脂であれば、アクリル酸エステル樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン樹脂、メラミン樹脂、ポリプロピレン樹脂、若しくはフッ素樹脂、又はそのプレポリマー等の全ての樹脂が使用できるが、光触媒の固定安定性、風合い等の面から、アクリル酸エステル樹脂、及びそのプレポリマーが特に好ましい。
【0033】
バインダー樹脂としてのアクリル酸エステル樹脂は、アクリル酸エステル及び/又はメタクリル酸エステルを主たる構成モノマー単位とする重合体樹脂であれば、特に制限がなく、なかでも特にメタクリル酸エステル樹脂が好ましい。アクリル酸エステル樹脂を構成するモノマーの具体例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸イソブチル、メタクリル酸ターシャリーブチル、メタクリル酸2−エチル、メタクリル酸オクチル、メタクリル酸イソデシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル等に代表される非官能性モノマータイプ、及び、メタクリル酸、メタクリル酸2−ヒドロキシプロピル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル、メタクリル酸ターシャリーブチルアミノエチル、メタクリル酸グリシジル、メタクリル酸テトラヒドロフルフリル等に代表される一官能性モノマータイプ、及び、ジメタクリル酸エチレン、ジメタクリル酸ジエチレングリコール、ジメタクリル酸トリエチレングリコール、メタクリル酸アリル、ジメタクリル酸フタル酸ジエチレングリコール等に代表される多官能モノマータイプ等がある。これらの非官能性モノマーを一官能性モノマー又は多官能性モノマーと共重合することは、接着性や反応性に優れたポリマーを得ることができるので、より好ましい。
【0034】
また、洗濯耐久性を要求される分野で使用される際には、バインダー樹脂は、耐久性の強化のために、メラミン樹脂を併用することが好ましい。
【0035】
本発明において、ウニ状複合光触媒を繊維構造体に含有及び/又は固着させる手段としては、大きく分けると、2つの方法に分けられる。1つは、ウニ状複合光触媒を含有するポリマー組成物を紡糸して、得られた繊維で繊維構造体を製造することによって、ウニ状複合光触媒を繊維構造体に含有させる方法である。また、もう1つは、ウニ状複合光触媒を、糸、綿、織物、編物等の固体物である繊維に固着させて、ウニ状複合光触媒を繊維構造体に固着させる方法である。
【0036】
本発明において、ウニ状複合光触媒を繊維構造体に含有及び/又は固着させる具体的な手段としては、特に限定されないが、例えば、光触媒を含有するポリマーで紡糸した繊維を用いて繊維構造体を製造する方法、ポリマーを溶融した後に光触媒をブレンドしてポリマーに含有させて紡糸した繊維を用いて繊維構造体を製造する方法、光触媒を含まない繊維に光触媒を固着させた後に繊維構造体を製造する方法、光触媒を含まない繊維を用いて繊維構造体を製造した後に光触媒を固着させる方法、光触媒を含む繊維にさらに光触媒を固着させた後に繊維構造体を製造する方法、光触媒を含む繊維を用いて繊維構造体を製造した後にさらに光触媒を固着させる方法、光触媒を含む繊維に光触媒を固着させた後に繊維構造体を製造しさらにこれに光触媒を固着させる方法等が例示される。
【0037】
ウニ状複合光触媒を繊維構造体に、固着させる加工方法については、特に限定されないが、例えば、浸漬法、パッドドライ法、スプレー法、コーティング法、及びラミネート法等、いずれの方法によっても行うことができ、繊維構造体の形態、樹脂、溶液の種類によって適宜選択できる。浸漬法は、ウニ状複合光触媒及びバインダー樹脂を含む加工液に繊維構造体を浸漬させ、その後乾燥させて、ウニ状複合光触媒を含む機能剤を繊維構造体に固着させる方法である。パッドドライ法は、浸漬法の1種であって、パッド中で繊維構造体を浸漬させる方法である。スプレー法は、繊維構造体に対し加工液を噴霧する方法である。コーティング法は、高粘度加工液を繊維構造体表面に塗布する方法である。ラミネート法は、ウニ状複合光触媒を含む機能剤を含むフィルムを繊維構造体と張り合わせる方法である。
【0038】
例えば、浸漬法又はパッドドライ法であって、繊維構造体に処理液を含ませるパディング処理では、まず、これらウニ状複合光触媒及びバインダー樹脂若しくはそのプレポリマーを、ヘプタン、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル、ミネラルターペン、イソプロピルアルコール等の有機溶剤に溶解させるか、若しくは、有機溶剤を使用せずに水中にそれらをディスパーション(分散)させるか、又は、水中に、ウニ状複合光触媒をディスパーションさせ、適当な乳化剤、例えば高級アルコ─ルの硫酸エステル塩、アルキルベンゼンスルホン酸塩、高級アルコ─ルポリオキシアルキレン付加物、高級脂肪酸ポリオキシアルキレン付加物、高級脂肪酸ソルビタンエステル等で、バインダー樹脂若しくはそのプレポリマーを乳化させた、加工液を作製する。次に、この加工液に繊維構造体を浸漬させた後、繊維構造体を乾燥させ、繊維構造体の表面にバインダーを介してウニ状複合光触媒を結合させる。
【0039】
ウニ状複合光触媒をバインダー樹脂によって繊維に固着させる加工は、原綿、糸、織編物、染色物、最終製品等のいずれの段階でも行うことが可能である。
【0040】
紡糸後等の固体状の繊維にウニ状複合光触媒を固着させることによって、繊維構造体に固着させるウニ状複合光触媒の量は、少なすぎると、光触媒の充分な機能が発現できず、一方、多すぎると、光触媒によって繊維構造体が硬くなってしまうので、繊維構造体に対し、0.01重量%〜30重量%の範囲であることが好ましい。より好ましくは、0.1重量%〜20重量%、さらに好ましくは、0.2重量%〜10重量%である。
【0041】
紡糸前のポリマーにウニ状複合光触媒を含有させることによって、繊維構造体に含有させるウニ状複合光触媒の量は、少なすぎると、光触媒の充分な機能が発現できず、一方、多すぎると、紡糸時に糸切れが多発するため、繊維構造体に対し、0.01重量%〜20重量%の範囲であることが好ましい。より好ましくは、0.1重量%〜20重量%、さらに好ましくは、0.2重量%〜10重量%である。
【0042】
通常の光触媒をウニ状複合光触媒と併用して、繊維構造体に固着等させるときは、ウニ状複合光触媒と同様の方法で繊維構造体に含有又は固着させることができる。
【0043】
本発明に用いられる繊維構造体は、特に限定されず、織物、不織布、編物、レース、組物、フェルト、糸、綿等の繊維で構成されるすべてのものを総称するが、例えば、水中土木工事時の汚濁防止シート等のシート状構造体、係船又は延縄及びのり網の保持等に用いられるロープ、魚網や養殖網等の網状構造体等を用いることができる。シート状構造体には、織物の他、編物、不織布等も含まれる。養殖網としては、陸上養殖用養殖網又は海面養殖用養殖網が、光のある場所で使用し光触媒の機能を十分に発揮できるため、好ましい。
【0044】
本発明の繊維構造体の材質は、特に限定されるものではないが、水中作業時の取り扱い等の面から、合成繊維であることが好ましい。特に、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリエチレンナフタレート等のポリエステル繊維、ポリエチレン、ポリプロピレン等のポリオレフィン繊維、ナイロン6、ナイロン66、アラミド繊維等のポリアミド繊維、フッ素繊維等が、好ましい。
【0045】
繊維構造体は、目的に応じて、光触媒を含有及び/又は固着させる前後で、染色しても良いし、光触媒を含有及び/又は固着させる際に、顔料等の着色剤を併用して染色しても良い。
【0046】
【実施例】
以下、実施例に基づいて本発明を詳述するが、本発明はこれらによって限定されるものではない。
水中生物付着試験は、試験される布帛を錘を付けた板に貼り付け、海岸線の港の浮き桟橋に、布帛の上端を水面下50cmの位置に取り付け、布帛の下端を水面下50cmよりさらに深い位置にあるようにし、放置経時による生物の付着状況を調べた。
【0047】
[実施例1]
(加工液の調製)
アクリル系バインダー(大和化学工業製、バインテックスA6410)50gを、水850gに溶解し、次いで、平均扁平率5で、光触媒能を有さない針状アパタイトを光触媒1個あたり平均10本有し、光触媒の表面40%が光触媒能を有する物質で現れている、ウニ状複合光触媒の水分散体(昭和電工製、F4−APS、固形分濃度40%)100gを添加し、光触媒を4重量%含む加工液を調製した。
【0048】
ウニ状複合光触媒の形態は、走査電子顕微鏡(SEM)写真及びXMA分析によって、行った。針状物質の扁平率は、SEM写真にて、針状物質を長方形に近似し、長辺と短辺の比率として求め、平均した。また、その針状物質の平均個数は、SEM写真では複合光触媒の片面が観測されるので、SEM写真にて観測される複合光触媒一個あたりの針状物質数の平均を2倍して求めた。光触媒物質の表面積中、光触媒能を示す物質が表面に現れて占めている面積比率は、XMAにてTi(チタン)の定量分析(面分析)を実施し、酸化チタン単独の場合の分析値を100%としたときの相対値を、光触媒能を示す物質が表面に占める面積比率として算出した。
【0049】
(光触媒の繊維構造体への加工)
1メートルあたり120ターンの実撚りをもつ、1670dTex、フィラメント数250本のポリエステルマルチフィラメントを用いて、織密度が23×23、目付けが333g/m2の平織物を製造した。この平織物を、巾10cm、長さ8mのテープ状に切断し、前出の加工液に浸漬後、マングルにて余分な加工液を絞り取った後、熱風乾燥機を用いて、130℃で5分間乾燥し、続いてピンセッターを用い、180℃で1分間のキュアー(cure)を施した。キュアー後の布帛に対する加工剤の付着率は3重量%、光触媒の固着率は1.5重量%であった。
【0050】
(加工による布帛の状態)
ウニ状複合光触媒の繊維構造体への固着加工による、布帛の黄変は、見られなかった。
【0051】
(水中生物付着試験結果)
このウニ状複合光触媒が固着された布帛を用いて、水中生物付着試験を実施したところ、16週間にわたって、水中生物の付着が観測されず、良好な結果を得た。結果を表1に示す。
【0052】
[比較例1]
光触媒を固着させる加工をしない以外は、実施例1と同様の処理を行った。
光触媒を繊維構造体に固着等させていないので、布帛の黄変は、見られなかった。
水中生物付着試験の結果、水中では2週間前後から、浅い部分に藻の付着が始まり、8週間後には、テープ状布帛の深い部分まで、藻に覆われた。水深50cmまでの部分には、フジツボの付着も見られた。結果を表1に示す。
【0053】
[比較例2]
実施例1において、ウニ状複合光触媒水分散体を使用しないで、その代わりに、表面が覆われていない通常の光触媒水分散体(石原テクノ製、STS−21、酸化チタン濃度40%)を100g使用した以外は、実施例1と同様に実施した。
光触媒を繊維構造体に固着させた結果、主として、キュアー時に、布帛が黄色に変色してしまった。
水中生物付着試験の結果は、良好であった。結果を表1に示す。
【0054】
[比較例3]
ウニ状複合光触媒の代わりに、マスクメロン型光触媒の水分散体(昭和電工製;光触媒能を有さない物質に覆われずに、光触媒の表面に現れている光触媒能を有する部分が、光触媒の表面中の5%。)を使用する以外は、実施例1と同様に実施した。
光触媒を繊維構造体に固着させた結果、布帛の黄変は、見られなかった。
水中生物試験の結果、4週間目から、比較例1の未加工のものより少ないものの、藻の付着が始まった。結果を表1に示す。
【0055】
【表1】

Figure 0004422364
【0056】
【発明の効果】
本発明は、繊維構造体にウニ状複合光触媒を含んだことによって、水中での繊維構造体の使用において、環境に対する安全性が高く、生物種を選ばず、持続性に優れた生物性付着防止能を有し、かつ、繊維構造体の劣化等を抑制し、水中での使用に好適な繊維構造体を提供することが可能である。
【0057】
特に、本発明に使用される光触媒がウニ状複合光触媒であることによって、光触媒と接触又は光触媒周辺のバインダー及び繊維構造体が、光触媒で分解されることが抑制され、繊維構造体の黄変、劣化を抑制可能である。
【0058】
本発明に用いられる繊維構造体は、水中で使用可能なものであるので、汚濁防止シート、魚網、養殖網、係船用ロープ、延縄用ロープ、のり網保持用ロープ等に利用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fiber structure having an underwater organism adhesion prevention ability. More specifically, by containing and / or fixing a sea urchin-like composite photocatalyst to a fiber structure used in water, the deterioration of the fiber structure due to the photocatalyst is suppressed, and aquatic organisms such as algae, barnacles, parasites, etc. The present invention relates to a fiber structure that is prevented from adhering to the fiber structure.
[0002]
[Prior art]
When the fiber structure is used in water, various aquatic organisms adhere to the surface.
For example, in a pollution control sheet used to protect the surrounding sea area from pollution during underwater large-scale civil engineering work at airports, etc., the algae adheres to the entire surface in a few weeks, and the attached algae are removed. One wash is required.
In addition, since algae and barnacles are attached to aquaculture nets used for sea surface culture and land culture, the flow of water in the aquaculture net is hindered, and the water quality in the aquaculture net deteriorates rapidly.
Furthermore, barnacles and the like adhere to ropes used near the sea surface in addition to algae. Rope with barnacles attached is usually abandoned as it causes injury to workers and damages the winch for hoisting the rope.
In addition, some of the parasites of farmed fish lay eggs on the aquaculture net and breed.
[0003]
In order to prevent adhesion of these aquatic organisms, conventionally, a method of attaching a toxic substance to a fiber structure has been performed. However, since the fiber structure is used in water, the attached toxic substance easily flows out of the fiber structure, which causes a problem in durability of the effect and pollutes the environment. For example, it has been pointed out that organotin compounds that have been widely used to prevent adhesion of algae, barnacles, etc., act as environmental hormones after flowing into water and cause shellfish to become atypical.
For prevention of barnacle adhesion, a finely processed fiber structure has been proposed by the Hamamatsu Industrial Technology Center (Shizuoka Prefectural Industrial Technology Information, February 1998, # 36). In addition, there is a problem that the fine portion is dropped and the effect is lost.
Furthermore, for parasites, a large amount of antibiotics is currently being used to prevent the adhesion of parasites, and aquatic organisms are strongly desired to prevent the attachment of aquatic organisms.
[0004]
Most of the organisms attached to the fiber structure used in water, such as algae and barnacles, drift in the sea as fine organisms, then attach to the fiber structure and grow on the fiber structure . Algae germinate and grow at the place of attachment after attaching to the fiber structure in the spore state. In addition, barnacles, which are crustaceans, are attached to the fiber structure as plankton, and then transformed to finish life while remaining attached to the fiber structure. Accordingly, if these spores and plankton can be killed when adhering to the fiber structure, it is possible to prevent adhesion of algae and barnacles.
[0005]
Algae and barnacles grow where there is enough light. This is because the growth of algae requires light capable of photosynthesis, and the growth of barnacles requires that the barnacles be exposed to the sea surface. Therefore, in order to suppress the adhesion of algae and barnacles to the fiber structure, the surface of the fiber structure may be given a strong bactericidal power under conditions where light is sufficiently present.
[0006]
Some parasites lay their eggs on aquaculture nets and breed. Therefore, the parasite to the cultured fish can be suppressed by killing the eggs laid on the aquaculture net.
[0007]
Current aquaculture is carried out in relatively shallow seas where light enters mainly for economic reasons. In recent years, aquaculture in a pool set on land, called land farming, has been actively performed. That is, aquaculture nets are mainly used in places where there is sufficient light. Therefore, the parasites spawning on the aquaculture net may be suppressed by providing a strong bactericidal power on the surface of the fiber structure under conditions where light is sufficiently present.
[0008]
A photocatalyst is known as a substance exhibiting a bactericidal effect in the presence of light, and sterilization and deodorization of clothes have been proposed using its action, but its effect on aquatic organisms has not been known.
[0009]
The antibacterial mechanism using photocatalyst radicalizes water adhering to the surface of the photocatalyst by light, and kills living creatures in the vicinity by this radical. In this antibacterial mechanism by photocatalyst, unlike the toxic substance antibacterial mechanism, light is an energy source for sterilization, and the effect lasts indefinitely. In addition, the generated radical immediately reacts with a nearby substance and returns to a harmless substance, and therefore, unlike an antibacterial mechanism using a general toxic substance, the burden on the environment is extremely small.
[0010]
Therefore, since the photocatalyst radical generation efficiency is good, the effect lasts for a long time, and the load on the environment is small, the photocatalyst exhibits its excellent efficacy when used in water. . In addition, among the organisms attached to the fiber structure used in water, all the organisms in question are attached to the fiber structure and grow in a region where there is sufficient light for obtaining a photocatalytic effect. Therefore, it is suitable to contain a photocatalyst in the fiber structure in order to suppress these biological adhesions.
[0011]
However, a binder and / or a fiber structure that binds the photocatalyst and the fiber structure during processing to fix the photocatalyst to the fiber structure when a conventional photocatalyst that is conventionally used is contained and / or fixed to the fiber structure. However, there is a problem that the fiber structure is decomposed by the photocatalyst and the fiber structure is yellowed. Also, due to the decomposition action of the photocatalyst, the fiber structure and the like are gradually decomposed and deteriorated over time.
[0012]
Further, in order to solve these problems, it has been proposed to fix the mask melon type photocatalyst to the fiber structure in which a part of the surface of the photocatalyst is covered with apatite having no photocatalytic ability. . However, although the mask melon type photocatalyst does not deteriorate the binder or the like, since the photocatalyst is widely covered with apatite or the like, the ability as a photocatalyst is inferior, and a sufficient underwater organism adhesion inhibitory effect cannot be obtained.
[0013]
[Problems to be solved by the invention]
The object of the present invention is to solve these problems, to be highly safe for the environment, to select any species, to have excellent biological adhesion prevention ability, and to suppress degradation of the fiber structure, etc. And providing a fiber structure suitable for use in water.
[0014]
[Means for Solving the Problems]
The present invention relates to an aquatic organism in which a sea urchin-like composite photocatalyst having a plurality of needle-like substances having no photocatalytic activity is contained and / or fixed on the surface or inside of a fiber structure. It is a fiber structure having adhesion preventing ability.
[0015]
In the present invention, the sea urchin composite photocatalyst may be fixed to the fiber structure via a binder.
[0016]
It is preferable that 0.01 to 30% by weight of the sea urchin-like composite photocatalyst is fixed to the fiber structure based on the weight of the fiber structure. Moreover, it is preferable that 0.01 to 20 weight% of the said sea urchin-like composite photocatalyst is contained in the said fiber structure based on the weight of the said fiber structure.
[0017]
In the sea urchin-like composite photocatalyst, the flatness of the acicular substance having no photocatalytic activity is preferably 2 or more and 40 or less. Moreover, it is preferable that the said sea urchin-like composite photocatalyst has four or more acicular substances per said catalyst particle.
[0018]
In the sea urchin-like composite photocatalyst, it is preferable that 10% or more and 90% or less of the surface of the substance having photocatalytic activity is not covered with the acicular substance having no photocatalytic activity.
[0019]
It is preferable that titanium oxide and / or strontium titanate is contained in the substance having photocatalytic activity in the sea urchin-like composite photocatalyst. Moreover, it is preferable that the substance having photocatalytic activity in the sea urchin-like composite photocatalyst includes a visible light responsive photocatalyst.
[0020]
It is preferable that the binder contains a prepolymer of an acrylic ester resin and / or an acrylic ester resin.
[0021]
The fiber structure is preferably a sheet-like material, a rope, a fish net, or an aquaculture net.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
In order to prevent the adhesion of aquatic organisms and to prevent deterioration due to a photocatalyst such as a fiber structure, the present inventors have mostly a binder and a part of the fiber structure not having photocatalytic activity. It has been found that it is most preferable to fix the sea urchin-like composite photocatalyst to the fiber structure, which can mainly take a structure in which the part having contact with the body and the photocatalytic ability does not contact with the binder and the fiber structure. .
[0023]
A sea urchin-like composite photocatalyst is a photocatalyst having a shape like a sea urchin, in which a plurality of needle-like protrusions made of a substance having no photocatalytic activity are provided with gaps on the surface of the substance having a photocatalytic ability. A sea urchin-like composite photocatalyst is a substance having a photocatalytic ability that is almost spherical, and has a needle-like substance that does not have a photocatalytic ability on the surface of the sphere so that the tip of the needle faces outward. is there. A sea urchin-like composite photocatalyst exhibits the effect of a photocatalyst on the surface of a substance having photocatalytic activity that is not covered with needle-like protrusions and exposed to the surface, and suppresses the attachment of underwater organisms. .
[0024]
The size of the sea urchin composite photocatalyst is not particularly limited. For example, the average particle size of the secondary particle size, which is an aggregate of fine particles having photocatalytic activity, is about 0.1 to 1 μm. The length of is preferably about half to twice the secondary particle size.
[0025]
A needle-like projection having no photocatalytic ability does not sufficiently exhibit the function of the photocatalyst when the flatness of the shape is too small. The flatness means the ratio of the long side to the short side when a vertically long needle-like substance having no photocatalytic ability is approximated to a rectangle. On the other hand, if the flatness is too large, it is difficult to maintain the shape of the acicular substance. Accordingly, the aspect ratio is preferably in the range of 2 to 40, and particularly preferably in the range of about 5 to 20.
[0026]
If the number of acicular substances having no photocatalytic activity per one substance having photocatalytic activity is too small, the effect of suppressing degradation by a photocatalyst such as a fiber structure becomes low. On the other hand, if the amount is too large, the acicular material having no photocatalytic activity covers most of the surface of the material having photocatalytic activity, and the performance of the photocatalyst is reduced. Accordingly, the number of acicular substances having no photocatalytic activity per sea urchin-like composite photocatalyst is preferably 4 or more and 50 or less, and more preferably 4 or more and 30 or less.
[0027]
Similarly, in the sea urchin-like composite photocatalyst, if the area covering the substance having the photocatalytic ability with the substance not having the photocatalytic ability is too small, the effect of suppressing the degradation by the photocatalyst such as the fiber structure becomes low. If the area covered is too large, the performance of the photocatalyst decreases. Therefore, in the sea urchin-like composite photocatalyst, it is preferable that 10% or more and 90% or less of the total surface area of the substance having photocatalytic activity is exposed and the surface is peeked, particularly 20% or more and 70% or less. More preferred.
[0028]
On the surface of the sea urchin-like composite photocatalyst, the ratio of the substance having photocatalytic activity exposed is a metal component where the substance having photocatalytic activity and the acicular substance having no photocatalytic activity are different metal components, For example, it can be measured with an X-ray microanalyzer (XMA), and can be quantified by electron spectroscopy (ESCA) when it is composed of only the same kind of metal.
[0029]
The substance having photocatalytic activity in the sea urchin-like composite photocatalyst is not particularly limited as long as it exhibits a remarkable photocatalytic function by light, and a known substance can be used. For example, titanium dioxide, tungsten trioxide Metal oxides such as zinc oxide, iron sesquioxide and strontium titanate, metal sulfides such as cadmium sulfide, zinc sulfide and indium sulfide, metal selenides such as cadmium selenate and zinc selenide, germanium phosphide, There are metal phosphides such as indium phosphide, etc., and these photocatalysts carrying metals such as platinum, rhodium, ruthenium, niobium, copper, iron and metal oxides. In particular, titanium oxide, strontium titanate, and the like are preferable from the viewpoints of catalyst activity, safety, price, and the like.
[0030]
The kind of the substance having photocatalytic activity in the sea urchin-like composite photocatalyst may be contained alone or in two or more kinds in the fiber structure. Moreover, if it is in the range with which the effect of this invention is acquired, you may use together a normal photocatalyst which is not a sea urchin-like composite photocatalyst. Further, the substance having photocatalytic activity in the sea urchin-like composite photocatalyst and / or the ordinary photocatalyst to be used in combination are not limited to the ultraviolet light responsive photocatalyst, and a visible light responsive photocatalyst may be used. For example, when a visible light responsive photocatalyst is used in combination with an ultraviolet light responsive photocatalyst in a fiber structure, the ultraviolet light attenuates as the water depth increases, and the effect of the ultraviolet light responsive photocatalyst decreases. Since the visible light responsive photocatalyst is effective up to deeper water than the ultraviolet rays that reach visible light, the fiber structure has the ability to prevent the attachment of underwater organisms up to a deeper depth than when the ultraviolet light responsive photocatalyst alone is fixed. Is obtained.
[0031]
As a needle-like substance that does not have photocatalytic activity in the sea urchin-like composite photocatalyst, a needle-like body can be formed on the surface of the substance that has photocatalytic ability, and both organic and inorganic substances can be used if the substance does not have photocatalytic ability. Is possible. In particular, from the viewpoint of stability and the like, inorganic materials are preferable, and inorganic oxides, metal oxides, and composite metal oxides are more preferable. An example of an acicular material that does not have photocatalytic activity is apatite.
[0032]
There is no particular limitation on the binder for fixing the sea urchin composite photocatalyst and the fiber structure by adhesion, adhesion, bonding, etc. For example, if it is a resin, an acrylic ester resin, urethane resin, polyester resin, silicone resin, melamine Although all resins such as resin, polypropylene resin, fluororesin, or prepolymer thereof can be used, acrylate resin and prepolymer thereof are particularly preferable from the viewpoint of fixing stability of the photocatalyst, texture and the like.
[0033]
The acrylic ester resin as the binder resin is not particularly limited as long as it is a polymer resin having an acrylic ester and / or methacrylic ester as a main constituent monomer unit, and among them, a methacrylic ester resin is particularly preferable. Specific examples of the monomer constituting the acrylic ester resin include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, isobutyl methacrylate, tertiary butyl methacrylate, 2-ethyl methacrylate, octyl methacrylate, Non-functional monomer types represented by isodecyl methacrylate, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, etc., and methacrylic acid, 2-hydroxypropyl methacrylate, dimethylamino methacrylate One representative such as ethyl, diethylaminoethyl methacrylate, tertiary butylaminoethyl methacrylate, glycidyl methacrylate, tetrahydrofurfuryl methacrylate Sex monomer types, and ethylene methacrylic acid, dimethacrylate diethylene glycol, triethylene glycol dimethacrylate, there allyl methacrylate, a polyfunctional monomer types typified by dimethacrylate phthalate diethylene glycol and the like. It is more preferable to copolymerize these non-functional monomers with a monofunctional monomer or a polyfunctional monomer because a polymer having excellent adhesion and reactivity can be obtained.
[0034]
Further, when used in a field requiring washing durability, the binder resin is preferably used in combination with a melamine resin in order to enhance durability.
[0035]
In the present invention, the means for containing and / or fixing the sea urchin composite photocatalyst to the fiber structure can be roughly divided into two methods. One is a method of incorporating a sea urchin composite photocatalyst into the fiber structure by spinning a polymer composition containing the sea urchin composite photocatalyst and producing a fiber structure from the obtained fiber. The other is a method of fixing the sea urchin composite photocatalyst to the fiber structure by fixing the sea urchin composite photocatalyst to a solid fiber such as yarn, cotton, fabric or knitted fabric.
[0036]
In the present invention, the specific means for containing and / or fixing the sea urchin-like composite photocatalyst to the fiber structure is not particularly limited. For example, a fiber structure is produced using fibers spun with a polymer containing a photocatalyst. A method of manufacturing a fiber structure using fibers spun by blending a photocatalyst after the polymer is melted and contained in the polymer, and a fiber structure after fixing the photocatalyst to a fiber not containing the photocatalyst A method, a method of fixing a photocatalyst after manufacturing a fiber structure using a fiber not containing a photocatalyst, a method of manufacturing a fiber structure after further fixing a photocatalyst to a fiber containing a photocatalyst, and a fiber containing a photocatalyst A method of further fixing a photocatalyst after manufacturing a fiber structure, and manufacturing a fiber structure after fixing a photocatalyst to a fiber containing a photocatalyst. How to fix the catalyst and the like.
[0037]
The processing method for adhering the sea urchin-like composite photocatalyst to the fiber structure is not particularly limited. For example, it can be performed by any method such as dipping method, pad dry method, spray method, coating method, and laminating method. And can be appropriately selected depending on the form of the fiber structure, the type of resin, and solution. The dipping method is a method in which the fiber structure is dipped in a processing liquid containing a sea urchin composite photocatalyst and a binder resin, and then dried to fix the functional agent containing the sea urchin composite photocatalyst to the fiber structure. The pad dry method is a kind of dipping method, and is a method in which a fiber structure is dipped in a pad. The spray method is a method of spraying the processing liquid onto the fiber structure. The coating method is a method of applying a high-viscosity processing liquid to the surface of the fiber structure. The laminating method is a method of laminating a film containing a functional agent containing a sea urchin-like composite photocatalyst with a fiber structure.
[0038]
For example, in the padding process in which the fiber structure is made to contain the treatment liquid in the dipping method or the pad dry method, first, these sea urchin-like composite photocatalyst and binder resin or its prepolymer are mixed with heptane, acetone, methyl ethyl ketone, methyl isobutyl ketone. Dissolve in organic solvents such as ethyl acetate, butyl acetate, mineral terpenes, isopropyl alcohol, or disperse them in water without using organic solvents, or sea urchin complex Disperse the photocatalyst and use a suitable emulsifier such as a higher alcohol sulfate, alkylbenzene sulfonate, higher alcohol polyoxyalkylene adduct, higher fatty acid polyoxyalkylene adduct, higher fatty acid sorbitan ester, etc. Binder resin It was emulsified prepolymer thereof, to prepare a working solution. Next, after immersing the fiber structure in this processing liquid, the fiber structure is dried, and a sea urchin-like composite photocatalyst is bonded to the surface of the fiber structure via a binder.
[0039]
The process of fixing the sea urchin composite photocatalyst to the fiber with a binder resin can be performed at any stage of raw cotton, yarn, woven or knitted fabric, dyed product, final product, and the like.
[0040]
If the amount of the sea urchin composite photocatalyst fixed to the fiber structure is too small by fixing the sea urchin composite photocatalyst to the solid fiber after spinning or the like, sufficient function of the photocatalyst cannot be expressed. If the amount is too large, the fiber structure is hardened by the photocatalyst, and therefore it is preferably in the range of 0.01 wt% to 30 wt% with respect to the fiber structure. More preferably, they are 0.1 weight%-20 weight%, More preferably, they are 0.2 weight%-10 weight%.
[0041]
If the amount of the sea urchin composite photocatalyst to be contained in the fiber structure is too small by incorporating the sea urchin composite photocatalyst in the polymer before spinning, sufficient function of the photocatalyst cannot be expressed. Since yarn breakage frequently occurs, it is preferably in the range of 0.01% by weight to 20% by weight with respect to the fiber structure. More preferably, they are 0.1 weight%-20 weight%, More preferably, they are 0.2 weight%-10 weight%.
[0042]
When an ordinary photocatalyst is used in combination with a sea urchin composite photocatalyst and fixed to the fiber structure, it can be contained or fixed to the fiber structure in the same manner as the sea urchin composite photocatalyst.
[0043]
The fiber structure used in the present invention is not particularly limited, and it is a general term for all things composed of fibers such as woven fabrics, nonwoven fabrics, knitted fabrics, laces, braids, felts, yarns, cotton, etc. A sheet-like structure such as a pollution prevention sheet at the time of construction, a rope used for holding a mooring boat or a longline and a net, etc., a net-like structure such as a fish net or an aquaculture net, or the like can be used. The sheet-like structure includes knitted fabrics, non-woven fabrics and the like in addition to woven fabrics. As the aquaculture net, a land-based aquaculture net or a sea surface aquaculture net is preferable because it can be used in a place with light and can fully exhibit the function of a photocatalyst.
[0044]
The material of the fiber structure of the present invention is not particularly limited, but is preferably a synthetic fiber from the viewpoint of handling during underwater work. In particular, polyester fibers such as polyethylene terephthalate, polypropylene terephthalate, and polyethylene naphthalate, polyolefin fibers such as polyethylene and polypropylene, polyamide fibers such as nylon 6, nylon 66, and aramid fiber, and fluorine fibers are preferable.
[0045]
Depending on the purpose, the fiber structure may be dyed before and after containing and / or fixing the photocatalyst, and when containing and / or fixing the photocatalyst, the fiber structure is dyed together with a colorant such as a pigment. May be.
[0046]
【Example】
EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example, this invention is not limited by these.
In the aquatic organism adhesion test, the fabric to be tested is affixed to a plate with a weight, and the upper end of the fabric is attached to a floating jetty at a coastal port, and the lower end of the fabric is deeper than 50 cm below the surface of the water. It was placed in the position, and the state of organism attachment over time was examined.
[0047]
[Example 1]
(Preparation of machining fluid)
An acrylic binder (manufactured by Daiwa Chemical Industry, Vinetex A6410) 50 g is dissolved in 850 g of water, and then has an average flatness ratio of 5 and has an average of 10 acicular apatites having no photocatalytic activity per photocatalyst. 100 g of an aqueous dispersion of sea urchin composite photocatalyst (shown by Showa Denko, F4-APS, solid content concentration 40%), in which 40% of the surface of the photocatalyst appears as a substance having photocatalytic activity, contains 4 wt% of the photocatalyst A working fluid was prepared.
[0048]
The shape of the sea urchin-like composite photocatalyst was performed by scanning electron microscope (SEM) photography and XMA analysis. The flatness of the acicular substance was obtained by averaging the acicular substance in a SEM photograph as a ratio between the long side and the short side, approximating a rectangle. The average number of acicular substances was determined by doubling the average number of acicular substances per composite photocatalyst observed in the SEM photograph because one side of the composite photocatalyst was observed in the SEM photograph. In the surface area of the photocatalytic substance, the area ratio of the substance showing the photocatalytic activity that appears on the surface is determined by performing quantitative analysis (surface analysis) of Ti (titanium) with XMA, and the analysis value in the case of titanium oxide alone The relative value at 100% was calculated as the area ratio of the substance exhibiting photocatalytic activity to the surface.
[0049]
(Processing photocatalyst into fiber structure)
Using polyester multifilament with 1670 dTex and 250 filaments, with a real twist of 120 turns per meter, weaving density is 23 × 23, and basis weight is 333 g / m 2 A plain fabric was produced. This plain woven fabric is cut into a tape shape having a width of 10 cm and a length of 8 m, immersed in the above-described processing liquid, and after squeezing excess processing liquid with a mangle, using a hot air dryer at 130 ° C. It was dried for 5 minutes and then cured at 180 ° C. for 1 minute using a pin setter. The adhesion rate of the processing agent to the fabric after curing was 3% by weight, and the fixing rate of the photocatalyst was 1.5% by weight.
[0050]
(State of fabric by processing)
No yellowing of the fabric was observed due to the process of fixing the sea urchin composite photocatalyst to the fiber structure.
[0051]
(Results of underwater organism adhesion test)
When an underwater organism adhesion test was carried out using the fabric to which this sea urchin-like composite photocatalyst was fixed, adhesion of aquatic organisms was not observed for 16 weeks, and good results were obtained. The results are shown in Table 1.
[0052]
[Comparative Example 1]
The same treatment as in Example 1 was performed except that the processing for fixing the photocatalyst was not performed.
Since the photocatalyst was not fixed to the fiber structure, no yellowing of the fabric was observed.
As a result of the aquatic organism adhesion test, algae began to adhere to shallow portions in water for about 2 weeks, and after 8 weeks, the algae were covered to a deep portion of the tape-like fabric. Barnacles were also observed on the part up to a depth of 50 cm. The results are shown in Table 1.
[0053]
[Comparative Example 2]
In Example 1, 100 g of an ordinary photocatalyst water dispersion (Ishihara Techno, STS-21, titanium oxide concentration 40%) whose surface is not covered is used instead of using a sea urchin composite photocatalyst water dispersion. The same operation as in Example 1 was carried out except that it was used.
As a result of fixing the photocatalyst to the fiber structure, the fabric turned yellow mainly during curing.
The results of the underwater organism adhesion test were good. The results are shown in Table 1.
[0054]
[Comparative Example 3]
Instead of a sea urchin-like composite photocatalyst, a water dispersion of musk melon type photocatalyst (manufactured by Showa Denko; the portion having photocatalytic activity that appears on the surface of the photocatalyst without being covered with a substance not having photocatalytic activity is 5% in the surface.) Was carried out in the same manner as in Example 1, except that
As a result of fixing the photocatalyst to the fiber structure, no yellowing of the fabric was observed.
As a result of the aquatic organism test, algal attachment started from the fourth week, although it was less than the unprocessed one of Comparative Example 1. The results are shown in Table 1.
[0055]
[Table 1]
Figure 0004422364
[0056]
【The invention's effect】
The present invention includes a sea urchin-like composite photocatalyst in the fiber structure, so that in the use of the fiber structure in water, the environment is highly safe, biological species can be selected, and biological adhesion prevention excellent in sustainability. In addition, it is possible to provide a fiber structure that has the ability to suppress deterioration of the fiber structure and the like and is suitable for use in water.
[0057]
In particular, when the photocatalyst used in the present invention is a sea urchin-like composite photocatalyst, the binder and the fiber structure around the photocatalyst or in contact with the photocatalyst are suppressed from being decomposed by the photocatalyst, and the yellowing of the fiber structure. Degradation can be suppressed.
[0058]
Since the fiber structure used in the present invention can be used in water, it can be used for pollution prevention sheets, fish nets, aquaculture nets, mooring ropes, longline ropes, gill net holding ropes, and the like.

Claims (14)

光触媒能を有する物質の表面に光触媒能を有さない針状物質を複数有するウニ状複合光触媒が、繊維構造体の表面又は内部に、含有及び/又は固着されていることを特徴とする水中生物付着防止能を有する繊維構造体。An underwater organism characterized in that a sea urchin-like composite photocatalyst having a plurality of needle-like substances not having photocatalytic activity on the surface of a substance having photocatalytic activity is contained and / or fixed on the surface or inside of a fiber structure. A fiber structure having anti-adhesion ability. 前記ウニ状複合光触媒が、バインダーを介して、前記繊維構造体に固着されている、請求項1に記載の水中生物付着防止能を有する繊維構造体。The fiber structure having the ability to prevent attachment of underwater organisms according to claim 1, wherein the sea urchin-like composite photocatalyst is fixed to the fiber structure via a binder. 前記繊維構造体に、前記繊維構造体の重量に基づいて0.01重量%以上、30重量%以下の、前記ウニ状複合光触媒が固着されている請求項1又は2に記載の水中生物付着防止能を有する繊維構造体。3. The underwater organism adhesion prevention according to claim 1, wherein the sea urchin-like composite photocatalyst is fixed to the fiber structure in an amount of 0.01% by weight to 30% by weight based on the weight of the fiber structure. A fiber structure having a function. 前記繊維構造体に、前記繊維構造体の重量に基づいて0.01重量%以上、20重量%以下の、前記ウニ状複合光触媒が含有されている請求項1に記載の水中生物付着防止能を有する繊維構造体。2. The underwater organism adhesion preventing ability according to claim 1, wherein the sea urchin-like composite photocatalyst is contained in the fiber structure in an amount of 0.01% by weight to 20% by weight based on the weight of the fiber structure. Fiber structure having. 前記ウニ状複合光触媒における、前記光触媒能を有さない針状物質の扁平率が、2以上、40以下である請求項1〜4のいずれか1項に記載の水中生物付着防止能を有する繊維構造体。The fiber having the ability to prevent attachment of underwater organisms according to any one of claims 1 to 4, wherein the flatness of the acicular material having no photocatalytic activity in the sea urchin-like composite photocatalyst is 2 or more and 40 or less. Structure. 前記ウニ状複合光触媒は、該触媒粒子1個あたり、4本以上の針状物質を有する請求項1〜5のいずれか1項に記載の水中生物付着防止能を有する繊維構造体。The fiber structure having the ability to prevent underwater organism adhesion according to any one of claims 1 to 5, wherein the sea urchin-like composite photocatalyst has four or more acicular substances per catalyst particle. 前記ウニ状複合光触媒は、前記光触媒能を有する物質の表面の10%以上、90%以下が、前記光触媒能を有さない針状物質で覆われていない請求項1〜6のいずれか1項に記載の水中生物付着防止能を有する繊維構造体。The said sea urchin-like composite photocatalyst is 10% or more and 90% or less of the surface of the said substance which has the photocatalytic ability, It is not covered with the acicular substance which does not have the said photocatalytic ability. 2. A fiber structure having an ability to prevent attachment of underwater organisms. 前記ウニ状複合光触媒中の光触媒能を有する物質に、酸化チタン及び/又はチタン酸ストロンチウムを含む請求項1〜7のいずれか1項に記載の水中生物付着防止能を有する繊維構造体。The fiber structure having an underwater organism adhesion preventing ability according to any one of claims 1 to 7, wherein the substance having the photocatalytic ability in the sea urchin-like composite photocatalyst contains titanium oxide and / or strontium titanate. 前記ウニ状複合光触媒中の光触媒能を有する物質に、可視光応答型光触媒を含む請求項1〜8のいずれか1項に記載の水中生物付着防止能を有する繊維構造体。The fiber structure having an underwater organism adhesion preventing ability according to any one of claims 1 to 8, wherein the substance having the photocatalytic activity in the sea urchin-like composite photocatalyst includes a visible light responsive photocatalyst. 前記バインダーが、アクリル酸エステル樹脂及び/又はアクリル酸エステル樹脂のプレポリマーを含むものである請求項2〜9のいずれか1項に記載の水中生物付着防止能を有する繊維構造体。The fiber structure according to any one of claims 2 to 9, wherein the binder includes an acrylic ester resin and / or a prepolymer of an acrylic ester resin. 前記繊維構造体が、シート状である請求項1〜10のいずれか1項に記載の水中生物付着防止能を有する繊維構造体。The fiber structure according to any one of claims 1 to 10, wherein the fiber structure has a sheet shape. 前記繊維構造体が、ロープである請求項1〜10のいずれか1項に記載の水中生物付着防止能を有する繊維構造体。The fiber structure according to any one of claims 1 to 10, wherein the fiber structure is a rope. 前記繊維構造体が、魚網である請求項1〜10のいずれか1項に記載の水中生物付着防止能を有する繊維構造体。The fiber structure according to any one of claims 1 to 10, wherein the fiber structure is a fish net. 前記繊維構造体が、養殖網である請求項1〜10のいずれか1項に記載の水中生物付着防止能を有する繊維構造体。The fiber structure according to any one of claims 1 to 10, wherein the fiber structure is an aquaculture net.
JP2001144476A 2001-05-15 2001-05-15 Fiber structure with ability to prevent underwater organism adhesion Expired - Fee Related JP4422364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001144476A JP4422364B2 (en) 2001-05-15 2001-05-15 Fiber structure with ability to prevent underwater organism adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001144476A JP4422364B2 (en) 2001-05-15 2001-05-15 Fiber structure with ability to prevent underwater organism adhesion

Publications (2)

Publication Number Publication Date
JP2002336705A JP2002336705A (en) 2002-11-26
JP4422364B2 true JP4422364B2 (en) 2010-02-24

Family

ID=18990421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001144476A Expired - Fee Related JP4422364B2 (en) 2001-05-15 2001-05-15 Fiber structure with ability to prevent underwater organism adhesion

Country Status (1)

Country Link
JP (1) JP4422364B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317379A (en) * 2001-04-19 2002-10-31 Teijin Ltd Deodorizing fiber structure containing sea urchin-shaped complex photocatalyst and method for producing the same
JP2007262621A (en) * 2006-03-29 2007-10-11 Fujitsu Ltd Fiber having photocatalytic ability, cloth using the fiber, and cloth product using the cloth
CN111636133A (en) * 2013-06-24 2020-09-08 大金工业株式会社 Fishing net
CN112823881B (en) * 2019-11-21 2022-04-08 中国科学院兰州化学物理研究所 Sea urchin-like titanium dioxide/cuprous oxide composite material, and preparation method and application thereof

Also Published As

Publication number Publication date
JP2002336705A (en) 2002-11-26

Similar Documents

Publication Publication Date Title
US11598047B2 (en) Process for producing fibrous material with antimicrobial properties
CN1835840A (en) Silver-containing wound care device, composition therefor, and method of producing
JP4422364B2 (en) Fiber structure with ability to prevent underwater organism adhesion
EP0312600B1 (en) Fishing materials excellent in prevention of clinging of organism and processes for their production
JP2002339238A (en) Fiber structure having aquatic organism adhesion- preventing ability
JP2002136246A (en) Fibrous structure having attachment preventing ability for aquatic organism
EP4149260A1 (en) Antifouling yarn and antifouling yarn production method and use
CA2978903C (en) Drag and biofouling growth reducing fabric for aquaculture
JP2588593B2 (en) Copper-containing polyvinyl alcohol fiber
JPH0681214A (en) Fiber having preventing effect on adhesion of aquatic life and fiber product
Lowell et al. Effect of netting materials on fouling and parasite egg loading on offshore net pens in Hawaii
JP3164318B2 (en) Fibers and fiber products having an effect of preventing aquatic organisms from sticking
JPH0327178A (en) Anti-fouling treating solution for net fabric
Dhillon et al. Microencapsulated citronella (Cymbopogon nardus) essential oil as mosquito repellent finish for cotton
US20230183495A1 (en) Method and Composition for Treatment of Nets for Aquaculture
GB2566451A (en) Drag and biofouling growth reducing fabric for aquaculture
KR20180079914A (en) Fishing net with anti-fouling function and manufacturing method thereof
JPS59134208A (en) Prevention of adherence of water organism
JPH08134779A (en) Fiber having effects of safety and preventing aquatic life adhesion
RU61294U1 (en) TEXTILE CLOTHING MATERIAL AND PROTECTIVE MEDICAL CLOTHES OF SHORT-TERM USE FROM THIS MATERIAL
OA20421A (en) Method for controlling harmful insects.
JPH01221305A (en) Antifouling agent for fishing net
JPH0659149B2 (en) Fishery material with excellent biofouling prevention properties
JP2022127526A (en) Spray system of microbe exterminating agent and microbe extermination method
JP2006070378A (en) Knitted cloth

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4422364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees