JP4422286B2 - Process for producing unsaturated bicycloheptane derivative oligomer hydride - Google Patents

Process for producing unsaturated bicycloheptane derivative oligomer hydride Download PDF

Info

Publication number
JP4422286B2
JP4422286B2 JP2000080591A JP2000080591A JP4422286B2 JP 4422286 B2 JP4422286 B2 JP 4422286B2 JP 2000080591 A JP2000080591 A JP 2000080591A JP 2000080591 A JP2000080591 A JP 2000080591A JP 4422286 B2 JP4422286 B2 JP 4422286B2
Authority
JP
Japan
Prior art keywords
unsaturated
bicycloheptane derivative
temperature
bicycloheptane
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000080591A
Other languages
Japanese (ja)
Other versions
JP2001261590A (en
Inventor
文雄 山川
俊之 坪内
純弘 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000080591A priority Critical patent/JP4422286B2/en
Publication of JP2001261590A publication Critical patent/JP2001261590A/en
Application granted granted Critical
Publication of JP4422286B2 publication Critical patent/JP4422286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、不飽和ビシクロヘプタン誘導体オリゴマー水素化物の製造方法に関する。さらに詳しくは、高温でのトラクション係数が高く、かつ低温粘度特性に優れたトラクションドライブ用流体として有用性の高い不飽和ビシクロヘプタン誘導体オリゴマー水素化物の製造方法に関する。
【0002】
【従来の技術】
自動車用トラクション式無段変速機(以下、CVTと略称することがある。)は、トルク伝達容量が大きく、また使用条件も過酷なため、このCVTに使用するトラクションドライブ用流体のトラクション係数は使用温度範囲での最高値、すなわち高温(140℃)でのトラクション係数がCVTの設計値よりも十分に高いことが必要である。また、寒冷地においては、自動車などの低温始動性を向上させるのため、−40℃でも低い粘度(15万mPa・s以下)を保持することのできる低温粘度特性が要求されている。さらに、高温での使用時には、高温時の基油の揮発防止性と、十分な油膜保持性が要求される。
【0003】
これら様々な実用性能を兼ね備えたトラクションドライブ用流体として、特開2000−17280号公報において、不飽和ビシクロヘプタン誘導体オリゴマーの水素化物が提案されている。該公報において提案されている不飽和ビシクロヘプタン誘導体オリゴマーの水素化物は、高温におけるトラクション係数が高く保持されていると共に、低温粘度特性においても優れた特性を有することから、実用上優れたトラクションドライブ用流体であるが、この化合物の製造方法として、回分式の懸濁床方式によって行われており、原料の不飽和ビシクロヘプタン誘導体オリゴマーの水素化反応終了後に、得られた水素化物と粉末状の触媒の分離のために濾過工程を必要としている。この濾過工程においては長時間を要することから、生産性の低下を招くという難点があった。
【0004】
さらに、このトラクションドライブ用流体は、過酷な条件のもとで長期間安定して使用できることが必要であり、そのためには、不飽和ビシクロヘプタン誘導体オリゴマーの水素化転化率の高い高純度製品を、効率よく量産することのできる製造方法の開発が望まれている。
【0005】
【発明が解決しようとする課題】
本発明は、高温でのトラクション係数が高く、かつ低温粘度特性にも優れたトラクションドライブ用流体として有用性の高い不飽和ビシクロヘプタン誘導体オリゴマー水素化物を、高い水素化転化率において効率よく製造する方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するため種々検討を重ねた結果、不飽和ビシクロヘプタン誘導体オリゴマーと水素ガスとの反応を、固定床触媒を充填した流通型反応器を少なくとも2基直列に配置し、かつ上流側反応器の触媒床温度に対して、下流側反応器の触媒床温度を20〜200℃高い温度に保持してある反応装置に流通させて連続水素化反応を行うことにより、上記の目的を達成することができることを見出し、これら知見に基づいて本発明を完成するに至った。
【0007】
すなわち、本発明の要旨は下記の通りである。
(1)不飽和ビシクロヘプタン誘導体オリゴマー水素化物を製造するにあたり、不飽和ビシクロヘプタン誘導体オリゴマーと水素ガスを、固定床触媒を充填した流通型反応器を少なくとも2基直列に配置し、かつ上流側反応器の触媒床温度に対して、下流側反応器の触媒床温度を20〜200℃高い温度に保持してある反応装置に流通させて連続水素化反応を行うことを特徴とする不飽和ビシクロヘプタン誘導体オリゴマー水素化物の製造方法。
(2)不飽和ビシクロヘプタン誘導体オリゴマーが、2−メチレン−3−メチルビシクロ〔2.2.1〕ヘプタン、3−メチレン−2−メチルビシクロ〔2.2.1〕ヘプタンおよび2,3−ジメチルビシクロ〔2.2.1〕ヘプト−2−エンの群から選択される1種または2種以上のビシクロ〔2,2,1〕ヘプタン環化合物のオリゴマーである前記(1)に記載の不飽和ビシクロヘプタン誘導体オリゴマー水素化物の製造方法。
(3)不飽和ビシクロヘプタン誘導体オリゴマーが、不飽和ビシクロヘプタン誘導体の二量体である前記(1)または(2)に記載の不飽和ビシクロヘプタン誘導体オリゴマー水素化物の製造方法。
(4)不飽和ビシクロヘプタン誘導体オリゴマーと水素ガスを、上流側反応器の触媒床温度を100℃〜250℃とし、下流側反応器の触媒床温度を150℃〜300℃とするとともに、上流側反応器の触媒床温度に対して、下流側反応器の触媒床温度を20〜200℃高い温度に保持してある反応装置に流通させて連続水素化反応を行う前記(1)〜(3)のいずれかに記載の不飽和ビシクロヘプタン誘導体オリゴマー水素化物の製造方法。
【0008】
【発明の実施の形態】
本発明は、不飽和ビシクロヘプタン誘導体オリゴマー水素化物を製造するにあたり、不飽和ビシクロヘプタン誘導体オリゴマーと水素ガスを、固定床触媒を充填した流通型反応器を少なくとも2基直列に配置し、かつ上流側反応器の触媒床温度に対して、下流側反応器の触媒床温度を20〜200℃高い温度に保持してある反応装置に流通させて連続水素化反応を行う不飽和ビシクロヘプタン誘導体オリゴマー水素化物の製造方法である。
【0009】
そして、本発明において水素化する原料の不飽和ビシクロヘプタン誘導体オリゴマーとしては、様々な化学構造を有するビシクロヘプタン環化合物を低重合して得られるオリゴマーを用いることができる。これらオリゴマーを製造するための原料オレフィンとしては、例えば、ビシクロ〔2,2,1〕ヘプト−2−エン、2−メチレンビシクロ〔2,2,1〕ヘプタン、2−メチルビシクロ〔2,2,1〕ヘプト−2−エン、2−メチレン−3−メチルビシクロ〔2,2,1〕ヘプタン、2,3−ジメチルビシクロ〔2,2,1〕ヘプト−2−エン、2−メチレン−7−メチルビシクロ〔2.2.1〕ヘプタン、2,7−ジメチルビシクロ〔2.2.1〕ヘプト−2−エン、2−メチレン−5−メチルビシクロ〔2.2.1〕ヘプタン、2,5−ジメチルビシクロ〔2.2.1〕ヘプト−2−エン、2−メチレン−6−メチルビシクロ〔2.2.1〕ヘプタン、2,6−ジメチルビシクロ〔2.2.1〕ヘプト−2−エン、2−メチレン−1−メチルビシクロ〔2.2.1〕ヘプタン、1,2−ジメチルビシクロ〔2.2.1〕ヘプト−2−エン、2−メチレン−4−メチルビシクロ〔2.2.1〕ヘプタン、2,4−ジメチルビシクロ〔2.2.1〕ヘプト−2−エン、2−メチレン−3,7−ジメチルビシクロ〔2.2.1〕ヘプタン、2,3,7−トリメチルビシクロ〔2.2.1〕ヘプト−2−エン、2−メチレン−3,6−ジメチルビシクロ〔2.2.1〕ヘプタン、2−メチレン−3,3−ジメチルビシクロ〔2.2.1〕ヘプタン、2,3,6−トリメチルビシクロ〔2.2.1〕ヘプト−2−エン、2−メチレン−3−エチルビシクロ〔2.2.1〕ヘプタン、2−メチル−3−エチルビシクロ〔2.2.1〕ヘプト−2−エンなどが挙げられる。
【0010】
また、この低重合に用いる触媒としては酸触媒が好ましい。この酸触媒としては、例えば、フッ化水素酸、ポリリン酸などの鉱酸類、トリフリック酸などの有機酸、塩化アルミニウム,塩化第二鉄,四塩化スズ,四塩化チタン,三フッ化ホウ素,三フッ化ホウ素錯体,三臭化ホウ素,臭化アルミニウム,塩化ガリウム,臭化ガリウムなどのルイス酸、トリエチルアルミニウム,塩化ジエチルアルミニウム,二塩化エチルアルミニウムなどの有機アルミニウム化合物などが挙げられる。そして、これら酸触媒の中でも、三フッ化ホウ素,三フッ化ホウ素錯体,四塩化スズ,四塩化チタン,塩化アルミニウムなどのルイス酸触媒が、比較的に低い温度で低重合することができることから好ましい。さらに具体的には、三フッ化ホウ素ジエチルエーテル錯体,三フッ化ホウ素水錯体,三フッ化ホウ素アルコール錯体などが特に好ましい。これら触媒の使用量は、特に制限されないが、通常は原料化合物に対して0.1〜100質量%、好ましくは0.5〜20質量%の範囲である。
【0011】
また、この低重合反応においては、溶媒は必ずしも必要ではないが、反応時の原料化合物や触媒の取り扱いや反応の進行を調節するために用いてもよい。このような溶媒としては、各種ペンタン,各種ヘキサン,各種オクタン,各種ノナン,各種デカンなどの飽和炭化水素、シクロペンタン,シクロヘキサン,メチルシクロヘキサン,デカリンなどの脂環式炭化水素、ジエチルエーテル,テトラヒドロフランなどのエーテル化合物、塩化メチレン,ジクロルエタンなどのハロゲン含有化合物、ニトロメタン,ニトロベンゼンなどのニトロ化合物などを用いることができる。
【0012】
さらに、この低重合反応を行う際の反応温度は、60℃以下、好ましくは40℃以下である。また、反応圧力は常圧が好ましく、反応時間は0.5〜10時間が好ましい。
【0013】
本発明においては、上記のようにして得られた不飽和ビシクロヘプタン誘導体オリゴマーを触媒の存在下に、水素ガスを反応させて不飽和ビシクロヘプタン誘導体オリゴマー水素化物を製造する。
【0014】
この水素化反応において用いる触媒としては、ケイソウ土,アルミナ,シリカアルミナ,活性炭などの無機酸化物担体にニッケル,ルテニウム,パラジウム,白金,ロジウム,イリジウムなどの金属を担持した水素化触媒が好適に用いられる。これら触媒のなかでも、ニッケル/ケイソウ土,ニッケル/シリカアルミナなどのニッケル系触媒が好ましい。また、必要に応じて用いる助触媒としては、ゼオライト,シリカアルミナ,活性白土などの固体酸が挙げられる。
【0015】
これら触媒や助触媒は、流通型の反応器の内部に充填し固定する。ここで用いる反応器の形状は、特に制約はなく、一般に用いられている固定床流通型の槽型や管型の反応器を用いることができる。また、触媒や助触媒は、顆粒状またはペレット状であるものが好ましく、その粒径は、1〜10mmの範囲であるものが好適に用いられる。
【0016】
そして、この水素化反応を行うにあたっては、原料の不飽和ビシクロヘプタン誘導体オリゴマーと水素ガスを、触媒や助触媒を充填した固定床流通型の反応器を少なくとも2基直列に配置し、かつ上流側反応器の触媒床温度に対して、下流側反応器の触媒床温度を20〜200℃高い温度に保持してある反応装置に流通させて連続水素化反応を行う。ここでの水素化反応は発熱反応であることから、直列に配置する各反応器の間に熱交換器を介して反応器の接続をすることにより、反応温度の制御を行うようにするのがよい。そして、これら反応器は、少なくとも2基を直列に配置するが、3基以上の反応器を用いる場合には、これら反応器を全て直列に配置してもよいし、またその一部を並列に配置してもよい。このように、3基以上の反応器を用いる場合においては、最上流の反応器の触媒床温度に対して、最下流に位置する反応器の触媒床温度を20〜200℃高い温度に保持して、連続水素化反応を行うようにするのがよい。そして、これら反応器の基数は、設備費や用役費、反応制御性などの面から、2〜5基とするのがより好ましい。
【0017】
つぎに、この水素化反応の条件については、例えば、反応器を2基直列に配置する場合には、上流側反応器の触媒床温度を100〜250℃、好ましくは120〜220℃とし、下流反応器の触媒床温度を150〜300℃、好ましくは220〜280℃の範囲において、上流側反応器の触媒床温度に対して、下流側反応器の触媒床温度を20〜200℃、好ましくは30〜150℃高い温度に保持するのがよい。上流側反応器の触媒床温度については、これが100℃未満であると、この水素化反応が十分に進行しないことがあり、また下流反応器の触媒床温度については、これが300℃を超えると、原料の不飽和ビシクロヘプタン誘導体オリゴマーの分解反応や重質化を招くようになることがあるからである。また、上流側反応器の触媒床温度に対して、下流側反応器の触媒床温度を20〜200℃高い温度とするのは、この昇温幅が20℃未満であると得られる製品の水素化転化率が十分に高められないことがあり、また、この昇温幅が200℃を超えると原料の分解や重質化などを招き、製品の収率が低下するおそれが大きくなるからである。
【0018】
また、この水素化反応を行う際の反応圧力については、0.1〜20MPa、好ましくは0.5〜10MPaの加圧下に行うのがよい。そして、反応時間については、質量空間速度(WHSV)が0.05〜10hr-1、好ましくは0.1〜5hr-1となるように、原料を供給するのがよい。さらに、この水素化反応を行う際の不飽和ビシクロヘプタン誘導体オリゴマーに対する水素ガスの供給割合については、この不飽和ビシクロヘプタン誘導体オリゴマーの理論水素吸収量(化学量論比)に対して、その0.1〜10倍、好ましくは1〜5倍とするのがよい。
【0019】
さらに、この水素化反応においては、原料の不飽和ビシクロヘプタン誘導体オリゴマーと水素ガスは、上流側反応器に下向き並流で流通させるようにするのがよく、この場合の水素ガス供給量は、理論水素吸収量に近い量としても充分に水素化反応を完結することができることから、一般的に行われる水素化反応におけるように大過剰の水素ガスを供給する必要はない。したがって、反応器出口からの未反応水素ガスの回収設備を簡略化することができる。
【0020】
また、この水素化反応においては、反応溶媒を用いてもよいし、無溶媒でもよい。この反応溶媒としては、各種ペンタン,各種ヘキサン,各種オクタン,各種ノナン,各種デカンなどの液状の飽和炭化水素や、シクロペンタン,シクロヘキサン,メチルシクロヘキサン,デカリンなどの脂環式炭化水素を用いてもよい。さらに、この反応での生成液の一部をリサイクルして原料を希釈して供給してもよく、また、水素ガスについても、窒素ガスなどの不活性ガスを混合して希釈したものを使用してもよい。
【0021】
このようにして、種々の化学構造を有する不飽和ビシクロヘプタン誘導体オリゴマー水素化物を得ることができるのであるが、それらの中でもビシクロ〔2,2,1〕ヘプタン環構造を有する化合物が好ましく、さらに具体的には、2−メチレン−3−メチルビシクロ〔2.2.1〕ヘプタン、3−メチレン−2−メチルビシクロ〔2.2.1〕ヘプタンまたは2,3−ジメチルビシクロ〔2.2.1〕ヘプト−2−エンから選択される1種または2種以上の混合物のオリゴマー、ことに二量体を水素化したものが特に好ましい。それは、これら化合物をトラクションドライブ用流体として用いた場合に、高温におけるトラクション係数が高く、しかも低温粘度特性にも格別に優れた特性を示すからである。
【0022】
【実施例】
つぎに、本発明を実施例および比較例により、さらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0023】
〔実施例1〕
(1)原料オレフィンの調製
内容積100リットルのステンレス製オートクレーブに、クロトンアルデヒド28kg(400モル)と、ジシクロペンタジエン13.2kg(100モル)を仕込み、170℃で3時間攪拌して反応させた。得られた反応溶液を室温まで冷却した後、ラネーニッケル触媒〔川研ファインケミカル社製:M−300T〕820gを加え、水素圧3MPa(G)、反応温度160℃において、4時間水素化反応を行った。
【0024】
反応終了後、反応液を冷却して触媒を濾別し、濾液を減圧蒸留することにより、2−ヒドロキシメチル−3−メチルビシクロ〔2.2.1〕ヘプタン及び3−ヒドロキシメチル−2−メチルビシクロ〔2.2.1〕ヘプタンを含有する水素化反応生成物11.2kgを得た。
【0025】
つぎに、外径2.54cm、長さ40cmのステンレス製流通式反応管に、γ−アルミナ〔日揮化学社製:N612N〕60gを入れ、反応温度270℃,質量空間速度(WHSV)0.5hr-1で脱水反応を行い、2−メチレン−3−メチルビシクロ〔2.2.1〕ヘプタンと、3−メチレン−2−メチルビシクロ〔2.2.1〕ヘプタンおよび2,3−ジメチルビシクロ〔2.2.1〕ヘプト−2−エンを含有する脱水反応生成物8.3kgを得た。
【0026】
(2)不飽和ビシクロヘプタン誘導体オリゴマーの製造
内容積1リットルの四つ口フラスコに、触媒として三フッ化ホウ素ジエチルエーテル錯体を10g、および上記(1)で得られたオレフィン化合物を500g入れ、メカニカルスターラーを用いて攪拌しながら、20℃において、4時間低重合反応を行った。得られた反応混合物を、希NaOH水溶液で洗浄した後、減圧蒸留して、不飽和ビシクロヘプタン誘導体の二量体360gを得た。この低重合操作を15回繰り返して行い、不飽和ビシクロヘプタン誘導体の二量体を、合計5.4kg得た。
【0027】
(3)不飽和ビシクロヘプタン誘導体オリゴマーの水素化
反応器として、外径2.54cm、長さ40cmのステンレス製流通式反応管に、水素化触媒として、ニッケル/珪藻土触媒〔日揮化学社製:N−112〕60gを充填し、この触媒層の上下面にα−アルミナ・ボール(粒径;3mm)を詰めて管内に固定して触媒床を形成した。
【0028】
ついで、このようにして触媒床を形成した反応器2基を直列に連結し、上流側の反応器の触媒床の温度を175℃に保持し、下流側の反応器の触媒床の温度を230℃に保持して、上記(2)で得られた不飽和ビシクロヘプタン誘導体の二量体と水素ガスを、上流側の反応器の上端から下向きに並流で触媒床に供給し、反応器内圧力3MPa、質量空間速度(WHSV)0.5hr-1、水素ガス:不飽和ビシクロヘプタン誘導体二量体=2:1(モル比)の反応条件で水素化反応を行い、生成物を下流側の反応器の下端から連続的に抜き出した。なお、ここでの水素ガスの供給量は、化学量論比の2倍に相当する。
【0029】
つぎに、ここで得られた生成液の臭素価を測定し、次式、
【0030】
【数1】

Figure 0004422286
【0031】
により、水素化転化率を算出し、また次式、
【0032】
【数2】
Figure 0004422286
【0033】
により、不飽和ビシクロヘプタン誘導体二量体の水素化物についての選択率を算出した。この結果、ここで得られた不飽和ビシクロヘプタン誘導体二量体の水素化物の水素化転化率は99.9%であり、また、その選択率は98.0%であった。すなわち、この生成物中の未水添の不飽和ビシクロヘプタン誘導体二量体や反応副生物の含有量が極めて少なく、高純度の不飽和ビシクロヘプタン誘導体二量体の水素化物が得られることが判明した。上記の水素化反応における条件および反応成績を第1表に示す。
【0034】
〔実施例2〕
実施例1の(3)における下流側の反応器の触媒床の温度を250℃に変更した他は、実施例1と同様にした。結果を第1表に示す。
【0035】
〔比較例1〕
実施例1の(3)と同一の反応器1基を用い、その触媒床の温度を150℃とするとともに、原料の不飽和ビシクロヘプタン誘導体の二量体と水素ガスの供給量を実施例1の(3)の場合の半分として、原料の触媒床での滞留時間を同一にした他は、実施例1と同様にした。この場合、反応副生物の生成が少なく、高い選択率が得られたが、水素化転化率については大幅な低下が見られた。結果を第1表に示す。
【0036】
〔比較例2〕
触媒床の温度を201℃とした他は、比較例1と同様にした。この場合、選択率、水素化転化率のいずれも十分ではなかった。結果を第1表に示す。
【0037】
〔比較例3〕
触媒床の温度を251℃とした他は、比較例1と同様にした。この場合、水素化転化率はある程度高い値を示したが、反応副生物の生成が多くて選択率が低下し、高純度品を得ることはできなかった。結果を第1表に示す。
【0038】
【表1】
Figure 0004422286
【0039】
【発明の効果】
本発明によれば、高温でのトラクション係数が高くかつ低温粘度特性に優れたトラクションドライブ用流体として有用性の高い不飽和ビシクロヘプタン誘導体オリゴマー水素化物を、高い水素化転化率において、効率よく製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing an unsaturated bicycloheptane derivative oligomer hydride. More specifically, the present invention relates to a method for producing an unsaturated bicycloheptane derivative oligomer hydride having a high traction coefficient at a high temperature and high usefulness as a traction drive fluid having excellent low-temperature viscosity characteristics.
[0002]
[Prior art]
Since the traction type continuously variable transmission for automobiles (hereinafter sometimes abbreviated as CVT) has a large torque transmission capacity and severe usage conditions, the traction coefficient of the traction drive fluid used in this CVT is used. It is necessary that the maximum value in the temperature range, that is, the traction coefficient at a high temperature (140 ° C.) is sufficiently higher than the design value of CVT. Further, in cold regions, low temperature viscosity characteristics that can maintain a low viscosity (150,000 mPa · s or less) even at −40 ° C. are required to improve low temperature startability of automobiles and the like. Furthermore, when used at high temperatures, volatilization prevention of the base oil at high temperatures and sufficient oil film retention are required.
[0003]
As a traction drive fluid having various practical performances, hydrides of unsaturated bicycloheptane derivative oligomers are proposed in Japanese Patent Application Laid-Open No. 2000-17280. The hydride of unsaturated bicycloheptane derivative oligomer proposed in the publication has a high traction coefficient at high temperature and also has excellent low temperature viscosity characteristics, so that it is practically excellent for traction drive. Although it is a fluid, this compound is produced by a batch-type suspension bed system. After the hydrogenation reaction of the unsaturated bicycloheptane derivative oligomer as a raw material is completed, the obtained hydride and powdered catalyst are used. A filtration step is required for the separation of Since this filtration step takes a long time, there is a problem in that the productivity is lowered.
[0004]
Furthermore, this traction drive fluid must be able to be used stably for a long time under harsh conditions.To that end, a high-purity product with a high hydrogenation conversion rate of an unsaturated bicycloheptane derivative oligomer is required. Development of a manufacturing method that can be mass-produced efficiently is desired.
[0005]
[Problems to be solved by the invention]
The present invention is a method for efficiently producing an unsaturated bicycloheptane derivative oligomer hydride having a high traction coefficient at a high temperature and a high usefulness as a traction drive fluid excellent in low temperature viscosity characteristics at a high hydroconversion rate. Is intended to provide.
[0006]
[Means for Solving the Problems]
As a result of repeated studies to solve the above-mentioned problems, the present inventors conducted a reaction between an unsaturated bicycloheptane derivative oligomer and hydrogen gas, and at least two flow reactors packed with a fixed bed catalyst in series. The continuous hydrogenation reaction is carried out by passing through a reactor that is arranged and maintained at a temperature 20 to 200 ° C. higher than the catalyst bed temperature of the downstream reactor with respect to the catalyst bed temperature of the upstream reactor. The inventors have found that the above object can be achieved, and have completed the present invention based on these findings.
[0007]
That is, the gist of the present invention is as follows.
(1) In producing an unsaturated bicycloheptane derivative oligomer hydride, at least two flow reactors filled with an unsaturated bicycloheptane derivative oligomer and hydrogen gas and fixed bed catalyst are arranged in series, and upstream reaction The unsaturated bicycloheptane is characterized in that the continuous hydrogenation reaction is carried out by circulating the catalyst bed temperature of the downstream reactor at a temperature 20 to 200 ° C higher than the catalyst bed temperature of the reactor. A method for producing a derivative oligomer hydride.
(2) Unsaturated bicycloheptane derivative oligomers are 2-methylene-3-methylbicyclo [2.2.1] heptane, 3-methylene-2-methylbicyclo [2.2.1] heptane and 2,3-dimethyl. Unsaturation according to (1) above, which is an oligomer of one or more bicyclo [2,2,1] heptane ring compounds selected from the group of bicyclo [2.2.1] hept-2-ene A method for producing a bicycloheptane derivative oligomer hydride.
(3) The method for producing an unsaturated bicycloheptane derivative oligomer hydride according to (1) or (2) above, wherein the unsaturated bicycloheptane derivative oligomer is a dimer of an unsaturated bicycloheptane derivative.
(4) Unsaturated bicycloheptane derivative oligomer and hydrogen gas, the catalyst bed temperature of the upstream reactor is set to 100 ° C to 250 ° C, the catalyst bed temperature of the downstream reactor is set to 150 ° C to 300 ° C, and the upstream side The above (1) to (3) in which the continuous hydrogenation reaction is carried out by circulating the catalyst bed temperature in the downstream reactor at a temperature 20 to 200 ° C. higher than the catalyst bed temperature in the reactor. The manufacturing method of unsaturated bicycloheptane derivative oligomer hydride in any one of these.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the production of an unsaturated bicycloheptane derivative oligomer hydride, the present invention comprises at least two flow-type reactors in which an unsaturated bicycloheptane derivative oligomer and hydrogen gas are packed in a fixed bed catalyst are arranged in series, and the upstream side. Unsaturated bicycloheptane derivative oligomer hydride in which continuous hydrogenation reaction is carried out through a reactor maintained at a temperature 20 to 200 ° C. higher than the catalyst bed temperature of the downstream reactor relative to the catalyst bed temperature of the reactor It is a manufacturing method.
[0009]
In the present invention, as the unsaturated bicycloheptane derivative oligomer as a raw material to be hydrogenated, oligomers obtained by low polymerization of bicycloheptane ring compounds having various chemical structures can be used. Examples of the raw material olefin for producing these oligomers include bicyclo [2,2,1] hept-2-ene, 2-methylenebicyclo [2,2,1] heptane, and 2-methylbicyclo [2,2, 1] hept-2-ene, 2-methylene-3-methylbicyclo [2,2,1] heptane, 2,3-dimethylbicyclo [2,2,1] hept-2-ene, 2-methylene-7- Methylbicyclo [2.2.1] heptane, 2,7-dimethylbicyclo [2.2.1] hept-2-ene, 2-methylene-5-methylbicyclo [2.2.1] heptane, 2,5 -Dimethylbicyclo [2.2.1] hept-2-ene, 2-methylene-6-methylbicyclo [2.2.1] heptane, 2,6-dimethylbicyclo [2.2.1] hept-2- En, 2-methylene-1-me Rubicyclo [2.2.1] heptane, 1,2-dimethylbicyclo [2.2.1] hept-2-ene, 2-methylene-4-methylbicyclo [2.2.1] heptane, 2,4- Dimethylbicyclo [2.2.1] hept-2-ene, 2-methylene-3,7-dimethylbicyclo [2.2.1] heptane, 2,3,7-trimethylbicyclo [2.2.1] hept 2-ene, 2-methylene-3,6-dimethylbicyclo [2.2.1] heptane, 2-methylene-3,3-dimethylbicyclo [2.2.1] heptane, 2,3,6-trimethyl Bicyclo [2.2.1] hept-2-ene, 2-methylene-3-ethylbicyclo [2.2.1] heptane, 2-methyl-3-ethylbicyclo [2.2.1] hept-2- En.
[0010]
Moreover, an acid catalyst is preferable as the catalyst used for the low polymerization. Examples of the acid catalyst include mineral acids such as hydrofluoric acid and polyphosphoric acid, organic acids such as triflic acid, aluminum chloride, ferric chloride, tin tetrachloride, titanium tetrachloride, boron trifluoride, and trifluoride. Examples include boron halide complexes, Lewis acids such as boron tribromide, aluminum bromide, gallium chloride, and gallium bromide, and organic aluminum compounds such as triethylaluminum, diethylaluminum chloride, and ethylaluminum dichloride. Among these acid catalysts, Lewis acid catalysts such as boron trifluoride, boron trifluoride complex, tin tetrachloride, titanium tetrachloride, and aluminum chloride are preferable because they can be polymerized at a relatively low temperature. . More specifically, boron trifluoride diethyl ether complex, boron trifluoride water complex, boron trifluoride alcohol complex and the like are particularly preferable. Although the usage-amount of these catalysts is not restrict | limited in particular, Usually, it is 0.1-100 mass% with respect to a raw material compound, Preferably it is the range of 0.5-20 mass%.
[0011]
In this low polymerization reaction, a solvent is not always necessary, but it may be used to control the handling of raw material compounds and catalysts during the reaction and the progress of the reaction. Examples of such solvents include saturated hydrocarbons such as various pentanes, various hexanes, various octanes, various nonanes, and various decanes, alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, and decalin, diethyl ether, and tetrahydrofuran. Ether compounds, halogen-containing compounds such as methylene chloride and dichloroethane, and nitro compounds such as nitromethane and nitrobenzene can be used.
[0012]
Furthermore, the reaction temperature for carrying out this low polymerization reaction is 60 ° C. or lower, preferably 40 ° C. or lower. The reaction pressure is preferably normal pressure, and the reaction time is preferably 0.5 to 10 hours.
[0013]
In the present invention, the unsaturated bicycloheptane derivative oligomer obtained as described above is reacted with hydrogen gas in the presence of a catalyst to produce an unsaturated bicycloheptane derivative oligomer hydride.
[0014]
As the catalyst used in this hydrogenation reaction, a hydrogenation catalyst in which a metal such as nickel, ruthenium, palladium, platinum, rhodium, or iridium is supported on an inorganic oxide carrier such as diatomaceous earth, alumina, silica alumina, or activated carbon is preferably used. It is done. Among these catalysts, nickel-based catalysts such as nickel / diatomaceous earth and nickel / silica alumina are preferable. Moreover, as a co-catalyst used as needed, solid acids, such as a zeolite, silica alumina, activated clay, are mentioned.
[0015]
These catalysts and cocatalysts are filled and fixed inside the flow reactor. The shape of the reactor used here is not particularly limited, and a generally used fixed bed flow tank type or tube type reactor can be used. Further, the catalyst and the cocatalyst are preferably in the form of granules or pellets, and those having a particle size in the range of 1 to 10 mm are suitably used.
[0016]
In carrying out this hydrogenation reaction, at least two fixed-bed flow reactors in which raw material unsaturated bicycloheptane derivative oligomer and hydrogen gas are packed with a catalyst and a cocatalyst are arranged in series, and the upstream side A continuous hydrogenation reaction is carried out by passing the catalyst bed temperature of the downstream reactor through a reactor maintained at a temperature 20 to 200 ° C. higher than the catalyst bed temperature of the reactor. Since the hydrogenation reaction here is an exothermic reaction, the reaction temperature is controlled by connecting the reactors via a heat exchanger between the reactors arranged in series. Good. And these reactors arrange | position at least 2 units | sets in series, but when using 3 or more reactors, you may arrange | position all these reactors in series, and the one part is parallelly arranged. You may arrange. Thus, in the case of using three or more reactors, the catalyst bed temperature of the reactor located downstream is maintained at a temperature 20 to 200 ° C. higher than the catalyst bed temperature of the most upstream reactor. Thus, it is preferable to perform a continuous hydrogenation reaction. The number of these reactors is more preferably 2 to 5 from the viewpoints of equipment cost, utility cost, reaction controllability, and the like.
[0017]
Next, regarding the conditions for this hydrogenation reaction, for example, when two reactors are arranged in series, the catalyst bed temperature of the upstream reactor is 100 to 250 ° C., preferably 120 to 220 ° C. When the catalyst bed temperature of the reactor is in the range of 150 to 300 ° C., preferably 220 to 280 ° C., the catalyst bed temperature of the downstream reactor is 20 to 200 ° C. with respect to the catalyst bed temperature of the upstream reactor, preferably It is good to hold | maintain 30-150 degreeC high temperature. When the catalyst bed temperature of the upstream reactor is less than 100 ° C., the hydrogenation reaction may not proceed sufficiently. When the catalyst bed temperature of the downstream reactor exceeds 300 ° C., This is because the raw material unsaturated bicycloheptane derivative oligomer may be decomposed or become heavier. Moreover, the catalyst bed temperature of the downstream reactor is set to a temperature 20 to 200 ° C. higher than the catalyst bed temperature of the upstream reactor because the temperature rise range is less than 20 ° C. This is because the conversion rate may not be sufficiently increased, and if the temperature rise exceeds 200 ° C., the raw material is decomposed or made heavy, and the yield of the product is likely to decrease. .
[0018]
Moreover, about the reaction pressure at the time of performing this hydrogenation reaction, it is good to carry out under pressure of 0.1-20 Mpa, Preferably it is 0.5-10 Mpa. And about reaction time, it is good to supply a raw material so that mass space velocity (WHSV) may be 0.05-10 hr < -1 >, Preferably it is 0.1-5 hr < -1 >. Further, the hydrogen gas supply ratio with respect to the unsaturated bicycloheptane derivative oligomer during the hydrogenation reaction is less than the theoretical hydrogen absorption amount (stoichiometric ratio) of the unsaturated bicycloheptane derivative oligomer. 1 to 10 times, preferably 1 to 5 times.
[0019]
Further, in this hydrogenation reaction, the raw material unsaturated bicycloheptane derivative oligomer and hydrogen gas should be allowed to flow in the upstream reactor in a parallel downward flow. Since the hydrogenation reaction can be completed sufficiently even when the amount is close to the amount of hydrogen absorption, it is not necessary to supply a large excess of hydrogen gas as in a commonly performed hydrogenation reaction. Therefore, the facility for recovering unreacted hydrogen gas from the reactor outlet can be simplified.
[0020]
In this hydrogenation reaction, a reaction solvent may be used or no solvent may be used. As the reaction solvent, liquid saturated hydrocarbons such as various pentanes, various hexanes, various octanes, various nonanes, and various decanes, and alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, and decalin may be used. . Furthermore, a part of the product liquid in this reaction may be recycled and supplied by diluting the raw material. Also, hydrogen gas diluted with an inert gas such as nitrogen gas is used. May be.
[0021]
In this way, unsaturated bicycloheptane derivative oligomer hydrides having various chemical structures can be obtained. Among them, compounds having a bicyclo [2,2,1] heptane ring structure are preferred, and more specifically, Specifically, 2-methylene-3-methylbicyclo [2.2.1] heptane, 3-methylene-2-methylbicyclo [2.2.1] heptane or 2,3-dimethylbicyclo [2.2.1]. Particularly preferred are oligomers of one or a mixture of two or more selected from hept-2-ene, especially those obtained by hydrogenating dimers. This is because when these compounds are used as a traction drive fluid, the traction coefficient at high temperatures is high, and the low-temperature viscosity characteristics are particularly excellent.
[0022]
【Example】
Next, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
[0023]
[Example 1]
(1) Preparation of raw olefins A stainless steel autoclave with an internal volume of 100 liters was charged with 28 kg (400 mol) of crotonaldehyde and 13.2 kg (100 mol) of dicyclopentadiene and stirred at 170 ° C. for 3 hours to react. . After cooling the obtained reaction solution to room temperature, 820 g of Raney nickel catalyst (manufactured by Kawaken Fine Chemical Co., Ltd .: M-300T) was added, and hydrogenation was performed at a hydrogen pressure of 3 MPa (G) and a reaction temperature of 160 ° C. for 4 hours. .
[0024]
After completion of the reaction, the reaction solution is cooled, the catalyst is filtered off, and the filtrate is distilled under reduced pressure to give 2-hydroxymethyl-3-methylbicyclo [2.2.1] heptane and 3-hydroxymethyl-2-methyl. 11.2 kg of a hydrogenation reaction product containing bicyclo [2.2.1] heptane was obtained.
[0025]
Next, 60 g of γ-alumina (manufactured by JGC Chemical Co., Ltd .: N612N) is placed in a stainless steel flow reaction tube having an outer diameter of 2.54 cm and a length of 40 cm, and the reaction temperature is 270 ° C. and the mass space velocity (WHSV) is 0.5 hr. −1 , 2-methylene-3-methylbicyclo [2.2.1] heptane, 3-methylene-2-methylbicyclo [2.2.1] heptane and 2,3-dimethylbicyclo [ 2.2.1] 8.3 kg of a dehydration reaction product containing hept-2-ene was obtained.
[0026]
(2) Production of unsaturated bicycloheptane derivative oligomer In a four-necked flask with an internal volume of 1 liter, 10 g of boron trifluoride diethyl ether complex as a catalyst and 500 g of the olefin compound obtained in the above (1) were mechanically added. While stirring using a stirrer, a low polymerization reaction was carried out at 20 ° C. for 4 hours. The obtained reaction mixture was washed with dilute aqueous NaOH solution and distilled under reduced pressure to obtain 360 g of an unsaturated bicycloheptane derivative dimer. This low polymerization operation was repeated 15 times to obtain a total of 5.4 kg of dimers of unsaturated bicycloheptane derivatives.
[0027]
(3) As a hydrogenation reactor for unsaturated bicycloheptane derivative oligomer, a stainless steel flow-type reaction tube having an outer diameter of 2.54 cm and a length of 40 cm, a nickel / diatomaceous earth catalyst [manufactured by JGC Chemical Co., Ltd .: N -112] 60 g was filled, and α-alumina balls (particle size: 3 mm) were packed on the upper and lower surfaces of the catalyst layer and fixed in a tube to form a catalyst bed.
[0028]
Next, the two reactors that formed the catalyst bed in this way were connected in series, the temperature of the catalyst bed of the upstream reactor was maintained at 175 ° C., and the temperature of the catalyst bed of the downstream reactor was 230 The dimer of the unsaturated bicycloheptane derivative obtained in the above (2) and hydrogen gas were supplied to the catalyst bed in a parallel flow downward from the upper end of the upstream reactor, The hydrogenation reaction was carried out under the reaction conditions of pressure 3 MPa, mass space velocity (WHSV) 0.5 hr −1 , hydrogen gas: unsaturated bicycloheptane derivative dimer = 2: 1 (molar ratio), and the product was It was continuously extracted from the lower end of the reactor. The supply amount of hydrogen gas here corresponds to twice the stoichiometric ratio.
[0029]
Next, the bromine number of the product solution obtained here was measured,
[0030]
[Expression 1]
Figure 0004422286
[0031]
To calculate the hydrogenation conversion rate, and
[0032]
[Expression 2]
Figure 0004422286
[0033]
The selectivity for the hydride of the unsaturated bicycloheptane derivative dimer was calculated. As a result, the hydrogenation conversion rate of the hydride of the unsaturated bicycloheptane derivative dimer obtained here was 99.9%, and the selectivity was 98.0%. That is, it has been found that the content of unhydrogenated unsaturated bicycloheptane derivative dimer and reaction by-products in this product is extremely low, and a highly pure hydride of unsaturated bicycloheptane derivative dimer can be obtained. did. The conditions and reaction results in the above hydrogenation reaction are shown in Table 1.
[0034]
[Example 2]
The same procedure as in Example 1 was conducted except that the temperature of the catalyst bed in the downstream reactor in Example 1 (3) was changed to 250 ° C. The results are shown in Table 1.
[0035]
[Comparative Example 1]
The same reactor as in Example 1 (3) was used, the temperature of the catalyst bed was set to 150 ° C., and the dimer of the unsaturated bicycloheptane derivative as a raw material and the supply amount of hydrogen gas were changed to Example 1. As in the case of (3), the same procedure as in Example 1 was conducted except that the residence time of the raw material in the catalyst bed was the same. In this case, there was little production of reaction by-products and a high selectivity was obtained, but a significant reduction was seen in the hydroconversion rate. The results are shown in Table 1.
[0036]
[Comparative Example 2]
The same procedure as in Comparative Example 1 was performed except that the temperature of the catalyst bed was 201 ° C. In this case, neither the selectivity nor the hydroconversion was sufficient. The results are shown in Table 1.
[0037]
[Comparative Example 3]
The same operation as in Comparative Example 1 was conducted except that the temperature of the catalyst bed was 251 ° C. In this case, although the hydrogenation conversion rate showed a high value to some extent, the production of reaction by-products was large, the selectivity was lowered, and a high purity product could not be obtained. The results are shown in Table 1.
[0038]
[Table 1]
Figure 0004422286
[0039]
【The invention's effect】
According to the present invention, an unsaturated bicycloheptane derivative oligomer hydride having a high traction coefficient at a high temperature and excellent in low temperature viscosity characteristics and highly useful as a traction drive fluid can be efficiently produced at a high hydroconversion rate. be able to.

Claims (4)

不飽和ビシクロヘプタン誘導体オリゴマー水素化物を製造するにあたり、不飽和ビシクロヘプタン誘導体オリゴマーと水素ガスを、固定床触媒を充填した流通型反応器を少なくとも2基直列に配置し、かつ上流側反応器の触媒床温度に対して、下流側反応器の触媒床温度を20〜200℃高い温度に保持してある反応装置に流通させて連続水素化反応を行うことを特徴とする不飽和ビシクロヘプタン誘導体オリゴマー水素化物の製造方法。In producing an unsaturated bicycloheptane derivative oligomer hydride, at least two flow-type reactors filled with an unsaturated bicycloheptane derivative oligomer and hydrogen gas and packed with a fixed bed catalyst are arranged in series, and the catalyst of the upstream reactor Unsaturated bicycloheptane derivative oligomer hydrogen, characterized in that continuous hydrogenation reaction is carried out through a reactor in which the catalyst bed temperature of the downstream reactor is maintained at a temperature 20 to 200 ° C. higher than the bed temperature Method for producing chemicals. 不飽和ビシクロヘプタン誘導体オリゴマーが、2−メチレン−3−メチルビシクロ〔2.2.1〕ヘプタン、3−メチレン−2−メチルビシクロ〔2.2.1〕ヘプタンおよび2,3−ジメチルビシクロ〔2.2.1〕ヘプト−2−エンの群から選択される1種または2種以上のビシクロ〔2,2,1〕ヘプタン環化合物のオリゴマーである請求項1に記載の不飽和ビシクロヘプタン誘導体オリゴマー水素化物の製造方法。Unsaturated bicycloheptane derivative oligomers are 2-methylene-3-methylbicyclo [2.2.1] heptane, 3-methylene-2-methylbicyclo [2.2.1] heptane and 2,3-dimethylbicyclo [2 2.2.1] Unsaturated bicycloheptane derivative oligomer according to claim 1, which is an oligomer of one or more bicyclo [2,2,1] heptane ring compounds selected from the group of hept-2-ene A method for producing a hydride. 不飽和ビシクロヘプタン誘導体オリゴマーが、不飽和ビシクロヘプタン誘導体の二量体である請求項1または2に記載の不飽和ビシクロヘプタン誘導体オリゴマー水素化物の製造方法。The method for producing an unsaturated bicycloheptane derivative oligomer hydride according to claim 1 or 2, wherein the unsaturated bicycloheptane derivative oligomer is a dimer of an unsaturated bicycloheptane derivative. 不飽和ビシクロヘプタン誘導体オリゴマーと水素ガスを、上流側反応器の触媒床温度を100℃〜250℃とし、下流側反応器の触媒床温度を150℃〜300℃とするとともに、上流側反応器の触媒床温度に対して、下流側反応器の触媒床温度を20〜200℃高い温度に保持してある反応装置に流通させて連続水素化反応を行う請求項1〜3のいずれかに記載の不飽和ビシクロヘプタン誘導体オリゴマー水素化物の製造方法。The unsaturated bicycloheptane derivative oligomer and hydrogen gas are used in such a manner that the catalyst bed temperature of the upstream reactor is set to 100 ° C. to 250 ° C., the catalyst bed temperature of the downstream reactor is set to 150 ° C. to 300 ° C. The continuous hydrogenation reaction is performed according to any one of claims 1 to 3, wherein the continuous hydrogenation reaction is performed by circulating the catalyst bed temperature in the downstream reactor at a temperature 20 to 200 ° C higher than the catalyst bed temperature. Process for producing unsaturated bicycloheptane derivative oligomer hydride.
JP2000080591A 2000-03-22 2000-03-22 Process for producing unsaturated bicycloheptane derivative oligomer hydride Expired - Fee Related JP4422286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000080591A JP4422286B2 (en) 2000-03-22 2000-03-22 Process for producing unsaturated bicycloheptane derivative oligomer hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000080591A JP4422286B2 (en) 2000-03-22 2000-03-22 Process for producing unsaturated bicycloheptane derivative oligomer hydride

Publications (2)

Publication Number Publication Date
JP2001261590A JP2001261590A (en) 2001-09-26
JP4422286B2 true JP4422286B2 (en) 2010-02-24

Family

ID=18597678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000080591A Expired - Fee Related JP4422286B2 (en) 2000-03-22 2000-03-22 Process for producing unsaturated bicycloheptane derivative oligomer hydride

Country Status (1)

Country Link
JP (1) JP4422286B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10696610B2 (en) 2017-12-11 2020-06-30 Valvoline Licensing And Intellectual Property Llc Scalable synthesis of hydrogenated alpha styrene dimer
US10927321B2 (en) 2019-03-13 2021-02-23 Valvoline Licensing And Intellectual Property Llc Traction fluid with improved low temperature properties

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6182480B2 (en) * 2014-03-11 2017-08-16 出光興産株式会社 Method and apparatus for hydrogenating unsaturated bicyclo compound oligomer
JP2015172135A (en) * 2014-03-11 2015-10-01 出光興産株式会社 Method and apparatus for polymerization of unsaturated bicyclo compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10696610B2 (en) 2017-12-11 2020-06-30 Valvoline Licensing And Intellectual Property Llc Scalable synthesis of hydrogenated alpha styrene dimer
US10927321B2 (en) 2019-03-13 2021-02-23 Valvoline Licensing And Intellectual Property Llc Traction fluid with improved low temperature properties

Also Published As

Publication number Publication date
JP2001261590A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
CN111019734B (en) Poly alpha-olefin base oil and preparation method thereof
TWI751574B (en) Preparation method of hydrogenated petroleum resin
JP5503755B2 (en) Active inorganic metal oxide
JP4422286B2 (en) Process for producing unsaturated bicycloheptane derivative oligomer hydride
US4409409A (en) Two stage olefin wax process
US4219691A (en) Process for producing olefin oligomer
JPS5919931B2 (en) Hydrogenation method of diacetoxybutene
JPS5918367B2 (en) Method for dimeric polymerization of diolefins using the reducing properties of metal carbonyls
JP2001261589A (en) Manufacturing method for hydrogenated oligomer of unsaturated bicycloheptane derivative
CN104672264B (en) Double indenes zirconium compounds of a kind of ethidene bridged linkage and its preparation method and application
KR950008511B1 (en) Fixed bed process for polymerizing liquid butenes
JP6182480B2 (en) Method and apparatus for hydrogenating unsaturated bicyclo compound oligomer
CN1047375C (en) Saturation hydrogenation method for olefines or aromatic hydrocarbon
EP3687968A1 (en) Neo-acids and process for making the same
US4728465A (en) Nickelboride-polymer catalyst used in hydrogenation of fatty compounds
JP2015172135A (en) Method and apparatus for polymerization of unsaturated bicyclo compound
JPH0350731B2 (en)
CN205874280U (en) Low nine hydrogenation petroleum resin&#39;s in colourity carbon apparatus for producing
WO2024125138A1 (en) Preparation method for norbornene
JP4145999B2 (en) Method for producing bicyclo [2.2.1] heptane derivative
RU2212936C2 (en) Catalytic system for oligomerization of olefins, method for its preparing and oligomerization method
CN114436753B (en) Adamantane and preparation method thereof
JP3579507B2 (en) Continuous production of cyclohexene by partial hydrogenation of benzene.
US20230167207A1 (en) Processes to Produce Poly Alpha-Olefins
WO2021083238A1 (en) Processing method for directly synthesizing high-performance base oil by means of polymerization of low-carbon olefin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees